Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer

Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which thei...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 133; pp. 70 - 81
Main Authors Du, Wei, Zhang, Kaiyue, Zhang, Shuaiqiang, Wang, Ran, Nie, Yan, Tao, Hongyan, Han, Zhibo, Liang, Lu, Wang, Di, Liu, Jianfeng, Liu, Na, Han, Zhongchao, Kong, Deling, Zhao, Qiang, Li, Zongjin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which their original cells reside. Here, we hypothesized that a nitric oxide (NO)-releasing polymer can boost the proangiogenic compositions of exosomes and enhance their proangiogenic capacity. Our results demonstrated that exosomes, released from human placenta-derived MSCs (hP-MSCs) by NO stimulation, augment the angiogenic effects of human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, exosomes released from hP-MSCs by NO stimulation revealed superior angiogenic effects and ameliorated limb function in a murine model of hind limb ischemia. Further analysis demonstrated that increased VEGF and miR-126 levels in exosomes released from hP-MSCs by NO stimulation were identified as a novel mechanism contributing to the increased capacity of these exosomes to promote angiogenic processes. In conclusion, designing specific microenvironments for in vitro stem cell culture, such as those containing bioactive material, will facilitate the development of customized exosomes encapsulating a beneficial composition of stem cells for cell-free therapeutic applications.
AbstractList Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which their original cells reside. Here, we hypothesized that a nitric oxide (NO)-releasing polymer can boost the proangiogenic compositions of exosomes and enhance their proangiogenic capacity. Our results demonstrated that exosomes, released from human placenta-derived MSCs (hP-MSCs) by NO stimulation, augment the angiogenic effects of human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, exosomes released from hP-MSCs by NO stimulation revealed superior angiogenic effects and ameliorated limb function in a murine model of hind limb ischemia. Further analysis demonstrated that increased VEGF and miR-126 levels in exosomes released from hP-MSCs by NO stimulation were identified as a novel mechanism contributing to the increased capacity of these exosomes to promote angiogenic processes. In conclusion, designing specific microenvironments for in vitro stem cell culture, such as those containing bioactive material, will facilitate the development of customized exosomes encapsulating a beneficial composition of stem cells for cell-free therapeutic applications.Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which their original cells reside. Here, we hypothesized that a nitric oxide (NO)-releasing polymer can boost the proangiogenic compositions of exosomes and enhance their proangiogenic capacity. Our results demonstrated that exosomes, released from human placenta-derived MSCs (hP-MSCs) by NO stimulation, augment the angiogenic effects of human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, exosomes released from hP-MSCs by NO stimulation revealed superior angiogenic effects and ameliorated limb function in a murine model of hind limb ischemia. Further analysis demonstrated that increased VEGF and miR-126 levels in exosomes released from hP-MSCs by NO stimulation were identified as a novel mechanism contributing to the increased capacity of these exosomes to promote angiogenic processes. In conclusion, designing specific microenvironments for in vitro stem cell culture, such as those containing bioactive material, will facilitate the development of customized exosomes encapsulating a beneficial composition of stem cells for cell-free therapeutic applications.
Abstract Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which their original cells reside. Here, we hypothesized that a nitric oxide (NO)-releasing polymer can boost the proangiogenic compositions of exosomes and enhance their proangiogenic capacity. Our results demonstrated that exosomes, released from human placenta-derived MSCs (hP-MSCs) by NO stimulation, augment the angiogenic effects of human umbilical vein endothelial cells (HUVECs) in vitro . Moreover, exosomes released from hP-MSCs by NO stimulation revealed superior angiogenic effects and ameliorated limb function in a murine model of hind limb ischemia. Further analysis demonstrated that increased VEGF and miR-126 levels in exosomes released from hP-MSCs by NO stimulation were identified as a novel mechanism contributing to the increased capacity of these exosomes to promote angiogenic processes. In conclusion, designing specific microenvironments for in vitro stem cell culture, such as those containing bioactive material, will facilitate the development of customized exosomes encapsulating a beneficial composition of stem cells for cell-free therapeutic applications.
Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which their original cells reside. Here, we hypothesized that a nitric oxide (NO)-releasing polymer can boost the proangiogenic compositions of exosomes and enhance their proangiogenic capacity. Our results demonstrated that exosomes, released from human placenta-derived MSCs (hP-MSCs) by NO stimulation, augment the angiogenic effects of human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, exosomes released from hP-MSCs by NO stimulation revealed superior angiogenic effects and ameliorated limb function in a murine model of hind limb ischemia. Further analysis demonstrated that increased VEGF and miR-126 levels in exosomes released from hP-MSCs by NO stimulation were identified as a novel mechanism contributing to the increased capacity of these exosomes to promote angiogenic processes. In conclusion, designing specific microenvironments for in vitro stem cell culture, such as those containing bioactive material, will facilitate the development of customized exosomes encapsulating a beneficial composition of stem cells for cell-free therapeutic applications.
Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which their original cells reside. Here, we hypothesized that a nitric oxide (NO)-releasing polymer can boost the proangiogenic compositions of exosomes and enhance their proangiogenic capacity. Our results demonstrated that exosomes, released from human placenta-derived MSCs (hP-MSCs) by NO stimulation, augment the angiogenic effects of human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, exosomes released from hP-MSCs by NO stimulation revealed superior angiogenic effects and ameliorated limb function in a murine model of hind limb ischemia. Further analysis demonstrated that increased VEGF and miR-126 levels in exosomes released from hP-MSCs by NO stimulation were identified as a novel mechanism contributing to the increased capacity of these exosomes to promote angiogenic processes. In conclusion, designing specific microenvironments for in vitro stem cell culture, such as those containing bioactive material, will facilitate the development of customized exosomes encapsulating a beneficial composition of stem cells for cell-free therapeutic applications.
