Deciphering serous ovarian carcinoma histopathology and platinum response by convolutional neural networks
Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it...
Saved in:
Published in | BMC medicine Vol. 18; no. 1; pp. 236 - 14 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
18.08.2020
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients' chemotherapy response using the known clinical and histological variables.
We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients' response to platinum-based chemotherapy.
Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003).
These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities. |
---|---|
AbstractList | Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients' chemotherapy response using the known clinical and histological variables. We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients' response to platinum-based chemotherapy. Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003). These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities. Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients' chemotherapy response using the known clinical and histological variables.BACKGROUNDOvarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients' chemotherapy response using the known clinical and histological variables.We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients' response to platinum-based chemotherapy.METHODSWe analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients' response to platinum-based chemotherapy.Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003).RESULTSOur convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003).These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities.CONCLUSIONSThese results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities. Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients' chemotherapy response using the known clinical and histological variables. We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients' response to platinum-based chemotherapy. Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003). These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities. Background Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients' chemotherapy response using the known clinical and histological variables. Methods We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients' response to platinum-based chemotherapy. Results Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003). Conclusions These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities. Keywords: Digital pathology, Platinum response, Gene expression, Proteomics, Machine learning, Serous ovarian carcinoma Background Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients’ chemotherapy response using the known clinical and histological variables. Methods We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients’ response to platinum-based chemotherapy. Results Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003). Conclusions These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities. Abstract Background Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients’ chemotherapy response using the known clinical and histological variables. Methods We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients’ response to platinum-based chemotherapy. Results Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003). Conclusions These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities. |
ArticleNumber | 236 |
Audience | Academic |
Author | Wang, Feiran Kohane, Isaac S. Mutter, George L. Yu, Kun-Hsing Golden, Jeffrey A. Matulonis, Ursula A. Hu, Vincent |
Author_xml | – sequence: 1 givenname: Kun-Hsing orcidid: 0000-0001-9892-8218 surname: Yu fullname: Yu, Kun-Hsing – sequence: 2 givenname: Vincent surname: Hu fullname: Hu, Vincent – sequence: 3 givenname: Feiran surname: Wang fullname: Wang, Feiran – sequence: 4 givenname: Ursula A. surname: Matulonis fullname: Matulonis, Ursula A. – sequence: 5 givenname: George L. surname: Mutter fullname: Mutter, George L. – sequence: 6 givenname: Jeffrey A. surname: Golden fullname: Golden, Jeffrey A. – sequence: 7 givenname: Isaac S. surname: Kohane fullname: Kohane, Isaac S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32807164$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kluL1DAcxYusuBf9Aj5IQVh86Zpbm-RFWNbbwoIv-hz-TdNpxjapSTvDfHszF9eZRSQPCenvnDQn5zI7c96ZLHuN0Q3GonofMZG4KhBBBcKVYMX6WXaBOcMFR7g8O1qfZ5cxLhEiJefsRXZOiUAcV-wiW3402o6dCdYt8miCn2PuVxAsuFxD0Nb5AfLOxsmPMHW-94tNDq7Jxx4m6-YhDyaO3kWT15tce7fy_TxZ76DPnZnDbprWPvyML7PnLfTRvDrMV9mPz5--330tHr59ub-7fSh0KdlUkBJr0dYVaCGllsCFRqLGsmFtTTHXICvRcFLVIAWpa9OYilLSSMSNbLlE9Cq73_s2HpZqDHaAsFEerNpt-LBQECare6MER8BKWgLDhHHWApiW4ZSTaCuJBEteH_Ze41wPptHGTelKJ6anX5zt1MKvFGeUYiSSwbuDQfC_ZhMnNdioTd-DMylrRRgtseAE84S-fYIu_RxSkAeKMl6Sv9QC0gWsa306V29N1W1FmaSixFWibv5BpdGYwaZXMq1N-yeC6yNBZ6Cfunh4yngKvjlO5DGKP5VKANkDOvgYg2kfEYzUtrdq31uVeqt2vVXrJBJPRNpOsD08_bft_yf9DSwJ8gw |
CitedBy_id | crossref_primary_10_3390_diagnostics13101703 crossref_primary_10_1109_ACCESS_2024_3434722 crossref_primary_10_1158_1078_0432_CCR_20_4119 crossref_primary_10_1002_cpe_7568 crossref_primary_10_1007_s11042_024_18115_0 crossref_primary_10_3390_cancers16132448 crossref_primary_10_1093_bib_bbac367 crossref_primary_10_1016_j_medj_2023_06_002 crossref_primary_10_3390_cancers15164044 crossref_primary_10_1007_s13198_024_02390_z crossref_primary_10_1016_j_compbiomed_2022_105209 crossref_primary_10_3389_fonc_2022_924945 crossref_primary_10_1016_j_ijgc_2025_101746 crossref_primary_10_1109_ACCESS_2024_3448219 crossref_primary_10_1038_s41467_024_48667_6 crossref_primary_10_1007_s10462_023_10666_2 crossref_primary_10_1016_j_ebiom_2020_103105 crossref_primary_10_3390_sym13040643 crossref_primary_10_1038_s41523_021_00357_y crossref_primary_10_3390_computation11040081 crossref_primary_10_2196_48527 crossref_primary_10_1038_s41746_024_01106_8 crossref_primary_10_1186_s13048_020_00721_9 crossref_primary_10_1038_s41467_023_37179_4 crossref_primary_10_1016_j_eswa_2022_117865 crossref_primary_10_1016_j_semcancer_2023_09_005 crossref_primary_10_1007_s44163_022_00035_3 crossref_primary_10_1038_s41586_024_07894_z crossref_primary_10_1038_s41598_021_98480_0 crossref_primary_10_1177_09731296241234124 crossref_primary_10_1016_j_ajpath_2024_06_010 crossref_primary_10_1016_j_engappai_2024_109250 crossref_primary_10_1016_j_critrevonc_2022_103808 |
Cites_doi | 10.3322/caac.21262 10.1016/j.ygyno.2018.07.003 10.3390/cancers3011351 10.1038/ncomms12474 10.1126/scitranslmed.3002564 10.1007/s10552-013-0157-5 10.1097/IGC.0b013e3182a01813 10.1109/MCSE.2007.55 10.1093/nar/gkw937 10.3322/caac.21456 10.1093/bioinformatics/btx572 10.1038/sj.bjc.6604630 10.1038/nature10166 10.1093/nar/gku1179 10.1093/nar/28.1.27 10.1038/nrc2167 10.1038/s41551-018-0305-z 10.1016/j.ygyno.2014.04.013 10.1016/j.humpath.2008.01.003 10.7150/jca.7810 10.1021/acs.jproteome.5b01129 10.1016/S0140-6736(13)62146-7 10.1038/s41591-018-0177-5 10.1093/jamia/ocz230 10.1534/g3.116.033514 10.1158/1078-0432.CCR-07-1409 10.1016/j.cels.2017.10.014 10.2196/16709 10.1002/ssu.2980100107 