3D printed aluminum flat heat pipes with micro grooves for efficient thermal management of high power LEDs

As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good tempera...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 8255 - 8
Main Authors Chang, Chao, Han, Zhaoyang, He, Xiaoyu, Wang, Zongyu, Ji, Yulong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.04.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good temperature uniformity, it has been used in many different industrial fields. A novel aluminum flat heat pipe, with micro-grooves, has in the present work been designed and fabricated by using a 3D printing technology. Aluminum powder was used as a raw material, which was selectively melted and solidified to form the shape of the heat pipe. The sintered aluminum powder increased the roughness of the inner surface of the heat pipe, and the designed micro-grooves further enhanced the capillary forces induced by the wick structure. The wettability, for the working fluid (acetone), was excellent and the capillary forces were sufficient for the working fluid to flow back in the pipe. The effects of working fluid filling ratio, on the heat transfer performance of the heat pipe, was also investigated. It was shown that a filling ratio of 10% gave the best heat transfer performance with the lowest thermal resistance. The 3D-printed flat heat pipe was, therefore, also tested for the thermal management of a LED. The temperature of the LED could be kept within 40 °C and its service life became prolonged.
AbstractList As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good temperature uniformity, it has been used in many different industrial fields. A novel aluminum flat heat pipe, with micro-grooves, has in the present work been designed and fabricated by using a 3D printing technology. Aluminum powder was used as a raw material, which was selectively melted and solidified to form the shape of the heat pipe. The sintered aluminum powder increased the roughness of the inner surface of the heat pipe, and the designed micro-grooves further enhanced the capillary forces induced by the wick structure. The wettability, for the working fluid (acetone), was excellent and the capillary forces were sufficient for the working fluid to flow back in the pipe. The effects of working fluid filling ratio, on the heat transfer performance of the heat pipe, was also investigated. It was shown that a filling ratio of 10% gave the best heat transfer performance with the lowest thermal resistance. The 3D-printed flat heat pipe was, therefore, also tested for the thermal management of a LED. The temperature of the LED could be kept within 40 °C and its service life became prolonged.
Abstract As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good temperature uniformity, it has been used in many different industrial fields. A novel aluminum flat heat pipe, with micro-grooves, has in the present work been designed and fabricated by using a 3D printing technology. Aluminum powder was used as a raw material, which was selectively melted and solidified to form the shape of the heat pipe. The sintered aluminum powder increased the roughness of the inner surface of the heat pipe, and the designed micro-grooves further enhanced the capillary forces induced by the wick structure. The wettability, for the working fluid (acetone), was excellent and the capillary forces were sufficient for the working fluid to flow back in the pipe. The effects of working fluid filling ratio, on the heat transfer performance of the heat pipe, was also investigated. It was shown that a filling ratio of 10% gave the best heat transfer performance with the lowest thermal resistance. The 3D-printed flat heat pipe was, therefore, also tested for the thermal management of a LED. The temperature of the LED could be kept within 40 °C and its service life became prolonged.
As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good temperature uniformity, it has been used in many different industrial fields. A novel aluminum flat heat pipe, with micro-grooves, has in the present work been designed and fabricated by using a 3D printing technology. Aluminum powder was used as a raw material, which was selectively melted and solidified to form the shape of the heat pipe. The sintered aluminum powder increased the roughness of the inner surface of the heat pipe, and the designed micro-grooves further enhanced the capillary forces induced by the wick structure. The wettability, for the working fluid (acetone), was excellent and the capillary forces were sufficient for the working fluid to flow back in the pipe. The effects of working fluid filling ratio, on the heat transfer performance of the heat pipe, was also investigated. It was shown that a filling ratio of 10% gave the best heat transfer performance with the lowest thermal resistance. The 3D-printed flat heat pipe was, therefore, also tested for the thermal management of a LED. The temperature of the LED could be kept within 40 °C and its service life became prolonged.As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good temperature uniformity, it has been used in many different industrial fields. A novel aluminum flat heat pipe, with micro-grooves, has in the present work been designed and fabricated by using a 3D printing technology. Aluminum powder was used as a raw material, which was selectively melted and solidified to form the shape of the heat pipe. The sintered aluminum powder increased the roughness of the inner surface of the heat pipe, and the designed micro-grooves further enhanced the capillary forces induced by the wick structure. The wettability, for the working fluid (acetone), was excellent and the capillary forces were sufficient for the working fluid to flow back in the pipe. The effects of working fluid filling ratio, on the heat transfer performance of the heat pipe, was also investigated. It was shown that a filling ratio of 10% gave the best heat transfer performance with the lowest thermal resistance. The 3D-printed flat heat pipe was, therefore, also tested for the thermal management of a LED. The temperature of the LED could be kept within 40 °C and its service life became prolonged.
As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good temperature uniformity, it has been used in many different industrial fields. A novel aluminum flat heat pipe, with micro-grooves, has in the present work been designed and fabricated by using a 3D printing technology. Aluminum powder was used as a raw material, which was selectively melted and solidified to form the shape of the heat pipe. The sintered aluminum powder increased the roughness of the inner surface of the heat pipe, and the designed micro-grooves further enhanced the capillary forces induced by the wick structure. The wettability, for the working fluid (acetone), was excellent and the capillary forces were sufficient for the working fluid to flow back in the pipe. The effects of working fluid filling ratio, on the heat transfer performance of the heat pipe, was also investigated. It was shown that a filling ratio of 10% gave the best heat transfer performance with the lowest thermal resistance. The 3D-printed flat heat pipe was, therefore, also tested for the thermal management of a LED. The temperature of the LED could be kept within 40 °C and its service life became prolonged.
