3D printed aluminum flat heat pipes with micro grooves for efficient thermal management of high power LEDs
As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good tempera...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 8255 - 8 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.04.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good temperature uniformity, it has been used in many different industrial fields. A novel aluminum flat heat pipe, with micro-grooves, has in the present work been designed and fabricated by using a 3D printing technology. Aluminum powder was used as a raw material, which was selectively melted and solidified to form the shape of the heat pipe. The sintered aluminum powder increased the roughness of the inner surface of the heat pipe, and the designed micro-grooves further enhanced the capillary forces induced by the wick structure. The wettability, for the working fluid (acetone), was excellent and the capillary forces were sufficient for the working fluid to flow back in the pipe. The effects of working fluid filling ratio, on the heat transfer performance of the heat pipe, was also investigated. It was shown that a filling ratio of 10% gave the best heat transfer performance with the lowest thermal resistance. The 3D-printed flat heat pipe was, therefore, also tested for the thermal management of a LED. The temperature of the LED could be kept within 40 °C and its service life became prolonged. |
---|---|
AbstractList | As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good temperature uniformity, it has been used in many different industrial fields. A novel aluminum flat heat pipe, with micro-grooves, has in the present work been designed and fabricated by using a 3D printing technology. Aluminum powder was used as a raw material, which was selectively melted and solidified to form the shape of the heat pipe. The sintered aluminum powder increased the roughness of the inner surface of the heat pipe, and the designed micro-grooves further enhanced the capillary forces induced by the wick structure. The wettability, for the working fluid (acetone), was excellent and the capillary forces were sufficient for the working fluid to flow back in the pipe. The effects of working fluid filling ratio, on the heat transfer performance of the heat pipe, was also investigated. It was shown that a filling ratio of 10% gave the best heat transfer performance with the lowest thermal resistance. The 3D-printed flat heat pipe was, therefore, also tested for the thermal management of a LED. The temperature of the LED could be kept within 40 °C and its service life became prolonged. Abstract As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good temperature uniformity, it has been used in many different industrial fields. A novel aluminum flat heat pipe, with micro-grooves, has in the present work been designed and fabricated by using a 3D printing technology. Aluminum powder was used as a raw material, which was selectively melted and solidified to form the shape of the heat pipe. The sintered aluminum powder increased the roughness of the inner surface of the heat pipe, and the designed micro-grooves further enhanced the capillary forces induced by the wick structure. The wettability, for the working fluid (acetone), was excellent and the capillary forces were sufficient for the working fluid to flow back in the pipe. The effects of working fluid filling ratio, on the heat transfer performance of the heat pipe, was also investigated. It was shown that a filling ratio of 10% gave the best heat transfer performance with the lowest thermal resistance. The 3D-printed flat heat pipe was, therefore, also tested for the thermal management of a LED. The temperature of the LED could be kept within 40 °C and its service life became prolonged. As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good temperature uniformity, it has been used in many different industrial fields. A novel aluminum flat heat pipe, with micro-grooves, has in the present work been designed and fabricated by using a 3D printing technology. Aluminum powder was used as a raw material, which was selectively melted and solidified to form the shape of the heat pipe. The sintered aluminum powder increased the roughness of the inner surface of the heat pipe, and the designed micro-grooves further enhanced the capillary forces induced by the wick structure. The wettability, for the working fluid (acetone), was excellent and the capillary forces were sufficient for the working fluid to flow back in the pipe. The effects of working fluid filling ratio, on the heat transfer performance of the heat pipe, was also investigated. It was shown that a filling ratio of 10% gave the best heat transfer performance with the lowest thermal resistance. The 3D-printed flat heat pipe was, therefore, also tested for the thermal management of a LED. The temperature of the LED could be kept within 40 °C and its service life became