Author Han, Zhongchao
Zhang, Shuaiqiang
Liang, Lu
Wang, Ran
Wang, Di
Tao, Hongyan
Zhang, Kaiyue
Liu, Jianfeng
Zhao, Qiang
Liu, Na
Han, Zhibo
Li, Zongjin
Nie, Yan
Kong, Deling
Du, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: Du
  fullname: Du, Wei
  organization: Nankai University School of Medicine, Tianjin, China
– sequence: 2
  givenname: Kaiyue
  surname: Zhang
  fullname: Zhang, Kaiyue
  organization: Nankai University School of Medicine, Tianjin, China
– sequence: 3
  givenname: Shuaiqiang
  surname: Zhang
  fullname: Zhang, Shuaiqiang
  organization: Nankai University School of Medicine, Tianjin, China
– sequence: 4
  givenname: Ran
  surname: Wang
  fullname: Wang, Ran
  organization: Nankai University School of Medicine, Tianjin, China
– sequence: 5
  givenname: Yan
  surname: Nie
  fullname: Nie, Yan
  organization: Nankai University School of Medicine, Tianjin, China
– sequence: 6
  givenname: Hongyan
  surname: Tao
  fullname: Tao, Hongyan
  organization: Nankai University School of Medicine, Tianjin, China
– sequence: 7
  givenname: Zhibo
  surname: Han
  fullname: Han, Zhibo
  organization: Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
– sequence: 8
  givenname: Lu
  surname: Liang
  fullname: Liang, Lu
  organization: Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
– sequence: 9
  givenname: Di
  surname: Wang
  fullname: Wang, Di
  organization: Nankai University School of Medicine, Tianjin, China
– sequence: 10
  givenname: Jianfeng
  surname: Liu
  fullname: Liu, Jianfeng
  organization: Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
– sequence: 11
  givenname: Na
  surname: Liu
  fullname: Liu, Na
  organization: Nankai University School of Medicine, Tianjin, China
– sequence: 12
  givenname: Zhongchao
  surname: Han
  fullname: Han, Zhongchao
  organization: Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
– sequence: 13
  givenname: Deling
  surname: Kong
  fullname: Kong, Deling
  organization: State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin, China
– sequence: 14
  givenname: Qiang
  surname: Zhao
  fullname: Zhao, Qiang
  email: qiangzhao@nankai.edu.cn
  organization: State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin, China
– sequence: 15
  givenname: Zongjin
  surname: Li
  fullname: Li, Zongjin
  email: zongjinli@nankai.edu.cn
  organization: Nankai University School of Medicine, Tianjin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28433939$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URLeFr4AiTlwSxomdxBwQUMofqRIHQOJmOc5k6yWxF9upmm-Poy0IVULsybL83s8z8-aMnFhnkZBnFAoKtH6xKzrjJhXRGzWGogTaFMAKqOAB2dC2aXMugJ-QDVBW5qKm5Sk5C2EH6Q6sfEROy5ZVlajEhiyX9lpZjX22907ZrXFbtEZnexfRxsTP3JBNGNDq62VK1xBxyjSOY96n_2-SEW9dcEmSnsw0j6muPuuWTGXWRJ9Q7tb0mHkcUQVjtwk9LhP6x-ThkMrHJ3fnOfn2_vLrxcf86vOHTxdvrnLNRRVzrRn2tAFBkQusRcVSQ1zUZYMtAqs553rQSFXZDF1fc-hq2nZd2-tq6FoxVOfk-YGbGvw5Y4hyMmFtQFl0c5AlADCoWFv_V0pbQRnnbc2T9OmddO4m7OXem0n5Rf6ebBK8PAi0dyF4HP5IKMg1RrmTf8co1xglMJliTObX98zaRBWNs9ErMx6HeHdAYJrtjUEvgza4Jm086ih7Z47DvLqH0aNJC6LGH7hg2LnZ29VDZSglyC_ryq0bR5sKypp_T4C3_wYcW8Uv1iTwng
CitedBy_id crossref_primary_10_1021_acsbiomaterials_9b00607
crossref_primary_10_1002_advs_202206095
crossref_primary_10_35366_103452
crossref_primary_10_1002_smll_201906273
crossref_primary_10_1016_j_bioactmat_2020_10_028
crossref_primary_10_1016_j_jmrt_2024_05_067
crossref_primary_10_1093_burnst_tkab043
crossref_primary_10_1186_s12951_022_01347_3
crossref_primary_10_1093_jb_mvaa137
crossref_primary_10_1016_j_compositesb_2023_110985
crossref_primary_10_4252_wjsc_v13_i1_49
crossref_primary_10_1016_j_ijbiomac_2024_133298
crossref_primary_10_1016_j_bbamcr_2022_119365
crossref_primary_10_3389_fcell_2019_00315
crossref_primary_10_1186_s13287_019_1276_z
crossref_primary_10_1002_adtp_202300428
crossref_primary_10_1021_cbmi_4c00085
crossref_primary_10_1515_biol_2022_0022
crossref_primary_10_1002_adhm_202001550
crossref_primary_10_1016_j_cej_2024_152249
crossref_primary_10_3390_pharmaceutics14071345
crossref_primary_10_1186_s40779_023_00472_w
crossref_primary_10_1016_j_yexcr_2020_112146
crossref_primary_10_3389_fbioe_2020_624096
crossref_primary_10_1002_adfm_201909125
crossref_primary_10_1016_j_bioactmat_2020_09_007
crossref_primary_10_1021_acsnano_3c08088
crossref_primary_10_1038_s41589_018_0190_5
crossref_primary_10_1016_j_biomaterials_2018_01_021
crossref_primary_10_3389_fbioe_2023_1322514
crossref_primary_10_1016_j_actbio_2022_03_021
crossref_primary_10_1186_s12967_021_02863_w
crossref_primary_10_1016_j_cej_2023_141730
crossref_primary_10_1126_sciadv_adi9967
crossref_primary_10_1007_s00018_019_03358_0
crossref_primary_10_1080_20013078_2018_1522236
crossref_primary_10_3389_fcell_2021_653296
crossref_primary_10_1016_j_bbrc_2018_04_065
crossref_primary_10_1016_j_jddst_2021_102883
crossref_primary_10_3390_cells13231956
crossref_primary_10_3390_cimb46040204
crossref_primary_10_1007_s12015_021_10176_0
crossref_primary_10_2174_1570159X21666230216095938
crossref_primary_10_1021_acsami_7b17533
crossref_primary_10_1016_j_addr_2024_115342
crossref_primary_10_1016_j_eurpolymj_2020_110210
crossref_primary_10_1007_s12274_023_6080_5
crossref_primary_10_1186_s12951_022_01301_3
crossref_primary_10_3390_cells10010042
crossref_primary_10_20517_evcna_2024_91
crossref_primary_10_1002_EXP_20210181
crossref_primary_10_1186_s13287_019_1410_y
crossref_primary_10_1016_j_actbio_2020_01_040
crossref_primary_10_1039_D1TB00847A
crossref_primary_10_1002_adma_201805818
crossref_primary_10_1016_j_mtbio_2023_100608
crossref_primary_10_1016_j_vesic_2022_100018
crossref_primary_10_3390_life12101567
crossref_primary_10_3390_biom14040459
crossref_primary_10_1016_j_bbrc_2022_02_085
crossref_primary_10_1016_j_biopha_2025_117953
crossref_primary_10_1074_jbc_RA120_012732
crossref_primary_10_3390_ijms25147882
crossref_primary_10_1002_adhm_202100334
crossref_primary_10_1007_s00109_023_02357_w
crossref_primary_10_1016_j_vesic_2024_100061
crossref_primary_10_1111_vde_12798
crossref_primary_10_1186_s13287_024_04123_2
crossref_primary_10_3390_bioengineering12010092
crossref_primary_10_1002_sstr_202300004
crossref_primary_10_3390_biom13071109
crossref_primary_10_1098_rstb_2017_0223
crossref_primary_10_1186_s13287_020_01681_z
crossref_primary_10_1002_pat_6080
crossref_primary_10_1002_jbm_b_35210
crossref_primary_10_1016_j_biopha_2022_112707
crossref_primary_10_1155_2019_5738510
crossref_primary_10_1002_advs_202003119
crossref_primary_10_3390_bioengineering9110662
crossref_primary_10_1016_j_biopha_2023_115201
crossref_primary_10_1016_j_cej_2022_138004
crossref_primary_10_1002_adtp_202300387
crossref_primary_10_1186_s13287_021_02156_5
crossref_primary_10_1016_j_jconrel_2025_02_052
crossref_primary_10_1089_ars_2019_7965
crossref_primary_10_1016_j_msec_2019_01_006
crossref_primary_10_3389_fimmu_2021_684496
crossref_primary_10_3390_bioengineering6010004
crossref_primary_10_1002_jgm_3596
crossref_primary_10_1088_2516_1091_ac6e18
crossref_primary_10_1002_adtp_202000259
crossref_primary_10_3390_cells10040767
crossref_primary_10_3390_ph16030421
crossref_primary_10_3390_jcm8040533
crossref_primary_10_1038_s41427_022_00419_y
crossref_primary_10_1016_j_jcyt_2022_07_003
crossref_primary_10_1016_j_ijbiomac_2024_130825
crossref_primary_10_1016_j_lfs_2024_123019
crossref_primary_10_1016_j_actbio_2018_12_015
crossref_primary_10_1093_rb_rbab014
crossref_primary_10_1186_s13287_019_1398_3
crossref_primary_10_1016_j_actbio_2017_08_037
crossref_primary_10_1016_j_biotechadv_2017_12_011
crossref_primary_10_3390_ijms21030727
crossref_primary_10_1016_j_actbio_2018_06_031
crossref_primary_10_1016_j_ajps_2024_100945
crossref_primary_10_1155_2019_2831756
crossref_primary_10_1021_acsbiomaterials_9b00016
crossref_primary_10_3390_molecules25184205
crossref_primary_10_1016_j_bbrep_2024_101708
crossref_primary_10_1186_s13287_021_02232_w
crossref_primary_10_1016_j_jcyt_2018_06_012
crossref_primary_10_1088_1748_605X_ac68bc
crossref_primary_10_1002_adbi_202101317
crossref_primary_10_1039_D3BM00390F
crossref_primary_10_1016_j_biomaterials_2019_01_049
crossref_primary_10_1016_j_cej_2021_131624
crossref_primary_10_1021_acsnano_0c05681
crossref_primary_10_1016_j_biomaterials_2017_12_014
crossref_primary_10_1021_acsami_3c18284
crossref_primary_10_1021_acsnano_8b09776
crossref_primary_10_3390_cells9030724
crossref_primary_10_3390_biology10050376
crossref_primary_10_1021_acs_molpharmaceut_3c00268
crossref_primary_10_1088_1748_605X_ac37b0
crossref_primary_10_1089_ten_teb_2018_0027
crossref_primary_10_1016_j_stemcr_2021_05_003
crossref_primary_10_2147_IJN_S407029
crossref_primary_10_3389_fbioe_2020_587052
crossref_primary_10_1016_j_msec_2020_111725
crossref_primary_10_1126_sciadv_aay5413
crossref_primary_10_1155_2017_5785436
crossref_primary_10_12750_JARB_37_1_2
crossref_primary_10_1186_s13287_020_01824_2
crossref_primary_10_1007_s13770_022_00469_x
crossref_primary_10_1039_D2TB00478J
crossref_primary_10_1002_jev2_12386
crossref_primary_10_1007_s11427_021_1997_2
crossref_primary_10_1016_j_actbio_2020_07_011
crossref_primary_10_1016_j_carbpol_2020_116522
crossref_primary_10_1021_acsnano_4c09190
crossref_primary_10_1155_2021_4758364
crossref_primary_10_4155_fmc_2020_0071
crossref_primary_10_1096_fj_202400359R
crossref_primary_10_1016_j_ijpharm_2021_121136
crossref_primary_10_1186_s12929_021_00736_4
crossref_primary_10_1186_s13287_019_1230_0
crossref_primary_10_1155_2019_3612020
crossref_primary_10_1155_2020_4176926
crossref_primary_10_1021_acsbiomaterials_9b01681
crossref_primary_10_1186_s12974_022_02578_9
crossref_primary_10_1186_s13287_020_01761_0
crossref_primary_10_1021_acsami_8b08449
crossref_primary_10_1002_adhm_202201384
crossref_primary_10_1016_j_reth_2024_01_009
crossref_primary_10_1039_D1TB01455B
crossref_primary_10_1016_j_actbio_2020_10_038
crossref_primary_10_1016_j_cellimm_2024_104813
crossref_primary_10_1186_s13287_019_1302_1
crossref_primary_10_1021_acsami_2c04686
crossref_primary_10_1186_s13287_020_01668_w
crossref_primary_10_1007_s12265_023_10438_x
crossref_primary_10_1111_jcmm_14615
crossref_primary_10_1186_s13287_021_02650_w
crossref_primary_10_1016_j_ccr_2023_215052
crossref_primary_10_1016_j_cej_2024_150002
crossref_primary_10_1039_D1CS00343G
crossref_primary_10_1089_ten_teb_2019_0252
crossref_primary_10_1111_jcmm_17689
crossref_primary_10_2174_1574888X15666200211102203
crossref_primary_10_3389_fbioe_2023_1136453
crossref_primary_10_4252_wjsc_v13_i7_776
crossref_primary_10_1021_acsabm_0c00333
crossref_primary_10_1021_acsbiomaterials_0c01286
crossref_primary_10_1186_s12951_023_02167_9
crossref_primary_10_1007_s11306_023_01986_z
crossref_primary_10_1111_jcmm_16192
crossref_primary_10_3390_biomedicines11051487
Cites_doi 10.1161/CIRCRESAHA.113.300636
10.1038/ncb1800
10.1161/CIRCRESAHA.114.300639
10.1681/ASN.2015050578
10.1371/journal.pone.0115316
10.1016/j.stem.2012.02.005
10.1016/j.biomaterials.2015.04.046
10.1161/CIRCRESAHA.114.300584
10.1016/j.stem.2012.04.009
10.1161/CIRCRESAHA.113.301577
10.3389/fphys.2016.00024
10.1016/j.cell.2016.01.043
10.1038/nrm.2015.15
10.1161/01.CIR.0000124062.31102.57
10.1093/cvr/cvq290
10.1038/ncb1596
10.1126/scisignal.2000610
10.1002/stem.2298
10.1038/srep08718
10.5966/sctm.2014-0267
10.1016/j.stem.2009.02.001
10.1038/nm.2753
10.1016/S0092-8674(00)81520-2
10.1016/j.biomaterials.2013.07.045
10.1038/srep28250
10.1016/S0741-5214(97)70045-4
10.1016/j.devcel.2008.07.008
10.1146/annurev-cellbio-101512-122326
10.1155/2016/3409169
10.1038/sj.bjp.0707224
10.1161/01.RES.80.6.845
10.1016/j.stem.2011.06.008
10.1038/ncomms9472
10.1038/nature15756
10.1161/CIRCRESAHA.111.253286
10.3727/096368916X692726
10.1002/stem.1771
10.1155/2016/4328362
10.1152/ajpheart.00954.2003
10.1155/2016/1314709
10.1111/jcmm.12489
10.1073/pnas.1522297113
10.1002/jcp.24056
10.1182/blood-2012-01-407106
10.1016/j.ccr.2008.10.005
10.1186/1478-811X-12-26
10.1016/j.jconrel.2015.03.033
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2017.04.030
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 81
ExternalDocumentID 28433939
10_1016_j_biomaterials_2017_04_030
S014296121730265X
1_s2_0_S014296121730265X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c593t-cc4ed17091e59e693496159627e8e046555cfce1a27fbd650b618bb8dc3fb89f3
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Tue Aug 05 11:25:01 EDT 2025
Mon Jul 21 10:07:14 EDT 2025
Wed Feb 19 02:43:42 EST 2025
Tue Jul 01 01:19:31 EDT 2025
Thu Apr 24 22:53:15 EDT 2025
Fri Feb 23 02:31:37 EST 2024
Tue Feb 25 19:57:18 EST 2025
Tue Aug 26 20:00:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Angiogenesis
miR-126
Exosome
Nitric oxide
Vascular endothelial growth factor (VEGF)
Mesenchymal stem cell(MSC)
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c593t-cc4ed17091e59e693496159627e8e046555cfce1a27fbd650b618bb8dc3fb89f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28433939
PQID 1891455865
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2000403486
proquest_miscellaneous_1891455865
pubmed_primary_28433939
crossref_primary_10_1016_j_biomaterials_2017_04_030
crossref_citationtrail_10_1016_j_biomaterials_2017_04_030
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2017_04_030
elsevier_clinicalkeyesjournals_1_s2_0_S014296121730265X
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2017_04_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Karp, Leng Teo (bib1) 2009; 4
van Hoof, Parker (bib46) 1999; 99
Lopatina, Bruno, Tetta, Kalinina, Porta, Camussi (bib17) 2014; 12
Xie, Li, Adesanya, Guo, Liu, Fu, Kilic, Tan, Zhu, Xie (bib40) 2016; 20
Liang, Li, Ma, Han, Du, Geng, Jia, Zhao, Wang, Zhang, Feng, Zhao, Rupin, Wang, Han (bib24) 2017; 26
Chen, Liu, Hong, Zhang, Chen, Xiao, Wang, Yao, Ba, Liu, Guo, Zhong (bib15) 2014; 9
Sahoo, Losordo (bib7) 2014; 114
Yao, Liu, Gao, Yang, Mao, Stefanitsch, Li, Zhang, Ou, Kong, Zhao, Li (bib22) 2015; 60
Caplan, Correa (bib35) 2011; 9
Ranganath, Levy, Inamdar, Karp (bib3) 2012; 10
Rossini, Frati, Lagrasta, Graiani, Scopece, Cavalli, Musso, Baccarin, Di Segni, Fagnoni, Germani, Quaini, Mayr, Xu, Barbuti, DiFrancesco, Pompilio, Quaini, Gaetano, Capogrossi (bib37) 2011; 89
Niiyama, Huang, Rollins, Cooke (bib28) 2009
Feng, Zhang, Li, Nie, Zhu, Wang, Liu, Gao, Liu, He, Du, Tao, Che, Xu, Kong, Zhao, Li (bib29) 2016; 27
Kim, Nishida, An, Shetty, Bartosh, Prockop (bib5) 2016; 113
Yellon, Davidson (bib39) 2014; 114
Ye, Fan, Yu, Chang, Al Hezaimi, Zhou, Park, Wang (bib34) 2012; 11
Zhang, Wang, Gong, Zhang, Wu, Zhu, Shi, Wu, Zhu, Qian, Xu (bib10) 2015; 33
Valadi, Ekstrom, Bossios, Sjostrand, Lee, Lotvall (bib42) 2007; 9
Kinnaird, Stabile, Burnett, Shou, Lee, Barr, Fuchs, Epstein (bib31) 2004; 109
Zhang, Wu, Zhang, Sun, Yan, Shi, Zhu, Wu, Pan, Zhu, Qian, Xu (bib9) 2015; 4
Phinney, Di Giuseppe, Njah, Sala, Shiva, St Croix, Stolz, Watkins, Di, Leikauf, Kolls, Riches, Deiuliis, Kaminski, Boregowda, McKenna, Ortiz (bib4) 2015; 6
Colombo, Raposo, Thery (bib16) 2014; 30
Qin, Yang, Cui, Critz, Cohen, Browner, Lincoln, Downey (bib21) 2004; 287
Alcayaga-Miranda, Varas-Godoy, Khoury (bib6) 2016; 2016
Hoshino, Costa-Silva, Shen, Rodrigues, Hashimoto, Tesic Mark, Molina, Kohsaka, Di Giannatale, Ceder, Singh, Williams, Soplop, Uryu, Pharmer, King, Bojmar, Davies, Ararso, Zhang, Zhang, Hernandez, Weiss, Dumont-Cole, Kramer, Wexler, Narendran, Schwartz, Healey, Sandstrom, Labori, Kure, Grandgenett, Hollingsworth, de Sousa, Kaur, Jain, Mallya, Batra, Jarnagin, Brady, Fodstad, Muller, Pantel, Minn, Bissell, Garcia, Kang, Rajasekhar, Ghajar, Matei, Peinado, Bromberg, Lyden (bib25) 2015; 527
Chen, Min, Wang, Leung, Shi, Zhou, Yu, Wang, An, Sha, Chen (bib20) 2015; 5
Sahoo, Klychko, Thorne, Misener, Schultz, Millay, Ito, Liu, Kamide, Agrawal, Perlman, Qin, Kishore, Losordo (bib11) 2011; 109
Miller, Megson (bib44) 2007; 151
Skog, Wurdinger, van Rijn, Meijer, Gainche, Sena-Esteves, Curry, Carter, Krichevsky, Breakefield (bib49) 2008; 10
Kilpinen, Impola, Sankkila, Ritamo, Aatonen, Kilpinen, Tuimala, Valmu, Levijoki, Finckenberg, Siljander, Kankuri, Mervaala, Laitinen (bib43) 2013; 2
Waldenstrom, Ronquist (bib38) 2014; 114
Ziche, Parenti, Ledda, Dell'Era, Granger, Maggi, Presta (bib19) 1997; 80
Kachgal, Carrion, Janson, Putnam (bib36) 2012; 227
Peinado, Aleckovic, Lavotshkin, Matei, Costa-Silva, Moreno-Bueno, Hergueta-Redondo, Williams, Garcia-Santos, Ghajar, Nitadori-Hoshino, Hoffman, Badal, Garcia, Callahan, Yuan, Martins, Skog, Kaplan, Brady, Wolchok, Chapman, Kang, Bromberg, Lyden (bib27) 2012; 18
Rutherford, Baker, Ernst, Johnston, Porter, Ahn, Jones (bib30) 1997; 26
Zernecke, Bidzhekov, Noels, Shagdarsuren, Gan, Denecke, Hristov, Koppel, Jahantigh, Lutgens, Wang, Olson, Schober, Weber (bib50) 2009; 2
Tao, Han, Han, Li (bib2) 2016; 2016
Tkach, Thery (bib12) 2016; 164
Kilchert, Wittmann, Vasiljeva (bib45) 2016; 17
Fish, Santoro, Morton, Yu, Yeh, Wythe, Ivey, Bruneau, Stainier, Srivastava (bib33) 2008; 15
Mocharla, Briand, Giannotti, Dorries, Jakob, Paneni, Luscher, Landmesser (bib47) 2013; 121
Loscalzo (bib18) 2013; 113
Merino-Gonzalez, Zuniga, Escudero, Ormazabal, Reyes, Nova-Lamperti, Salomon, Aguayo (bib41) 2016; 7
Anderson, Johansson, Graham, Vesterlund, Pham, Bramlett, Montgomery, Mellema, Bardini, Contreras, Hoon, Bauer, Fink, Fury, Hendrix, Chedin, El-Andaloussi, Hwang, Mulligan, Lehtio, Nolta (bib14) 2016; 34
Haney, Klyachko, Zhao, Gupta, Plotnikova, He, Patel, Piroyan, Sokolsky, Kabanov, Batrakova (bib13) 2015; 207
Würdinger, Tannous, Saydam, Skog, Grau, Soutschek, Weissleder, Breakefield, Krichevsky (bib48) 2008; 14
Lu, Liu, Yang, Zhao, Wang, Gong, Han, Xu, Lu, Liu, Chen, Han (bib23) 2006; 91
Cai, Shen, Song, Lu, Wang, Zhao, Tang, Meng, Li, He (bib32) 2016; 6
Zhang, Xiang, Meng, Sun, Chen (bib8) 2016; 2016
Zhao, Zhang, Song, Ji, Yao, Cui, Shen, Wang, Kong (bib26) 2013; 34
Cai (10.1016/j.biomaterials.2017.04.030_bib32) 2016; 6
Miller (10.1016/j.biomaterials.2017.04.030_bib44) 2007; 151
Waldenstrom (10.1016/j.biomaterials.2017.04.030_bib38) 2014; 114
Sahoo (10.1016/j.biomaterials.2017.04.030_bib11) 2011; 109
Fish (10.1016/j.biomaterials.2017.04.030_bib33) 2008; 15
Ziche (10.1016/j.biomaterials.2017.04.030_bib19) 1997; 80
Zhang (10.1016/j.biomaterials.2017.04.030_bib9) 2015; 4
Kilpinen (10.1016/j.biomaterials.2017.04.030_bib43) 2013; 2
Phinney (10.1016/j.biomaterials.2017.04.030_bib4) 2015; 6
Merino-Gonzalez (10.1016/j.biomaterials.2017.04.030_bib41) 2016; 7
Anderson (10.1016/j.biomaterials.2017.04.030_bib14) 2016; 34
Kilchert (10.1016/j.biomaterials.2017.04.030_bib45) 2016; 17
Haney (10.1016/j.biomaterials.2017.04.030_bib13) 2015; 207
Colombo (10.1016/j.biomaterials.2017.04.030_bib16) 2014; 30
Loscalzo (10.1016/j.biomaterials.2017.04.030_bib18) 2013; 113
Liang (10.1016/j.biomaterials.2017.04.030_bib24) 2017; 26
Mocharla (10.1016/j.biomaterials.2017.04.030_bib47) 2013; 121
Niiyama (10.1016/j.biomaterials.2017.04.030_bib28) 2009
Rossini (10.1016/j.biomaterials.2017.04.030_bib37) 2011; 89
Würdinger (10.1016/j.biomaterials.2017.04.030_bib48) 2008; 14
Tkach (10.1016/j.biomaterials.2017.04.030_bib12) 2016; 164
Yao (10.1016/j.biomaterials.2017.04.030_bib22) 2015; 60
Feng (10.1016/j.biomaterials.2017.04.030_bib29) 2016; 27
Zhang (10.1016/j.biomaterials.2017.04.030_bib10) 2015; 33
Peinado (10.1016/j.biomaterials.2017.04.030_bib27) 2012; 18
Skog (10.1016/j.biomaterials.2017.04.030_bib49) 2008; 10
Kim (10.1016/j.biomaterials.2017.04.030_bib5) 2016; 113
Qin (10.1016/j.biomaterials.2017.04.030_bib21) 2004; 287
Kachgal (10.1016/j.biomaterials.2017.04.030_bib36) 2012; 227
Tao (10.1016/j.biomaterials.2017.04.030_bib2) 2016; 2016
van Hoof (10.1016/j.biomaterials.2017.04.030_bib46) 1999; 99
Chen (10.1016/j.biomaterials.2017.04.030_bib20) 2015; 5
Lu (10.1016/j.biomaterials.2017.04.030_bib23) 2006; 91
Zhao (10.1016/j.biomaterials.2017.04.030_bib26) 2013; 34
Rutherford (10.1016/j.biomaterials.2017.04.030_bib30) 1997; 26
Zernecke (10.1016/j.biomaterials.2017.04.030_bib50) 2009; 2
Chen (10.1016/j.biomaterials.2017.04.030_bib15) 2014; 9
Ye (10.1016/j.biomaterials.2017.04.030_bib34) 2012; 11
Alcayaga-Miranda (10.1016/j.biomaterials.2017.04.030_bib6) 2016; 2016
Sahoo (10.1016/j.biomaterials.2017.04.030_bib7) 2014; 114
Valadi (10.1016/j.biomaterials.2017.04.030_bib42) 2007; 9
Ranganath (10.1016/j.biomaterials.2017.04.030_bib3) 2012; 10
Xie (10.1016/j.biomaterials.2017.04.030_bib40) 2016; 20
Caplan (10.1016/j.biomaterials.2017.04.030_bib35) 2011; 9
Zhang (10.1016/j.biomaterials.2017.04.030_bib8) 2016; 2016
Hoshino (10.1016/j.biomaterials.2017.04.030_bib25) 2015; 527
Lopatina (10.1016/j.biomaterials.2017.04.030_bib17) 2014; 12
Yellon (10.1016/j.biomaterials.2017.04.030_bib39) 2014; 114
Kinnaird (10.1016/j.biomaterials.2017.04.030_bib31) 2004; 109
Karp (10.1016/j.biomaterials.2017.04.030_bib1) 2009; 4
References_xml – volume: 18
  start-page: 883
  year: 2012
  end-page: 891
  ident: bib27
  article-title: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET
  publication-title: Nat. Med.
– volume: 109
  start-page: 1543
  year: 2004
  end-page: 1549
  ident: bib31
  article-title: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms
  publication-title: Circulation
– volume: 2
  start-page: 81
  year: 2009
  end-page: 94
  ident: bib50
  article-title: Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection
  publication-title: Sci. Signal
– volume: 34
  start-page: 8450
  year: 2013
  end-page: 8458
  ident: bib26
  article-title: Polysaccharide-based biomaterials with on-demand nitric oxide releasing property regulated by enzyme catalysis
  publication-title: Biomaterials
– volume: 121
  start-page: 226
  year: 2013
  end-page: 236
  ident: bib47
  article-title: AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics
  publication-title: Blood
– volume: 6
  start-page: 28250
  year: 2016
  ident: bib32
  article-title: Bone marrow mesenchymal stem cells (BM-MSCs) improve heart function in swine myocardial infarction model through paracrine effects
  publication-title: Sci. Rep.
– volume: 10
  start-page: 1470
  year: 2008
  end-page: 1486
  ident: bib49
  article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers
  publication-title: Nat. Cell Biol.
– volume: 164
  start-page: 1226
  year: 2016
  end-page: 1232
  ident: bib12
  article-title: Communication by extracellular vesicles: where we are and where we need to go
  publication-title: Cell
– volume: 2016
  start-page: 3409169
  year: 2016
  ident: bib6
  article-title: Harnessing the angiogenic potential of stem cell-derived exosomes for vascular regeneration
  publication-title: Stem Cells Int.
– volume: 287
  start-page: 712
  year: 2004
  end-page: 718
  ident: bib21
  article-title: Exogenous NO triggers preconditioning via a cGMP- and mitoKATP-dependent mechanism
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 15
  start-page: 272
  year: 2008
  end-page: 284
  ident: bib33
  article-title: miR-126 regulates angiogenic signaling and vascular integrity
  publication-title: Dev. Cell
– volume: 4
  start-page: 206
  year: 2009
  end-page: 216
  ident: bib1
  article-title: Mesenchymal stem cell homing: the devil is in the details
  publication-title: Cell Stem Cell
– volume: 113
  start-page: 170
  year: 2016
  end-page: 175
  ident: bib5
  article-title: Chromatographically isolated CD63+CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 27
  start-page: 2357
  year: 2016
  end-page: 2369
  ident: bib29
  article-title: IGF-1 C domain-modified hydrogel enhances cell therapy for AKI
  publication-title: J. Am. Soc. Nephrol.
– volume: 527
  start-page: 329
  year: 2015
  end-page: 335
  ident: bib25
  article-title: Tumour exosome integrins determine organotropic metastasis
  publication-title: Nature
– volume: 80
  start-page: 845
  year: 1997
  end-page: 852
  ident: bib19
  article-title: Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF
  publication-title: Circ. Res.
– volume: 14
  start-page: 382
  year: 2008
  end-page: 393
  ident: bib48
  article-title: miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells
  publication-title: Cancer Cell
– volume: 7
  start-page: 24
  year: 2016
  ident: bib41
  article-title: Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potential clinical application
  publication-title: Front. Physiol.
– volume: 9
  start-page: 654
  year: 2007
  end-page: 659
  ident: bib42
  article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
  publication-title: Nat. Cell Biol.
– volume: 26
  start-page: 517
  year: 1997
  end-page: 538
  ident: bib30
  article-title: Recommended standards for reports dealing with lower extremity ischemia: revised version
  publication-title: J. Vasc. Surg.
– volume: 2
  start-page: 1
  year: 2013
  end-page: 15
  ident: bib43
  article-title: Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning
  publication-title: J. Extracell. Vesicles
– volume: 91
  start-page: 1017
  year: 2006
  end-page: 1026
  ident: bib23
  article-title: Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials
  publication-title: Haematologica
– volume: 99
  start-page: 347
  year: 1999
  end-page: 350
  ident: bib46
  article-title: The exosome
  publication-title: Cell
– volume: 109
  start-page: 724
  year: 2011
  end-page: 728
  ident: bib11
  article-title: Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity
  publication-title: Circ. Res.
– volume: 6
  start-page: 8472
  year: 2015
  ident: bib4
  article-title: Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs
  publication-title: Nat. Commun.
– volume: 113
  start-page: 100
  year: 2013
  end-page: 103
  ident: bib18
  article-title: The identification of nitric oxide as endothelium-derived relaxing factor
  publication-title: Circ. Res.
– volume: 89
  start-page: 650
  year: 2011
  end-page: 660
  ident: bib37
  article-title: Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin
  publication-title: Cardiovasc Res.
– volume: 60
  start-page: 130
  year: 2015
  end-page: 140
  ident: bib22
  article-title: Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction
  publication-title: Biomaterials
– volume: 2016
  start-page: 4328362
  year: 2016
  ident: bib8
  article-title: Inhibition of myocardial ischemia/reperfusion injury by exosomes secreted from mesenchymal stem cells
  publication-title: Stem Cells Int.
– volume: 30
  start-page: 255
  year: 2014
  end-page: 289
  ident: bib16
  article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 26
  start-page: 45
  year: 2017
  end-page: 61
  ident: bib24
  article-title: Transplantation of human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats
  publication-title: Cell Transpl.
– volume: 114
  start-page: 325
  year: 2014
  end-page: 332
  ident: bib39
  article-title: Exosomes: nanoparticles involved in cardioprotection?
  publication-title: Circ. Res.
– volume: 17
  start-page: 227
  year: 2016
  end-page: 239
  ident: bib45
  article-title: The regulation and functions of the nuclear RNA exosome complex
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 2016
  start-page: 1314709
  year: 2016
  ident: bib2
  article-title: Proangiogenic features of mesenchymal stem cells and their therapeutic applications
  publication-title: Stem Cells Int.
– volume: 12
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib17
  article-title: Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential
  publication-title: Cell Commun. Signal
– volume: 4
  start-page: 513
  year: 2015
  end-page: 522
  ident: bib9
  article-title: Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/beta-catenin pathway
  publication-title: Stem Cells Transl. Med.
– volume: 151
  start-page: 305
  year: 2007
  end-page: 321
  ident: bib44
  article-title: Recent developments in nitric oxide donor drugs
  publication-title: Br. J. Pharmacol.
– volume: 20
  start-page: 29
  year: 2016
  end-page: 37
  ident: bib40
  article-title: Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice
  publication-title: J. Cell Mol. Med.
– volume: 5
  start-page: 8718
  year: 2015
  end-page: 8732
  ident: bib20
  article-title: Pre-activation of mesenchymal stem cells with TNF-alpha, IL-1beta and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury
  publication-title: Sci. Rep.
– volume: 114
  start-page: 315
  year: 2014
  end-page: 324
  ident: bib38
  article-title: Role of exosomes in myocardial remodeling
  publication-title: Circ. Res.
– volume: 33
  start-page: 2158
  year: 2015
  end-page: 2168
  ident: bib10
  article-title: HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing
  publication-title: Stem Cells
– volume: 11
  start-page: 50
  year: 2012
  end-page: 61
  ident: bib34
  article-title: Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs
  publication-title: Cell Stem Cell
– volume: 227
  start-page: 3546
  year: 2012
  end-page: 3555
  ident: bib36
  article-title: Bone marrow stromal cells stimulate an angiogenic program that requires endothelial MT1-MMP
  publication-title: J. Cell Physiol.
– start-page: e1035
  year: 2009
  ident: bib28
  article-title: Murine model of hindlimb ischemia
  publication-title: J. Vis. Exp.
– volume: 9
  start-page: 11
  year: 2011
  end-page: 15
  ident: bib35
  article-title: The MSC: an injury drugstore
  publication-title: Cell Stem Cell
– volume: 34
  start-page: 601
  year: 2016
  end-page: 613
  ident: bib14
  article-title: Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappab signaling
  publication-title: Stem Cells
– volume: 207
  start-page: 18
  year: 2015
  end-page: 30
  ident: bib13
  article-title: Exosomes as drug delivery vehicles for Parkinson's disease therapy
  publication-title: J. Control Release
– volume: 10
  start-page: 244
  year: 2012
  end-page: 258
  ident: bib3
  article-title: Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease
  publication-title: Cell Stem Cell
– volume: 114
  start-page: 333
  year: 2014
  end-page: 344
  ident: bib7
  article-title: Exosomes and cardiac repair after myocardial infarction
  publication-title: Circ. Res.
– volume: 9
  start-page: 1
  year: 2014
  end-page: 16
  ident: bib15
  article-title: Proangiogenic compositions of microvesicles derived from human umbilical cord mesenchymal stem cells
  publication-title: PLoS One
– volume: 114
  start-page: 325
  year: 2014
  ident: 10.1016/j.biomaterials.2017.04.030_bib39
  article-title: Exosomes: nanoparticles involved in cardioprotection?
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.113.300636
– volume: 10
  start-page: 1470
  year: 2008
  ident: 10.1016/j.biomaterials.2017.04.030_bib49
  article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1800
– volume: 114
  start-page: 333
  year: 2014
  ident: 10.1016/j.biomaterials.2017.04.030_bib7
  article-title: Exosomes and cardiac repair after myocardial infarction
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.114.300639
– volume: 27
  start-page: 2357
  year: 2016
  ident: 10.1016/j.biomaterials.2017.04.030_bib29
  article-title: IGF-1 C domain-modified hydrogel enhances cell therapy for AKI
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2015050578
– volume: 9
  start-page: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2017.04.030_bib15
  article-title: Proangiogenic compositions of microvesicles derived from human umbilical cord mesenchymal stem cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0115316
– volume: 10
  start-page: 244
  year: 2012
  ident: 10.1016/j.biomaterials.2017.04.030_bib3
  article-title: Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.02.005
– volume: 60
  start-page: 130
  year: 2015
  ident: 10.1016/j.biomaterials.2017.04.030_bib22
  article-title: Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.04.046
– volume: 114
  start-page: 315
  year: 2014
  ident: 10.1016/j.biomaterials.2017.04.030_bib38
  article-title: Role of exosomes in myocardial remodeling
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.114.300584
– volume: 11
  start-page: 50
  year: 2012
  ident: 10.1016/j.biomaterials.2017.04.030_bib34
  article-title: Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.04.009
– volume: 113
  start-page: 100
  year: 2013
  ident: 10.1016/j.biomaterials.2017.04.030_bib18
  article-title: The identification of nitric oxide as endothelium-derived relaxing factor
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.113.301577
– volume: 7
  start-page: 24
  year: 2016
  ident: 10.1016/j.biomaterials.2017.04.030_bib41
  article-title: Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potential clinical application
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2016.00024
– volume: 164
  start-page: 1226
  year: 2016
  ident: 10.1016/j.biomaterials.2017.04.030_bib12
  article-title: Communication by extracellular vesicles: where we are and where we need to go
  publication-title: Cell
  doi: 10.1016/j.cell.2016.01.043
– volume: 17
  start-page: 227
  year: 2016
  ident: 10.1016/j.biomaterials.2017.04.030_bib45
  article-title: The regulation and functions of the nuclear RNA exosome complex
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2015.15
– volume: 109
  start-page: 1543
  year: 2004
  ident: 10.1016/j.biomaterials.2017.04.030_bib31
  article-title: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000124062.31102.57
– volume: 91
  start-page: 1017
  year: 2006
  ident: 10.1016/j.biomaterials.2017.04.030_bib23
  article-title: Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials
  publication-title: Haematologica
– volume: 2
  start-page: 1
  year: 2013
  ident: 10.1016/j.biomaterials.2017.04.030_bib43
  article-title: Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning
  publication-title: J. Extracell. Vesicles
– volume: 89
  start-page: 650
  year: 2011
  ident: 10.1016/j.biomaterials.2017.04.030_bib37
  article-title: Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin
  publication-title: Cardiovasc Res.
  doi: 10.1093/cvr/cvq290
– volume: 9
  start-page: 654
  year: 2007
  ident: 10.1016/j.biomaterials.2017.04.030_bib42
  article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1596
– volume: 2
  start-page: 81
  year: 2009
  ident: 10.1016/j.biomaterials.2017.04.030_bib50
  article-title: Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection
  publication-title: Sci. Signal
  doi: 10.1126/scisignal.2000610
– volume: 34
  start-page: 601
  year: 2016
  ident: 10.1016/j.biomaterials.2017.04.030_bib14
  article-title: Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappab signaling
  publication-title: Stem Cells
  doi: 10.1002/stem.2298
– volume: 5
  start-page: 8718
  year: 2015
  ident: 10.1016/j.biomaterials.2017.04.030_bib20
  article-title: Pre-activation of mesenchymal stem cells with TNF-alpha, IL-1beta and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury
  publication-title: Sci. Rep.
  doi: 10.1038/srep08718
– volume: 4
  start-page: 513
  year: 2015
  ident: 10.1016/j.biomaterials.2017.04.030_bib9
  article-title: Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/beta-catenin pathway
  publication-title: Stem Cells Transl. Med.
  doi: 10.5966/sctm.2014-0267
– volume: 4
  start-page: 206
  year: 2009
  ident: 10.1016/j.biomaterials.2017.04.030_bib1
  article-title: Mesenchymal stem cell homing: the devil is in the details
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.02.001
– volume: 18
  start-page: 883
  year: 2012
  ident: 10.1016/j.biomaterials.2017.04.030_bib27
  article-title: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET
  publication-title: Nat. Med.
  doi: 10.1038/nm.2753
– start-page: e1035
  issue: 23
  year: 2009
  ident: 10.1016/j.biomaterials.2017.04.030_bib28
  article-title: Murine model of hindlimb ischemia
  publication-title: J. Vis. Exp.
– volume: 99
  start-page: 347
  year: 1999
  ident: 10.1016/j.biomaterials.2017.04.030_bib46
  article-title: The exosome
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81520-2
– volume: 34
  start-page: 8450
  year: 2013
  ident: 10.1016/j.biomaterials.2017.04.030_bib26
  article-title: Polysaccharide-based biomaterials with on-demand nitric oxide releasing property regulated by enzyme catalysis
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.07.045
– volume: 6
  start-page: 28250
  year: 2016
  ident: 10.1016/j.biomaterials.2017.04.030_bib32
  article-title: Bone marrow mesenchymal stem cells (BM-MSCs) improve heart function in swine myocardial infarction model through paracrine effects
  publication-title: Sci. Rep.
  doi: 10.1038/srep28250
– volume: 26
  start-page: 517
  year: 1997
  ident: 10.1016/j.biomaterials.2017.04.030_bib30
  article-title: Recommended standards for reports dealing with lower extremity ischemia: revised version
  publication-title: J. Vasc. Surg.
  doi: 10.1016/S0741-5214(97)70045-4
– volume: 15
  start-page: 272
  year: 2008
  ident: 10.1016/j.biomaterials.2017.04.030_bib33
  article-title: miR-126 regulates angiogenic signaling and vascular integrity
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2008.07.008
– volume: 30
  start-page: 255
  year: 2014
  ident: 10.1016/j.biomaterials.2017.04.030_bib16
  article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-101512-122326
– volume: 2016
  start-page: 3409169
  year: 2016
  ident: 10.1016/j.biomaterials.2017.04.030_bib6
  article-title: Harnessing the angiogenic potential of stem cell-derived exosomes for vascular regeneration
  publication-title: Stem Cells Int.
  doi: 10.1155/2016/3409169
– volume: 151
  start-page: 305
  year: 2007
  ident: 10.1016/j.biomaterials.2017.04.030_bib44
  article-title: Recent developments in nitric oxide donor drugs
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/sj.bjp.0707224
– volume: 80
  start-page: 845
  year: 1997
  ident: 10.1016/j.biomaterials.2017.04.030_bib19
  article-title: Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.80.6.845
– volume: 9
  start-page: 11
  year: 2011
  ident: 10.1016/j.biomaterials.2017.04.030_bib35
  article-title: The MSC: an injury drugstore
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.06.008
– volume: 6
  start-page: 8472
  year: 2015
  ident: 10.1016/j.biomaterials.2017.04.030_bib4
  article-title: Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9472
– volume: 527
  start-page: 329
  year: 2015
  ident: 10.1016/j.biomaterials.2017.04.030_bib25
  article-title: Tumour exosome integrins determine organotropic metastasis
  publication-title: Nature
  doi: 10.1038/nature15756
– volume: 109
  start-page: 724
  year: 2011
  ident: 10.1016/j.biomaterials.2017.04.030_bib11
  article-title: Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.111.253286
– volume: 26
  start-page: 45
  year: 2017
  ident: 10.1016/j.biomaterials.2017.04.030_bib24
  article-title: Transplantation of human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats
  publication-title: Cell Transpl.
  doi: 10.3727/096368916X692726
– volume: 33
  start-page: 2158
  year: 2015
  ident: 10.1016/j.biomaterials.2017.04.030_bib10
  article-title: HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing
  publication-title: Stem Cells
  doi: 10.1002/stem.1771
– volume: 2016
  start-page: 4328362
  year: 2016
  ident: 10.1016/j.biomaterials.2017.04.030_bib8
  article-title: Inhibition of myocardial ischemia/reperfusion injury by exosomes secreted from mesenchymal stem cells
  publication-title: Stem Cells Int.
  doi: 10.1155/2016/4328362
– volume: 287
  start-page: 712
  year: 2004
  ident: 10.1016/j.biomaterials.2017.04.030_bib21
  article-title: Exogenous NO triggers preconditioning via a cGMP- and mitoKATP-dependent mechanism
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00954.2003
– volume: 2016
  start-page: 1314709
  year: 2016
  ident: 10.1016/j.biomaterials.2017.04.030_bib2
  article-title: Proangiogenic features of mesenchymal stem cells and their therapeutic applications
  publication-title: Stem Cells Int.
  doi: 10.1155/2016/1314709
– volume: 20
  start-page: 29
  year: 2016
  ident: 10.1016/j.biomaterials.2017.04.030_bib40
  article-title: Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/jcmm.12489
– volume: 113
  start-page: 170
  year: 2016
  ident: 10.1016/j.biomaterials.2017.04.030_bib5
  article-title: Chromatographically isolated CD63+CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1522297113
– volume: 227
  start-page: 3546
  year: 2012
  ident: 10.1016/j.biomaterials.2017.04.030_bib36
  article-title: Bone marrow stromal cells stimulate an angiogenic program that requires endothelial MT1-MMP
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.24056
– volume: 121
  start-page: 226
  year: 2013
  ident: 10.1016/j.biomaterials.2017.04.030_bib47
  article-title: AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics
  publication-title: Blood
  doi: 10.1182/blood-2012-01-407106
– volume: 14
  start-page: 382
  year: 2008
  ident: 10.1016/j.biomaterials.2017.04.030_bib48
  article-title: miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.10.005
– volume: 12
  start-page: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2017.04.030_bib17
  article-title: Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential
  publication-title: Cell Commun. Signal
  doi: 10.1186/1478-811X-12-26
– volume: 207
  start-page: 18
  year: 2015
  ident: 10.1016/j.biomaterials.2017.04.030_bib13
  article-title: Exosomes as drug delivery vehicles for Parkinson's disease therapy
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2015.03.033
SSID ssj0014042
Score 2.6036994
Snippet Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an...
Abstract Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 70
SubjectTerms Advanced Basic Science
Angiogenesis
animal models
cell culture
Cells, Cultured
Dentistry
encapsulation
Exosome
exosomes
Exosomes - physiology
hindlimbs
human umbilical vein endothelial cells
Human Umbilical Vein Endothelial Cells - drug effects
Human Umbilical Vein Endothelial Cells - metabolism
Humans
ischemia
Mesenchymal stem cell(MSC)
Mesenchymal Stromal Cells - drug effects
Mesenchymal Stromal Cells - metabolism
miR-126
Neovascularization, Physiologic - drug effects
Nitric oxide
Nitric Oxide - chemistry
Nitric Oxide - pharmacology
polymers
Polymers - chemistry
Signal Transduction - drug effects
stem cells
therapeutics
Vascular endothelial growth factor (VEGF)
Vascular Endothelial Growth Factor A - metabolism
vascular endothelial growth factors
Title Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer
URI https://www.clinicalkey.com/#!/content/1-s2.0-S014296121730265X
https://www.clinicalkey.es/playcontent/1-s2.0-S014296121730265X
https://dx.doi.org/10.1016/j.biomaterials.2017.04.030
https://www.ncbi.nlm.nih.gov/pubmed/28433939
https://www.proquest.com/docview/1891455865
https://www.proquest.com/docview/2000403486
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CCqU9lDZ9bR9BhV7d9UOSJUoPISRsW5JTA3sTliwRl6y9ZJ2SveS3Z8aPJaUJLPRoe0Y2mtFobH_zDcDn2DotPFrA-sTiCwoXkSodj7SILZely1NB1cgnp3J2xn_MxXwHDsdaGIJVDrG_j-ldtB7OTIfZnC6rakqwpFQTARY6aSrFnCrYeU5e_uVmA_Mg9pi0hzGmEUmPxKMdxotK3Iu2NzXBvPKO9pQQ0fdvUg8lod1mdPwcng1ZJDvoH_QF7Ph6D57e4Rbcg8cnw1_zl7A-qs-7H_2M6qdQqEGvqRxbNi1hhXCgJrAFlSG58_UCD4ncmdEn_ajE0f6gor9uVg2K4KVqQR2_8Jxds4JhRMBIyprrqvSMGrAU9PEBh75YL_zlKzg7Pvp1OIuGlguREzprI-e4L5MckwgvtJea6OSTrkGPVz4mrjXhgvNJkebBlpjdWZkoa9G8WbBKh-w17NZN7d8CQy2Vlj53KgQesoQkBSYrUgQptVIT0OMcGzfwkVNbjAszAs9-m7v2MWQfE3OD9plAttFd9qwcW2l9HU1pxrpTjJQGN4-ttPP7tP1qWPQrk5hVamLzj2NO4NtG8y_f3vrOn0a_M7j4yfxF7ZsrvKPSRDSvpHhYhmqxeJxxJSfwpnfazZxhbpJlOtPv_vMJ38MTOuphzB9gt7288h8xWWvtfrca9-HRwfefs9Nby7RCkg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKkaAcEBRKl08jwTFs4tiJLdQDglZb2u2plfZmYsdRg7rJqkmhufCn-IPM5GNVRCuthHrcxONkPfbzJHnzhpB3vrFKOPCAcYGBBxQuPJla7inhGx6lNmYCs5GnR9HkhH-didka-T3kwiCtssf-DtNbtO6PjPvRHC_yfIy0JKZQAAsmKYvErGdWHrjmJzy3VTv7X8DJ7xnb2z3-PPH60gKeFSqsPWu5S4MYNksnlIsUyqYHbSEaJ52PmmLCZtYFCYszk0IUY6JAGgN_I8yMVFkI_d4hdznABZZN-PBryStBuRrW8SaZh7c3KJ22pDLMqU_qbm4hryxudVaRgn39rnhT1NvufnuPyMM-bKWfupF5TNZcsUkeXBEz3CT3pv1n-iek2S1OW2YBxYQtaFTCNM0tXZQ1kpOgozKjc8x7sqfNHH6imjTFbwheCr39AEN3WVYlNIFT-RxLjMEx09CEAgQBdNPyMk8dxYovCb7tgK7Pmrk7f0pObsURW2S9KAu3TShYSZa62Mos41kYYEsB0VEksihSUo6IGsZY214AHetwnOmB6fZdX_WPRv9on2vwz4iES9tFJwOyktXHwZV6SHQFaNawW61kHV9n7aoeZSod6IppX_-zEkZkZ2n512Ja-cpvh3mnAW3Q_Unhygu4olSobC8jcXMbTP7ifshlNCLPukm7HDMIhsJQher5f97hG3J_cjw91If7RwcvyAae6TjUL8l6fX7hXkGkWJvX7cqk5NttQ8EfK3J-QA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+proangiogenic+potential+of+mesenchymal+stem+cell-derived+exosomes+stimulated+by+a+nitric+oxide+releasing+polymer&rft.jtitle=Biomaterials&rft.au=Du%2C+Wei&rft.au=Zhang%2C+Kaiyue&rft.au=Zhang%2C+Shuaiqiang&rft.au=Wang%2C+Ran&rft.date=2017-07-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=133&rft.spage=70&rft_id=info:doi/10.1016%2Fj.biomaterials.2017.04.030&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961217X00148%2Fcov150h.gif