10.1016/j.cell.2016.05.069 10.1109/CVPR.2016.90 10.1177/1758834014544121 10.1016/j.critrevonc.2013.08.017 10.1016/j.ygyno.2014.02.038 10.1038/nature14539 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7U9 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P M7N PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.1186/s12916-020-01684-w |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1741-7015 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_870a4535a412474faaef410028f69084 PMC7433108 A634938516 32807164 10_1186_s12916_020_01684_w |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: Schlager Family Award for Early Stage Digital Health Innovations – fundername: ; grantid: Blavatnik Center for Computational Biomedicine Award – fundername: ; grantid: Harvard Data Science Fellowship – fundername: ; grantid: Partners’ Innovation Discovery Grant |
GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR IHW INH INR ITC KQ8 M1P M48 MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB -5E -5G -A0 -BR 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7QL 7U9 7XB 8FK AZQEC C1K DWQXO H94 K9. M7N PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c594t-251c8fb6ac899c9a78c08b19d4fb317ca968d726ba982bbede6332d907e9f7903 |
IEDL.DBID | 7X7 |
ISSN | 1741-7015 |
IngestDate | Wed Aug 27 01:32:16 EDT 2025 Thu Aug 21 14:13:40 EDT 2025 Fri Jul 11 04:18:17 EDT 2025 Sat Jul 26 02:15:07 EDT 2025 Tue Jun 17 21:28:18 EDT 2025 Tue Jun 10 20:33:26 EDT 2025 Thu May 22 21:19:42 EDT 2025 Thu Jan 02 22:57:08 EST 2025 Thu Apr 24 23:01:25 EDT 2025 Tue Jul 01 02:51:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Digital pathology Platinum response Gene expression Serous ovarian carcinoma Machine learning Proteomics |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-251c8fb6ac899c9a78c08b19d4fb317ca968d726ba982bbede6332d907e9f7903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9892-8218 |
OpenAccessLink | https://www.proquest.com/docview/2435134752?pq-origsite=%requestingapplication% |
PMID | 32807164 |
PQID | 2435134752 |
PQPubID | 42775 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_870a4535a412474faaef410028f69084 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7433108 proquest_miscellaneous_2435187217 proquest_journals_2435134752 gale_infotracmisc_A634938516 gale_infotracacademiconefile_A634938516 gale_healthsolutions_A634938516 pubmed_primary_32807164 crossref_primary_10_1186_s12916_020_01684_w crossref_citationtrail_10_1186_s12916_020_01684_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-18 |
PublicationDateYYYYMMDD | 2020-08-18 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC medicine |
PublicationTitleAlternate | BMC Med |
PublicationYear | 2020 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | 1684_CR21 GC Jayson (1684_CR4) 2014; 384 KH Yu (1684_CR44) 2020; 27 1684_CR2 1684_CR8 PE Colombo (1684_CR15) 2014; 89 LA Torre (1684_CR1) 2015; 65 Cancer Genome Atlas Research Network (1684_CR24) 2011; 474 A Sharif Razavian (1684_CR32) 2014 A Davis (1684_CR13) 2014; 133 L Stewart (1684_CR10) 2000; 2 CB Gilks (1684_CR6) 2008; 39 DG Mutch (1684_CR3) 2014; 133 D Luvero (1684_CR14) 2014; 6 JD Hunter (1684_CR34) 2007; 9 D Szklarczyk (1684_CR39) 2017; 45 H Zhang (1684_CR25) 2016; 166 KH Yu (1684_CR42) 2016; 15 CL Kosary (1684_CR5) 1994; 10 RK Matsuno (1684_CR7) 2013; 24 1684_CR26 RG Verhaak (1684_CR27) 2013; 123 AM Florea (1684_CR12) 2011; 3 RR Selvaraju (1684_CR23) 2017 1684_CR30 K Oikonomopoulou (1684_CR40) 2008; 99 C Szegedy (1684_CR29) 2015 S Kommoss (1684_CR9) 2013; 23 KH Yu (1684_CR19) 2017; 5 K He (1684_CR43) 2016 Y LeCun (1684_CR33) 2015; 521 C Gene Ontology (1684_CR37) 2015; 43 Y Zheng (1684_CR41) 2007; 13 CS Marcus (1684_CR16) 2014; 5 KH Yu (1684_CR22) 2020 T Elsken (1684_CR45) 2018 KH Yu (1684_CR17) 2016; 7 M Kanehisa (1684_CR38) 2000; 28 T Tieleman (1684_CR35) 2012; 4 L Kelland (1684_CR11) 2007; 7 GP Way (1684_CR46) 2016; 6 J Donahue (1684_CR31) 2014 AH Beck (1684_CR18) 2011; 3 1684_CR36 N Coudray (1684_CR20) 2018; 24 A Krizhevsky (1684_CR28) 2012 |
References_xml | – volume: 65 start-page: 87 issue: 2 year: 2015 ident: 1684_CR1 publication-title: CA Cancer J Clin doi: 10.3322/caac.21262 – ident: 1684_CR8 doi: 10.1016/j.ygyno.2018.07.003 – volume: 3 start-page: 1351 issue: 1 year: 2011 ident: 1684_CR12 publication-title: Cancers (Basel) doi: 10.3390/cancers3011351 – volume: 7 start-page: 12474 year: 2016 ident: 1684_CR17 publication-title: Nat Commun doi: 10.1038/ncomms12474 – volume: 3 start-page: 108ra113 issue: 108 year: 2011 ident: 1684_CR18 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3002564 – volume: 24 start-page: 749 issue: 4 year: 2013 ident: 1684_CR7 publication-title: Cancer Causes Control doi: 10.1007/s10552-013-0157-5 – volume: 23 start-page: 1376 issue: 8 year: 2013 ident: 1684_CR9 publication-title: Int J Gynecol Cancer doi: 10.1097/IGC.0b013e3182a01813 – volume: 9 start-page: 90 issue: 3 year: 2007 ident: 1684_CR34 publication-title: Comput Sci Eng doi: 10.1109/MCSE.2007.55 – volume: 45 start-page: D362 issue: D1 year: 2017 ident: 1684_CR39 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw937 – ident: 1684_CR2 doi: 10.3322/caac.21456 – ident: 1684_CR36 doi: 10.1093/bioinformatics/btx572 – volume: 99 start-page: 1103 issue: 7 year: 2008 ident: 1684_CR40 publication-title: Br J Cancer doi: 10.1038/sj.bjc.6604630 – start-page: 618 volume-title: ICCV: 2017 year: 2017 ident: 1684_CR23 – volume: 474 start-page: 609 issue: 7353 year: 2011 ident: 1684_CR24 publication-title: Nature doi: 10.1038/nature10166 – volume: 43 start-page: D1049 issue: Database issue year: 2015 ident: 1684_CR37 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1179 – volume: 28 start-page: 27 issue: 1 year: 2000 ident: 1684_CR38 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – start-page: 806 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition workshops: 2014 year: 2014 ident: 1684_CR32 – volume: 7 start-page: 573 issue: 8 year: 2007 ident: 1684_CR11 publication-title: Nat Rev Cancer doi: 10.1038/nrc2167 – start-page: 1097 volume-title: Advances in neural information processing systems: 2012 year: 2012 ident: 1684_CR28 – ident: 1684_CR21 doi: 10.1038/s41551-018-0305-z – ident: 1684_CR30 – start-page: 647 volume-title: International conference on machine learning: 2014 year: 2014 ident: 1684_CR31 – volume: 133 start-page: 401 issue: 3 year: 2014 ident: 1684_CR3 publication-title: Gynecol Oncol doi: 10.1016/j.ygyno.2014.04.013 – ident: 1684_CR26 – volume: 39 start-page: 1239 issue: 8 year: 2008 ident: 1684_CR6 publication-title: Hum Pathol doi: 10.1016/j.humpath.2008.01.003 – volume: 5 start-page: 25 issue: 1 year: 2014 ident: 1684_CR16 publication-title: J Cancer doi: 10.7150/jca.7810 – volume: 15 start-page: 2455 issue: 8 year: 2016 ident: 1684_CR42 publication-title: J Proteome Res doi: 10.1021/acs.jproteome.5b01129 – volume: 384 start-page: 1376 issue: 9951 year: 2014 ident: 1684_CR4 publication-title: Lancet doi: 10.1016/S0140-6736(13)62146-7 – volume: 4 start-page: 26 issue: 2 year: 2012 ident: 1684_CR35 publication-title: COURSERA – volume: 24 start-page: 1559 issue: 10 year: 2018 ident: 1684_CR20 publication-title: Nat Med doi: 10.1038/s41591-018-0177-5 – volume: 27 start-page: 757 issue: 5 year: 2020 ident: 1684_CR44 publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocz230 – volume: 6 start-page: 4097 issue: 12 year: 2016 ident: 1684_CR46 publication-title: G3 (Bethesda) doi: 10.1534/g3.116.033514 – volume: 13 start-page: 6984 issue: 23 year: 2007 ident: 1684_CR41 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-1409 – volume: 5 start-page: 620 issue: 6 year: 2017 ident: 1684_CR19 publication-title: Cell Syst doi: 10.1016/j.cels.2017.10.014 – year: 2020 ident: 1684_CR22 publication-title: J Med Internet Res doi: 10.2196/16709 – volume: 2 start-page: CD001418 year: 2000 ident: 1684_CR10 publication-title: Cochrane Database Syst Rev – volume-title: Neural architecture search: a survey year: 2018 ident: 1684_CR45 – volume: 10 start-page: 31 issue: 1 year: 1994 ident: 1684_CR5 publication-title: Semin Surg Oncol doi: 10.1002/ssu.2980100107 – volume: 166 start-page: 755 issue: 3 year: 2016 ident: 1684_CR25 publication-title: Cell doi: 10.1016/j.cell.2016.05.069 – volume: 123 start-page: 517 issue: 1 year: 2013 ident: 1684_CR27 publication-title: J Clin Invest – start-page: 770 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition: 2016 year: 2016 ident: 1684_CR43 doi: 10.1109/CVPR.2016.90 – volume: 6 start-page: 229 issue: 5 year: 2014 ident: 1684_CR14 publication-title: Ther Adv Med Oncol doi: 10.1177/1758834014544121 – volume: 89 start-page: 207 issue: 2 year: 2014 ident: 1684_CR15 publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2013.08.017 – volume: 133 start-page: 624 issue: 3 year: 2014 ident: 1684_CR13 publication-title: Gynecol Oncol doi: 10.1016/j.ygyno.2014.02.038 – start-page: 1 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition: 2015 year: 2015 ident: 1684_CR29 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 1684_CR33 publication-title: Nature doi: 10.1038/nature14539 |
SSID | ssj0025774 |
Score | 2.4595678 |
Snippet | Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination... Background Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in... Abstract Background Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 236 |
SubjectTerms | Adenocarcinoma Algorithms Artificial neural networks Cancer Cancer therapies Carcinoma Chemotherapy Classification Datasets Development and progression Digital pathology Female Gene expression Histochemistry Histopathology Humans Immune response Innate immunity Machine learning Medical research Middle Aged Morphology Neural networks Ovarian cancer Ovarian carcinoma Ovarian Neoplasms - drug therapy Ovarian Neoplasms - pathology Pathology Patients Platinum Platinum - therapeutic use Platinum response Prognosis Proteins Proteomics Quality Ribonucleic acid RNA RNA sequencing Serous ovarian carcinoma Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLAsojpVAjIXFAUZPY8eNYoFWFVE5U6s2yHRuKqHfV3VLx75mxs9FGSHDpaaX1RLuZR2a-3ZlvCHlro2645MiHZ_ua88hqNwwWoErroh9CdAyHk8--iNNz_vmiv9ha9YU9YYUeuCjuEPzJ8p71FtckSx6tDZEjb6iKAOxUZgKFnLcBUyPU6qGq2YzIKHG4gqzWYrMtNmEJxevbWRrKbP1_P5O3ktK8YXIrA508Ig_H0pEela_8mNwL6Qm5fzb-Ob5LfnwK_nKZ5_m-UfAswPR08QuwsE3U48qgtLiyNBMM4x7i_Hs6tWmgS-yHSzdX9Lo0zAbqflNsRx_dEj4UaS_zS24aXz0l5yfHXz-e1uMqhdr3mq9rqGK8ik5YD_jKayuVb5Rr9cDBGK30Vgs1yE44q1XnXBiCYKwbADkHHaVu2DOykxYpvCDUQgEQZWz64ARvXa9bx6xzLnLfYrlYkXajWeNHnnFcd_HTZLyhhCnWMGANk61hbivyfrpmWVg2_in9AQ02SSJDdn4D_MaMfmP-5zcVOUBzmzJuOsW5ORKMawZ1qKjIuyyBkQ434O04sABqQM6smeT-TBIi1M-PNy5lxifEynRQp-IYb99V5M10jFdi11sK4CNFRgFGlxV5XjxwummGNEaAdSsiZ74508r8JF1-z_zhEqfkGrV3F2p8SR50OaxU3ap9srO-vgmvoExbu9c5Iv8AzUg6Ig priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKkRAXxJvQAkZC4oACSez4cUCoPKoKaTmxUm-W7dilqM0uu9uW_ntmnIcaUfW00nqs3Xi-ycwkM98Q8sZGXXDJkQ_P1jnnkeWuaSykKqWLvgnRMWxOnv0QB3P-_bA-3CLDuKP-ANfXpnY4T2q-Onn_98_lJzD4j8nglfiwBp9VYiktllgJxfOLW-Q2eCaJhjrj41sFQKfkQ-PMtfsmzilx-P9_p77iqqZllFf80v59cq8PKOleh4AHZCu0D8mdWf_K_BH5_TX442Xq8juigDfI9OniHDJk21KPg4TaxamliXYYpxOnp-zUtg1dYpVce3ZKV10ZbaDukmKReg9W-FEkw0wfqZR8_ZjM97_9_HKQ9wMWcl9rvskhtvEqOmE9ZF1eW6l8oVypGw4qKqW3WqhGVsJZrSrnQhMEY1UD-XTQUeqCPSHb7aINzwi1EBZEGYs6OMFLV-vSMeuci9yXGERmpBxO1viefRyHYJyYlIUoYTptGNCGSdowFxl5N-5ZdtwbN0p_RoWNksibnb5YrI5Mb4YG7k6W16y2OHRb8mhtiBxZaFUUulA8I69Q3aZrQh2t3-wJxjWD6FRk5G2SQETCBXjbtzHAMSCT1kRydyIJduunywOkzAB7U0H0is29dZWR1-My7sRauDYARjoZBZm7zMjTDoHjRTMkN4IMOCNygs3JqUxX2uNfiVVcYu9coZ7f_Ld2yN0qGYzKS7VLtjers_ACwrKNe5ls7R8_iTZ- priority: 102 providerName: Scholars Portal |
Title | Deciphering serous ovarian carcinoma histopathology and platinum response by convolutional neural networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32807164 https://www.proquest.com/docview/2435134752 https://www.proquest.com/docview/2435187217 https://pubmed.ncbi.nlm.nih.gov/PMC7433108 https://doaj.org/article/870a4535a412474faaef410028f69084 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA_agvhS_Ha1nhEEH2TpfmTz8SQ9bSnCFSkWDl9Ckk1qxe5d764W_3tnsrlrF6Eve3CZ5W4z39mZ3xDy3gRVMMEQD880OWOhzm3bGkhVShtc64OtsTl5csyPTtnXaTNNB27LVFa5tonRULczh2fkexX4dWx7bKpP88scp0bh29U0QuM-2UboMizpEtObhKuB2GbdKCP53hJ8W4klt1iKxSXLrwfOKGL2_2-Zb7mmYdnkLT90-IjspACS7vccf0zu-e4JeTBJr8ifkl9fvDufx66-MwryBZk9nf2BjNh01OHgoG52YWiEGcZpxPFUnZqupXOsiuuuLuiiL5v11P6lWJSehBN-FMEv40csHV8-I6eHB98_H-VpoELuGsVWOcQyTgbLjYMsyykjpCukLVXLgCWlcEZx2YqKW6NkZa1vPa_rqoX82asgVFE_J1vdrPMvCTUQBgQRisZbzkrbqNLWxlobmCsxaMxIud5Z7RLaOA69-K1j1iG57rmhgRs6ckNfZ-Tj5p55j7VxJ_UYGbahRJzs-MVscaaT2mmwRoY1dWNwyLZgwRgfGKLOysBVIVlG3iK7dd90utF2vc9rpmqIRnlGPkQK1Hd4AGdS2wJsAyJnDSh3B5Sgp264vBYpnezEUt9IdUbebZbxTqx96zzISE8jIVMXGXnRS-DmoWsEM4KMNyNiIJuDXRmudOc_I4q4wF65Qr66-2-9Jg-rqDAyL-Uu2VotrvwbCMNWdhR1bUS2xwfH305G8TADrhMm4Xoy_vEPBLQ3hw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbKVAIuiJ1AoUYCcUBRsziOc0Copa2mtDNCqJV6M7ZjlyKaDLMw6p_iN_KekwmNkHrraaT4JZP4rV_yFkLeKFdELGfYD09lIWMuDXVZKoAqsXamtE6nWJw8GvPhCft8mp2ukT-rWhhMq1zZRG-oy9rgO_KtBPw6lj1mycfJrxCnRuHX1dUIjUYsDu3lEiDb7MPBLvD3bZLs7x1_GobtVIHQZAWbh-DQjXCaKwNQwxQqFyYSOi5KBvcV50YVXJR5wrUqRKK1LS1P06QEEGkLlxdRCte9RdZZClBmQNZ39sZfvnYQL4NoalWaI_jWDLxpjEm-mPzFBQuXPffnpwT87wuuOMN-ouYVz7d_n9xrQ1a63cjYA7Jmq4fk9qj9KP-I_Ni15nzi6wjPKEh0vZjR-jdgcFVRg6OKqvpCUd_YGOcf-_f4VFUlnWAeXrW4oNMmUddSfUkxDb5VB_hTbLfpf3yy-uwxObmRzX5CBlVd2WeEKgg8XO6izGrOYp0VsU6V1toxE2OYGpB4tbPStP3NcczGT-lxjuCy4YYEbkjPDbkMyPvunEnT3eNa6h1kWEeJnbn9gXp6JltFl2D_FMvSTOFY75w5paxj2OdWOF5EggVkE9ktmzLXzr7IbZ6yIoX4lwfknadACwMPYFRbKAHbgL26epQbPUqwDKa_vBIp2VqmmfynRwF53S3jmZhtV1mQkYZG5IBWA_K0kcDuoVNsnwQYOyB5TzZ7u9Jfqc6_-77lOVbnReL59be1Se4Mj0dH8uhgfPiC3E288ogwFhtkMJ8u7EsIAuf6Vat5lHy7aWX_C5fPccg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+serous+ovarian+carcinoma+histopathology+and+platinum+response+by+convolutional+neural+networks&rft.jtitle=BMC+medicine&rft.au=Kun-Hsing+Yu&rft.au=Hu%2C+Vincent&rft.au=Wang%2C+Feiran&rft.au=Matulonis%2C+Ursula+A&rft.date=2020-08-18&rft.pub=BioMed+Central&rft.eissn=1741-7015&rft.volume=18&rft.spage=1&rft_id=info:doi/10.1186%2Fs12916-020-01684-w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7015&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7015&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7015&client=summon |