prolonged.As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good temperature uniformity, it has been used in many different industrial fields. A novel aluminum flat heat pipe, with micro-grooves, has in the present work been designed and fabricated by using a 3D printing technology. Aluminum powder was used as a raw material, which was selectively melted and solidified to form the shape of the heat pipe. The sintered aluminum powder increased the roughness of the inner surface of the heat pipe, and the designed micro-grooves further enhanced the capillary forces induced by the wick structure. The wettability, for the working fluid (acetone), was excellent and the capillary forces were sufficient for the working fluid to flow back in the pipe. The effects of working fluid filling ratio, on the heat transfer performance of the heat pipe, was also investigated. It was shown that a filling ratio of 10% gave the best heat transfer performance with the lowest thermal resistance. The 3D-printed flat heat pipe was, therefore, also tested for the thermal management of a LED. The temperature of the LED could be kept within 40 °C and its service life became prolonged. As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good temperature uniformity, it has been used in many different industrial fields. A novel aluminum flat heat pipe, with micro-grooves, has in the present work been designed and fabricated by using a 3D printing technology. Aluminum powder was used as a raw material, which was selectively melted and solidified to form the shape of the heat pipe. The sintered aluminum powder increased the roughness of the inner surface of the heat pipe, and the designed micro-grooves further enhanced the capillary forces induced by the wick structure. The wettability, for the working fluid (acetone), was excellent and the capillary forces were sufficient for the working fluid to flow back in the pipe. The effects of working fluid filling ratio, on the heat transfer performance of the heat pipe, was also investigated. It was shown that a filling ratio of 10% gave the best heat transfer performance with the lowest thermal resistance. The 3D-printed flat heat pipe was, therefore, also tested for the thermal management of a LED. The temperature of the LED could be kept within 40 °C and its service life became prolonged. |
ArticleNumber | 8255 |
Author | Ji, Yulong Wang, Zongyu Chang, Chao Han, Zhaoyang He, Xiaoyu |
Author_xml | – sequence: 1 givenname: Chao surname: Chang fullname: Chang, Chao email: chang3223426@126.com organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University – sequence: 2 givenname: Zhaoyang surname: Han fullname: Han, Zhaoyang organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University – sequence: 3 givenname: Xiaoyu surname: He fullname: He, Xiaoyu organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University – sequence: 4 givenname: Zongyu surname: Wang fullname: Wang, Zongyu organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University – sequence: 5 givenname: Yulong surname: Ji fullname: Ji, Yulong email: jiyulongcn@163.com organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33859317$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1TAQjFARLaV_gAOyxIVLwJ-JfUFCbYFKT-ICZ8tx1omfkvhhJ6349zhNC20P9cFerWdGs_a8Lo6mMEFRvCX4I8FMfkqcCCVLTEkp6zpX_EVxQjEXJWWUHj2oj4uzlPY4L0EVJ-pVccyYFIqR-qTYswt0iH6aoUVmWEY_LSNyg5lRD3k7-AMkdOPnHo3exoC6GMJ1brkQETjnrYdpRnMPcTQDGs1kOhjXVnCo912PDuEGItpdXqQ3xUtnhgRnd-dp8evr5c_z7-Xux7er8y-70mZPc9k2UnLreNsQowyjyhFohCMOG9wQ2xIrK15LEJJLLmiDq0pVFrAQCoixip0WV5tuG8xe5-FGE__oYLy-bYTYaRNnbwfQpKI1pmCksIq71kjaYtIoZyQGAN5krc-b1mFpRmhtniya4ZHo45vJ97oL11pigSnjWeDDnUAMvxdIsx59sjAMZoKwJE0F4RUWFSEZ-v4JdB-WOOWnWlEMK0VxlVHvHjr6Z-X-SzNAboD8XSlFcNr62cw-rAb9oAnWa4D0FiCdA6RvA6RXs_QJ9V79WRLbSGnNUQfxv-1nWH8B2brYlA |
CitedBy_id | crossref_primary_10_3390_ma15248930 crossref_primary_10_3390_mi13111949 crossref_primary_10_1016_j_jmapro_2024_11_090 crossref_primary_10_1007_s12206_024_0847_9 crossref_primary_10_1016_j_applthermaleng_2024_122953 crossref_primary_10_1007_s00170_025_15073_1 crossref_primary_10_1016_j_ijft_2021_100117 crossref_primary_10_1063_5_0151134 crossref_primary_10_7735_ksmte_2024_33_2_77 crossref_primary_10_1007_s10973_023_12303_0 crossref_primary_10_1016_j_applthermaleng_2024_124332 crossref_primary_10_1016_j_addma_2025_104653 crossref_primary_10_1016_j_applthermaleng_2024_124853 crossref_primary_10_1016_j_applthermaleng_2025_126256 crossref_primary_10_1063_5_0240479 crossref_primary_10_1080_00295450_2024_2372509 crossref_primary_10_1016_j_csite_2025_105967 crossref_primary_10_1016_j_applthermaleng_2023_121561 crossref_primary_10_1111_ijac_14321 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125728 crossref_primary_10_18186_thermal_1457052 crossref_primary_10_1016_j_applthermaleng_2021_117651 crossref_primary_10_3390_en17051113 crossref_primary_10_1016_j_applthermaleng_2023_121037 crossref_primary_10_3390_nano14010060 crossref_primary_10_1016_j_applthermaleng_2023_121292 crossref_primary_10_1016_j_applthermaleng_2024_123076 crossref_primary_10_1007_s10973_022_11739_0 crossref_primary_10_1007_s10973_021_11099_1 crossref_primary_10_3390_polym15020414 crossref_primary_10_1007_s12217_022_09955_2 crossref_primary_10_1016_j_applthermaleng_2024_125116 crossref_primary_10_1016_j_tsep_2023_102376 crossref_primary_10_1016_j_apenergy_2022_119994 crossref_primary_10_1016_j_csite_2024_105219 crossref_primary_10_1016_j_csite_2025_105814 crossref_primary_10_1016_j_applthermaleng_2024_123097 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125814 |