ArticleNumber 8255
Author Ji, Yulong
Wang, Zongyu
Chang, Chao
Han, Zhaoyang
He, Xiaoyu
Author_xml – sequence: 1
  givenname: Chao
  surname: Chang
  fullname: Chang, Chao
  email: chang3223426@126.com
  organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University
– sequence: 2
  givenname: Zhaoyang
  surname: Han
  fullname: Han, Zhaoyang
  organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University
– sequence: 3
  givenname: Xiaoyu
  surname: He
  fullname: He, Xiaoyu
  organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University
– sequence: 4
  givenname: Zongyu
  surname: Wang
  fullname: Wang, Zongyu
  organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University
– sequence: 5
  givenname: Yulong
  surname: Ji
  fullname: Ji, Yulong
  email: jiyulongcn@163.com
  organization: Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33859317$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1TAQjFARLaV_gAOyxIVLwJ-JfUFCbYFKT-ICZ8tx1omfkvhhJ6349zhNC20P9cFerWdGs_a8Lo6mMEFRvCX4I8FMfkqcCCVLTEkp6zpX_EVxQjEXJWWUHj2oj4uzlPY4L0EVJ-pVccyYFIqR-qTYswt0iH6aoUVmWEY_LSNyg5lRD3k7-AMkdOPnHo3exoC6GMJ1brkQETjnrYdpRnMPcTQDGs1kOhjXVnCo912PDuEGItpdXqQ3xUtnhgRnd-dp8evr5c_z7-Xux7er8y-70mZPc9k2UnLreNsQowyjyhFohCMOG9wQ2xIrK15LEJJLLmiDq0pVFrAQCoixip0WV5tuG8xe5-FGE__oYLy-bYTYaRNnbwfQpKI1pmCksIq71kjaYtIoZyQGAN5krc-b1mFpRmhtniya4ZHo45vJ97oL11pigSnjWeDDnUAMvxdIsx59sjAMZoKwJE0F4RUWFSEZ-v4JdB-WOOWnWlEMK0VxlVHvHjr6Z-X-SzNAboD8XSlFcNr62cw-rAb9oAnWa4D0FiCdA6RvA6RXs_QJ9V79WRLbSGnNUQfxv-1nWH8B2brYlA
CitedBy_id crossref_primary_10_3390_ma15248930
crossref_primary_10_3390_mi13111949
crossref_primary_10_1016_j_jmapro_2024_11_090
crossref_primary_10_1007_s12206_024_0847_9
crossref_primary_10_1016_j_applthermaleng_2024_122953
crossref_primary_10_1007_s00170_025_15073_1
crossref_primary_10_1016_j_ijft_2021_100117
crossref_primary_10_1063_5_0151134
crossref_primary_10_7735_ksmte_2024_33_2_77
crossref_primary_10_1007_s10973_023_12303_0
crossref_primary_10_1016_j_applthermaleng_2024_124332
crossref_primary_10_1016_j_addma_2025_104653
crossref_primary_10_1016_j_applthermaleng_2024_124853
crossref_primary_10_1016_j_applthermaleng_2025_126256
crossref_primary_10_1063_5_0240479
crossref_primary_10_1080_00295450_2024_2372509
crossref_primary_10_1016_j_csite_2025_105967
crossref_primary_10_1016_j_applthermaleng_2023_121561
crossref_primary_10_1111_ijac_14321
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125728
crossref_primary_10_18186_thermal_1457052
crossref_primary_10_1016_j_applthermaleng_2021_117651
crossref_primary_10_3390_en17051113
crossref_primary_10_1016_j_applthermaleng_2023_121037
crossref_primary_10_3390_nano14010060
crossref_primary_10_1016_j_applthermaleng_2023_121292
crossref_primary_10_1016_j_applthermaleng_2024_123076
crossref_primary_10_1007_s10973_022_11739_0
crossref_primary_10_1007_s10973_021_11099_1
crossref_primary_10_3390_polym15020414
crossref_primary_10_1007_s12217_022_09955_2
crossref_primary_10_1016_j_applthermaleng_2024_125116
crossref_primary_10_1016_j_tsep_2023_102376
crossref_primary_10_1016_j_apenergy_2022_119994
crossref_primary_10_1016_j_csite_2024_105219
crossref_primary_10_1016_j_csite_2025_105814
crossref_primary_10_1016_j_applthermaleng_2024_123097
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125814
Cites_doi 10.1016/j.applthermaleng.2017.11.084
10.1016/j.apenergy.2018.04.072
10.1016/j.applthermaleng.2016.12.056
10.1038/479309a
10.1016/j.applthermaleng.2018.12.020
10.1016/j.expthermflusci.2011.01.007
10.1016/j.rser.2015.05.028
10.1016/j.icheatmasstransfer.2017.08.014
10.1016/j.ijheatmasstransfer.2019.119198
10.1063/1.5033347
10.1016/j.rser.2015.12.350
10.1016/j.ijheatmasstransfer.2008.02.039
10.1063/1.4986318
10.1016/j.est.2019.100986
10.1016/j.applthermaleng.2004.07.010
10.1016/j.applthermaleng.2018.10.014
10.1016/j.applthermaleng.2019.04.094
10.1016/j.ijthermalsci.2018.08.022
10.1016/j.enconman.2013.05.004
10.1016/j.applthermaleng.2015.11.048
10.1016/j.rser.2015.09.002
10.1016/j.mattod.2014.04.003
10.1016/j.icheatmasstransfer.2015.06.009
10.1016/j.apenergy.2018.04.020
10.1016/j.renene.2019.10.093
10.1016/j.applthermaleng.2017.12.085
10.1021/acsami.6b08077
10.1016/j.renene.2019.08.083
10.1016/j.ijheatmasstransfer.2020.119512
10.1016/j.rser.2018.07.014
10.1115/1.4007407
10.1016/j.ijheatmasstransfer.2007.01.009
10.1007/978-1-4939-2504-9
10.1016/j.applthermaleng.2020.115215
10.1016/j.applthermaleng.2019.114815
10.1016/j.ijheatmasstransfer.2018.07.154
10.1016/j.applthermaleng.2006.02.023
10.1016/j.enconman.2018.11.031
10.1007/s40565-017-0308-x
10.1016/j.ijheatmasstransfer.2016.10.078
10.1016/j.applthermaleng.2015.09.038
10.1016/S1359-4311(02)00085-6
10.1186/1556-276X-6-296
10.1016/j.expthermflusci.2017.03.008
10.1016/j.applthermaleng.2015.04.027
10.1016/j.applthermaleng.2018.02.045
10.1016/j.applthermaleng.2016.03.097
10.1016/j.applthermaleng.2017.10.091
10.1016/j.applthermaleng.2015.10.120
10.1038/s41598-016-0001-8
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-87798-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed



CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 8
ExternalDocumentID oai_doaj_org_article_162702ea85c94fda82d01b9fa80eee4b
PMC8050234
33859317
10_1038_s41598_021_87798_4
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c593t-db884cf4db1a9a329f1eb5f1f0a0b1cd1c86478e5848452b06696ce0559e1ac93
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:01:34 EDT 2025
Thu Aug 21 13:55:29 EDT 2025
Thu Jul 10 23:46:10 EDT 2025
Wed Aug 13 11:26:39 EDT 2025
Mon Jul 21 06:05:46 EDT 2025
Tue Jul 01 01:07:56 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Fri Feb 21 02:39:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c593t-db884cf4db1a9a329f1eb5f1f0a0b1cd1c86478e5848452b06696ce0559e1ac93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2513099206?pq-origsite=%requestingapplication%
PMID 33859317
PQID 2513099206
PQPubID 2041939
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_162702ea85c94fda82d01b9fa80eee4b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8050234
proquest_miscellaneous_2514605611
proquest_journals_2513099206
pubmed_primary_33859317
crossref_citationtrail_10_1038_s41598_021_87798_4
crossref_primary_10_1038_s41598_021_87798_4
springer_journals_10_1038_s41598_021_87798_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Li (CR28) 2015; 86
Pis'mennyi, Khayrnasov, Rassamakin (CR47) 2018; 127
Cheng, Wang, Zhang, Pi, Xu (CR32) 2017; 107
Wang, Qu, Sun, Kang, Han (CR42) 2020; 167
Smith, Singh, Hinterberger, Mochizuki (CR26) 2018; 134
Vasiliev (CR15) 2008; 28
Shen (CR20) 2018; 112
Kang, Tsai, Chen (CR30) 2002; 22
Jiao, Ma, Critser (CR33) 2007; 50
Qu, Wang, Li, Wang (CR27) 2018; 135
Wang, Quan, Zhao, Wang (CR12) 2019; 146
Ji, Ma, Su, Wang (CR16) 2011; 35
Maydanik (CR13) 2005; 25
Shafieian, Khiadani, Nosrati (CR24) 2018; 95
Zhang (CR36) 2016; 6
Ghanbarpour, Nikkam, Khodabandeh, Toprak (CR34) 2015; 67
Li, Zhou, Li, Chen, Gan (CR39) 2019; 156
Kim, Oh, Lee (CR4) 2019; 149
Zhu, Huang, Song, Hu (CR11) 2020; 173
Venema (CR1) 2011; 479
Chen, Ye, Fan, Ren, Zhang (CR21) 2016; 96
Chen (CR50) 2020; 146
Zhou, Li, Chen, Deng, Gan (CR35) 2019; 180
Xu, Li (CR41) 2017; 111
Ma (CR18) 2015
Tang (CR49) 2018; 129
Tang (CR8) 2018; 223
Chang (CR25) 2016; 8
Zhang, Lian, Liu (CR46) 2020; 152
Moore, Shi (CR3) 2014; 17
Li (CR37) 2016; 102
Tang (CR40) 2017; 115
Nazari (CR23) 2018; 222
Khalili, Shafii (CR29) 2016; 94
Shukla (CR22) 2015; 5
Chan, Siqueiros, Ling-Chin, Royapoor, Roskilly (CR10) 2015; 50
Maydanik, Pastukhov, Chernysheva (CR14) 2018; 130
Ji, Li, Xu, Huang (CR44) 2017; 85
Peng, Li, Ling (CR45) 2013; 74
Maza-Ortega, Acha, Garcia, Gomez-Exposito (CR2) 2017; 5
Han, Wang, Zheng, Xu, Chen (CR6) 2016; 59
Jafari, Franco, Filippeschi, Di Marco (CR9) 2016; 53
Ji, Wilson, Chen, Ma (CR17) 2011; 6
Do, Kim, Garimella (CR31) 2008; 51
Faghri (CR5) 2012; 134
Ji (CR19) 2020; 149
Ali (CR7) 2019; 26
Alijani, Cetin, Akkus, Dursunkaya (CR48) 2018; 132
Li, Lv (CR43) 2016; 93
Yang, Tu, Zhang, Yeh, Wang (CR38) 2017; 88
Zhong (CR51) 2020; 149
Y Ji (87798_CR19) 2020; 149
YF Maydanik (87798_CR13) 2005; 25
M Ghanbarpour (87798_CR34) 2015; 67
D Jafari (87798_CR9) 2016; 53
YL Ji (87798_CR16) 2011; 35
J Smith (87798_CR26) 2018; 134
G Chen (87798_CR50) 2020; 146
HM Ali (87798_CR7) 2019; 26
AL Moore (87798_CR3) 2014; 17
Y Zhang (87798_CR36) 2016; 6
J Qu (87798_CR27) 2018; 135
H Wang (87798_CR42) 2020; 167
CW Chan (87798_CR10) 2015; 50
X Ji (87798_CR44) 2017; 85
LL Vasiliev (87798_CR15) 2008; 28
AJ Jiao (87798_CR33) 2007; 50
J Cheng (87798_CR32) 2017; 107
KH Do (87798_CR31) 2008; 51
Y Tang (87798_CR40) 2017; 115
A Faghri (87798_CR5) 2012; 134
Y Li (87798_CR37) 2016; 102
A Shafieian (87798_CR24) 2018; 95
W Zhou (87798_CR35) 2019; 180
XP Chen (87798_CR21) 2016; 96
MA Nazari (87798_CR23) 2018; 222
SW Kang (87798_CR30) 2002; 22
H Ma (87798_CR18) 2015
K Shukla (87798_CR22) 2015; 5
YL Ji (87798_CR17) 2011; 6
Q Shen (87798_CR20) 2018; 112
J Zhang (87798_CR46) 2020; 152
JM Maza-Ortega (87798_CR2) 2017; 5
M Khalili (87798_CR29) 2016; 94
H Tang (87798_CR8) 2018; 223
H Alijani (87798_CR48) 2018; 132
XH Han (87798_CR6) 2016; 59
C Chang (87798_CR25) 2016; 8
J Li (87798_CR43) 2016; 93
GS Zhong (87798_CR51) 2020; 149
Y Li (87798_CR28) 2015; 86
J Kim (87798_CR4) 2019; 149
H Tang (87798_CR49) 2018; 129
L Venema (87798_CR1) 2011; 479
Y Li (87798_CR39) 2019; 156
H Peng (87798_CR45) 2013; 74
Y Maydanik (87798_CR14) 2018; 130
P Xu (87798_CR41) 2017; 111
M Zhu (87798_CR11) 2020; 173
KS Yang (87798_CR38) 2017; 88
EN Pis'mennyi (87798_CR47) 2018; 127
G Wang (87798_CR12) 2019; 146
References_xml – volume: 130
  start-page: 1052
  year: 2018
  end-page: 1061
  ident: CR14
  article-title: Development and investigation of a loop heat pipe with a high heat-transfer capacity
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.11.084
– volume: 223
  start-page: 383
  year: 2018
  end-page: 400
  ident: CR8
  article-title: Review of applications and developments of ultra-thin micro heat pipes for electronic cooling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.04.072
– volume: 115
  start-page: 1020
  year: 2017
  end-page: 1030
  ident: CR40
  article-title: Experimental investigation of capillary force in a novel sintered copper mesh wick for ultra-thin heat pipes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.12.056
– volume: 479
  start-page: 309
  year: 2011
  end-page: 309
  ident: CR1
  article-title: Silicon electronics and beyond
  publication-title: Nature
  doi: 10.1038/479309a
– volume: 149
  start-page: 192
  year: 2019
  end-page: 212
  ident: CR4
  article-title: Review on battery thermal management system for electric vehicles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.12.020
– volume: 35
