Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer
Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which thei...
Saved in:
Published in | Biomaterials Vol. 133; pp. 70 - 81 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which their original cells reside. Here, we hypothesized that a nitric oxide (NO)-releasing polymer can boost the proangiogenic compositions of exosomes and enhance their proangiogenic capacity. Our results demonstrated that exosomes, released from human placenta-derived MSCs (hP-MSCs) by NO stimulation, augment the angiogenic effects of human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, exosomes released from hP-MSCs by NO stimulation revealed superior angiogenic effects and ameliorated limb function in a murine model of hind limb ischemia. Further analysis demonstrated that increased VEGF and miR-126 levels in exosomes released from hP-MSCs by NO stimulation were identified as a novel mechanism contributing to the increased capacity of these exosomes to promote angiogenic processes. In conclusion, designing specific microenvironments for in vitro stem cell culture, such as those containing bioactive material, will facilitate the development of customized exosomes encapsulating a beneficial composition of stem cells for cell-free therapeutic applications. |
---|---|
AbstractList | Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which their original cells reside. Here, we hypothesized that a nitric oxide (NO)-releasing polymer can boost the proangiogenic compositions of exosomes and enhance their proangiogenic capacity. Our results demonstrated that exosomes, released from human placenta-derived MSCs (hP-MSCs) by NO stimulation, augment the angiogenic effects of human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, exosomes released from hP-MSCs by NO stimulation revealed superior angiogenic effects and ameliorated limb function in a murine model of hind limb ischemia. Further analysis demonstrated that increased VEGF and miR-126 levels in exosomes released from hP-MSCs by NO stimulation were identified as a novel mechanism contributing to the increased capacity of these exosomes to promote angiogenic processes. In conclusion, designing specific microenvironments for in vitro stem cell culture, such as those containing bioactive material, will facilitate the development of customized exosomes encapsulating a beneficial composition of stem cells for cell-free therapeutic applications.Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which their original cells reside. Here, we hypothesized that a nitric oxide (NO)-releasing polymer can boost the proangiogenic compositions of exosomes and enhance their proangiogenic capacity. Our results demonstrated that exosomes, released from human placenta-derived MSCs (hP-MSCs) by NO stimulation, augment the angiogenic effects of human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, exosomes released from hP-MSCs by NO stimulation revealed superior angiogenic effects and ameliorated limb function in a murine model of hind limb ischemia. Further analysis demonstrated that increased VEGF and miR-126 levels in exosomes released from hP-MSCs by NO stimulation were identified as a novel mechanism contributing to the increased capacity of these exosomes to promote angiogenic processes. In conclusion, designing specific microenvironments for in vitro stem cell culture, such as those containing bioactive material, will facilitate the development of customized exosomes encapsulating a beneficial composition of stem cells for cell-free therapeutic applications. Abstract Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which their original cells reside. Here, we hypothesized that a nitric oxide (NO)-releasing polymer can boost the proangiogenic compositions of exosomes and enhance their proangiogenic capacity. Our results demonstrated that exosomes, released from human placenta-derived MSCs (hP-MSCs) by NO stimulation, augment the angiogenic effects of human umbilical vein endothelial cells (HUVECs) in vitro . Moreover, exosomes released from hP-MSCs by NO stimulation revealed superior angiogenic effects and ameliorated limb function in a murine model of hind limb ischemia. Further analysis demonstrated that increased VEGF and miR-126 levels in exosomes released from hP-MSCs by NO stimulation were identified as a novel mechanism contributing to the increased capacity of these exosomes to promote angiogenic processes. In conclusion, designing specific microenvironments for in vitro stem cell culture, such as those containing bioactive material, will facilitate the development of customized exosomes encapsulating a beneficial composition of stem cells for cell-free therapeutic applications. Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which their original cells reside. Here, we hypothesized that a nitric oxide (NO)-releasing polymer can boost the proangiogenic compositions of exosomes and enhance their proangiogenic capacity. Our results demonstrated that exosomes, released from human placenta-derived MSCs (hP-MSCs) by NO stimulation, augment the angiogenic effects of human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, exosomes released from hP-MSCs by NO stimulation revealed superior angiogenic effects and ameliorated limb function in a murine model of hind limb ischemia. Further analysis demonstrated that increased VEGF and miR-126 levels in exosomes released from hP-MSCs by NO stimulation were identified as a novel mechanism contributing to the increased capacity of these exosomes to promote angiogenic processes. In conclusion, designing specific microenvironments for in vitro stem cell culture, such as those containing bioactive material, will facilitate the development of customized exosomes encapsulating a beneficial composition of stem cells for cell-free therapeutic applications. Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an alternative to cell-based therapy. However, the compositions in MSC-derived exosomes are highly influenced by the microenvironment in which their original cells reside. Here, we hypothesized that a nitric oxide (NO)-releasing polymer can boost the proangiogenic compositions of exosomes and enhance their proangiogenic capacity. Our results demonstrated that exosomes, released from human placenta-derived MSCs (hP-MSCs) by NO stimulation, augment the angiogenic effects of human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, exosomes released from hP-MSCs by NO stimulation revealed superior angiogenic effects and ameliorated limb function in a murine model of hind limb ischemia. Further analysis demonstrated that increased VEGF and miR-126 levels in exosomes released from hP-MSCs by NO stimulation were identified as a novel mechanism contributing to the increased capacity of these exosomes to promote angiogenic processes. In conclusion, designing specific microenvironments for in vitro stem cell culture, such as those containing bioactive material, will facilitate the development of customized exosomes encapsulating a beneficial composition of stem cells for cell-free therapeutic applications. |