Cites_doi | 10.1016/j.applthermaleng.2017.11.084 10.1016/j.apenergy.2018.04.072 10.1016/j.applthermaleng.2016.12.056 10.1038/479309a 10.1016/j.applthermaleng.2018.12.020 10.1016/j.expthermflusci.2011.01.007 10.1016/j.rser.2015.05.028 10.1016/j.icheatmasstransfer.2017.08.014 10.1016/j.ijheatmasstransfer.2019.119198 10.1063/1.5033347 10.1016/j.rser.2015.12.350 10.1016/j.ijheatmasstransfer.2008.02.039 10.1063/1.4986318 10.1016/j.est.2019.100986 10.1016/j.applthermaleng.2004.07.010 10.1016/j.applthermaleng.2018.10.014 10.1016/j.applthermaleng.2019.04.094 10.1016/j.ijthermalsci.2018.08.022 10.1016/j.enconman.2013.05.004 10.1016/j.applthermaleng.2015.11.048 10.1016/j.rser.2015.09.002 10.1016/j.mattod.2014.04.003 10.1016/j.icheatmasstransfer.2015.06.009 10.1016/j.apenergy.2018.04.020 10.1016/j.renene.2019.10.093 10.1016/j.applthermaleng.2017.12.085 10.1021/acsami.6b08077 10.1016/j.renene.2019.08.083 10.1016/j.ijheatmasstransfer.2020.119512 10.1016/j.rser.2018.07.014 10.1115/1.4007407 10.1016/j.ijheatmasstransfer.2007.01.009 10.1007/978-1-4939-2504-9 10.1016/j.applthermaleng.2020.115215 10.1016/j.applthermaleng.2019.114815 10.1016/j.ijheatmasstransfer.2018.07.154 10.1016/j.applthermaleng.2006.02.023 10.1016/j.enconman.2018.11.031 10.1007/s40565-017-0308-x 10.1016/j.ijheatmasstransfer.2016.10.078 10.1016/j.applthermaleng.2015.09.038 10.1016/S1359-4311(02)00085-6 10.1186/1556-276X-6-296 10.1016/j.expthermflusci.2017.03.008 10.1016/j.applthermaleng.2015.04.027 10.1016/j.applthermaleng.2018.02.045 10.1016/j.applthermaleng.2016.03.097 10.1016/j.applthermaleng.2017.10.091 10.1016/j.applthermaleng.2015.10.120 10.1038/s41598-016-0001-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-87798-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_162702ea85c94fda82d01b9fa80eee4b PMC8050234 33859317 10_1038_s41598_021_87798_4 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c593t-db884cf4db1a9a329f1eb5f1f0a0b1cd1c86478e5848452b06696ce0559e1ac93 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:01:34 EDT 2025 Thu Aug 21 13:55:29 EDT 2025 Thu Jul 10 23:46:10 EDT 2025 Wed Aug 13 11:26:39 EDT 2025 Mon Jul 21 06:05:46 EDT 2025 Tue Jul 01 01:07:56 EDT 2025 Thu Apr 24 22:55:37 EDT 2025 Fri Feb 21 02:39:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c593t-db884cf4db1a9a329f1eb5f1f0a0b1cd1c86478e5848452b06696ce0559e1ac93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2513099206?pq-origsite=%requestingapplication% |
PMID | 33859317 |
PQID | 2513099206 |
PQPubID | 2041939 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_162702ea85c94fda82d01b9fa80eee4b pubmedcentral_primary_oai_pubmedcentral_nih_gov_8050234 proquest_miscellaneous_2514605611 proquest_journals_2513099206 pubmed_primary_33859317 crossref_citationtrail_10_1038_s41598_021_87798_4 crossref_primary_10_1038_s41598_021_87798_4 springer_journals_10_1038_s41598_021_87798_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-15 |
PublicationDateYYYYMMDD | 2021-04-15 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Li (CR28) 2015; 86 Pis'mennyi, Khayrnasov, Rassamakin (CR47) 2018; 127 Cheng, Wang, Zhang, Pi, Xu (CR32) 2017; 107 Wang, Qu, Sun, Kang, Han (CR42) 2020; 167 Smith, Singh, Hinterberger, Mochizuki (CR26) 2018; 134 Vasiliev (CR15) 2008; 28 Shen (CR20) 2018; 112 Kang, Tsai, Chen (CR30) 2002; 22 Jiao, Ma, Critser (CR33) 2007; 50 Qu, Wang, Li, Wang (CR27) 2018; 135 Wang, Quan, Zhao, Wang (CR12) 2019; 146 Ji, Ma, Su, Wang (CR16) 2011; 35 Maydanik (CR13) 2005; 25 Shafieian, Khiadani, Nosrati (CR24) 2018; 95 Zhang (CR36) 2016; 6 Ghanbarpour, Nikkam, Khodabandeh, Toprak (CR34) 2015; 67 Li, Zhou, Li, Chen, Gan (CR39) 2019; 156 Kim, Oh, Lee (CR4) 2019; 149 Zhu, Huang, Song, Hu (CR11) 2020; 173 Venema (CR1) 2011; 479 Chen, Ye, Fan, Ren, Zhang (CR21) 2016; 96 Chen (CR50) 2020; 146 Zhou, Li, Chen, Deng, Gan (CR35) 2019; 180 Xu, Li (CR41) 2017; 111 Ma (CR18) 2015 Tang (CR49) 2018; 129 Tang (CR8) 2018; 223 Chang (CR25) 2016; 8 Zhang, Lian, Liu (CR46) 2020; 152 Moore, Shi (CR3) 2014; 17 Li (CR37) 2016; 102 Tang (CR40) 2017; 115 Nazari (CR23) 2018; 222 Khalili, Shafii (CR29) 2016; 94 Shukla (CR22) 2015; 5 Chan, Siqueiros, Ling-Chin, Royapoor, Roskilly (CR10) 2015; 50 Maydanik, Pastukhov, Chernysheva (CR14) 2018; 130 Ji, Li, Xu, Huang (CR44) 2017; 85 Peng, Li, Ling (CR45) 2013; 74 Maza-Ortega, Acha, Garcia, Gomez-Exposito (CR2) 2017; 5 Han, Wang, Zheng, Xu, Chen (CR6) 2016; 59 Jafari, Franco, Filippeschi, Di Marco (CR9) 2016; 53 Ji, Wilson, Chen, Ma (CR17) 2011; 6 Do, Kim, Garimella (CR31) 2008; 51 Faghri (CR5) 2012; 134 Ji (CR19) 2020; 149 Ali (CR7) 2019; 26 Alijani, Cetin, Akkus, Dursunkaya (CR48) 2018; 132 Li, Lv (CR43) 2016; 93 Yang, Tu, Zhang, Yeh, Wang (CR38) 2017; 88 Zhong (CR51) 2020; 149 Y Ji (87798_CR19) 2020; 149 YF Maydanik (87798_CR13) 2005; 25 M Ghanbarpour (87798_CR34) 2015; 67 D Jafari (87798_CR9) 2016; 53 YL Ji (87798_CR16) 2011; 35 J Smith (87798_CR26) 2018; 134 G Chen (87798_CR50) 2020; 146 HM Ali (87798_CR7) 2019; 26 AL Moore (87798_CR3) 2014; 17 Y Zhang (87798_CR36) 2016; 6 J Qu (87798_CR27) 2018; 135 H Wang (87798_CR42) 2020; 167 CW Chan (87798_CR10) 2015; 50 X Ji (87798_CR44) 2017; 85 LL Vasiliev (87798_CR15) 2008; 28 AJ Jiao (87798_CR33) 2007; 50 J Cheng (87798_CR32) 2017; 107 KH Do (87798_CR31) 2008; 51 Y Tang (87798_CR40) 2017; 115 A Faghri (87798_CR5) 2012; 134 Y Li (87798_CR37) 2016; 102 A Shafieian (87798_CR24) 2018; 95 W Zhou (87798_CR35) 2019; 180 XP Chen (87798_CR21) 2016; 96 MA Nazari (87798_CR23) 2018; 222 SW Kang (87798_CR30) 2002; 22 H Ma (87798_CR18) 2015 K Shukla (87798_CR22) 2015; 5 YL Ji (87798_CR17) 2011; 6 Q Shen (87798_CR20) 2018; 112 J Zhang (87798_CR46) 2020; 152 JM Maza-Ortega (87798_CR2) 2017; 5 M Khalili (87798_CR29) 2016; 94 H Tang (87798_CR8) 2018; 223 H Alijani (87798_CR48) 2018; 132 XH Han (87798_CR6) 2016; 59 C Chang (87798_CR25) 2016; 8 J Li (87798_CR43) 2016; 93 GS Zhong (87798_CR51) 2020; 149 Y Li (87798_CR28) 2015; 86 J Kim (87798_CR4) 2019; 149 H Tang (87798_CR49) 2018; 129 L Venema (87798_CR1) 2011; 479 Y Li (87798_CR39) 2019; 156 H Peng (87798_CR45) 2013; 74 Y Maydanik (87798_CR14) 2018; 130 P Xu (87798_CR41) 2017; 111 M Zhu (87798_CR11) 2020; 173 KS Yang (87798_CR38) 2017; 88 EN Pis'mennyi (87798_CR47) 2018; 127 G Wang (87798_CR12) 2019; 146 |
References_xml | – volume: 130 start-page: 1052 year: 2018 end-page: 1061 ident: CR14 article-title: Development and investigation of a loop heat pipe with a high heat-transfer capacity publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.11.084 – volume: 223 start-page: 383 year: 2018 end-page: 400 ident: CR8 article-title: Review of applications and developments of ultra-thin micro heat pipes for electronic cooling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.04.072 – volume: 115 start-page: 1020 year: 2017 end-page: 1030 ident: CR40 article-title: Experimental investigation of capillary force in a novel sintered copper mesh wick for ultra-thin heat pipes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.12.056 – volume: 479 start-page: 309 year: 2011 end-page: 309 ident: CR1 article-title: Silicon electronics and beyond publication-title: Nature doi: 10.1038/479309a – volume: 149 start-page: 192 year: 2019 end-page: 212 ident: CR4 article-title: Review on battery thermal management system for electric vehicles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.12.020 – volume: 35 start-page: 724 year: 2011 end-page: 727 ident: CR16 article-title: Particle size effect on heat transfer performance in an oscillating heat pipe publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2011.01.007 – volume: 50 start-page: 615 year: 2015 end-page: 627 ident: CR10 article-title: Heat utilisation technologies: a critical review of heat pipes publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2015.05.028 – volume: 88 start-page: 84 year: 2017 end-page: 90 ident: CR38 article-title: A novel oxidized composite braided wires wick structure applicable for ultra-thin flattened heat pipes publication-title: Int. Commun. Heat Mass doi: 10.1016/j.icheatmasstransfer.2017.08.014 – volume: 149 start-page: 119198 year: 2020 ident: CR19 article-title: An experimental investigation on the heat transfer performance of a liquid metal high-temperature oscillating heat pipe publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.119198 – volume: 112 start-page: 243903 year: 2018 ident: CR20 article-title: Waste heat recovery in an oscillating heat pipe using interfacial electrical double layers publication-title: Appl. Phys. Lett. doi: 10.1063/1.5033347 – volume: 59 start-page: 692 year: 2016 end-page: 709 ident: CR6 article-title: Review of the development of pulsating heat pipe for heat dissipation publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2015.12.350 – volume: 51 start-page: 4637 year: 2008 end-page: 4650 ident: CR31 article-title: A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.02.039 – volume: 111 start-page: 141609 year: 2017 ident: CR41 article-title: Visualization study on the enhancement of heat transfer for the groove flat-plate heat pipe with nanoflower coated CuO layer publication-title: Appl. Phys. Lett. doi: 10.1063/1.4986318 – volume: 26 start-page: 100986 year: 2019 ident: CR7 article-title: Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: a recent review publication-title: J. Energy Storage doi: 10.1016/j.est.2019.100986 – volume: 25 start-page: 635 year: 2005 end-page: 657 ident: CR13 article-title: Loop heat pipes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2004.07.010 – volume: 146 start-page: 459 year: 2019 end-page: 468 ident: CR12 article-title: Performance of a flat-plate micro heat pipe at different filling ratios and working fluids publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.10.014 – volume: 156 start-page: 471 year: 2019 end-page: 484 ident: CR39 article-title: Experimental analysis of thin vapor chamber with composite wick structure under different cooling conditions publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.04.094 – volume: 134 start-page: 517 year: 2018 end-page: 529 ident: CR26 article-title: Battery thermal management system for electric vehicle using heat pipes publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2018.08.022 – volume: 74 start-page: 44 year: 2013 end-page: 50 ident: CR45 article-title: Study on heat transfer performance of an aluminum flat plate heat pipe with fins in vapor chamber publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.05.004 – volume: 96 start-page: 1 year: 2016 end-page: 17 ident: CR21 article-title: A review of small heat pipes for electronics publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.11.048 – volume: 53 start-page: 575 year: 2016 end-page: 593 ident: CR9 article-title: Two-phase closed thermosyphons: a review of studies and solar applications publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2015.09.002 – volume: 17 start-page: 163 year: 2014 end-page: 174 ident: CR3 article-title: Emerging challenges and materials for thermal management of electronics publication-title: Mater. Today doi: 10.1016/j.mattod.2014.04.003 – volume: 67 start-page: 14 year: 2015 end-page: 20 ident: CR34 article-title: Thermal performance of inclined screen mesh heat pipes using silver nanofluids publication-title: Int. Commun. Heat Mass doi: 10.1016/j.icheatmasstransfer.2015.06.009 – volume: 222 start-page: 475 year: 2018 end-page: 484 ident: CR23 article-title: A review on pulsating heat pipes: from solar to cryogenic applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.04.020 – volume: 5 start-page: 1 year: 2015 ident: CR22 article-title: Heat pipe for aerospace applications - an overview publication-title: Cool. Therm. Control – volume: 149 start-page: 1032 year: 2020 end-page: 1039 ident: CR51 article-title: Experimental study of a large-area ultra-thin flat heat pipe for solar collectors under different cooling conditions publication-title: Renew. Energy doi: 10.1016/j.renene.2019.10.093 – volume: 132 start-page: 174 year: 2018 end-page: 187 ident: CR48 article-title: Effect of design and operating parameters on the thermal performance of aluminum flat grooved heat pipes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.12.085 – volume: 8 start-page: 23412 year: 2016 end-page: 23418 ident: CR25 article-title: Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08077 – volume: 6 start-page: 1 year: 2016 end-page: 8 ident: CR36 article-title: Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate publication-title: Sci. Rep. – volume: 146 start-page: 2234 year: 2020 end-page: 2242 ident: CR50 article-title: Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors publication-title: Renew. Energy doi: 10.1016/j.renene.2019.08.083 – volume: 152 start-page: 119512 year: 2020 ident: CR46 article-title: Liquid phase enhanced sintering of porous aluminum for cylindrical Al-acetone heat pipe publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.119512 – volume: 95 start-page: 273 year: 2018 ident: CR24 article-title: A review of latest developments, progress, and applications of heat pipe solar collectors publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2018.07.014 – volume: 134 start-page: 12 year: 2012 ident: CR5 article-title: Review and advances in heat pipe science and technology publication-title: J. Heat Transf. doi: 10.1115/1.4007407 – volume: 50 start-page: 2905 year: 2007 end-page: 2911 ident: CR33 article-title: Evaporation heat transfer characteristics of a grooved heat pipe with micro-trapezoidal grooves publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.01.009 – year: 2015 ident: CR18 publication-title: Oscillating Heat Pipes doi: 10.1007/978-1-4939-2504-9 – volume: 173 start-page: 115215 year: 2020 ident: CR11 article-title: Thermal performance of a thin flat heat pipe with grooved porous structure publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115215 – volume: 167 start-page: 114815 year: 2020 ident: CR42 article-title: Thermal characteristic comparison of three-dimensional oscillating heat pipes with/without sintered copper particles inside flat-plate evaporator for concentrating photovoltaic cooling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114815 – volume: 127 start-page: 80 year: 2018 end-page: 88 ident: CR47 article-title: Heat transfer in the evaporation zone of aluminum grooved heat pipes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.07.154 – volume: 28 start-page: 266 year: 2008 end-page: 273 ident: CR15 article-title: Micro and miniature heat pipes: electronic component coolers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2006.02.023 – volume: 180 start-page: 769 year: 2019 end-page: 783 ident: CR35 article-title: A novel ultra-thin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.11.031 – volume: 5 start-page: 499 year: 2017 end-page: 514 ident: CR2 article-title: Overview of power electronics technology and applications in power generation transmission and distribution publication-title: J. Mod. Power Syst. Clean doi: 10.1007/s40565-017-0308-x – volume: 107 start-page: 586 year: 2017 end-page: 591 ident: CR32 article-title: Enhancement of capillary and thermal performance of grooved copper heat pipe by gradient wettability surface publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.10.078 – volume: 93 start-page: 139 year: 2016 end-page: 146 ident: CR43 article-title: Experimental studies on a novel thin flat heat pipe heat spreader publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.09.038 – volume: 22 start-page: 1559 year: 2002 end-page: 1568 ident: CR30 article-title: Fabrication and test of radial grooved micro heat pipes publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(02)00085-6 – volume: 6 start-page: 1 year: 2011 end-page: 7 ident: CR17 article-title: Particle shape effect on heat transfer performance in an oscillating heat pipe publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-296 – volume: 85 start-page: 119 year: 2017 end-page: 131 ident: CR44 article-title: Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2017.03.008 – volume: 86 start-page: 106 year: 2015 end-page: 118 ident: CR28 article-title: Investigation of ultra-thin flattened heat pipes with sintered wick structure publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.04.027 – volume: 135 start-page: 1 year: 2018 end-page: 9 ident: CR27 article-title: Heat transfer performance of flexible oscillating heat pipes for electric/hybrid-electric vehicle battery thermal management publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.02.045 – volume: 102 start-page: 487 year: 2016 end-page: 499 ident: CR37 article-title: Thermal performance of ultra-thin flattened heat pipes with composite wick structure publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.03.097 – volume: 129 start-page: 907 year: 2018 end-page: 915 ident: CR49 article-title: Fabrication and capillary characterization of axially micro-grooved wicks for aluminium flat-plate heat pipes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.10.091 – volume: 94 start-page: 59 year: 2016 end-page: 75 ident: CR29 article-title: Experimental and numerical investigation of the thermal performance of a novel sintered-wick heat pipe publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.10.120 – volume: 173 start-page: 115215 year: 2020 ident: 87798_CR11 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115215 – volume: 167 start-page: 114815 year: 2020 ident: 87798_CR42 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114815 – volume: 134 start-page: 517 year: 2018 ident: 87798_CR26 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2018.08.022 – volume: 6 start-page: 1 year: 2016 ident: 87798_CR36 publication-title: Sci. Rep. doi: 10.1038/s41598-016-0001-8 – volume: 35 start-page: 724 year: 2011 ident: 87798_CR16 publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2011.01.007 – volume: 88 start-page: 84 year: 2017 ident: 87798_CR38 publication-title: Int. Commun. Heat Mass doi: 10.1016/j.icheatmasstransfer.2017.08.014 – volume: 134 start-page: 12 year: 2012 ident: 87798_CR5 publication-title: J. Heat Transf. doi: 10.1115/1.4007407 – volume: 112 start-page: 243903 year: 2018 ident: 87798_CR20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5033347 – volume-title: Oscillating Heat Pipes year: 2015 ident: 87798_CR18 doi: 10.1007/978-1-4939-2504-9 – volume: 111 start-page: 141609 year: 2017 ident: 87798_CR41 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4986318 – volume: 180 start-page: 769 year: 2019 ident: 87798_CR35 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.11.031 – volume: 127 start-page: 80 year: 2018 ident: 87798_CR47 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.07.154 – volume: 146 start-page: 459 year: 2019 ident: 87798_CR12 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.10.014 – volume: 149 start-page: 192 year: 2019 ident: 87798_CR4 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.12.020 – volume: 149 start-page: 1032 year: 2020 ident: 87798_CR51 publication-title: Renew. Energy doi: 10.1016/j.renene.2019.10.093 – volume: 152 start-page: 119512 year: 2020 ident: 87798_CR46 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.119512 – volume: 223 start-page: 383 year: 2018 ident: 87798_CR8 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.04.072 – volume: 107 start-page: 586 year: 2017 ident: 87798_CR32 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.10.078 – volume: 50 start-page: 2905 year: 2007 ident: 87798_CR33 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.01.009 – volume: 95 start-page: 273 year: 2018 ident: 87798_CR24 publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2018.07.014 – volume: 28 start-page: 266 year: 2008 ident: 87798_CR15 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2006.02.023 – volume: 135 start-page: 1 year: 2018 ident: 87798_CR27 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.02.045 – volume: 93 start-page: 139 year: 2016 ident: 87798_CR43 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.09.038 – volume: 132 start-page: 174 year: 2018 ident: 87798_CR48 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.12.085 – volume: 149 start-page: 119198 year: 2020 ident: 87798_CR19 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.119198 – volume: 22 start-page: 1559 year: 2002 ident: 87798_CR30 publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(02)00085-6 – volume: 222 start-page: 475 year: 2018 ident: 87798_CR23 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.04.020 – volume: 129 start-page: 907 year: 2018 ident: 87798_CR49 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.10.091 – volume: 5 start-page: 499 year: 2017 ident: 87798_CR2 publication-title: J. Mod. Power Syst. Clean doi: 10.1007/s40565-017-0308-x – volume: 479 start-page: 309 year: 2011 ident: 87798_CR1 publication-title: Nature doi: 10.1038/479309a – volume: 53 start-page: 575 year: 2016 ident: 87798_CR9 publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2015.09.002 – volume: 96 start-page: 1 year: 2016 ident: 87798_CR21 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.11.048 – volume: 94 start-page: 59 year: 2016 ident: 87798_CR29 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.10.120 – volume: 25 start-page: 635 year: 2005 ident: 87798_CR13 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2004.07.010 – volume: 86 start-page: 106 year: 2015 ident: 87798_CR28 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.04.027 – volume: 130 start-page: 1052 year: 2018 ident: 87798_CR14 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.11.084 – volume: 146 start-page: 2234 year: 2020 ident: 87798_CR50 publication-title: Renew. Energy doi: 10.1016/j.renene.2019.08.083 – volume: 26 start-page: 100986 year: 2019 ident: 87798_CR7 publication-title: J. Energy Storage doi: 10.1016/j.est.2019.100986 – volume: 50 start-page: 615 year: 2015 ident: 87798_CR10 publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2015.05.028 – volume: 8 start-page: 23412 year: 2016 ident: 87798_CR25 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08077 – volume: 74 start-page: 44 year: 2013 ident: 87798_CR45 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.05.004 – volume: 102 start-page: 487 year: 2016 ident: 87798_CR37 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.03.097 – volume: 115 start-page: 1020 year: 2017 ident: 87798_CR40 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.12.056 – volume: 6 start-page: 1 year: 2011 ident: 87798_CR17 publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-296 – volume: 156 start-page: 471 year: 2019 ident: 87798_CR39 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.04.094 – volume: 17 start-page: 163 year: 2014 ident: 87798_CR3 publication-title: Mater. Today doi: 10.1016/j.mattod.2014.04.003 – volume: 59 start-page: 692 year: 2016 ident: 87798_CR6 publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2015.12.350 – volume: 5 start-page: 1 year: 2015 ident: 87798_CR22 publication-title: Cool. Therm. Control – volume: 85 start-page: 119 year: 2017 ident: 87798_CR44 publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2017.03.008 – volume: 51 start-page: 4637 year: 2008 ident: 87798_CR31 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.02.039 – volume: 67 start-page: 14 year: 2015 ident: 87798_CR34 publication-title: Int. Commun. Heat Mass doi: 10.1016/j.icheatmasstransfer.2015.06.009 |
SSID | ssj0000529419 |
Score | 2.4974535 |
Snippet | As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device... Abstract As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8255 |
SubjectTerms | 639/166 639/301 Acetone Aluminum Fluid flow Heat transfer Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) Thermal conductivity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9JG2btKgQm6tiV62pWObByGUnBLITUiy1G7JepfubqD_vjOy18mmj1x6M7aMtTMjzTermW8I2WeykQJcXRnb1JRKhVR6rJWRELg57lOVUk6QPa9PL9XZVXV1p9UX5oT19MC94A54jRVT0ekqGJVap0XLuDfJaRZjVB53X_B5d4KpntVbGMXNUCXDpD5YgKfCajLBYQNo4EpteKJM2P8nlPl7suS9E9PsiE6ekacDgqSf-pk_J49i94I87ntK_nxJvssjim8CkqQOdp5Jt5rSdO2WFLddOp_M44Liv690irl49CtA5xu4BeCVxswnATOgCAun8JXpmB1DZ4kitzGdY181-uX4aLFNLk-OLw5Py6GhQhkqI5dl67UGbajWc2ecFCbx6KvEE3PM89DyoLH0NAIo0aoSHuCIqUNkEHVE7oKRr8hWN-viG0KFh1jDyRa00ajEpHGRJ6N803gXRKwLwtfCtWFgG8emF9c2n3pLbXuFWFCIzQqxqiAfxnfmPdfGP0d_Rp2NI5EnO98A67GD9diHrKcgu2uN22HxLixAPgnAGUy4IO_Hx7Ds8CzFdXG2ymPwRLnmvCCvewMZZwJRP4ibNwVpNkxnY6qbT7rJt0ztrVkFIAp-28e1kd1O6--iePs_RLFDnghcHchjWe2SreWPVXwHgGvp9_La-gW75ieG priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VIiQuiDcpBRmJGwTi2NnYB4SAtqoQcGKl3iw7sdtFu9llHxX998w4D7Sw9BYltjL2zGQ-x55vAF5mohQ5hrrU16FMpaxC6ihXRuDCzXIXihDiAdlvo9Ox_HxWnO1BX-6om8DVzqUd1ZMaL6dvfv28eo8O_65NGVdvVxiEKFEs5-jbJV7JG3ATI1NJFQ2-dnC_5frOteS6y53Z3XUrPkUa_13Y898jlH_to8bwdHIX7nS4kn1oDeEe7PnmPtxqK01ePYAf4ohRT8SXzOL3aNJsZixM7ZrRx5gtJgu_YvRPls3ohB47R0B9ibcQ0jIfWSZQAkZgcYZvmQ1nZtg8MGI8Zguqtsa-HB-tHsL45Pj7p9O0K7OQVoUW67R2SqGOZO241VbkOnDvisBDZjPHq5pXihJSPUIVJYvcIUjRo8pnuBbx3FZaPIL9Zt74J8ByhysQK-q8RmQSMqGt50FLV5bOVrkfJcD7yTVVx0FOpTCmJu6FC2VahRhUiIkKMTKBV0OfRcvAcW3rj6SzoSWxZ8cb8-W56ZzR8BFl4XmrikrLUFuF8nKng1WZ9166BA57jZveIg0CQYFwGg07gRfDY3RG2mGxjZ9vYhvaZx5xnsDj1kAGSYQgajleJlBumc6WqNtPmslFJPxWWYHQCsf2ujeyP2L9fyoOrh_FU7idk90Tb2VxCPvr5cY_Q4C1ds-j1_wGxUIhdA priority: 102 providerName: Scholars Portal – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcKt6kLchI3CAijp3EPi60VbVCXKBSb5ad2GVRN7vq7lbqv--M80ALBYlblNjKxDNjf87MfAZ4l4lK5LjUpb4JVSplHVJHtTICN26Wu1CEEBNkv5Zn53J6UVzsQD7UwsSk_UhpGafpITvs4woXGioGyzn6b4VX8gHsEVU72vbeZDL9Nh3_rFDsSnLdV8hkQt3TeWsVimT99yHMPxMlf4uWxkXo9DHs9-iRTTp5n8COb5_Cw-48ydtn8FMcM-qJKJJZnHVm7WbOwpVdM5py2XK29CtGf17ZnPLw2CXC5hu8hcCV-cglgRIwgoRzfMt8zIxhi8CI15gt6Uw19uXkePUczk9Pvn8-S_vDFNK60GKdNk4p1IRsHLfailwH7l0ReMhs5njd8FpR2alHQKJkkTuEIrqsfYY7Ds9trcUL2G0XrX8FLHe4z7CiyRvEHyET2noetHRV5Wyd-zIBPgyuqXumcTrw4srEiLdQplOIQYWYqBAjE3g_9ll2PBv_bP2JdDa2JI7seGNxfWl6mzG8pFo7b1VRaxkaq1Be7nSwKvPeS5fA0aBx0zvuyiDcEwia0XwTeDs-RpejOIpt_WIT21A0ueQ8gZedgYyS4I4fh5tXCVRbprMl6vaTdvYj0nqrrEAAhd_2YTCyX2L9fSgO_q_5ITzKyQ-IrbI4gt319ca_Rli1dm96P7oDuLsdhw priority: 102 providerName: Springer Nature |
Title | 3D printed aluminum flat heat pipes with micro grooves for efficient thermal management of high power LEDs |
URI | https://link.springer.com/article/10.1038/s41598-021-87798-4 https://www.ncbi.nlm.nih.gov/pubmed/33859317 https://www.proquest.com/docview/2513099206 https://www.proquest.com/docview/2514605611 https://pubmed.ncbi.nlm.nih.gov/PMC8050234 https://doaj.org/article/162702ea85c94fda82d01b9fa80eee4b |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviG8CozISbxAtjp3EfkJd12mqYELApL5ZdmJvRWsS1haJ_547J81UPvbSVo6TXnznu5995ztC3ia84CmYuthVvoiFKH1s8awMh4WbYdZn3ocA2bP89FzM5tm833Bb9WGVW50YFHXVlLhHfgh2mAOaged-aH_EWDUKvat9CY27ZB9Tl6FUF_Ni2GNBL5Zgqj8rk3B5uAJ7hWfKUgZqoIBfYscehbT9_8Kaf4dM_uE3Debo5CF50ONIOu4Y_4jccfVjcq-rLPnrCfnOjyneCXiSGtA_i3qzpP7KrCkqX9ouWreiuAdLlxiRRy8AQP-EJoCw1IWsEkABRXC4hH9ZDjEytPEUMxzTFqur0Y_T49VTcn4y_TY5jfuyCnGZKb6OKysl8ERUlhlleKo8czbzzCcmsaysWCnxAKoDaCJFlloAJSovXQJrD8dMqfgzslc3tXtBaGphxWF4lVaARHzClXHMK2GLwpoydXlE2HZwddnnHMfSF1c6-L651B1DNDBEB4ZoEZF3wz1tl3Hj1t5HyLOhJ2bLDg3N9YXuJ59mOZ66c0ZmpRK-MhLoZVZ5IxPnnLAROdhyXPdTeKVvBC4ib4bLMPnQo2Jq12xCH_Qr54xF5HknIAMlsPaH4WZFRIod0dkhdfdKvbgMCb5lkgGUgnd7vxWyG7L-PxQvb3-LV-R-inKPeSqzA7K3vt641wCo1nYUZs2I7I_Hs68z-D6ann3-Aq2TfDIKmxTw-UnI39oSJAI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJuUAkaCE0SNY-d1QAjYVlu69NRKezO2Y5dF3WTb7IL6p_iNzDiPann01tsqcbITz-uzxzNDyKuIZzwGVxfa0mWhEMaFGnNlOCzcFNMucc4fkD1Mx8fi8zSZbpBffS4MHqvsbaI31GVtcI98B_wwBzQD732_OAuxaxRGV_sWGq1YHNiLn7Bka97tj4C_r-N4b_fo0zjsugqEJin4Mix1ngNJotRMFYrHhWNWJ465SEWamZKZHPMvLXjmXCSxBp9cpMZGAL0tUwaLL4HJvwGON8LFXjbNhj0djJoJVnS5ORHPdxrwj5jDFjMwOxn8Emv-z7cJ-Be2_fuI5h9xWu_-9u6SOx1upR9aQbtHNmx1n9xsO1lePCDf-Yjik4BfqQJ7N6tWc-pO1ZKisaeL2cI2FPd86RxPANITAOw_4BJAZmp9FQuggCIYncO_zIczObR2FCsq0wV2c6OT3VHzkBxfy4Q_IptVXdknhMYaVjiKl3EJyMdFvFCWuULoLNPKxDYNCOsnV5quxjm22jiVPtbOc9kyRAJDpGeIFAF5MzyzaCt8XDn6I_JsGInVuf2F-vxEdsouWYpZflbliSmEK1UO9DJdOJVH1lqhA7Ldc1x2JqORlwIekJfDbVB2jOCoytYrPwbj2CljAXncCshACedYuo5lAcnWRGeN1PU71eybLyieRwlAN_i2t72QXZL1_6nYuvorXpBb46MvEznZPzx4Sm7HqANYIzPZJpvL85V9BmBuqZ97DaLk63Wr7G_LCVtF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqUBcEOVVQ4FFghNY8XrXrwNCLUnU0iqqEJV6W3bt3RLUOKFJQP1r_Dpm_KrCo7feInvtjHde3-7szAC8CkQiQnR1vi1c4kuZO99QrozAhZvmxkXOVQdkx_H-ifx4Gp1uwK82F4aOVbY2sTLUxSynPfI--mGBaAbf23fNsYjjwej9_LtPHaQo0tq206hF5NBe_sTl2-LdwQB5_ToMR8PPH_b9psOAn0eZWPqFSVMkTxaG60yLMHPcmshxF-jA8LzgeUq5mBa9dCqj0KB_zuLcBgjDLdc5FWJC87-Z0KqoB5t7w_Hxp26Hh2JokmdNpk4g0v4CvSVltIUcjVCCv-SaN6yaBvwL6f59YPOPqG3lDEf34G6DYtluLXZbsGHL-3Cr7mt5-QC-iQGjJxHNMo3Wb1Kupsyd6yUj08_mk7ldMNoBZlM6D8jOEL7_wEsIoJmtalogBYyg6RT_Zdqd0GEzx6i-MptTbzd2NBwsHsLJjUz5I-iVs9JuAwsNrne0KMICcZALRKYtd5k0SWJ0HtrYA95OrsqbiufUeONcVZF3kaqaIQoZoiqGKOnBm-6ZeV3v49rRe8SzbiTV6q4uzC7OVKP6iseU82d1GuWZdIVOkV5uMqfTwForjQc7LcdVY0AW6krcPXjZ3UbVp3iOLu1sVY2hqHbMuQePawHpKBGCCtnxxINkTXTWSF2_U06-VuXF0yBCIIff9rYVsiuy_j8VT67_ihdwG9VVHR2MD5_CnZBUgApmRjvQW16s7DNEdkvzvFEhBl9uWmt_A_jMYOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+printed+aluminum+flat+heat+pipes+with+micro+grooves+for+efficient+thermal+management+of+high+power+LEDs&rft.jtitle=Scientific+reports&rft.au=Chang%2C+Chao&rft.au=Han%2C+Zhaoyang&rft.au=He%2C+Xiaoyu&rft.au=Wang%2C+Zongyu&rft.date=2021-04-15&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-87798-4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |