Deciphering serous ovarian carcinoma histopathology and platinum response by convolutional neural networks

Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it...

Full description

Saved in:
Bibliographic Details
Published inBMC medicine Vol. 18; no. 1; pp. 236 - 14
Main Authors Yu, Kun-Hsing, Hu, Vincent, Wang, Feiran, Matulonis, Ursula A., Mutter, George L., Golden, Jeffrey A., Kohane, Isaac S.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 18.08.2020
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients' chemotherapy response using the known clinical and histological variables. We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients' response to platinum-based chemotherapy. Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003). These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities.
AbstractList Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients' chemotherapy response using the known clinical and histological variables. We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients' response to platinum-based chemotherapy. Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003). These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities.
Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients' chemotherapy response using the known clinical and histological variables.BACKGROUNDOvarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients' chemotherapy response using the known clinical and histological variables.We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients' response to platinum-based chemotherapy.METHODSWe analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients' response to platinum-based chemotherapy.Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003).RESULTSOur convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003).These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities.CONCLUSIONSThese results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities.
Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients' chemotherapy response using the known clinical and histological variables. We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients' response to platinum-based chemotherapy. Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003). These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities.
Background Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients' chemotherapy response using the known clinical and histological variables. Methods We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients' response to platinum-based chemotherapy. Results Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003). Conclusions These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities. Keywords: Digital pathology, Platinum response, Gene expression, Proteomics, Machine learning, Serous ovarian carcinoma
Background Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients’ chemotherapy response using the known clinical and histological variables. Methods We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients’ response to platinum-based chemotherapy. Results Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003). Conclusions These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities.
Abstract Background Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients’ chemotherapy response using the known clinical and histological variables. Methods We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients’ response to platinum-based chemotherapy. Results Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003). Conclusions These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities.
ArticleNumber 236
Audience Academic
Author Wang, Feiran
Kohane, Isaac S.
Mutter, George L.
Yu, Kun-Hsing
Golden, Jeffrey A.
Matulonis, Ursula A.
Hu, Vincent
Author_xml – sequence: 1
  givenname: Kun-Hsing
  orcidid: 0000-0001-9892-8218
  surname: Yu
  fullname: Yu, Kun-Hsing
– sequence: 2
  givenname: Vincent
  surname: Hu
  fullname: Hu, Vincent
– sequence: 3
  givenname: Feiran
  surname: Wang
  fullname: Wang, Feiran
– sequence: 4
  givenname: Ursula A.
  surname: Matulonis
  fullname: Matulonis, Ursula A.
– sequence: 5
  givenname: George L.
  surname: Mutter
  fullname: Mutter, George L.
– sequence: 6
  givenname: Jeffrey A.
  surname: Golden
  fullname: Golden, Jeffrey A.
– sequence: 7
  givenname: Isaac S.
  surname: Kohane
  fullname: Kohane, Isaac S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32807164$$D View this record in MEDLINE/PubMed
BookMark eNp9kluL1DAcxYusuBf9Aj5IQVh86Zpbm-RFWNbbwoIv-hz-TdNpxjapSTvDfHszF9eZRSQPCenvnDQn5zI7c96ZLHuN0Q3GonofMZG4KhBBBcKVYMX6WXaBOcMFR7g8O1qfZ5cxLhEiJefsRXZOiUAcV-wiW3402o6dCdYt8miCn2PuVxAsuFxD0Nb5AfLOxsmPMHW-94tNDq7Jxx4m6-YhDyaO3kWT15tce7fy_TxZ76DPnZnDbprWPvyML7PnLfTRvDrMV9mPz5--330tHr59ub-7fSh0KdlUkBJr0dYVaCGllsCFRqLGsmFtTTHXICvRcFLVIAWpa9OYilLSSMSNbLlE9Cq73_s2HpZqDHaAsFEerNpt-LBQECare6MER8BKWgLDhHHWApiW4ZSTaCuJBEteH_Ze41wPptHGTelKJ6anX5zt1MKvFGeUYiSSwbuDQfC_ZhMnNdioTd-DMylrRRgtseAE84S-fYIu_RxSkAeKMl6Sv9QC0gWsa306V29N1W1FmaSixFWibv5BpdGYwaZXMq1N-yeC6yNBZ6Cfunh4yngKvjlO5DGKP5VKANkDOvgYg2kfEYzUtrdq31uVeqt2vVXrJBJPRNpOsD08_bft_yf9DSwJ8gw
CitedBy_id crossref_primary_10_3390_diagnostics13101703
crossref_primary_10_1109_ACCESS_2024_3434722
crossref_primary_10_1158_1078_0432_CCR_20_4119
crossref_primary_10_1002_cpe_7568
crossref_primary_10_1007_s11042_024_18115_0
crossref_primary_10_3390_cancers16132448
crossref_primary_10_1093_bib_bbac367
crossref_primary_10_1016_j_medj_2023_06_002
crossref_primary_10_3390_cancers15164044
crossref_primary_10_1007_s13198_024_02390_z
crossref_primary_10_1016_j_compbiomed_2022_105209
crossref_primary_10_3389_fonc_2022_924945
crossref_primary_10_1016_j_ijgc_2025_101746
crossref_primary_10_1109_ACCESS_2024_3448219
crossref_primary_10_1038_s41467_024_48667_6
crossref_primary_10_1007_s10462_023_10666_2
crossref_primary_10_1016_j_ebiom_2020_103105
crossref_primary_10_3390_sym13040643
crossref_primary_10_1038_s41523_021_00357_y
crossref_primary_10_3390_computation11040081
crossref_primary_10_2196_48527
crossref_primary_10_1038_s41746_024_01106_8
crossref_primary_10_1186_s13048_020_00721_9
crossref_primary_10_1038_s41467_023_37179_4
crossref_primary_10_1016_j_eswa_2022_117865
crossref_primary_10_1016_j_semcancer_2023_09_005
crossref_primary_10_1007_s44163_022_00035_3
crossref_primary_10_1038_s41586_024_07894_z
crossref_primary_10_1038_s41598_021_98480_0
crossref_primary_10_1177_09731296241234124
crossref_primary_10_1016_j_ajpath_2024_06_010
crossref_primary_10_1016_j_engappai_2024_109250
crossref_primary_10_1016_j_critrevonc_2022_103808
Cites_doi 10.3322/caac.21262
10.1016/j.ygyno.2018.07.003
10.3390/cancers3011351
10.1038/ncomms12474
10.1126/scitranslmed.3002564
10.1007/s10552-013-0157-5
10.1097/IGC.0b013e3182a01813
10.1109/MCSE.2007.55
10.1093/nar/gkw937
10.3322/caac.21456
10.1093/bioinformatics/btx572
10.1038/sj.bjc.6604630
10.1038/nature10166
10.1093/nar/gku1179
10.1093/nar/28.1.27
10.1038/nrc2167
10.1038/s41551-018-0305-z
10.1016/j.ygyno.2014.04.013
10.1016/j.humpath.2008.01.003
10.7150/jca.7810
10.1021/acs.jproteome.5b01129
10.1016/S0140-6736(13)62146-7
10.1038/s41591-018-0177-5
10.1093/jamia/ocz230
10.1534/g3.116.033514
10.1158/1078-0432.CCR-07-1409
10.1016/j.cels.2017.10.014
10.2196/16709
10.1002/ssu.2980100107
10.1016/j.cell.2016.05.069
10.1109/CVPR.2016.90
10.1177/1758834014544121
10.1016/j.critrevonc.2013.08.017
10.1016/j.ygyno.2014.02.038
10.1038/nature14539
ContentType Journal Article
Copyright COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020
Copyright_xml – notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7U9
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
M7N
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1186/s12916-020-01684-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-7015
EndPage 14
ExternalDocumentID oai_doaj_org_article_870a4535a412474faaef410028f69084
PMC7433108
A634938516
32807164
10_1186_s12916_020_01684_w
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: Schlager Family Award for Early Stage Digital Health Innovations
– fundername: ;
  grantid: Blavatnik Center for Computational Biomedicine Award
– fundername: ;
  grantid: Harvard Data Science Fellowship
– fundername: ;
  grantid: Partners’ Innovation Discovery Grant
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
-5E
-5G
-A0
-BR
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QL
7U9
7XB
8FK
AZQEC
C1K
DWQXO
H94
K9.
M7N
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c594t-251c8fb6ac899c9a78c08b19d4fb317ca968d726ba982bbede6332d907e9f7903
IEDL.DBID 7X7
ISSN 1741-7015
IngestDate Wed Aug 27 01:32:16 EDT 2025
Thu Aug 21 14:13:40 EDT 2025
Fri Jul 11 04:18:17 EDT 2025
Sat Jul 26 02:15:07 EDT 2025
Tue Jun 17 21:28:18 EDT 2025
Tue Jun 10 20:33:26 EDT 2025
Thu May 22 21:19:42 EDT 2025
Thu Jan 02 22:57:08 EST 2025
Thu Apr 24 23:01:25 EDT 2025
Tue Jul 01 02:51:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Digital pathology
Platinum response
Gene expression
Serous ovarian carcinoma
Machine learning
Proteomics
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c594t-251c8fb6ac899c9a78c08b19d4fb317ca968d726ba982bbede6332d907e9f7903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9892-8218
OpenAccessLink https://www.proquest.com/docview/2435134752?pq-origsite=%requestingapplication%
PMID 32807164
PQID 2435134752
PQPubID 42775
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_870a4535a412474faaef410028f69084
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7433108
proquest_miscellaneous_2435187217
proquest_journals_2435134752
gale_infotracmisc_A634938516
gale_infotracacademiconefile_A634938516
gale_healthsolutions_A634938516
pubmed_primary_32807164
crossref_primary_10_1186_s12916_020_01684_w
crossref_citationtrail_10_1186_s12916_020_01684_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-18
PublicationDateYYYYMMDD 2020-08-18
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC medicine
PublicationTitleAlternate BMC Med
PublicationYear 2020
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 1684_CR21
GC Jayson (1684_CR4) 2014; 384
KH Yu (1684_CR44) 2020; 27
1684_CR2
1684_CR8
PE Colombo (1684_CR15) 2014; 89
LA Torre (1684_CR1) 2015; 65
Cancer Genome Atlas Research Network (1684_CR24) 2011; 474
A Sharif Razavian (1684_CR32) 2014
A Davis (1684_CR13) 2014; 133
L Stewart (1684_CR10) 2000; 2
CB Gilks (1684_CR6) 2008; 39
DG Mutch (1684_CR3) 2014; 133
D Luvero (1684_CR14) 2014; 6
JD Hunter (1684_CR34) 2007; 9
D Szklarczyk (1684_CR39) 2017; 45
H Zhang (1684_CR25) 2016; 166
KH Yu (1684_CR42) 2016; 15
CL Kosary (1684_CR5) 1994; 10
RK Matsuno (1684_CR7) 2013; 24
1684_CR26
RG Verhaak (1684_CR27) 2013; 123
AM Florea (1684_CR12) 2011; 3
RR Selvaraju (1684_CR23) 2017
1684_CR30
K Oikonomopoulou (1684_CR40) 2008; 99
C Szegedy (1684_CR29) 2015
S Kommoss (1684_CR9) 2013; 23
KH Yu (1684_CR19) 2017; 5
K He (1684_CR43) 2016
Y LeCun (1684_CR33) 2015; 521
C Gene Ontology (1684_CR37) 2015; 43
Y Zheng (1684_CR41) 2007; 13
CS Marcus (1684_CR16) 2014; 5
KH Yu (1684_CR22) 2020
T Elsken (1684_CR45) 2018
KH Yu (1684_CR17) 2016; 7
M Kanehisa (1684_CR38) 2000; 28
T Tieleman (1684_CR35) 2012; 4
L Kelland (1684_CR11) 2007; 7
GP Way (1684_CR46) 2016; 6
J Donahue (1684_CR31) 2014
AH Beck (1684_CR18) 2011; 3
1684_CR36
N Coudray (1684_CR20) 2018; 24
A Krizhevsky (1684_CR28) 2012
References_xml – volume: 65
  start-page: 87
  issue: 2
  year: 2015
  ident: 1684_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21262
– ident: 1684_CR8
  doi: 10.1016/j.ygyno.2018.07.003
– volume: 3
  start-page: 1351
  issue: 1
  year: 2011
  ident: 1684_CR12
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers3011351
– volume: 7
  start-page: 12474
  year: 2016
  ident: 1684_CR17
  publication-title: Nat Commun
  doi: 10.1038/ncomms12474
– volume: 3
  start-page: 108ra113
  issue: 108
  year: 2011
  ident: 1684_CR18
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3002564
– volume: 24
  start-page: 749
  issue: 4
  year: 2013
  ident: 1684_CR7
  publication-title: Cancer Causes Control
  doi: 10.1007/s10552-013-0157-5
– volume: 23
  start-page: 1376
  issue: 8
  year: 2013
  ident: 1684_CR9
  publication-title: Int J Gynecol Cancer
  doi: 10.1097/IGC.0b013e3182a01813
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 1684_CR34
  publication-title: Comput Sci Eng
  doi: 10.1109/MCSE.2007.55
– volume: 45
  start-page: D362
  issue: D1
  year: 2017
  ident: 1684_CR39
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw937
– ident: 1684_CR2
  doi: 10.3322/caac.21456
– ident: 1684_CR36
  doi: 10.1093/bioinformatics/btx572
– volume: 99
  start-page: 1103
  issue: 7
  year: 2008
  ident: 1684_CR40
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6604630
– start-page: 618
  volume-title: ICCV: 2017
  year: 2017
  ident: 1684_CR23
– volume: 474
  start-page: 609
  issue: 7353
  year: 2011
  ident: 1684_CR24
  publication-title: Nature
  doi: 10.1038/nature10166
– volume: 43
  start-page: D1049
  issue: Database issue
  year: 2015
  ident: 1684_CR37
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1179
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  ident: 1684_CR38
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– start-page: 806
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition workshops: 2014
  year: 2014
  ident: 1684_CR32
– volume: 7
  start-page: 573
  issue: 8
  year: 2007
  ident: 1684_CR11
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2167
– start-page: 1097
  volume-title: Advances in neural information processing systems: 2012
  year: 2012
  ident: 1684_CR28
– ident: 1684_CR21
  doi: 10.1038/s41551-018-0305-z
– ident: 1684_CR30
– start-page: 647
  volume-title: International conference on machine learning: 2014
  year: 2014
  ident: 1684_CR31
– volume: 133
  start-page: 401
  issue: 3
  year: 2014
  ident: 1684_CR3
  publication-title: Gynecol Oncol
  doi: 10.1016/j.ygyno.2014.04.013
– ident: 1684_CR26
– volume: 39
  start-page: 1239
  issue: 8
  year: 2008
  ident: 1684_CR6
  publication-title: Hum Pathol
  doi: 10.1016/j.humpath.2008.01.003
– volume: 5
  start-page: 25
  issue: 1
  year: 2014
  ident: 1684_CR16
  publication-title: J Cancer
  doi: 10.7150/jca.7810
– volume: 15
  start-page: 2455
  issue: 8
  year: 2016
  ident: 1684_CR42
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.5b01129
– volume: 384
  start-page: 1376
  issue: 9951
  year: 2014
  ident: 1684_CR4
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)62146-7
– volume: 4
  start-page: 26
  issue: 2
  year: 2012
  ident: 1684_CR35
  publication-title: COURSERA
– volume: 24
  start-page: 1559
  issue: 10
  year: 2018
  ident: 1684_CR20
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0177-5
– volume: 27
  start-page: 757
  issue: 5
  year: 2020
  ident: 1684_CR44
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocz230
– volume: 6
  start-page: 4097
  issue: 12
  year: 2016
  ident: 1684_CR46
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.116.033514
– volume: 13
  start-page: 6984
  issue: 23
  year: 2007
  ident: 1684_CR41
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-1409
– volume: 5
  start-page: 620
  issue: 6
  year: 2017
  ident: 1684_CR19
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2017.10.014
– year: 2020
  ident: 1684_CR22
  publication-title: J Med Internet Res
  doi: 10.2196/16709
– volume: 2
  start-page: CD001418
  year: 2000
  ident: 1684_CR10
  publication-title: Cochrane Database Syst Rev
– volume-title: Neural architecture search: a survey
  year: 2018
  ident: 1684_CR45
– volume: 10
  start-page: 31
  issue: 1
  year: 1994
  ident: 1684_CR5
  publication-title: Semin Surg Oncol
  doi: 10.1002/ssu.2980100107
– volume: 166
  start-page: 755
  issue: 3
  year: 2016
  ident: 1684_CR25
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.069
– volume: 123
  start-page: 517
  issue: 1
  year: 2013
  ident: 1684_CR27
  publication-title: J Clin Invest
– start-page: 770
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition: 2016
  year: 2016
  ident: 1684_CR43
  doi: 10.1109/CVPR.2016.90
– volume: 6
  start-page: 229
  issue: 5
  year: 2014
  ident: 1684_CR14
  publication-title: Ther Adv Med Oncol
  doi: 10.1177/1758834014544121
– volume: 89
  start-page: 207
  issue: 2
  year: 2014
  ident: 1684_CR15
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2013.08.017
– volume: 133
  start-page: 624
  issue: 3
  year: 2014
  ident: 1684_CR13
  publication-title: Gynecol Oncol
  doi: 10.1016/j.ygyno.2014.02.038
– start-page: 1
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition: 2015
  year: 2015
  ident: 1684_CR29
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 1684_CR33
  publication-title: Nature
  doi: 10.1038/nature14539
SSID ssj0025774
Score 2.4595678
Snippet Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination...
Background Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in...
Abstract Background Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 236
SubjectTerms Adenocarcinoma
Algorithms
Artificial neural networks
Cancer
Cancer therapies
Carcinoma
Chemotherapy
Classification
Datasets
Development and progression
Digital pathology
Female
Gene expression
Histochemistry
Histopathology
Humans
Immune response
Innate immunity
Machine learning
Medical research
Middle Aged
Morphology
Neural networks
Ovarian cancer
Ovarian carcinoma
Ovarian Neoplasms - drug therapy
Ovarian Neoplasms - pathology
Pathology
Patients
Platinum
Platinum - therapeutic use
Platinum response
Prognosis
Proteins
Proteomics
Quality
Ribonucleic acid
RNA
RNA sequencing
Serous ovarian carcinoma
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLAsojpVAjIXFAUZPY8eNYoFWFVE5U6s2yHRuKqHfV3VLx75mxs9FGSHDpaaX1RLuZR2a-3ZlvCHlro2645MiHZ_ua88hqNwwWoErroh9CdAyHk8--iNNz_vmiv9ha9YU9YYUeuCjuEPzJ8p71FtckSx6tDZEjb6iKAOxUZgKFnLcBUyPU6qGq2YzIKHG4gqzWYrMtNmEJxevbWRrKbP1_P5O3ktK8YXIrA508Ig_H0pEela_8mNwL6Qm5fzb-Ob5LfnwK_nKZ5_m-UfAswPR08QuwsE3U48qgtLiyNBMM4x7i_Hs6tWmgS-yHSzdX9Lo0zAbqflNsRx_dEj4UaS_zS24aXz0l5yfHXz-e1uMqhdr3mq9rqGK8ik5YD_jKayuVb5Rr9cDBGK30Vgs1yE44q1XnXBiCYKwbADkHHaVu2DOykxYpvCDUQgEQZWz64ARvXa9bx6xzLnLfYrlYkXajWeNHnnFcd_HTZLyhhCnWMGANk61hbivyfrpmWVg2_in9AQ02SSJDdn4D_MaMfmP-5zcVOUBzmzJuOsW5ORKMawZ1qKjIuyyBkQ434O04sABqQM6smeT-TBIi1M-PNy5lxifEynRQp-IYb99V5M10jFdi11sK4CNFRgFGlxV5XjxwummGNEaAdSsiZ74508r8JF1-z_zhEqfkGrV3F2p8SR50OaxU3ap9srO-vgmvoExbu9c5Iv8AzUg6Ig
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKkRAXxJvQAkZC4oACSez4cUCoPKoKaTmxUm-W7dilqM0uu9uW_ntmnIcaUfW00nqs3Xi-ycwkM98Q8sZGXXDJkQ_P1jnnkeWuaSykKqWLvgnRMWxOnv0QB3P-_bA-3CLDuKP-ANfXpnY4T2q-Onn_98_lJzD4j8nglfiwBp9VYiktllgJxfOLW-Q2eCaJhjrj41sFQKfkQ-PMtfsmzilx-P9_p77iqqZllFf80v59cq8PKOleh4AHZCu0D8mdWf_K_BH5_TX442Xq8juigDfI9OniHDJk21KPg4TaxamliXYYpxOnp-zUtg1dYpVce3ZKV10ZbaDukmKReg9W-FEkw0wfqZR8_ZjM97_9_HKQ9wMWcl9rvskhtvEqOmE9ZF1eW6l8oVypGw4qKqW3WqhGVsJZrSrnQhMEY1UD-XTQUeqCPSHb7aINzwi1EBZEGYs6OMFLV-vSMeuci9yXGERmpBxO1viefRyHYJyYlIUoYTptGNCGSdowFxl5N-5ZdtwbN0p_RoWNksibnb5YrI5Mb4YG7k6W16y2OHRb8mhtiBxZaFUUulA8I69Q3aZrQh2t3-wJxjWD6FRk5G2SQETCBXjbtzHAMSCT1kRydyIJduunywOkzAB7U0H0is29dZWR1-My7sRauDYARjoZBZm7zMjTDoHjRTMkN4IMOCNygs3JqUxX2uNfiVVcYu9coZ7f_Ld2yN0qGYzKS7VLtjers_ACwrKNe5ls7R8_iTZ-
  priority: 102
  providerName: Scholars Portal
Title Deciphering serous ovarian carcinoma histopathology and platinum response by convolutional neural networks
URI https://www.ncbi.nlm.nih.gov/pubmed/32807164
https://www.proquest.com/docview/2435134752
https://www.proquest.com/docview/2435187217
https://pubmed.ncbi.nlm.nih.gov/PMC7433108
https://doaj.org/article/870a4535a412474faaef410028f69084
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA_agvhS_Ha1nhEEH2TpfmTz8SQ9bSnCFSkWDl9Ckk1qxe5d764W_3tnsrlrF6Eve3CZ5W4z39mZ3xDy3gRVMMEQD880OWOhzm3bGkhVShtc64OtsTl5csyPTtnXaTNNB27LVFa5tonRULczh2fkexX4dWx7bKpP88scp0bh29U0QuM-2UboMizpEtObhKuB2GbdKCP53hJ8W4klt1iKxSXLrwfOKGL2_2-Zb7mmYdnkLT90-IjspACS7vccf0zu-e4JeTBJr8ifkl9fvDufx66-MwryBZk9nf2BjNh01OHgoG52YWiEGcZpxPFUnZqupXOsiuuuLuiiL5v11P6lWJSehBN-FMEv40csHV8-I6eHB98_H-VpoELuGsVWOcQyTgbLjYMsyykjpCukLVXLgCWlcEZx2YqKW6NkZa1vPa_rqoX82asgVFE_J1vdrPMvCTUQBgQRisZbzkrbqNLWxlobmCsxaMxIud5Z7RLaOA69-K1j1iG57rmhgRs6ckNfZ-Tj5p55j7VxJ_UYGbahRJzs-MVscaaT2mmwRoY1dWNwyLZgwRgfGKLOysBVIVlG3iK7dd90utF2vc9rpmqIRnlGPkQK1Hd4AGdS2wJsAyJnDSh3B5Sgp264vBYpnezEUt9IdUbebZbxTqx96zzISE8jIVMXGXnRS-DmoWsEM4KMNyNiIJuDXRmudOc_I4q4wF65Qr66-2-9Jg-rqDAyL-Uu2VotrvwbCMNWdhR1bUS2xwfH305G8TADrhMm4Xoy_vEPBLQ3hw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbKVAIuiJ1AoUYCcUBRsziOc0Copa2mtDNCqJV6M7ZjlyKaDLMw6p_iN_KekwmNkHrraaT4JZP4rV_yFkLeKFdELGfYD09lIWMuDXVZKoAqsXamtE6nWJw8GvPhCft8mp2ukT-rWhhMq1zZRG-oy9rgO_KtBPw6lj1mycfJrxCnRuHX1dUIjUYsDu3lEiDb7MPBLvD3bZLs7x1_GobtVIHQZAWbh-DQjXCaKwNQwxQqFyYSOi5KBvcV50YVXJR5wrUqRKK1LS1P06QEEGkLlxdRCte9RdZZClBmQNZ39sZfvnYQL4NoalWaI_jWDLxpjEm-mPzFBQuXPffnpwT87wuuOMN-ouYVz7d_n9xrQ1a63cjYA7Jmq4fk9qj9KP-I_Ni15nzi6wjPKEh0vZjR-jdgcFVRg6OKqvpCUd_YGOcf-_f4VFUlnWAeXrW4oNMmUddSfUkxDb5VB_hTbLfpf3yy-uwxObmRzX5CBlVd2WeEKgg8XO6izGrOYp0VsU6V1toxE2OYGpB4tbPStP3NcczGT-lxjuCy4YYEbkjPDbkMyPvunEnT3eNa6h1kWEeJnbn9gXp6JltFl2D_FMvSTOFY75w5paxj2OdWOF5EggVkE9ktmzLXzr7IbZ6yIoX4lwfknadACwMPYFRbKAHbgL26epQbPUqwDKa_vBIp2VqmmfynRwF53S3jmZhtV1mQkYZG5IBWA_K0kcDuoVNsnwQYOyB5TzZ7u9Jfqc6_-77lOVbnReL59be1Se4Mj0dH8uhgfPiC3E288ogwFhtkMJ8u7EsIAuf6Vat5lHy7aWX_C5fPccg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+serous+ovarian+carcinoma+histopathology+and+platinum+response+by+convolutional+neural+networks&rft.jtitle=BMC+medicine&rft.au=Kun-Hsing+Yu&rft.au=Hu%2C+Vincent&rft.au=Wang%2C+Feiran&rft.au=Matulonis%2C+Ursula+A&rft.date=2020-08-18&rft.pub=BioMed+Central&rft.eissn=1741-7015&rft.volume=18&rft.spage=1&rft_id=info:doi/10.1186%2Fs12916-020-01684-w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7015&client=summon