Author | Han, Zhongchao Zhang, Shuaiqiang Liang, Lu Wang, Ran Wang, Di Tao, Hongyan Zhang, Kaiyue Liu, Jianfeng Zhao, Qiang Liu, Na Han, Zhibo Li, Zongjin Nie, Yan Kong, Deling Du, Wei |
Author_xml | – sequence: 1 givenname: Wei surname: Du fullname: Du, Wei organization: Nankai University School of Medicine, Tianjin, China – sequence: 2 givenname: Kaiyue surname: Zhang fullname: Zhang, Kaiyue organization: Nankai University School of Medicine, Tianjin, China – sequence: 3 givenname: Shuaiqiang surname: Zhang fullname: Zhang, Shuaiqiang organization: Nankai University School of Medicine, Tianjin, China – sequence: 4 givenname: Ran surname: Wang fullname: Wang, Ran organization: Nankai University School of Medicine, Tianjin, China – sequence: 5 givenname: Yan surname: Nie fullname: Nie, Yan organization: Nankai University School of Medicine, Tianjin, China – sequence: 6 givenname: Hongyan surname: Tao fullname: Tao, Hongyan organization: Nankai University School of Medicine, Tianjin, China – sequence: 7 givenname: Zhibo surname: Han fullname: Han, Zhibo organization: Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China – sequence: 8 givenname: Lu surname: Liang fullname: Liang, Lu organization: Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China – sequence: 9 givenname: Di surname: Wang fullname: Wang, Di organization: Nankai University School of Medicine, Tianjin, China – sequence: 10 givenname: Jianfeng surname: Liu fullname: Liu, Jianfeng organization: Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China – sequence: 11 givenname: Na surname: Liu fullname: Liu, Na organization: Nankai University School of Medicine, Tianjin, China – sequence: 12 givenname: Zhongchao surname: Han fullname: Han, Zhongchao organization: Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China – sequence: 13 givenname: Deling surname: Kong fullname: Kong, Deling organization: State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin, China – sequence: 14 givenname: Qiang surname: Zhao fullname: Zhao, Qiang email: qiangzhao@nankai.edu.cn organization: State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin, China – sequence: 15 givenname: Zongjin surname: Li fullname: Li, Zongjin email: zongjinli@nankai.edu.cn organization: Nankai University School of Medicine, Tianjin, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28433939$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxS1URLeFr4AiTlwSxomdxBwQUMofqRIHQOJmOc5k6yWxF9upmm-Poy0IVULsybL83s8z8-aMnFhnkZBnFAoKtH6xKzrjJhXRGzWGogTaFMAKqOAB2dC2aXMugJ-QDVBW5qKm5Sk5C2EH6Q6sfEROy5ZVlajEhiyX9lpZjX22907ZrXFbtEZnexfRxsTP3JBNGNDq62VK1xBxyjSOY96n_2-SEW9dcEmSnsw0j6muPuuWTGXWRJ9Q7tb0mHkcUQVjtwk9LhP6x-ThkMrHJ3fnOfn2_vLrxcf86vOHTxdvrnLNRRVzrRn2tAFBkQusRcVSQ1zUZYMtAqs553rQSFXZDF1fc-hq2nZd2-tq6FoxVOfk-YGbGvw5Y4hyMmFtQFl0c5AlADCoWFv_V0pbQRnnbc2T9OmddO4m7OXem0n5Rf6ebBK8PAi0dyF4HP5IKMg1RrmTf8co1xglMJliTObX98zaRBWNs9ErMx6HeHdAYJrtjUEvgza4Jm086ih7Z47DvLqH0aNJC6LGH7hg2LnZ29VDZSglyC_ryq0bR5sKypp_T4C3_wYcW8Uv1iTwng |
CitedBy_id | crossref_primary_10_1021_acsbiomaterials_9b00607 crossref_primary_10_1002_advs_202206095 crossref_primary_10_35366_103452 crossref_primary_10_1002_smll_201906273 crossref_primary_10_1016_j_bioactmat_2020_10_028 crossref_primary_10_1016_j_jmrt_2024_05_067 crossref_primary_10_1093_burnst_tkab043 crossref_primary_10_1186_s12951_022_01347_3 crossref_primary_10_1093_jb_mvaa137 crossref_primary_10_1016_j_compositesb_2023_110985 crossref_primary_10_4252_wjsc_v13_i1_49 crossref_primary_10_1016_j_ijbiomac_2024_133298 crossref_primary_10_1016_j_bbamcr_2022_119365 crossref_primary_10_3389_fcell_2019_00315 crossref_primary_10_1186_s13287_019_1276_z crossref_primary_10_1002_adtp_202300428 crossref_primary_10_1021_cbmi_4c00085 crossref_primary_10_1515_biol_2022_0022 crossref_primary_10_1002_adhm_202001550 crossref_primary_10_1016_j_cej_2024_152249 crossref_primary_10_3390_pharmaceutics14071345 crossref_primary_10_1186_s40779_023_00472_w crossref_primary_10_1016_j_yexcr_2020_112146 crossref_primary_10_3389_fbioe_2020_624096 crossref_primary_10_1002_adfm_201909125 crossref_primary_10_1016_j_bioactmat_2020_09_007 crossref_primary_10_1021_acsnano_3c08088 crossref_primary_10_1038_s41589_018_0190_5 crossref_primary_10_1016_j_biomaterials_2018_01_021 crossref_primary_10_3389_fbioe_2023_1322514 crossref_primary_10_1016_j_actbio_2022_03_021 crossref_primary_10_1186_s12967_021_02863_w crossref_primary_10_1016_j_cej_2023_141730 crossref_primary_10_1126_sciadv_adi9967 crossref_primary_10_1007_s00018_019_03358_0 crossref_primary_10_1080_20013078_2018_1522236 crossref_primary_10_3389_fcell_2021_653296 crossref_primary_10_1016_j_bbrc_2018_04_065 crossref_primary_10_1016_j_jddst_2021_102883 crossref_primary_10_3390_cells13231956 crossref_primary_10_3390_cimb46040204 crossref_primary_10_1007_s12015_021_10176_0 crossref_primary_10_2174_1570159X21666230216095938 crossref_primary_10_1021_acsami_7b17533 crossref_primary_10_1016_j_addr_2024_115342 crossref_primary_10_1016_j_eurpolymj_2020_110210 crossref_primary_10_1007_s12274_023_6080_5 crossref_primary_10_1186_s12951_022_01301_3 crossref_primary_10_3390_cells10010042 crossref_primary_10_20517_evcna_2024_91 crossref_primary_10_1002_EXP_20210181 crossref_primary_10_1186_s13287_019_1410_y crossref_primary_10_1016_j_actbio_2020_01_040 crossref_primary_10_1039_D1TB00847A crossref_primary_10_1002_adma_201805818 crossref_primary_10_1016_j_mtbio_2023_100608 crossref_primary_10_1016_j_vesic_2022_100018 crossref_primary_10_3390_life12101567 crossref_primary_10_3390_biom14040459 crossref_primary_10_1016_j_bbrc_2022_02_085 crossref_primary_10_1016_j_biopha_2025_117953 crossref_primary_10_1074_jbc_RA120_012732 crossref_primary_10_3390_ijms25147882 crossref_primary_10_1002_adhm_202100334 crossref_primary_10_1007_s00109_023_02357_w crossref_primary_10_1016_j_vesic_2024_100061 crossref_primary_10_1111_vde_12798 crossref_primary_10_1186_s13287_024_04123_2 crossref_primary_10_3390_bioengineering12010092 crossref_primary_10_1002_sstr_202300004 crossref_primary_10_3390_biom13071109 crossref_primary_10_1098_rstb_2017_0223 crossref_primary_10_1186_s13287_020_01681_z crossref_primary_10_1002_pat_6080 crossref_primary_10_1002_jbm_b_35210 crossref_primary_10_1016_j_biopha_2022_112707 crossref_primary_10_1155_2019_5738510 crossref_primary_10_1002_advs_202003119 crossref_primary_10_3390_bioengineering9110662 crossref_primary_10_1016_j_biopha_2023_115201 crossref_primary_10_1016_j_cej_2022_138004 crossref_primary_10_1002_adtp_202300387 crossref_primary_10_1186_s13287_021_02156_5 crossref_primary_10_1016_j_jconrel_2025_02_052 crossref_primary_10_1089_ars_2019_7965 crossref_primary_10_1016_j_msec_2019_01_006 crossref_primary_10_3389_fimmu_2021_684496 crossref_primary_10_3390_bioengineering6010004 crossref_primary_10_1002_jgm_3596 crossref_primary_10_1088_2516_1091_ac6e18 crossref_primary_10_1002_adtp_202000259 crossref_primary_10_3390_cells10040767 crossref_primary_10_3390_ph16030421 crossref_primary_10_3390_jcm8040533 crossref_primary_10_1038_s41427_022_00419_y crossref_primary_10_1016_j_jcyt_2022_07_003 crossref_primary_10_1016_j_ijbiomac_2024_130825 crossref_primary_10_1016_j_lfs_2024_123019 crossref_primary_10_1016_j_actbio_2018_12_015 crossref_primary_10_1093_rb_rbab014 crossref_primary_10_1186_s13287_019_1398_3 crossref_primary_10_1016_j_actbio_2017_08_037 crossref_primary_10_1016_j_biotechadv_2017_12_011 crossref_primary_10_3390_ijms21030727 crossref_primary_10_1016_j_actbio_2018_06_031 crossref_primary_10_1016_j_ajps_2024_100945 crossref_primary_10_1155_2019_2831756 crossref_primary_10_1021_acsbiomaterials_9b00016 crossref_primary_10_3390_molecules25184205 crossref_primary_10_1016_j_bbrep_2024_101708 crossref_primary_10_1186_s13287_021_02232_w crossref_primary_10_1016_j_jcyt_2018_06_012 crossref_primary_10_1088_1748_605X_ac68bc crossref_primary_10_1002_adbi_202101317 crossref_primary_10_1039_D3BM00390F crossref_primary_10_1016_j_biomaterials_2019_01_049 crossref_primary_10_1016_j_cej_2021_131624 crossref_primary_10_1021_acsnano_0c05681 crossref_primary_10_1016_j_biomaterials_2017_12_014 crossref_primary_10_1021_acsami_3c18284 crossref_primary_10_1021_acsnano_8b09776 crossref_primary_10_3390_cells9030724 crossref_primary_10_3390_biology10050376 crossref_primary_10_1021_acs_molpharmaceut_3c00268 crossref_primary_10_1088_1748_605X_ac37b0 crossref_primary_10_1089_ten_teb_2018_0027 crossref_primary_10_1016_j_stemcr_2021_05_003 crossref_primary_10_2147_IJN_S407029 crossref_primary_10_3389_fbioe_2020_587052 crossref_primary_10_1016_j_msec_2020_111725 crossref_primary_10_1126_sciadv_aay5413 crossref_primary_10_1155_2017_5785436 crossref_primary_10_12750_JARB_37_1_2 crossref_primary_10_1186_s13287_020_01824_2 crossref_primary_10_1007_s13770_022_00469_x crossref_primary_10_1039_D2TB00478J crossref_primary_10_1002_jev2_12386 crossref_primary_10_1007_s11427_021_1997_2 crossref_primary_10_1016_j_actbio_2020_07_011 crossref_primary_10_1016_j_carbpol_2020_116522 crossref_primary_10_1021_acsnano_4c09190 crossref_primary_10_1155_2021_4758364 crossref_primary_10_4155_fmc_2020_0071 crossref_primary_10_1096_fj_202400359R crossref_primary_10_1016_j_ijpharm_2021_121136 crossref_primary_10_1186_s12929_021_00736_4 crossref_primary_10_1186_s13287_019_1230_0 crossref_primary_10_1155_2019_3612020 crossref_primary_10_1155_2020_4176926 crossref_primary_10_1021_acsbiomaterials_9b01681 crossref_primary_10_1186_s12974_022_02578_9 crossref_primary_10_1186_s13287_020_01761_0 crossref_primary_10_1021_acsami_8b08449 crossref_primary_10_1002_adhm_202201384 crossref_primary_10_1016_j_reth_2024_01_009 crossref_primary_10_1039_D1TB01455B crossref_primary_10_1016_j_actbio_2020_10_038 crossref_primary_10_1016_j_cellimm_2024_104813 crossref_primary_10_1186_s13287_019_1302_1 crossref_primary_10_1021_acsami_2c04686 crossref_primary_10_1186_s13287_020_01668_w crossref_primary_10_1007_s12265_023_10438_x crossref_primary_10_1111_jcmm_14615 crossref_primary_10_1186_s13287_021_02650_w crossref_primary_10_1016_j_ccr_2023_215052 crossref_primary_10_1016_j_cej_2024_150002 crossref_primary_10_1039_D1CS00343G crossref_primary_10_1089_ten_teb_2019_0252 crossref_primary_10_1111_jcmm_17689 crossref_primary_10_2174_1574888X15666200211102203 crossref_primary_10_3389_fbioe_2023_1136453 crossref_primary_10_4252_wjsc_v13_i7_776 crossref_primary_10_1021_acsabm_0c00333 crossref_primary_10_1021_acsbiomaterials_0c01286 crossref_primary_10_1186_s12951_023_02167_9 crossref_primary_10_1007_s11306_023_01986_z crossref_primary_10_1111_jcmm_16192 crossref_primary_10_3390_biomedicines11051487 |
