基于局部特征与核低秩表示的人脸识别算法

针对人脸识别中的遮挡、伪装、光照及表情变化等问题,提出一种基于局部特征与核低秩表示的人脸识别算法。首先,对训练和测试的样本图片进行LBP特征的提取;然后将其通过映射函数投影到高维特征空间中进行后续操作,投影到高维空间中的特征矩阵通过降维处理后采用低秩表示的方法来提取样本之间的共同特征;最后根据低秩表示的结果进行分类识别。实验证明算法在对遮挡、伪装以及光照变化等噪声的影响鲁棒性更强,同时较当前的一些人脸识别算法的识别率也有了显著的提高。...

Full description

Saved in:
Bibliographic Details
Published in电子技术应用 Vol. 42; no. 9; pp. 126 - 128
Main Author 首照宇 杨晓帆 李萌芽
Format Journal Article
LanguageChinese
Published 桂林电子科技大学认知无线电与信息处理教育部重点实验室,广西桂林,541004 2016
Subjects
Online AccessGet full text
ISSN0258-7998
DOI10.16157/j.issn.0258-7998.2016.09.033

Cover

Abstract 针对人脸识别中的遮挡、伪装、光照及表情变化等问题,提出一种基于局部特征与核低秩表示的人脸识别算法。首先,对训练和测试的样本图片进行LBP特征的提取;然后将其通过映射函数投影到高维特征空间中进行后续操作,投影到高维空间中的特征矩阵通过降维处理后采用低秩表示的方法来提取样本之间的共同特征;最后根据低秩表示的结果进行分类识别。实验证明算法在对遮挡、伪装以及光照变化等噪声的影响鲁棒性更强,同时较当前的一些人脸识别算法的识别率也有了显著的提高。
AbstractList 针对人脸识别中的遮挡、伪装、光照及表情变化等问题,提出一种基于局部特征与核低秩表示的人脸识别算法。首先,对训练和测试的样本图片进行LBP特征的提取;然后将其通过映射函数投影到高维特征空间中进行后续操作,投影到高维空间中的特征矩阵通过降维处理后采用低秩表示的方法来提取样本之间的共同特征;最后根据低秩表示的结果进行分类识别。实验证明算法在对遮挡、伪装以及光照变化等噪声的影响鲁棒性更强,同时较当前的一些人脸识别算法的识别率也有了显著的提高。
TP391.41; 针对人脸识别中的遮挡、伪装、光照及表情变化等问题,提出一种基于局部特征与核低秩表示的人脸识别算法.首先,对训练和测试的样本图片进行LBP特征的提取;然后将其通过映射函数投影到高维特征空间中进行后续操作,投影到高维空间中的特征矩阵通过降维处理后采用低秩表示的方法来提取样本之间的共同特征;最后根据低秩表示的结果进行分类识别.实验证明算法在对遮挡、伪装以及光照变化等噪声的影响鲁棒性更强,同时较当前的一些人脸识别算法的识别率也有了显著的提高.
Author 首照宇 杨晓帆 李萌芽
AuthorAffiliation 桂林电子科技大学认知无线电与信息处理教育部重点实验室,广西桂林541004
AuthorAffiliation_xml – name: 桂林电子科技大学认知无线电与信息处理教育部重点实验室,广西桂林,541004
Author_FL Shou Zhaoyu
Yang Xiaofan
Li Mengya
Author_FL_xml – sequence: 1
  fullname: Shou Zhaoyu
– sequence: 2
  fullname: Yang Xiaofan
– sequence: 3
  fullname: Li Mengya
Author_xml – sequence: 1
  fullname: 首照宇 杨晓帆 李萌芽
BookMark eNo9j8tKw1AYhM-igrX2JQRxlXiuyfmXUrxBwU33JZeemqIn2iBSV4pF6iY7EdyoIFgRFHFTA_o0SRPfwkjFxTAwfMwwC6iiQ91BaJlgk1hE2Ks9M4gibWIqpGEDSJNiYpkYTMxYBVX_83lUj6LAxZgQTKVgVQTZbZImcfZ2-n0-zi8_sq-zdBJP7ybpZ5w_PhX34_whyW-GaZIUw0nxepGNnvOX6-n71SKaU85e1Kn_eQ21NtZbjS2jubO53VhrGp4AblBg4FFFbcGpCxI8twM285kCTn0hma8U8_wSFQIU9aTtSM4kiFIuppywGlqZ1R47Wjm62-6FR31dDrb9k140GPw-xYAZL8mlGenthrp7GJTsQT_Yd_qDtmUBgMUtyX4AAsdsrw
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16157/j.issn.0258-7998.2016.09.033
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Face recognition based on local feature and kernel low-rank representation
DocumentTitle_FL Face recognition based on local feature and kernel low-rank representation
EndPage 128
ExternalDocumentID dzjsyy201609034
669996468
GrantInformation_xml – fundername: 桂林电子科技大学研究生科研创新项目
  funderid: (YJCXS201531)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
GROUPED_DOAJ
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c594-2939c2f27542b989cbe973d3f942d583dff3cdc59559f2c87a843895389b02413
ISSN 0258-7998
IngestDate Thu May 29 04:04:53 EDT 2025
Wed Feb 14 10:14:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 特征提取
feature extraction
low-rank representation
映射函数
kernel method
核函数
低秩表示
LBP
mapping function
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c594-2939c2f27542b989cbe973d3f942d583dff3cdc59559f2c87a843895389b02413
Notes For the problem of face recognition, such as disguise, occlusion, illumination and expression changes, a face recognition based on local feature and kernel low rank representation is proposed. First, it extracts the LBP feature of training and testing sam-ple image. Then it is projected onto the high dimensional feature space by the mapping function. The feature matrix which is pro-jected into the high dimension space is used to extract the common features of the samples by the method of low rank representa-tion after dimension reduction. Finally, it carries on the classified recognition based on the method of residual approximation. The ex-perimental results show that the proposed algorithm is robust to occlusion, camouflage and illumination changes. At the same time,compared with some of current face recognition algorithms, the recognition rate of this proposed algorithm has been significantly im-proved.
Shou Zhaoyu, Yang Xiaofan, Li Mengya (Key Laboratory of Cognitive Radio and Information Processing, Guihn
PageCount 3
ParticipantIDs wanfang_journals_dzjsyy201609034
chongqing_primary_669996468
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 电子技术应用
PublicationTitleAlternate Application of Electronic Technique
PublicationTitle_FL Application of Electronic Technique
PublicationYear 2016
Publisher 桂林电子科技大学认知无线电与信息处理教育部重点实验室,广西桂林,541004
Publisher_xml – name: 桂林电子科技大学认知无线电与信息处理教育部重点实验室,广西桂林,541004
SSID ssib001102853
ssib017479494
ssib038074684
ssib051374551
ssj0042189
ssib023646353
Score 2.020262
Snippet ...
TP391.41;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 126
SubjectTerms LBP
低秩表示
映射函数
核函数
特征提取
Title 基于局部特征与核低秩表示的人脸识别算法
URI http://lib.cqvip.com/qk/90393X/201609/669996468.html
https://d.wanfangdata.com.cn/periodical/dzjsyy201609034
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxNBFB9iBdGD-Im1Kjk4J9nanZ3P4ybZUgQ9RegtZL9aPKTVpofmpFhEL7mJ4EUFwYqgiJcY0IN_S9LE_8L3ZjebBaWoEJbJzJv33szbzPzeZOYNIdelVEy0k8jhgJYdxORO6MWeg_6tFzIZxjZI0u07cu0uv7Uu1iuVH6VdS7vdcDnq_fFcyf9YFfLArnhK9h8sWzCFDEiDfeEJFobnX9mYBoKaVVrzacDxqQPMqbm4fSEwVHvU1zRQVBtaM7YoAORoibUlltRfwTTmNGyOoj58gFhT382r-5Y5JAyI4LkszNH4FasD8SrVEkVoSNdsrYAahSJqHs1uuJyBYMsKKgqk9xvUrCCZ9q3akpo6ckNtfSTLiP1iyy22zAcqaVsmUF9kAy1TN2z1hlUbEoYaz_IBPeWsDBupUaSu2wZASxrlpY_sTGY-NjKhHWWyC6xnAzlnpRfWlEZll8nSBO9mp9F_mzsA2yk7eaCE5UICbv-TWSxcbz5pFlsZpUSXkUt9jBxnSrmi5NZbSIoIbg6JwAGEEXA-BmL8fsB8RTnG_wdmRblwPcWFKLYtcYBk1qWbqXeC0JnyN49SHWOHbG51Nu4DIrIH1Dppu7NRwlLNM-R07gRV_eyNPksqvc1z5FQpNOZ5YsavhqNhf_z54c_HB5NnX8ffH40G_cPXg9G3_uTd--mbg8nb4eTl_mg4nO4Ppp-ejJ9-mHx8cfjl-QXSXA2a9TUnv-bDiYThDuBNE7GU4VXModEmChOjYLhIDWex0F6cpl4UAyn4vimLtGprDigbJmoD3QcY7CJZ6Gx1kkuk6iVhO411JFkqwRFXRoqIJS7-ud5OQpYukqWiD1rbWTSXVmHARVLNe6WV_8Z3WnHv3s7eHnYjrmfyy0cyWCInkTJboLtCFroPdpOrAFm74TX7TvwCZ_FzfA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%B1%80%E9%83%A8%E7%89%B9%E5%BE%81%E4%B8%8E%E6%A0%B8%E4%BD%8E%E7%A7%A9%E8%A1%A8%E7%A4%BA%E7%9A%84%E4%BA%BA%E8%84%B8%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95&rft.jtitle=%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF%E5%BA%94%E7%94%A8&rft.au=%E9%A6%96%E7%85%A7%E5%AE%87+%E6%9D%A8%E6%99%93%E5%B8%86+%E6%9D%8E%E8%90%8C%E8%8A%BD&rft.date=2016&rft.issn=0258-7998&rft.volume=42&rft.issue=9&rft.spage=126&rft.epage=128&rft_id=info:doi/10.16157%2Fj.issn.0258-7998.2016.09.033&rft.externalDocID=669996468
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90393X%2F90393X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdzjsyy%2Fdzjsyy.jpg