Inactivation of the Tomato Pathogen Cladosporium fulvum by an Atmospheric-Pressure Cold Plasma Jet
Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum (C. fulvum) have been inactivated by using the atmospheric‐pressure plasma jet (APPJ). The results show that the inactivation efficiencies of C. fulvum are d...
Saved in:
Published in | Plasma processes and polymers Vol. 11; no. 11; pp. 1028 - 1036 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
01.11.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum (C. fulvum) have been inactivated by using the atmospheric‐pressure plasma jet (APPJ). The results show that the inactivation efficiencies of C. fulvum are dependent on the plasma density and treatment time. The APPJ with a relatively high plasma density can completely kill the resistant C. fulvum within the treatment time of 60 s. Due to plasma generating electrostatic force, the outer membrane of C. fulvum is disrupted and the cytoplasm is released to the surrounding medium. Both protein and DNA molecules can be destroyed during the plasma inactivation. Meanwhile, the APPJ can also provide a novel approach to decrease the rotting rates of C. fulvum‐infected tomato seeds.
The plant pathogen Cladosporium fulvum (C. fulvum) as one of major infection sources of tomato leafmold has been inactivated by using the atmospheric‐pressure plasma jet (APPJ). The APPJ with a relatively high plasma density can break the outer membrane of C. fulvum as well as protein and DNA molecules. Within the treatment time of 60 s, APPJ can completely kill the resistant C. fulvum. |
---|---|
AbstractList | Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum (C. fulvum) have been inactivated by using the atmospheric‐pressure plasma jet (APPJ). The results show that the inactivation efficiencies of C. fulvum are dependent on the plasma density and treatment time. The APPJ with a relatively high plasma density can completely kill the resistant C. fulvum within the treatment time of 60 s. Due to plasma generating electrostatic force, the outer membrane of C. fulvum is disrupted and the cytoplasm is released to the surrounding medium. Both protein and DNA molecules can be destroyed during the plasma inactivation. Meanwhile, the APPJ can also provide a novel approach to decrease the rotting rates of C. fulvum‐infected tomato seeds.
The plant pathogen Cladosporium fulvum (C. fulvum) as one of major infection sources of tomato leafmold has been inactivated by using the atmospheric‐pressure plasma jet (APPJ). The APPJ with a relatively high plasma density can break the outer membrane of C. fulvum as well as protein and DNA molecules. Within the treatment time of 60 s, APPJ can completely kill the resistant C. fulvum. Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum (C. fulvum) have been inactivated by using the atmospheric-pressure plasma jet (APPJ). The results show that the inactivation efficiencies of C. fulvum are dependent on the plasma density and treatment time. The APPJ with a relatively high plasma density can completely kill the resistant C. fulvum within the treatment time of 60s. Due to plasma generating electrostatic force, the outer membrane of C. fulvum is disrupted and the cytoplasm is released to the surrounding medium. Both protein and DNA molecules can be destroyed during the plasma inactivation. Meanwhile, the APPJ can also provide a novel approach to decrease the rotting rates of C. fulvum-infected tomato seeds.[Image omitted see PDF] Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum ( C. fulvum ) have been inactivated by using the atmospheric‐pressure plasma jet (APPJ). The results show that the inactivation efficiencies of C. fulvum are dependent on the plasma density and treatment time. The APPJ with a relatively high plasma density can completely kill the resistant C. fulvum within the treatment time of 60 s. Due to plasma generating electrostatic force, the outer membrane of C. fulvum is disrupted and the cytoplasm is released to the surrounding medium. Both protein and DNA molecules can be destroyed during the plasma inactivation. Meanwhile, the APPJ can also provide a novel approach to decrease the rotting rates of C. fulvum ‐infected tomato seeds. Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum (C. fulvum) have been inactivated by using the atmospheric-pressure plasma jet (APPJ). The results show that the inactivation efficiencies of C. fulvum are dependent on the plasma density and treatment time. The APPJ with a relatively high plasma density can completely kill the resistant C. fulvum within the treatment time of 60s. Due to plasma generating electrostatic force, the outer membrane of C. fulvum is disrupted and the cytoplasm is released to the surrounding medium. Both protein and DNA molecules can be destroyed during the plasma inactivation. Meanwhile, the APPJ can also provide a novel approach to decrease the rotting rates of C. fulvum-infected tomato seeds.[Imageomitted] The plant pathogen Cladosporium fulvum (C. fulvum) as one of major infection sources of tomato leafmold has been inactivated by using the atmospheric-pressure plasma jet (APPJ). The APPJ with a relatively high plasma density can break the outer membrane of C. fulvum as well as protein and DNA molecules. Within the treatment time of 60s, APPJ can completely kill the resistant C. fulvum. |
Author | Lu, Qianqian Song, Ying Zhou, Renwu Liu, Dongping Niu, Jinhai |
Author_xml | – sequence: 1 givenname: Qianqian surname: Lu fullname: Lu, Qianqian organization: Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, People's Republic of China, 116600, Dalian – sequence: 2 givenname: Dongping surname: Liu fullname: Liu, Dongping email: Dongping.liu@dlnu.edu.cn organization: Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, 116600, Dalian, People's Republic of China – sequence: 3 givenname: Ying surname: Song fullname: Song, Ying organization: Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, People's Republic of China, 116600, Dalian – sequence: 4 givenname: Renwu surname: Zhou fullname: Zhou, Renwu organization: Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, School of Physics and Mechanical & Electrical Engineering, Xiamen University, Fujian, People's Republic of China, Xiamen – sequence: 5 givenname: Jinhai surname: Niu fullname: Niu, Jinhai organization: Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, People's Republic of China, 116600, Dalian |
BookMark | eNqNkUFv1DAQRiPUSrSFK2dLXLhkGduJ4xxXAUpXFUSlwNFynAmbksSp7RT23-PVohXi0p5m5HnPo9F3npxMdsIkeUVhRQHY23nW84oBzQCggGfJGRWUpVKK8uTY5_A8Off-DoBDLuEsaa4mbUL_oENvJ2I7ErZIbu2ogyW1Dlv7AydSDbq1frauX0bSLcNDLM2O6ImswxgHW3S9SWuH3i8OSWWHltSD9qMmGwwvktNODx5f_q0XydcP72-rj-n158uran2dmrzMIC1Rlrk0tBQNL4TpeA7aMCm0BCnasgGOFHMd3wWTKDOKDctFmzeGa6St4BfJm8O_s7P3C_qgxt4bHAY9oV28oiJjjJWUFU9A43bOIJMRff0femcXN8VDIkVLHrFsv3t1oIyz3jvs1Oz6UbudoqD26ah9OuqYThTKg_CrH3D3CK3qel3_66YHt_cBfx9d7X4qUfAiV98_XaovvKKbb-826ob_AapDo5w |
CitedBy_id | crossref_primary_10_1088_1361_6463_ab6e9b crossref_primary_10_1002_bit_26565 crossref_primary_10_1088_1361_6463_ace36e crossref_primary_10_1002_ppap_202200139 crossref_primary_10_1590_1519_6984_272709 crossref_primary_10_1007_s00705_018_3909_4 crossref_primary_10_1111_ppa_13422 crossref_primary_10_1088_1361_6595_aabebb crossref_primary_10_1111_ppa_12555 crossref_primary_10_1002_ppap_202300063 crossref_primary_10_3390_jof9060609 crossref_primary_10_1016_j_tifs_2021_07_002 crossref_primary_10_3390_jof7080650 crossref_primary_10_1016_j_postharvbio_2024_112778 crossref_primary_10_1021_acsami_0c01443 crossref_primary_10_1109_TPS_2019_2898918 crossref_primary_10_1111_1541_4337_12398 crossref_primary_10_1016_j_cej_2022_135307 crossref_primary_10_4265_jmc_28_3_123 crossref_primary_10_1016_j_memsci_2020_118679 crossref_primary_10_1039_C7RA04663D crossref_primary_10_1063_1_5009127 crossref_primary_10_3390_plasma5010008 crossref_primary_10_1109_TRPMS_2017_2757037 crossref_primary_10_1088_2058_6272_ac67be crossref_primary_10_1063_1_4971228 crossref_primary_10_1049_hve_2016_0020 crossref_primary_10_1088_2058_6272_ab008d crossref_primary_10_1111_ppa_13059 crossref_primary_10_1021_acsami_1c10771 crossref_primary_10_33073_pjm_2019_028 crossref_primary_10_1088_1361_6463_ab81cf crossref_primary_10_3390_plants12030627 crossref_primary_10_1016_j_cap_2016_01_007 crossref_primary_10_1063_1_4979263 crossref_primary_10_1111_ppa_12825 crossref_primary_10_1016_j_ifset_2018_08_006 crossref_primary_10_3389_fpls_2020_00077 crossref_primary_10_1016_j_foodcont_2018_11_028 crossref_primary_10_17660_ActaHortic_2018_1194_29 crossref_primary_10_1007_s10311_022_01399_9 crossref_primary_10_1002_ps_6234 crossref_primary_10_1088_1361_6463_ac8432 crossref_primary_10_3390_jof8020102 |
Cites_doi | 10.1016/S0027-5107(99)00004-4 10.1371/journal.pgen.1003088 10.1080/00018732.2013.808047 10.1051/epjap/2012120275 10.1016/j.ecolecon.2004.10.002 10.1088/1367-2630/5/1/341 10.1109/27.893321 10.1038/nbt.1613 10.1038/431516a 10.1038/195281a0 10.1016/0003-2697(76)90527-3 10.1104/pp.63.6.1123 10.1101/SQB.1948.013.01.024 10.1016/j.ijantimicag.2014.01.025 10.1002/ppap.201100075 10.1023/A:1020573408652 10.1109/27.842860 10.1063/1.4863204 10.1038/nrm1745 10.1038/nbt0410-330 10.1104/pp.90.3.867 10.1088/1367-2630/12/7/073039 10.1007/s11090-008-9124-4 |
ContentType | Journal Article |
Copyright | 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SR 8FD JG9 M7N |
DOI | 10.1002/ppap.201400070 |
DatabaseName | Istex CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitleList | Materials Research Database CrossRef Algology Mycology and Protozoology Abstracts (Microbiology C) Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1612-8869 |
EndPage | 1036 |
ExternalDocumentID | 3479992291 10_1002_ppap_201400070 PPAP201400070 ark_67375_WNG_S3C1JVDJ_R |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ UB1 W8V W99 WBKPD WFSAM WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX CITATION 7SR 8FD JG9 M7N |
ID | FETCH-LOGICAL-c5940-9e8958c196b376cf350ac286a8086d9b03e1e5af35628e841eb256d5bc3ae1d63 |
IEDL.DBID | DR2 |
ISSN | 1612-8850 |
IngestDate | Thu Aug 15 23:24:33 EDT 2024 Fri Aug 16 08:05:10 EDT 2024 Thu Oct 10 18:05:43 EDT 2024 Fri Aug 23 01:35:19 EDT 2024 Sat Aug 24 00:57:32 EDT 2024 Wed Oct 30 09:52:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5940-9e8958c196b376cf350ac286a8086d9b03e1e5af35628e841eb256d5bc3ae1d63 |
Notes | istex:F120BCE604F0E19471DA06097870B5F70EA86F31 ArticleID:PPAP201400070 ark:/67375/WNG-S3C1JVDJ-R ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1619303246 |
PQPubID | 1036335 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1642229127 proquest_miscellaneous_1635032048 proquest_journals_1619303246 crossref_primary_10_1002_ppap_201400070 wiley_primary_10_1002_ppap_201400070_PPAP201400070 istex_primary_ark_67375_WNG_S3C1JVDJ_R |
PublicationCentury | 2000 |
PublicationDate | November 2014 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: November 2014 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Plasma processes and polymers |
PublicationTitleAlternate | Plasma Process. Polym |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | M. Laroussi, D. A. Mendis, M. Rosenberg, New J. Phys. 2003, 5, 9. J. SACKS, Cold Spring Harbor Symp. Quant. Biol. 1948, 13, 180. R. A. Reisfeld, D. E. Wiliams, Nature 1962, 195, 281. S. Lacombe, A. Rougon-Cardoso, E. Sherwood, N. Peeters, D. Dahlbeck, H. P. van Esse, M. Smoker, G. Rallapalli, B. P. Thomma, B. Staskawicz, D. G. J. Jonathan, Z. Cyril, Nat. Biotechnol. 2010, 28, 365. M. M. Bradford, Anal. Biochem. 1976, 72, 248. T. Boller, H. Kende, Plant Physiol. 1979, 63, 1123. T. L. Peever, V. J. Higgins, Plant Physiol. 1989, 90, 867. M. Laroussi, D. A. Mendis, M. Rosenberg, J. New Phys. 2003, 5, 41. N. A. Amusa, Afr. J. Biotechnol. 2006, 5, 405. Y. Song, D. Liu, L. Ji, W. Wang, P. Zhao, C. Quan, J. Niu, X. Zhang, Plasma Process. Polym. 2012, 9, 17. A. Brutus, S. Y. He, Nat. Biotechnol. 2010, 28, 330. N. De Geyter, R. Morent, L. Gengembre, C. Leys, E. Payen, S. V. Vlierberghe, E. Schacht, Plasma Chem. Plasma Process. 2008, 28, 289. W. Margolin, Nat. Rev. Mol. Cell Biol. 2005, 6, 862. A. M. Showalter, Plant Cell. 1993, 5, 9. D. Pimentel, R. Zuniga, D. Morrison, Ecol. Econ. 2005, 52, 273. X. Zhang, D. Liu, R. Zhou, Y. Song, Y. Sun, Q. Zhang, J. Niu, H. Fan, S. Yang, Appl. Phys. Lett. 2014, 104, 043702. I. Koban, R. Matthes, N.-O. Hübner, A. Welk, P. Meisel, B. Holtfreter, R. Sietmann, E. Kndel, K.-D. Weltmann, A. Kramer, T. Kocher, New J. Phys. 2010, 12, 073039. J. Cadet, T. Delatour, T. Douki, D. Gasparutto, J. Pouget, J. Ravanat, S. Sauvaigo, Mutat. Res. 1999, 424, 9. W. N. Konings, S.-V. Albers, S. Koning, A. J. M. Driessen, Antonie van Leeuwenhoek 2002, 81, 61. W. Ni, D. Liu, Y. Song, L. Ji, Q. Zhang, J. Niu, Eur. Phys. J. Appl. Phys. 2013, 61, 10801. T. C. Montie, K. Kelly-Wintenberg, J. R. Roth, IEEE Trans. Plasma Sci. 2000, 28, 41. K. Ostrikov, E. C. Neyts, M. Meyyappan, Adv. Phys. 2013, 62, 113. S. Ping, Microbiology, Higher Education Press 2006. B. Valent, Nature 2004, 431, 516. A. Mai-Prochnow, A. B. Murphy, K. M. McLean, M. G. Kong, K. K. Ostrikov, Int. J. Antimicrob. Agents 2014, 43, 508. P. J. G. M. de Wit, A. van der Burgt, B. Ökmen, I. Stergiopoulos, PLoS Genet. 2012, 8, e1003088. D. A. Mendis, M. Rosenberg, F. Azam, IEEE Trans. Plasma Sci. 2000, 28, 1304. B. Xu, J. Yu, Gansu Nongye Daxue Xuebao 1994, 30, 386 (in Chinese). 2010; 12 2000; 28 2013; 62 2013; 61 2006; 5 2006 2002; 81 1948; 13 1999; 424 2014; 43 1993; 5 2004; 431 1962; 195 2010; 28 1976; 72 2008; 28 1989; 90 2005; 52 2003; 5 2005; 6 1979; 63 1994; 30 2014; 104 2012; 8 2012; 9 Ping S. (e_1_2_6_21_1) 2006 e_1_2_6_10_1 Amusa N. A. (e_1_2_6_6_1) 2006; 5 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 Showalter A. M. (e_1_2_6_22_1) 1993; 5 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 Xu B. (e_1_2_6_11_1) 1994; 30 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 8 start-page: e1003088 year: 2012 publication-title: PLoS Genet. – volume: 52 start-page: 273 year: 2005 publication-title: Ecol. Econ. – volume: 5 start-page: 41 year: 2003 publication-title: J. New Phys. – volume: 5 start-page: 405 year: 2006 publication-title: Afr. J. Biotechnol. – volume: 13 start-page: 180 year: 1948 publication-title: Cold Spring Harbor Symp. Quant. Biol. – volume: 5 start-page: 9 year: 2003 publication-title: New J. Phys. – volume: 61 start-page: 10801 year: 2013 publication-title: Eur. Phys. J. Appl. Phys. – volume: 12 start-page: 073039 year: 2010 publication-title: New J. Phys. – volume: 90 start-page: 867 year: 1989 publication-title: Plant Physiol. – volume: 5 start-page: 9 year: 1993 publication-title: Plant Cell. – volume: 72 start-page: 248 year: 1976 publication-title: Anal. Biochem. – volume: 63 start-page: 1123 year: 1979 publication-title: Plant Physiol. – volume: 28 start-page: 1304 year: 2000 publication-title: IEEE Trans. Plasma Sci. – volume: 9 start-page: 17 year: 2012 publication-title: Plasma Process. Polym. – volume: 28 start-page: 289 year: 2008 publication-title: Plasma Chem. Plasma Process. – volume: 62 start-page: 113 year: 2013 publication-title: Adv. Phys. – volume: 30 start-page: 386 year: 1994 publication-title: Gansu Nongye Daxue Xuebao – volume: 28 start-page: 365 year: 2010 publication-title: Nat. Biotechnol. – volume: 104 start-page: 043702 year: 2014 publication-title: Appl. Phys. Lett. – volume: 195 start-page: 281 year: 1962 publication-title: Nature – year: 2006 – volume: 6 start-page: 862 year: 2005 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 424 start-page: 9 year: 1999 publication-title: Mutat. Res. – volume: 43 start-page: 508 year: 2014 publication-title: Int. J. Antimicrob. Agents – volume: 81 start-page: 61 year: 2002 publication-title: Antonie van Leeuwenhoek – volume: 28 start-page: 330 year: 2010 publication-title: Nat. Biotechnol. – volume: 431 start-page: 516 year: 2004 publication-title: Nature – volume: 28 start-page: 41 year: 2000 publication-title: IEEE Trans. Plasma Sci. – ident: e_1_2_6_29_1 doi: 10.1016/S0027-5107(99)00004-4 – ident: e_1_2_6_10_1 doi: 10.1371/journal.pgen.1003088 – volume: 30 start-page: 386 year: 1994 ident: e_1_2_6_11_1 publication-title: Gansu Nongye Daxue Xuebao contributor: fullname: Xu B. – ident: e_1_2_6_18_1 doi: 10.1080/00018732.2013.808047 – ident: e_1_2_6_25_1 doi: 10.1051/epjap/2012120275 – volume: 5 start-page: 9 year: 1993 ident: e_1_2_6_22_1 publication-title: Plant Cell. contributor: fullname: Showalter A. M. – ident: e_1_2_6_5_1 doi: 10.1016/j.ecolecon.2004.10.002 – ident: e_1_2_6_7_1 doi: 10.1088/1367-2630/5/1/341 – ident: e_1_2_6_26_1 doi: 10.1109/27.893321 – ident: e_1_2_6_4_1 – ident: e_1_2_6_3_1 doi: 10.1038/nbt.1613 – ident: e_1_2_6_1_1 doi: 10.1038/431516a – ident: e_1_2_6_16_1 doi: 10.1038/195281a0 – ident: e_1_2_6_15_1 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_2_6_19_1 doi: 10.1104/pp.63.6.1123 – volume: 5 start-page: 405 year: 2006 ident: e_1_2_6_6_1 publication-title: Afr. J. Biotechnol. contributor: fullname: Amusa N. A. – ident: e_1_2_6_24_1 doi: 10.1101/SQB.1948.013.01.024 – ident: e_1_2_6_8_1 doi: 10.1016/j.ijantimicag.2014.01.025 – ident: e_1_2_6_17_1 doi: 10.1002/ppap.201100075 – ident: e_1_2_6_23_1 doi: 10.1023/A:1020573408652 – volume-title: Microbiology year: 2006 ident: e_1_2_6_21_1 contributor: fullname: Ping S. – ident: e_1_2_6_27_1 doi: 10.1109/27.842860 – ident: e_1_2_6_9_1 doi: 10.1063/1.4863204 – ident: e_1_2_6_20_1 doi: 10.1038/nrm1745 – ident: e_1_2_6_2_1 doi: 10.1038/nbt0410-330 – ident: e_1_2_6_14_1 doi: 10.1104/pp.90.3.867 – ident: e_1_2_6_13_1 doi: 10.1088/1367-2630/12/7/073039 – ident: e_1_2_6_28_1 doi: 10.1088/1367-2630/5/1/341 – ident: e_1_2_6_12_1 doi: 10.1007/s11090-008-9124-4 |
SSID | ssj0030580 |
Score | 2.3215158 |
Snippet | Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum (C. fulvum) have... Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum ( C. fulvum )... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 1028 |
SubjectTerms | Ar/O2 plasmas atmospheric-pressure plasma jets (APPJ) Cladding Cladosporium fulvum Crop diseases Deoxyribonucleic acid Inactivation inactivation rates Lycopersicon esculentum Membranes Pathogens Plant diseases Plasma Plasma density plasma inactivation Proteins Tomatoes |
Title | Inactivation of the Tomato Pathogen Cladosporium fulvum by an Atmospheric-Pressure Cold Plasma Jet |
URI | https://api.istex.fr/ark:/67375/WNG-S3C1JVDJ-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fppap.201400070 https://www.proquest.com/docview/1619303246 https://search.proquest.com/docview/1635032048 https://search.proquest.com/docview/1642229127 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOcCFf0RoQUZCcEqbxHHWOa5SSlmJKiot9GaNY0equpustkkFnHgEnpEnYSbZhC4HkOCUH9uSPZ6xv7E9nxl7CVZNLHpdfhg76-MoKXyFM4Ovyhgk7fupLkjs_VFyeBrPzuTZtSj-nh9iXHAjy-jGazJwMJd7v0hDl0sgvkl0EIiyBgfhUEzoTNf-8cgfhbrcXZ2GqAbNXslgYG0Mor3N4huz0k0S8OcNyHkduHYzz8FdBkOd-wMnF7ttY3aLr7_ROf5Po-6xO2tYyqe9Ht1nN1z1gN3KhtvgHjL7rqIQiH4Bl9clR-DIT2rEuzXPEUXWqIg8m4OtyU8-bxe8bOdX-DBfOFR82iwwgWINix_fvvcxiSvHs3pueY4AfgF85ppH7PTgzUl26K9vaPALmcaBnzqVSlWgFRscqIpSyACKSCWg0FOyqQmEC50E_J9Eyqk4RD9eJlaaQoALbSIes62qrtwTxp0w6NyALUG6OLEhIHJD9B-BQofMCuOx10MP6WVPxKF7yuVIk9T0KDWPveo6cMwGqws6vjaR-tPRW_1BZOHs4_5MH3tsZ-hhvbbcS426kuK0HsWJx16MyShs2kiBytUt5cGGCqI8_lMeWlxLw2jisajr8r9UW-f5NB-_nv5LoW12m977UMkdttWsWvcMMVNjnnd28RNH5A2z |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BeygX_lEDBYyE4JQ2ieOsc1yllO3SrqKyBW6WHXsl1G6yWrIIOPEIPCNPwkyyCSwHkOAUJbYV2zNjf2N7PgM81VYOLHpdfhg76-MoyX2JM4MvZ7EWtO8nmyCx00kyOo_H70R3mpBiYVp-iH7BjSyjGa_JwGlB-uAna-hioYlwEj0E4qy5Ctto85xubzg86xmkUJuby9MQ16DhSxF0vI1BdLBZfmNe2qYu_rQBOn-Frs3cc3QDTFfr9sjJxf6qNvvFl98IHf-rWTfh-hqZsmGrSrfgiitvw07WXQh3B-xxSVEQ7Rouq2YMsSObVgh5K5YjkKxQF1l2qW1FrvL71ZzhPz_iw3xmumTDeo4JFG5YfP_6rQ1LXDqWVZeW5Yjh55qNXX0Xzo9eTLORv76kwS9EGgd-6mQqZIGGbHCsKmZcBLqIZKIlOks2NQF3oRMavyeRdDIO0ZUXiRWm4NqFNuH3YKusSrcLzHGD_o22My1cnNhQI3hDByDSEn0yy40HzzsRqUXLxaFa1uVIUa-pvtc8eNZIsM-mlxd0gm0g1NvJS_WaZ-H4zeFYnXmw14lYrY33g0JlSXFmj-LEgyd9MnY27aXo0lUryoMN5cR6_Kc8tL6WhtHAg6iR-V-qrfJ8mPdv9_-l0GPYGU1PT9TJ8eTVA7hG39vIyT3Yqpcr9xAhVG0eNUbyAxPEEcs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEX3hWBAkZCcEqbxHHWOa5SlnaBVVRa6M1yYkdC3U1WS4KAEz-B38gvYSbZhC4HkOAUxQ_JjxnPN7bnM8BTbeTIoNfl-qE1Lq6S3JVoGVxZhFrQuZ9sg8TezKLD03B6Js4uRPF3_BDDhhtpRrtek4IvTbH_izR0udTEN4kOAlHWXIbtMEL4S7DoeCCQQmFu305DWIN6L4XX0zZ6wf5m_Q2ztE0j_HkDc15Erq3pmdwA3Te6u3FyvtfU2V7-9Tc-x__p1U24vsalbNwJ0i24ZMvbcDXpn4O7A-aopBiIbgeXVQVD5MhOKgS8FUsRRlYoiSyZa1ORo_yhWbCimX_CT_aF6ZKN6wVmULBh_uPb9y4ocWVZUs0NSxHBLzSb2vounE5enCSH7vqJBjcXcei5sZWxkDmqcYYrVV5w4ek8kJGW6CqZOPO49a3QmB4F0srQR0deREZkOdfWNxHfga2yKu09YJZn6N1oU2hhw8j4GqEbwv9AS_TIDM8ceN7PkFp2TByq41wOFI2aGkbNgWftBA7F9Oqc7q-NhHo_e6ne8sSfvjuYqmMHdvsZVmvV_ahQVmK060EYOfBkyMbBppMUXdqqoTLYUU6cx38qQ7trsR-MHAjaKf9Ls1WajtPh7_6_VHoMV9KDiXp9NHv1AK5Rchc2uQtb9aqxDxE_1dmjVkV-AsvCEHo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inactivation+of+the+Tomato+Pathogen+Cladosporium+fulvum+by+an+Atmospheric%E2%80%90Pressure+Cold+Plasma+Jet&rft.jtitle=Plasma+processes+and+polymers&rft.au=Lu%2C+Qianqian&rft.au=Liu%2C+Dongping&rft.au=Song%2C+Ying&rft.au=Zhou%2C+Renwu&rft.date=2014-11-01&rft.issn=1612-8850&rft.eissn=1612-8869&rft.volume=11&rft.issue=11&rft.spage=1028&rft.epage=1036&rft_id=info:doi/10.1002%2Fppap.201400070&rft.externalDBID=10.1002%252Fppap.201400070&rft.externalDocID=PPAP201400070 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1612-8850&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1612-8850&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1612-8850&client=summon |