  start-page: 724
  year: 2011
  end-page: 727
  ident: CR16
  article-title: Particle size effect on heat transfer performance in an oscillating heat pipe
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2011.01.007
– volume: 50
  start-page: 615
  year: 2015
  end-page: 627
  ident: CR10
  article-title: Heat utilisation technologies: a critical review of heat pipes
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2015.05.028
– volume: 88
  start-page: 84
  year: 2017
  end-page: 90
  ident: CR38
  article-title: A novel oxidized composite braided wires wick structure applicable for ultra-thin flattened heat pipes
  publication-title: Int. Commun. Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2017.08.014
– volume: 149
  start-page: 119198
  year: 2020
  ident: CR19
  article-title: An experimental investigation on the heat transfer performance of a liquid metal high-temperature oscillating heat pipe
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.119198
– volume: 112
  start-page: 243903
  year: 2018
  ident: CR20
  article-title: Waste heat recovery in an oscillating heat pipe using interfacial electrical double layers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5033347
– volume: 59
  start-page: 692
  year: 2016
  end-page: 709
  ident: CR6
  article-title: Review of the development of pulsating heat pipe for heat dissipation
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2015.12.350
– volume: 51
  start-page: 4637
  year: 2008
  end-page: 4650
  ident: CR31
  article-title: A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.02.039
– volume: 111
  start-page: 141609
  year: 2017
  ident: CR41
  article-title: Visualization study on the enhancement of heat transfer for the groove flat-plate heat pipe with nanoflower coated CuO layer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4986318
– volume: 26
  start-page: 100986
  year: 2019
  ident: CR7
  article-title: Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: a recent review
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.100986
– volume: 25
  start-page: 635
  year: 2005
  end-page: 657
  ident: CR13
  article-title: Loop heat pipes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.07.010
– volume: 146
  start-page: 459
  year: 2019
  end-page: 468
  ident: CR12
  article-title: Performance of a flat-plate micro heat pipe at different filling ratios and working fluids
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.10.014
– volume: 156
  start-page: 471
  year: 2019
  end-page: 484
  ident: CR39
  article-title: Experimental analysis of thin vapor chamber with composite wick structure under different cooling conditions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.04.094
– volume: 134
  start-page: 517
  year: 2018
  end-page: 529
  ident: CR26
  article-title: Battery thermal management system for electric vehicle using heat pipes
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2018.08.022
– volume: 74
  start-page: 44
  year: 2013
  end-page: 50
  ident: CR45
  article-title: Study on heat transfer performance of an aluminum flat plate heat pipe with fins in vapor chamber
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.05.004
– volume: 96
  start-page: 1
  year: 2016
  end-page: 17
  ident: CR21
  article-title: A review of small heat pipes for electronics
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.11.048
– volume: 53
  start-page: 575
  year: 2016
  end-page: 593
  ident: CR9
  article-title: Two-phase closed thermosyphons: a review of studies and solar applications
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2015.09.002
– volume: 17
  start-page: 163
  year: 2014
  end-page: 174
  ident: CR3
  article-title: Emerging challenges and materials for thermal management of electronics
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.04.003
– volume: 67
  start-page: 14
  year: 2015
  end-page: 20
  ident: CR34
  article-title: Thermal performance of inclined screen mesh heat pipes using silver nanofluids
  publication-title: Int. Commun. Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2015.06.009
– volume: 222
  start-page: 475
  year: 2018
  end-page: 484
  ident: CR23
  article-title: A review on pulsating heat pipes: from solar to cryogenic applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.04.020
– volume: 5
  start-page: 1
  year: 2015
  ident: CR22
  article-title: Heat pipe for aerospace applications - an overview
  publication-title: Cool. Therm. Control
– volume: 149
  start-page: 1032
  year: 2020
  end-page: 1039
  ident: CR51
  article-title: Experimental study of a large-area ultra-thin flat heat pipe for solar collectors under different cooling conditions
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.10.093
– volume: 132
  start-page: 174
  year: 2018
  end-page: 187
  ident: CR48
  article-title: Effect of design and operating parameters on the thermal performance of aluminum flat grooved heat pipes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.12.085
– volume: 8
  start-page: 23412
  year: 2016
  end-page: 23418
  ident: CR25
  article-title: Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08077
– volume: 6
  start-page: 1
  year: 2016
  end-page: 8
  ident: CR36
  article-title: Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate
  publication-title: Sci. Rep.
– volume: 146
  start-page: 2234
  year: 2020
  end-page: 2242
  ident: CR50
  article-title: Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.08.083
– volume: 152
  start-page: 119512
  year: 2020
  ident: CR46
  article-title: Liquid phase enhanced sintering of porous aluminum for cylindrical Al-acetone heat pipe
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119512
– volume: 95
  start-page: 273
  year: 2018
  ident: CR24
  article-title: A review of latest developments, progress, and applications of heat pipe solar collectors
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2018.07.014
– volume: 134
  start-page: 12
  year: 2012
  ident: CR5
  article-title: Review and advances in heat pipe science and technology
  publication-title: J. Heat Transf.
  doi: 10.1115/1.4007407
– volume: 50
  start-page: 2905
  year: 2007
  end-page: 2911
  ident: CR33
  article-title: Evaporation heat transfer characteristics of a grooved heat pipe with micro-trapezoidal grooves
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2007.01.009
– year: 2015
  ident: CR18
  publication-title: Oscillating Heat Pipes
  doi: 10.1007/978-1-4939-2504-9
– volume: 173
  start-page: 115215
  year: 2020
  ident: CR11
  article-title: Thermal performance of a thin flat heat pipe with grooved porous structure
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115215
– volume: 167
  start-page: 114815
  year: 2020
  ident: CR42
  article-title: Thermal characteristic comparison of three-dimensional oscillating heat pipes with/without sintered copper particles inside flat-plate evaporator for concentrating photovoltaic cooling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114815
– volume: 127
  start-page: 80
  year: 2018
  end-page: 88
  ident: CR47
  article-title: Heat transfer in the evaporation zone of aluminum grooved heat pipes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.07.154
– volume: 28
  start-page: 266
  year: 2008
  end-page: 273
  ident: CR15
  article-title: Micro and miniature heat pipes: electronic component coolers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2006.02.023
– volume: 180
  start-page: 769
  year: 2019
  end-page: 783
  ident: CR35
  article-title: A novel ultra-thin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.11.031
– volume: 5
  start-page: 499
  year: 2017
  end-page: 514
  ident: CR2
  article-title: Overview of power electronics technology and applications in power generation transmission and distribution
  publication-title: J. Mod. Power Syst. Clean
  doi: 10.1007/s40565-017-0308-x
– volume: 107
  start-page: 586
  year: 2017
  end-page: 591
  ident: CR32
  article-title: Enhancement of capillary and thermal performance of grooved copper heat pipe by gradient wettability surface
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.10.078
– volume: 93
  start-page: 139
  year: 2016
  end-page: 146
  ident: CR43
  article-title: Experimental studies on a novel thin flat heat pipe heat spreader
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.09.038
– volume: 22
  start-page: 1559
  year: 2002
  end-page: 1568
  ident: CR30
  article-title: Fabrication and test of radial grooved micro heat pipes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(02)00085-6
– volume: 6
  start-page: 1
  year: 2011
  end-page: 7
  ident: CR17
  article-title: Particle shape effect on heat transfer performance in an oscillating heat pipe
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-296
– volume: 85
  start-page: 119
  year: 2017
  end-page: 131
  ident: CR44
  article-title: Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2017.03.008
– volume: 86
  start-page: 106
  year: 2015
  end-page: 118
  ident: CR28
  article-title: Investigation of ultra-thin flattened heat pipes with sintered wick structure
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.04.027
– volume: 135
  start-page: 1
  year: 2018
  end-page: 9
  ident: CR27
  article-title: Heat transfer performance of flexible oscillating heat pipes for electric/hybrid-electric vehicle battery thermal management
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.02.045
– volume: 102
  start-page: 487
  year: 2016
  end-page: 499
  ident: CR37
  article-title: Thermal performance of ultra-thin flattened heat pipes with composite wick structure
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.03.097
– volume: 129
  start-page: 907
  year: 2018
  end-page: 915
  ident: CR49
  article-title: Fabrication and capillary characterization of axially micro-grooved wicks for aluminium flat-plate heat pipes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.10.091
– volume: 94
  start-page: 59
  year: 2016
  end-page: 75
  ident: CR29
  article-title: Experimental and numerical investigation of the thermal performance of a novel sintered-wick heat pipe
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.10.120
– volume: 173
  start-page: 115215
  year: 2020
  ident: 87798_CR11
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115215
– volume: 167
  start-page: 114815
  year: 2020
  ident: 87798_CR42
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114815
– volume: 134
  start-page: 517
  year: 2018
  ident: 87798_CR26
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2018.08.022
– volume: 6
  start-page: 1
  year: 2016
  ident: 87798_CR36
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0001-8
– volume: 35
  start-page: 724
  year: 2011
  ident: 87798_CR16
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2011.01.007
– volume: 88
  start-page: 84
  year: 2017
  ident: 87798_CR38
  publication-title: Int. Commun. Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2017.08.014
– volume: 134
  start-page: 12
  year: 2012
  ident: 87798_CR5
  publication-title: J. Heat Transf.
  doi: 10.1115/1.4007407
– volume: 112
  start-page: 243903
  year: 2018
  ident: 87798_CR20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5033347
– volume-title: Oscillating Heat Pipes
  year: 2015
  ident: 87798_CR18
  doi: 10.1007/978-1-4939-2504-9
– volume: 111
  start-page: 141609
  year: 2017
  ident: 87798_CR41
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4986318
– volume: 180
  start-page: 769
  year: 2019
  ident: 87798_CR35
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.11.031
– volume: 127
  start-page: 80
  year: 2018
  ident: 87798_CR47
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.07.154
– volume: 146
  start-page: 459
  year: 2019
  ident: 87798_CR12
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.10.014
– volume: 149
  start-page: 192
  year: 2019
  ident: 87798_CR4
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.12.020
– volume: 149
  start-page: 1032
  year: 2020
  ident: 87798_CR51
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.10.093
– volume: 152
  start-page: 119512
  year: 2020
  ident: 87798_CR46
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119512
– volume: 223
  start-page: 383
  year: 2018
  ident: 87798_CR8
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.04.072
– volume: 107
  start-page: 586
  year: 2017
  ident: 87798_CR32
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.10.078
– volume: 50
  start-page: 2905
  year: 2007
  ident: 87798_CR33
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2007.01.009
– volume: 95
  start-page: 273
  year: 2018
  ident: 87798_CR24
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2018.07.014
– volume: 28
  start-page: 266
  year: 2008
  ident: 87798_CR15
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2006.02.023
– volume: 135
  start-page: 1
  year: 2018
  ident: 87798_CR27
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.02.045
– volume: 93
  start-page: 139
  year: 2016
  ident: 87798_CR43
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.09.038
– volume: 132
  start-page: 174
  year: 2018
  ident: 87798_CR48
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.12.085
– volume: 149
  start-page: 119198
  year: 2020
  ident: 87798_CR19
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.119198
– volume: 22
  start-page: 1559
  year: 2002
  ident: 87798_CR30
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(02)00085-6
– volume: 222
  start-page: 475
  year: 2018
  ident: 87798_CR23
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.04.020
– volume: 129
  start-page: 907
  year: 2018
  ident: 87798_CR49
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.10.091
– volume: 5
  start-page: 499
  year: 2017
  ident: 87798_CR2
  publication-title: J. Mod. Power Syst. Clean
  doi: 10.1007/s40565-017-0308-x
– volume: 479
  start-page: 309
  year: 2011
  ident: 87798_CR1
  publication-title: Nature
  doi: 10.1038/479309a
– volume: 53
  start-page: 575
  year: 2016
  ident: 87798_CR9
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2015.09.002
– volume: 96
  start-page: 1
  year: 2016
  ident: 87798_CR21
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.11.048
– volume: 94
  start-page: 59
  year: 2016
  ident: 87798_CR29
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.10.120
– volume: 25
  start-page: 635
  year: 2005
  ident: 87798_CR13
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.07.010
– volume: 86
  start-page: 106
  year: 2015
  ident: 87798_CR28
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.04.027
– volume: 130
  start-page: 1052
  year: 2018
  ident: 87798_CR14
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.11.084
– volume: 146
  start-page: 2234
  year: 2020
  ident: 87798_CR50
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.08.083
– volume: 26
  start-page: 100986
  year: 2019
  ident: 87798_CR7
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.100986
– volume: 50
  start-page: 615
  year: 2015
  ident: 87798_CR10
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2015.05.028
– volume: 8
  start-page: 23412
  year: 2016
  ident: 87798_CR25
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08077
– volume: 74
  start-page: 44
  year: 2013
  ident: 87798_CR45
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.05.004
– volume: 102
  start-page: 487
  year: 2016
  ident: 87798_CR37
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.03.097
– volume: 115
  start-page: 1020
  year: 2017
  ident: 87798_CR40
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.12.056
– volume: 6
  start-page: 1
  year: 2011
  ident: 87798_CR17
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-296
– volume: 156
  start-page: 471
  year: 2019
  ident: 87798_CR39
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.04.094
– volume: 17
  start-page: 163
  year: 2014
  ident: 87798_CR3
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.04.003
– volume: 59
  start-page: 692
  year: 2016
  ident: 87798_CR6
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2015.12.350
– volume: 5
  start-page: 1
  year: 2015
  ident: 87798_CR22
  publication-title: Cool. Therm. Control
– volume: 85
  start-page: 119
  year: 2017
  ident: 87798_CR44
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2017.03.008
– volume: 51
  start-page: 4637
  year: 2008
  ident: 87798_CR31
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.02.039
– volume: 67
  start-page: 14
  year: 2015
  ident: 87798_CR34
  publication-title: Int. Commun. Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2015.06.009
SSID ssj0000529419
Score 2.4974535
Snippet As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device...
Abstract As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8255
SubjectTerms 639/166
639/301
Acetone
Aluminum
Fluid flow
Heat transfer
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Thermal conductivity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9JG2btKgQm6tiV62pWObByGUnBLITUiy1G7JepfubqD_vjOy18mmj1x6M7aMtTMjzTermW8I2WeykQJcXRnb1JRKhVR6rJWRELg57lOVUk6QPa9PL9XZVXV1p9UX5oT19MC94A54jRVT0ekqGJVap0XLuDfJaRZjVB53X_B5d4KpntVbGMXNUCXDpD5YgKfCajLBYQNo4EpteKJM2P8nlPl7suS9E9PsiE6ekacDgqSf-pk_J49i94I87ntK_nxJvssjim8CkqQOdp5Jt5rSdO2WFLddOp_M44Liv690irl49CtA5xu4BeCVxswnATOgCAun8JXpmB1DZ4kitzGdY181-uX4aLFNLk-OLw5Py6GhQhkqI5dl67UGbajWc2ecFCbx6KvEE3PM89DyoLH0NAIo0aoSHuCIqUNkEHVE7oKRr8hWN-viG0KFh1jDyRa00ajEpHGRJ6N803gXRKwLwtfCtWFgG8emF9c2n3pLbXuFWFCIzQqxqiAfxnfmPdfGP0d_Rp2NI5EnO98A67GD9diHrKcgu2uN22HxLixAPgnAGUy4IO_Hx7Ds8CzFdXG2ymPwRLnmvCCvewMZZwJRP4ibNwVpNkxnY6qbT7rJt0ztrVkFIAp-28e1kd1O6--iePs_RLFDnghcHchjWe2SreWPVXwHgGvp9_La-gW75ieG
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VIiQuiDcpBRmJGwTi2NnYB4SAtqoQcGKl3iw7sdtFu9llHxX998w4D7Sw9BYltjL2zGQ-x55vAF5mohQ5hrrU16FMpaxC6ihXRuDCzXIXihDiAdlvo9Ox_HxWnO1BX-6om8DVzqUd1ZMaL6dvfv28eo8O_65NGVdvVxiEKFEs5-jbJV7JG3ATI1NJFQ2-dnC_5frOteS6y53Z3XUrPkUa_13Y898jlH_to8bwdHIX7nS4kn1oDeEe7PnmPtxqK01ePYAf4ohRT8SXzOL3aNJsZixM7ZrRx5gtJgu_YvRPls3ohB47R0B9ibcQ0jIfWSZQAkZgcYZvmQ1nZtg8MGI8Zguqtsa-HB-tHsL45Pj7p9O0K7OQVoUW67R2SqGOZO241VbkOnDvisBDZjPHq5pXihJSPUIVJYvcIUjRo8pnuBbx3FZaPIL9Zt74J8ByhysQK-q8RmQSMqGt50FLV5bOVrkfJcD7yTVVx0FOpTCmJu6FC2VahRhUiIkKMTKBV0OfRcvAcW3rj6SzoSWxZ8cb8-W56ZzR8BFl4XmrikrLUFuF8nKng1WZ9166BA57jZveIg0CQYFwGg07gRfDY3RG2mGxjZ9vYhvaZx5xnsDj1kAGSYQgajleJlBumc6WqNtPmslFJPxWWYHQCsf2ujeyP2L9fyoOrh_FU7idk90Tb2VxCPvr5cY_Q4C1ds-j1_wGxUIhdA
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcKt6kLchI3CAijp3EPi60VbVCXKBSb5ad2GVRN7vq7lbqv--M80ALBYlblNjKxDNjf87MfAZ4l4lK5LjUpb4JVSplHVJHtTICN26Wu1CEEBNkv5Zn53J6UVzsQD7UwsSk_UhpGafpITvs4woXGioGyzn6b4VX8gHsEVU72vbeZDL9Nh3_rFDsSnLdV8hkQt3TeWsVimT99yHMPxMlf4uWxkXo9DHs9-iRTTp5n8COb5_Cw-48ydtn8FMcM-qJKJJZnHVm7WbOwpVdM5py2XK29CtGf17ZnPLw2CXC5hu8hcCV-cglgRIwgoRzfMt8zIxhi8CI15gt6Uw19uXkePUczk9Pvn8-S_vDFNK60GKdNk4p1IRsHLfailwH7l0ReMhs5njd8FpR2alHQKJkkTuEIrqsfYY7Ds9trcUL2G0XrX8FLHe4z7CiyRvEHyET2noetHRV5Wyd-zIBPgyuqXumcTrw4srEiLdQplOIQYWYqBAjE3g_9ll2PBv_bP2JdDa2JI7seGNxfWl6mzG8pFo7b1VRaxkaq1Be7nSwKvPeS5fA0aBx0zvuyiDcEwia0XwTeDs-RpejOIpt_WIT21A0ueQ8gZedgYyS4I4fh5tXCVRbprMl6vaTdvYj0nqrrEAAhd_2YTCyX2L9fSgO_q_5ITzKyQ-IrbI4gt319ca_Rli1dm96P7oDuLsdhw
  priority: 102
  providerName: Springer Nature
Title 3D printed aluminum flat heat pipes with micro grooves for efficient thermal management of high power LEDs
URI https://link.springer.com/article/10.1038/s41598-021-87798-4
https://www.ncbi.nlm.nih.gov/pubmed/33859317
https://www.proquest.com/docview/2513099206
https://www.proquest.com/docview/2514605611
https://pubmed.ncbi.nlm.nih.gov/PMC8050234
https://doaj.org/article/162702ea85c94fda82d01b9fa80eee4b
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviG8CozISbxAtjp3EfkJd12mqYELApL5ZdmJvRWsS1haJ_547J81UPvbSVo6TXnznu5995ztC3ia84CmYuthVvoiFKH1s8awMh4WbYdZn3ocA2bP89FzM5tm833Bb9WGVW50YFHXVlLhHfgh2mAOaged-aH_EWDUKvat9CY27ZB9Tl6FUF_Ni2GNBL5Zgqj8rk3B5uAJ7hWfKUgZqoIBfYscehbT9_8Kaf4dM_uE3Debo5CF50ONIOu4Y_4jccfVjcq-rLPnrCfnOjyneCXiSGtA_i3qzpP7KrCkqX9ouWreiuAdLlxiRRy8AQP-EJoCw1IWsEkABRXC4hH9ZDjEytPEUMxzTFqur0Y_T49VTcn4y_TY5jfuyCnGZKb6OKysl8ERUlhlleKo8czbzzCcmsaysWCnxAKoDaCJFlloAJSovXQJrD8dMqfgzslc3tXtBaGphxWF4lVaARHzClXHMK2GLwpoydXlE2HZwddnnHMfSF1c6-L651B1DNDBEB4ZoEZF3wz1tl3Hj1t5HyLOhJ2bLDg3N9YXuJ59mOZ66c0ZmpRK-MhLoZVZ5IxPnnLAROdhyXPdTeKVvBC4ib4bLMPnQo2Jq12xCH_Qr54xF5HknIAMlsPaH4WZFRIod0dkhdfdKvbgMCb5lkgGUgnd7vxWyG7L-PxQvb3-LV-R-inKPeSqzA7K3vt641wCo1nYUZs2I7I_Hs68z-D6ann3-Aq2TfDIKmxTw-UnI39oSJAI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJuUAkaCE0SNY-d1QAjYVlu69NRKezO2Y5dF3WTb7IL6p_iNzDiPann01tsqcbITz-uzxzNDyKuIZzwGVxfa0mWhEMaFGnNlOCzcFNMucc4fkD1Mx8fi8zSZbpBffS4MHqvsbaI31GVtcI98B_wwBzQD732_OAuxaxRGV_sWGq1YHNiLn7Bka97tj4C_r-N4b_fo0zjsugqEJin4Mix1ngNJotRMFYrHhWNWJ465SEWamZKZHPMvLXjmXCSxBp9cpMZGAL0tUwaLL4HJvwGON8LFXjbNhj0djJoJVnS5ORHPdxrwj5jDFjMwOxn8Emv-z7cJ-Be2_fuI5h9xWu_-9u6SOx1upR9aQbtHNmx1n9xsO1lePCDf-Yjik4BfqQJ7N6tWc-pO1ZKisaeL2cI2FPd86RxPANITAOw_4BJAZmp9FQuggCIYncO_zIczObR2FCsq0wV2c6OT3VHzkBxfy4Q_IptVXdknhMYaVjiKl3EJyMdFvFCWuULoLNPKxDYNCOsnV5quxjm22jiVPtbOc9kyRAJDpGeIFAF5MzyzaCt8XDn6I_JsGInVuf2F-vxEdsouWYpZflbliSmEK1UO9DJdOJVH1lqhA7Ldc1x2JqORlwIekJfDbVB2jOCoytYrPwbj2CljAXncCshACedYuo5lAcnWRGeN1PU71eybLyieRwlAN_i2t72QXZL1_6nYuvorXpBb46MvEznZPzx4Sm7HqANYIzPZJpvL85V9BmBuqZ97DaLk63Wr7G_LCVtF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqUBcEOVVQ4FFghNY8XrXrwNCLUnU0iqqEJV6W3bt3RLUOKFJQP1r_Dpm_KrCo7feInvtjHde3-7szAC8CkQiQnR1vi1c4kuZO99QrozAhZvmxkXOVQdkx_H-ifx4Gp1uwK82F4aOVbY2sTLUxSynPfI--mGBaAbf23fNsYjjwej9_LtPHaQo0tq206hF5NBe_sTl2-LdwQB5_ToMR8PPH_b9psOAn0eZWPqFSVMkTxaG60yLMHPcmshxF-jA8LzgeUq5mBa9dCqj0KB_zuLcBgjDLdc5FWJC87-Z0KqoB5t7w_Hxp26Hh2JokmdNpk4g0v4CvSVltIUcjVCCv-SaN6yaBvwL6f59YPOPqG3lDEf34G6DYtluLXZbsGHL-3Cr7mt5-QC-iQGjJxHNMo3Wb1Kupsyd6yUj08_mk7ldMNoBZlM6D8jOEL7_wEsIoJmtalogBYyg6RT_Zdqd0GEzx6i-MptTbzd2NBwsHsLJjUz5I-iVs9JuAwsNrne0KMICcZALRKYtd5k0SWJ0HtrYA95OrsqbiufUeONcVZF3kaqaIQoZoiqGKOnBm-6ZeV3v49rRe8SzbiTV6q4uzC7OVKP6iseU82d1GuWZdIVOkV5uMqfTwForjQc7LcdVY0AW6krcPXjZ3UbVp3iOLu1sVY2hqHbMuQePawHpKBGCCtnxxINkTXTWSF2_U06-VuXF0yBCIIff9rYVsiuy_j8VT67_ihdwG9VVHR2MD5_CnZBUgApmRjvQW16s7DNEdkvzvFEhBl9uWmt_A_jMYOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+printed+aluminum+flat+heat+pipes+with+micro+grooves+for+efficient+thermal+management+of+high+power+LEDs&rft.jtitle=Scientific+reports&rft.au=Chang%2C+Chao&rft.au=Han%2C+Zhaoyang&rft.au=He%2C+Xiaoyu&rft.au=Wang%2C+Zongyu&rft.date=2021-04-15&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-87798-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon