Inactivation of the Tomato Pathogen Cladosporium fulvum by an Atmospheric-Pressure Cold Plasma Jet

Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum (C. fulvum) have been inactivated by using the atmospheric‐pressure plasma jet (APPJ). The results show that the inactivation efficiencies of C. fulvum are d...

Full description

Saved in:
Bibliographic Details
Published inPlasma processes and polymers Vol. 11; no. 11; pp. 1028 - 1036
Main Authors Lu, Qianqian, Liu, Dongping, Song, Ying, Zhou, Renwu, Niu, Jinhai
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.11.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum (C. fulvum) have been inactivated by using the atmospheric‐pressure plasma jet (APPJ). The results show that the inactivation efficiencies of C. fulvum are dependent on the plasma density and treatment time. The APPJ with a relatively high plasma density can completely kill the resistant C. fulvum within the treatment time of 60 s. Due to plasma generating electrostatic force, the outer membrane of C. fulvum is disrupted and the cytoplasm is released to the surrounding medium. Both protein and DNA molecules can be destroyed during the plasma inactivation. Meanwhile, the APPJ can also provide a novel approach to decrease the rotting rates of C. fulvum‐infected tomato seeds. The plant pathogen Cladosporium fulvum (C. fulvum) as one of major infection sources of tomato leafmold has been inactivated by using the atmospheric‐pressure plasma jet (APPJ). The APPJ with a relatively high plasma density can break the outer membrane of C. fulvum as well as protein and DNA molecules. Within the treatment time of 60 s, APPJ can completely kill the resistant C. fulvum.
AbstractList Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum (C. fulvum) have been inactivated by using the atmospheric‐pressure plasma jet (APPJ). The results show that the inactivation efficiencies of C. fulvum are dependent on the plasma density and treatment time. The APPJ with a relatively high plasma density can completely kill the resistant C. fulvum within the treatment time of 60 s. Due to plasma generating electrostatic force, the outer membrane of C. fulvum is disrupted and the cytoplasm is released to the surrounding medium. Both protein and DNA molecules can be destroyed during the plasma inactivation. Meanwhile, the APPJ can also provide a novel approach to decrease the rotting rates of C. fulvum‐infected tomato seeds. The plant pathogen Cladosporium fulvum (C. fulvum) as one of major infection sources of tomato leafmold has been inactivated by using the atmospheric‐pressure plasma jet (APPJ). The APPJ with a relatively high plasma density can break the outer membrane of C. fulvum as well as protein and DNA molecules. Within the treatment time of 60 s, APPJ can completely kill the resistant C. fulvum.
Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum (C. fulvum) have been inactivated by using the atmospheric-pressure plasma jet (APPJ). The results show that the inactivation efficiencies of C. fulvum are dependent on the plasma density and treatment time. The APPJ with a relatively high plasma density can completely kill the resistant C. fulvum within the treatment time of 60s. Due to plasma generating electrostatic force, the outer membrane of C. fulvum is disrupted and the cytoplasm is released to the surrounding medium. Both protein and DNA molecules can be destroyed during the plasma inactivation. Meanwhile, the APPJ can also provide a novel approach to decrease the rotting rates of C. fulvum-infected tomato seeds.[Image omitted see PDF]
Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum ( C. fulvum ) have been inactivated by using the atmospheric‐pressure plasma jet (APPJ). The results show that the inactivation efficiencies of C. fulvum are dependent on the plasma density and treatment time. The APPJ with a relatively high plasma density can completely kill the resistant C. fulvum within the treatment time of 60 s. Due to plasma generating electrostatic force, the outer membrane of C. fulvum is disrupted and the cytoplasm is released to the surrounding medium. Both protein and DNA molecules can be destroyed during the plasma inactivation. Meanwhile, the APPJ can also provide a novel approach to decrease the rotting rates of C. fulvum ‐infected tomato seeds.
Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum (C. fulvum) have been inactivated by using the atmospheric-pressure plasma jet (APPJ). The results show that the inactivation efficiencies of C. fulvum are dependent on the plasma density and treatment time. The APPJ with a relatively high plasma density can completely kill the resistant C. fulvum within the treatment time of 60s. Due to plasma generating electrostatic force, the outer membrane of C. fulvum is disrupted and the cytoplasm is released to the surrounding medium. Both protein and DNA molecules can be destroyed during the plasma inactivation. Meanwhile, the APPJ can also provide a novel approach to decrease the rotting rates of C. fulvum-infected tomato seeds.[Imageomitted] The plant pathogen Cladosporium fulvum (C. fulvum) as one of major infection sources of tomato leafmold has been inactivated by using the atmospheric-pressure plasma jet (APPJ). The APPJ with a relatively high plasma density can break the outer membrane of C. fulvum as well as protein and DNA molecules. Within the treatment time of 60s, APPJ can completely kill the resistant C. fulvum.
Author Lu, Qianqian
Song, Ying
Zhou, Renwu
Liu, Dongping
Niu, Jinhai
Author_xml – sequence: 1
  givenname: Qianqian
  surname: Lu
  fullname: Lu, Qianqian
  organization: Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, People's Republic of China, 116600, Dalian
– sequence: 2
  givenname: Dongping
  surname: Liu
  fullname: Liu, Dongping
  email: Dongping.liu@dlnu.edu.cn
  organization: Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, 116600, Dalian, People's Republic of China
– sequence: 3
  givenname: Ying
  surname: Song
  fullname: Song, Ying
  organization: Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, People's Republic of China, 116600, Dalian
– sequence: 4
  givenname: Renwu
  surname: Zhou
  fullname: Zhou, Renwu
  organization: Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, School of Physics and Mechanical & Electrical Engineering, Xiamen University, Fujian, People's Republic of China, Xiamen
– sequence: 5
  givenname: Jinhai
  surname: Niu
  fullname: Niu, Jinhai
  organization: Liaoning Key Lab of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, People's Republic of China, 116600, Dalian
BookMark eNqNkUFv1DAQRiPUSrSFK2dLXLhkGduJ4xxXAUpXFUSlwNFynAmbksSp7RT23-PVohXi0p5m5HnPo9F3npxMdsIkeUVhRQHY23nW84oBzQCggGfJGRWUpVKK8uTY5_A8Off-DoBDLuEsaa4mbUL_oENvJ2I7ErZIbu2ogyW1Dlv7AydSDbq1frauX0bSLcNDLM2O6ImswxgHW3S9SWuH3i8OSWWHltSD9qMmGwwvktNODx5f_q0XydcP72-rj-n158uran2dmrzMIC1Rlrk0tBQNL4TpeA7aMCm0BCnasgGOFHMd3wWTKDOKDctFmzeGa6St4BfJm8O_s7P3C_qgxt4bHAY9oV28oiJjjJWUFU9A43bOIJMRff0femcXN8VDIkVLHrFsv3t1oIyz3jvs1Oz6UbudoqD26ah9OuqYThTKg_CrH3D3CK3qel3_66YHt_cBfx9d7X4qUfAiV98_XaovvKKbb-826ob_AapDo5w
CitedBy_id crossref_primary_10_1088_1361_6463_ab6e9b
crossref_primary_10_1002_bit_26565
crossref_primary_10_1088_1361_6463_ace36e
crossref_primary_10_1002_ppap_202200139
crossref_primary_10_1590_1519_6984_272709
crossref_primary_10_1007_s00705_018_3909_4
crossref_primary_10_1111_ppa_13422
crossref_primary_10_1088_1361_6595_aabebb
crossref_primary_10_1111_ppa_12555
crossref_primary_10_1002_ppap_202300063
crossref_primary_10_3390_jof9060609
crossref_primary_10_1016_j_tifs_2021_07_002
crossref_primary_10_3390_jof7080650
crossref_primary_10_1016_j_postharvbio_2024_112778
crossref_primary_10_1021_acsami_0c01443
crossref_primary_10_1109_TPS_2019_2898918
crossref_primary_10_1111_1541_4337_12398
crossref_primary_10_1016_j_cej_2022_135307
crossref_primary_10_4265_jmc_28_3_123
crossref_primary_10_1016_j_memsci_2020_118679
crossref_primary_10_1039_C7RA04663D
crossref_primary_10_1063_1_5009127
crossref_primary_10_3390_plasma5010008
crossref_primary_10_1109_TRPMS_2017_2757037
crossref_primary_10_1088_2058_6272_ac67be
crossref_primary_10_1063_1_4971228
crossref_primary_10_1049_hve_2016_0020
crossref_primary_10_1088_2058_6272_ab008d
crossref_primary_10_1111_ppa_13059
crossref_primary_10_1021_acsami_1c10771
crossref_primary_10_33073_pjm_2019_028
crossref_primary_10_1088_1361_6463_ab81cf
crossref_primary_10_3390_plants12030627
crossref_primary_10_1016_j_cap_2016_01_007
crossref_primary_10_1063_1_4979263
crossref_primary_10_1111_ppa_12825
crossref_primary_10_1016_j_ifset_2018_08_006
crossref_primary_10_3389_fpls_2020_00077
crossref_primary_10_1016_j_foodcont_2018_11_028
crossref_primary_10_17660_ActaHortic_2018_1194_29
crossref_primary_10_1007_s10311_022_01399_9
crossref_primary_10_1002_ps_6234
crossref_primary_10_1088_1361_6463_ac8432
crossref_primary_10_3390_jof8020102
Cites_doi 10.1016/S0027-5107(99)00004-4
10.1371/journal.pgen.1003088
10.1080/00018732.2013.808047
10.1051/epjap/2012120275
10.1016/j.ecolecon.2004.10.002
10.1088/1367-2630/5/1/341
10.1109/27.893321
10.1038/nbt.1613
10.1038/431516a
10.1038/195281a0
10.1016/0003-2697(76)90527-3
10.1104/pp.63.6.1123
10.1101/SQB.1948.013.01.024
10.1016/j.ijantimicag.2014.01.025
10.1002/ppap.201100075
10.1023/A:1020573408652
10.1109/27.842860
10.1063/1.4863204
10.1038/nrm1745
10.1038/nbt0410-330
10.1104/pp.90.3.867
10.1088/1367-2630/12/7/073039
10.1007/s11090-008-9124-4
ContentType Journal Article
Copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SR
8FD
JG9
M7N
DOI 10.1002/ppap.201400070
DatabaseName Istex
CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList
Materials Research Database
CrossRef
Algology Mycology and Protozoology Abstracts (Microbiology C)
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1612-8869
EndPage 1036
ExternalDocumentID 3479992291
10_1002_ppap_201400070
PPAP201400070
ark_67375_WNG_S3C1JVDJ_R
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
8FD
JG9
M7N
ID FETCH-LOGICAL-c5940-9e8958c196b376cf350ac286a8086d9b03e1e5af35628e841eb256d5bc3ae1d63
IEDL.DBID DR2
ISSN 1612-8850
IngestDate Thu Aug 15 23:24:33 EDT 2024
Fri Aug 16 08:05:10 EDT 2024
Thu Oct 10 18:05:43 EDT 2024
Fri Aug 23 01:35:19 EDT 2024
Sat Aug 24 00:57:32 EDT 2024
Wed Oct 30 09:52:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5940-9e8958c196b376cf350ac286a8086d9b03e1e5af35628e841eb256d5bc3ae1d63
Notes istex:F120BCE604F0E19471DA06097870B5F70EA86F31
ArticleID:PPAP201400070
ark:/67375/WNG-S3C1JVDJ-R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1619303246
PQPubID 1036335
PageCount 9
ParticipantIDs proquest_miscellaneous_1642229127
proquest_miscellaneous_1635032048
proquest_journals_1619303246
crossref_primary_10_1002_ppap_201400070
wiley_primary_10_1002_ppap_201400070_PPAP201400070
istex_primary_ark_67375_WNG_S3C1JVDJ_R
PublicationCentury 2000
PublicationDate November 2014
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: November 2014
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Plasma processes and polymers
PublicationTitleAlternate Plasma Process. Polym
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References M. Laroussi, D. A. Mendis, M. Rosenberg, New J. Phys. 2003, 5, 9.
J. SACKS, Cold Spring Harbor Symp. Quant. Biol. 1948, 13, 180.
R. A. Reisfeld, D. E. Wiliams, Nature 1962, 195, 281.
S. Lacombe, A. Rougon-Cardoso, E. Sherwood, N. Peeters, D. Dahlbeck, H. P. van Esse, M. Smoker, G. Rallapalli, B. P. Thomma, B. Staskawicz, D. G. J. Jonathan, Z. Cyril, Nat. Biotechnol. 2010, 28, 365.
M. M. Bradford, Anal. Biochem. 1976, 72, 248.
T. Boller, H. Kende, Plant Physiol. 1979, 63, 1123.
T. L. Peever, V. J. Higgins, Plant Physiol. 1989, 90, 867.
M. Laroussi, D. A. Mendis, M. Rosenberg, J. New Phys. 2003, 5, 41.
N. A. Amusa, Afr. J. Biotechnol. 2006, 5, 405.
Y. Song, D. Liu, L. Ji, W. Wang, P. Zhao, C. Quan, J. Niu, X. Zhang, Plasma Process. Polym. 2012, 9, 17.
A. Brutus, S. Y. He, Nat. Biotechnol. 2010, 28, 330.
N. De Geyter, R. Morent, L. Gengembre, C. Leys, E. Payen, S. V. Vlierberghe, E. Schacht, Plasma Chem. Plasma Process. 2008, 28, 289.
W. Margolin, Nat. Rev. Mol. Cell Biol. 2005, 6, 862.
A. M. Showalter, Plant Cell. 1993, 5, 9.
D. Pimentel, R. Zuniga, D. Morrison, Ecol. Econ. 2005, 52, 273.
X. Zhang, D. Liu, R. Zhou, Y. Song, Y. Sun, Q. Zhang, J. Niu, H. Fan, S. Yang, Appl. Phys. Lett. 2014, 104, 043702.
I. Koban, R. Matthes, N.-O. Hübner, A. Welk, P. Meisel, B. Holtfreter, R. Sietmann, E. Kndel, K.-D. Weltmann, A. Kramer, T. Kocher, New J. Phys. 2010, 12, 073039.
J. Cadet, T. Delatour, T. Douki, D. Gasparutto, J. Pouget, J. Ravanat, S. Sauvaigo, Mutat. Res. 1999, 424, 9.
W. N. Konings, S.-V. Albers, S. Koning, A. J. M. Driessen, Antonie van Leeuwenhoek 2002, 81, 61.
W. Ni, D. Liu, Y. Song, L. Ji, Q. Zhang, J. Niu, Eur. Phys. J. Appl. Phys. 2013, 61, 10801.
T. C. Montie, K. Kelly-Wintenberg, J. R. Roth, IEEE Trans. Plasma Sci. 2000, 28, 41.
K. Ostrikov, E. C. Neyts, M. Meyyappan, Adv. Phys. 2013, 62, 113.
S. Ping, Microbiology, Higher Education Press 2006.
B. Valent, Nature 2004, 431, 516.
A. Mai-Prochnow, A. B. Murphy, K. M. McLean, M. G. Kong, K. K. Ostrikov, Int. J. Antimicrob. Agents 2014, 43, 508.
P. J. G. M. de Wit, A. van der Burgt, B. Ökmen, I. Stergiopoulos, PLoS Genet. 2012, 8, e1003088.
D. A. Mendis, M. Rosenberg, F. Azam, IEEE Trans. Plasma Sci. 2000, 28, 1304.
B. Xu, J. Yu, Gansu Nongye Daxue Xuebao 1994, 30, 386 (in Chinese).
2010; 12
2000; 28
2013; 62
2013; 61
2006; 5
2006
2002; 81
1948; 13
1999; 424
2014; 43
1993; 5
2004; 431
1962; 195
2010; 28
1976; 72
2008; 28
1989; 90
2005; 52
2003; 5
2005; 6
1979; 63
1994; 30
2014; 104
2012; 8
2012; 9
Ping S. (e_1_2_6_21_1) 2006
e_1_2_6_10_1
Amusa N. A. (e_1_2_6_6_1) 2006; 5
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
Showalter A. M. (e_1_2_6_22_1) 1993; 5
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
Xu B. (e_1_2_6_11_1) 1994; 30
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 8
  start-page: e1003088
  year: 2012
  publication-title: PLoS Genet.
– volume: 52
  start-page: 273
  year: 2005
  publication-title: Ecol. Econ.
– volume: 5
  start-page: 41
  year: 2003
  publication-title: J. New Phys.
– volume: 5
  start-page: 405
  year: 2006
  publication-title: Afr. J. Biotechnol.
– volume: 13
  start-page: 180
  year: 1948
  publication-title: Cold Spring Harbor Symp. Quant. Biol.
– volume: 5
  start-page: 9
  year: 2003
  publication-title: New J. Phys.
– volume: 61
  start-page: 10801
  year: 2013
  publication-title: Eur. Phys. J. Appl. Phys.
– volume: 12
  start-page: 073039
  year: 2010
  publication-title: New J. Phys.
– volume: 90
  start-page: 867
  year: 1989
  publication-title: Plant Physiol.
– volume: 5
  start-page: 9
  year: 1993
  publication-title: Plant Cell.
– volume: 72
  start-page: 248
  year: 1976
  publication-title: Anal. Biochem.
– volume: 63
  start-page: 1123
  year: 1979
  publication-title: Plant Physiol.
– volume: 28
  start-page: 1304
  year: 2000
  publication-title: IEEE Trans. Plasma Sci.
– volume: 9
  start-page: 17
  year: 2012
  publication-title: Plasma Process. Polym.
– volume: 28
  start-page: 289
  year: 2008
  publication-title: Plasma Chem. Plasma Process.
– volume: 62
  start-page: 113
  year: 2013
  publication-title: Adv. Phys.
– volume: 30
  start-page: 386
  year: 1994
  publication-title: Gansu Nongye Daxue Xuebao
– volume: 28
  start-page: 365
  year: 2010
  publication-title: Nat. Biotechnol.
– volume: 104
  start-page: 043702
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 195
  start-page: 281
  year: 1962
  publication-title: Nature
– year: 2006
– volume: 6
  start-page: 862
  year: 2005
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 424
  start-page: 9
  year: 1999
  publication-title: Mutat. Res.
– volume: 43
  start-page: 508
  year: 2014
  publication-title: Int. J. Antimicrob. Agents
– volume: 81
  start-page: 61
  year: 2002
  publication-title: Antonie van Leeuwenhoek
– volume: 28
  start-page: 330
  year: 2010
  publication-title: Nat. Biotechnol.
– volume: 431
  start-page: 516
  year: 2004
  publication-title: Nature
– volume: 28
  start-page: 41
  year: 2000
  publication-title: IEEE Trans. Plasma Sci.
– ident: e_1_2_6_29_1
  doi: 10.1016/S0027-5107(99)00004-4
– ident: e_1_2_6_10_1
  doi: 10.1371/journal.pgen.1003088
– volume: 30
  start-page: 386
  year: 1994
  ident: e_1_2_6_11_1
  publication-title: Gansu Nongye Daxue Xuebao
  contributor:
    fullname: Xu B.
– ident: e_1_2_6_18_1
  doi: 10.1080/00018732.2013.808047
– ident: e_1_2_6_25_1
  doi: 10.1051/epjap/2012120275
– volume: 5
  start-page: 9
  year: 1993
  ident: e_1_2_6_22_1
  publication-title: Plant Cell.
  contributor:
    fullname: Showalter A. M.
– ident: e_1_2_6_5_1
  doi: 10.1016/j.ecolecon.2004.10.002
– ident: e_1_2_6_7_1
  doi: 10.1088/1367-2630/5/1/341
– ident: e_1_2_6_26_1
  doi: 10.1109/27.893321
– ident: e_1_2_6_4_1
– ident: e_1_2_6_3_1
  doi: 10.1038/nbt.1613
– ident: e_1_2_6_1_1
  doi: 10.1038/431516a
– ident: e_1_2_6_16_1
  doi: 10.1038/195281a0
– ident: e_1_2_6_15_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_6_19_1
  doi: 10.1104/pp.63.6.1123
– volume: 5
  start-page: 405
  year: 2006
  ident: e_1_2_6_6_1
  publication-title: Afr. J. Biotechnol.
  contributor:
    fullname: Amusa N. A.
– ident: e_1_2_6_24_1
  doi: 10.1101/SQB.1948.013.01.024
– ident: e_1_2_6_8_1
  doi: 10.1016/j.ijantimicag.2014.01.025
– ident: e_1_2_6_17_1
  doi: 10.1002/ppap.201100075
– ident: e_1_2_6_23_1
  doi: 10.1023/A:1020573408652
– volume-title: Microbiology
  year: 2006
  ident: e_1_2_6_21_1
  contributor:
    fullname: Ping S.
– ident: e_1_2_6_27_1
  doi: 10.1109/27.842860
– ident: e_1_2_6_9_1
  doi: 10.1063/1.4863204
– ident: e_1_2_6_20_1
  doi: 10.1038/nrm1745
– ident: e_1_2_6_2_1
  doi: 10.1038/nbt0410-330
– ident: e_1_2_6_14_1
  doi: 10.1104/pp.90.3.867
– ident: e_1_2_6_13_1
  doi: 10.1088/1367-2630/12/7/073039
– ident: e_1_2_6_28_1
  doi: 10.1088/1367-2630/5/1/341
– ident: e_1_2_6_12_1
  doi: 10.1007/s11090-008-9124-4
SSID ssj0030580
Score 2.3215158
Snippet Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum (C. fulvum) have...
Plant diseases resulting from plant pathogens are profoundly affecting crops worldwide. In this study, the tomato pathogen Cladosporium fulvum ( C. fulvum )...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1028
SubjectTerms Ar/O2 plasmas
atmospheric-pressure plasma jets (APPJ)
Cladding
Cladosporium fulvum
Crop diseases
Deoxyribonucleic acid
Inactivation
inactivation rates
Lycopersicon esculentum
Membranes
Pathogens
Plant diseases
Plasma
Plasma density
plasma inactivation
Proteins
Tomatoes
Title Inactivation of the Tomato Pathogen Cladosporium fulvum by an Atmospheric-Pressure Cold Plasma Jet
URI https://api.istex.fr/ark:/67375/WNG-S3C1JVDJ-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fppap.201400070
https://www.proquest.com/docview/1619303246
https://search.proquest.com/docview/1635032048
https://search.proquest.com/docview/1642229127
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOcCFf0RoQUZCcEqbxHHWOa5SSlmJKiot9GaNY0equpustkkFnHgEnpEnYSbZhC4HkOCUH9uSPZ6xv7E9nxl7CVZNLHpdfhg76-MoKXyFM4Ovyhgk7fupLkjs_VFyeBrPzuTZtSj-nh9iXHAjy-jGazJwMJd7v0hDl0sgvkl0EIiyBgfhUEzoTNf-8cgfhbrcXZ2GqAbNXslgYG0Mor3N4huz0k0S8OcNyHkduHYzz8FdBkOd-wMnF7ttY3aLr7_ROf5Po-6xO2tYyqe9Ht1nN1z1gN3KhtvgHjL7rqIQiH4Bl9clR-DIT2rEuzXPEUXWqIg8m4OtyU8-bxe8bOdX-DBfOFR82iwwgWINix_fvvcxiSvHs3pueY4AfgF85ppH7PTgzUl26K9vaPALmcaBnzqVSlWgFRscqIpSyACKSCWg0FOyqQmEC50E_J9Eyqk4RD9eJlaaQoALbSIes62qrtwTxp0w6NyALUG6OLEhIHJD9B-BQofMCuOx10MP6WVPxKF7yuVIk9T0KDWPveo6cMwGqws6vjaR-tPRW_1BZOHs4_5MH3tsZ-hhvbbcS426kuK0HsWJx16MyShs2kiBytUt5cGGCqI8_lMeWlxLw2jisajr8r9UW-f5NB-_nv5LoW12m977UMkdttWsWvcMMVNjnnd28RNH5A2z
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BeygX_lEDBYyE4JQ2ieOsc1yllO3SrqKyBW6WHXsl1G6yWrIIOPEIPCNPwkyyCSwHkOAUJbYV2zNjf2N7PgM81VYOLHpdfhg76-MoyX2JM4MvZ7EWtO8nmyCx00kyOo_H70R3mpBiYVp-iH7BjSyjGa_JwGlB-uAna-hioYlwEj0E4qy5Ctto85xubzg86xmkUJuby9MQ16DhSxF0vI1BdLBZfmNe2qYu_rQBOn-Frs3cc3QDTFfr9sjJxf6qNvvFl98IHf-rWTfh-hqZsmGrSrfgiitvw07WXQh3B-xxSVEQ7Rouq2YMsSObVgh5K5YjkKxQF1l2qW1FrvL71ZzhPz_iw3xmumTDeo4JFG5YfP_6rQ1LXDqWVZeW5Yjh55qNXX0Xzo9eTLORv76kwS9EGgd-6mQqZIGGbHCsKmZcBLqIZKIlOks2NQF3oRMavyeRdDIO0ZUXiRWm4NqFNuH3YKusSrcLzHGD_o22My1cnNhQI3hDByDSEn0yy40HzzsRqUXLxaFa1uVIUa-pvtc8eNZIsM-mlxd0gm0g1NvJS_WaZ-H4zeFYnXmw14lYrY33g0JlSXFmj-LEgyd9MnY27aXo0lUryoMN5cR6_Kc8tL6WhtHAg6iR-V-qrfJ8mPdv9_-l0GPYGU1PT9TJ8eTVA7hG39vIyT3Yqpcr9xAhVG0eNUbyAxPEEcs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEX3hWBAkZCcEqbxHHWOa5SlnaBVVRa6M1yYkdC3U1WS4KAEz-B38gvYSbZhC4HkOAUxQ_JjxnPN7bnM8BTbeTIoNfl-qE1Lq6S3JVoGVxZhFrQuZ9sg8TezKLD03B6Js4uRPF3_BDDhhtpRrtek4IvTbH_izR0udTEN4kOAlHWXIbtMEL4S7DoeCCQQmFu305DWIN6L4XX0zZ6wf5m_Q2ztE0j_HkDc15Erq3pmdwA3Te6u3FyvtfU2V7-9Tc-x__p1U24vsalbNwJ0i24ZMvbcDXpn4O7A-aopBiIbgeXVQVD5MhOKgS8FUsRRlYoiSyZa1ORo_yhWbCimX_CT_aF6ZKN6wVmULBh_uPb9y4ocWVZUs0NSxHBLzSb2vounE5enCSH7vqJBjcXcei5sZWxkDmqcYYrVV5w4ek8kJGW6CqZOPO49a3QmB4F0srQR0deREZkOdfWNxHfga2yKu09YJZn6N1oU2hhw8j4GqEbwv9AS_TIDM8ceN7PkFp2TByq41wOFI2aGkbNgWftBA7F9Oqc7q-NhHo_e6ne8sSfvjuYqmMHdvsZVmvV_ahQVmK060EYOfBkyMbBppMUXdqqoTLYUU6cx38qQ7trsR-MHAjaKf9Ls1WajtPh7_6_VHoMV9KDiXp9NHv1AK5Rchc2uQtb9aqxDxE_1dmjVkV-AsvCEHo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inactivation+of+the+Tomato+Pathogen+Cladosporium+fulvum+by+an+Atmospheric%E2%80%90Pressure+Cold+Plasma+Jet&rft.jtitle=Plasma+processes+and+polymers&rft.au=Lu%2C+Qianqian&rft.au=Liu%2C+Dongping&rft.au=Song%2C+Ying&rft.au=Zhou%2C+Renwu&rft.date=2014-11-01&rft.issn=1612-8850&rft.eissn=1612-8869&rft.volume=11&rft.issue=11&rft.spage=1028&rft.epage=1036&rft_id=info:doi/10.1002%2Fppap.201400070&rft.externalDBID=10.1002%252Fppap.201400070&rft.externalDocID=PPAP201400070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1612-8850&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1612-8850&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1612-8850&client=summon