Cites_doi | 10.1161/CIRCRESAHA.113.300636 10.1038/ncb1800 10.1161/CIRCRESAHA.114.300639 10.1681/ASN.2015050578 10.1371/journal.pone.0115316 10.1016/j.stem.2012.02.005 10.1016/j.biomaterials.2015.04.046 10.1161/CIRCRESAHA.114.300584 10.1016/j.stem.2012.04.009 10.1161/CIRCRESAHA.113.301577 10.3389/fphys.2016.00024 10.1016/j.cell.2016.01.043 10.1038/nrm.2015.15 10.1161/01.CIR.0000124062.31102.57 10.1093/cvr/cvq290 10.1038/ncb1596 10.1126/scisignal.2000610 10.1002/stem.2298 10.1038/srep08718 10.5966/sctm.2014-0267 10.1016/j.stem.2009.02.001 10.1038/nm.2753 10.1016/S0092-8674(00)81520-2 10.1016/j.biomaterials.2013.07.045 10.1038/srep28250 10.1016/S0741-5214(97)70045-4 10.1016/j.devcel.2008.07.008 10.1146/annurev-cellbio-101512-122326 10.1155/2016/3409169 10.1038/sj.bjp.0707224 10.1161/01.RES.80.6.845 10.1016/j.stem.2011.06.008 10.1038/ncomms9472 10.1038/nature15756 10.1161/CIRCRESAHA.111.253286 10.3727/096368916X692726 10.1002/stem.1771 10.1155/2016/4328362 10.1152/ajpheart.00954.2003 10.1155/2016/1314709 10.1111/jcmm.12489 10.1073/pnas.1522297113 10.1002/jcp.24056 10.1182/blood-2012-01-407106 10.1016/j.ccr.2008.10.005 10.1186/1478-811X-12-26 10.1016/j.jconrel.2015.03.033 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2017.04.030 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 81 |
ExternalDocumentID | 28433939 10_1016_j_biomaterials_2017_04_030 S014296121730265X 1_s2_0_S014296121730265X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c593t-cc4ed17091e59e693496159627e8e046555cfce1a27fbd650b618bb8dc3fb89f3 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Tue Aug 05 11:25:01 EDT 2025 Mon Jul 21 10:07:14 EDT 2025 Wed Feb 19 02:43:42 EST 2025 Tue Jul 01 01:19:31 EDT 2025 Thu Apr 24 22:53:15 EDT 2025 Fri Feb 23 02:31:37 EST 2024 Tue Feb 25 19:57:18 EST 2025 Tue Aug 26 20:00:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Angiogenesis miR-126 Exosome Nitric oxide Vascular endothelial growth factor (VEGF) Mesenchymal stem cell(MSC) |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c593t-cc4ed17091e59e693496159627e8e046555cfce1a27fbd650b618bb8dc3fb89f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28433939 |
PQID | 1891455865 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000403486 proquest_miscellaneous_1891455865 pubmed_primary_28433939 crossref_primary_10_1016_j_biomaterials_2017_04_030 crossref_citationtrail_10_1016_j_biomaterials_2017_04_030 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2017_04_030 elsevier_clinicalkeyesjournals_1_s2_0_S014296121730265X elsevier_clinicalkey_doi_10_1016_j_biomaterials_2017_04_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Karp, Leng Teo (bib1) 2009; 4 van Hoof, Parker (bib46) 1999; 99 Lopatina, Bruno, Tetta, Kalinina, Porta, Camussi (bib17) 2014; 12 Xie, Li, Adesanya, Guo, Liu, Fu, Kilic, Tan, Zhu, Xie (bib40) 2016; 20 Liang, Li, Ma, Han, Du, Geng, Jia, Zhao, Wang, Zhang, Feng, Zhao, Rupin, Wang, Han (bib24) 2017; 26 Chen, Liu, Hong, Zhang, Chen, Xiao, Wang, Yao, Ba, Liu, Guo, Zhong (bib15) 2014; 9 Sahoo, Losordo (bib7) 2014; 114 Yao, Liu, Gao, Yang, Mao, Stefanitsch, Li, Zhang, Ou, Kong, Zhao, Li (bib22) 2015; 60 Caplan, Correa (bib35) 2011; 9 Ranganath, Levy, Inamdar, Karp (bib3) 2012; 10 Rossini, Frati, Lagrasta, Graiani, Scopece, Cavalli, Musso, Baccarin, Di Segni, Fagnoni, Germani, Quaini, Mayr, Xu, Barbuti, DiFrancesco, Pompilio, Quaini, Gaetano, Capogrossi (bib37) 2011; 89 Niiyama, Huang, Rollins, Cooke (bib28) 2009 Feng, Zhang, Li, Nie, Zhu, Wang, Liu, Gao, Liu, He, Du, Tao, Che, Xu, Kong, Zhao, Li (bib29) 2016; 27 Kim, Nishida, An, Shetty, Bartosh, Prockop (bib5) 2016; 113 Yellon, Davidson (bib39) 2014; 114 Ye, Fan, Yu, Chang, Al Hezaimi, Zhou, Park, Wang (bib34) 2012; 11 Zhang, Wang, Gong, Zhang, Wu, Zhu, Shi, Wu, Zhu, Qian, Xu (bib10) 2015; 33 Valadi, Ekstrom, Bossios, Sjostrand, Lee, Lotvall (bib42) 2007; 9 Kinnaird, Stabile, Burnett, Shou, Lee, Barr, Fuchs, Epstein (bib31) 2004; 109 Zhang, Wu, Zhang, Sun, Yan, Shi, Zhu, Wu, Pan, Zhu, Qian, Xu (bib9) 2015; 4 Phinney, Di Giuseppe, Njah, Sala, Shiva, St Croix, Stolz, Watkins, Di, Leikauf, Kolls, Riches, Deiuliis, Kaminski, Boregowda, McKenna, Ortiz (bib4) 2015; 6 Colombo, Raposo, Thery (bib16) 2014; 30 Qin, Yang, Cui, Critz, Cohen, Browner, Lincoln, Downey (bib21) 2004; 287 Alcayaga-Miranda, Varas-Godoy, Khoury (bib6) 2016; 2016 Hoshino, Costa-Silva, Shen, Rodrigues, Hashimoto, Tesic Mark, Molina, Kohsaka, Di Giannatale, Ceder, Singh, Williams, Soplop, Uryu, Pharmer, King, Bojmar, Davies, Ararso, Zhang, Zhang, Hernandez, Weiss, Dumont-Cole, Kramer, Wexler, Narendran, Schwartz, Healey, Sandstrom, Labori, Kure, Grandgenett, Hollingsworth, de Sousa, Kaur, Jain, Mallya, Batra, Jarnagin, Brady, Fodstad, Muller, Pantel, Minn, Bissell, Garcia, Kang, Rajasekhar, Ghajar, Matei, Peinado, Bromberg, Lyden (bib25) 2015; 527 Chen, Min, Wang, Leung, Shi, Zhou, Yu, Wang, An, Sha, Chen (bib20) 2015; 5 Sahoo, Klychko, Thorne, Misener, Schultz, Millay, Ito, Liu, Kamide, Agrawal, Perlman, Qin, Kishore, Losordo (bib11) 2011; 109 Miller, Megson (bib44) 2007; 151 Skog, Wurdinger, van Rijn, Meijer, Gainche, Sena-Esteves, Curry, Carter, Krichevsky, Breakefield (bib49) 2008; 10 Kilpinen, Impola, Sankkila, Ritamo, Aatonen, Kilpinen, Tuimala, Valmu, Levijoki, Finckenberg, Siljander, Kankuri, Mervaala, Laitinen (bib43) 2013; 2 Waldenstrom, Ronquist (bib38) 2014; 114 Ziche, Parenti, Ledda, Dell'Era, Granger, Maggi, Presta (bib19) 1997; 80 Kachgal, Carrion, Janson, Putnam (bib36) 2012; 227 Peinado, Aleckovic, Lavotshkin, Matei, Costa-Silva, Moreno-Bueno, Hergueta-Redondo, Williams, Garcia-Santos, Ghajar, Nitadori-Hoshino, Hoffman, Badal, Garcia, Callahan, Yuan, Martins, Skog, Kaplan, Brady, Wolchok, Chapman, Kang, Bromberg, Lyden (bib27) 2012; 18 Rutherford, Baker, Ernst, Johnston, Porter, Ahn, Jones (bib30) 1997; 26 Zernecke, Bidzhekov, Noels, Shagdarsuren, Gan, Denecke, Hristov, Koppel, Jahantigh, Lutgens, Wang, Olson, Schober, Weber (bib50) 2009; 2 Tao, Han, Han, Li (bib2) 2016; 2016 Tkach, Thery (bib12) 2016; 164 Kilchert, Wittmann, Vasiljeva (bib45) 2016; 17 Fish, Santoro, Morton, Yu, Yeh, Wythe, Ivey, Bruneau, Stainier, Srivastava (bib33) 2008; 15 Mocharla, Briand, Giannotti, Dorries, Jakob, Paneni, Luscher, Landmesser (bib47) 2013; 121 Loscalzo (bib18) 2013; 113 Merino-Gonzalez, Zuniga, Escudero, Ormazabal, Reyes, Nova-Lamperti, Salomon, Aguayo (bib41) 2016; 7 Anderson, Johansson, Graham, Vesterlund, Pham, Bramlett, Montgomery, Mellema, Bardini, Contreras, Hoon, Bauer, Fink, Fury, Hendrix, Chedin, El-Andaloussi, Hwang, Mulligan, Lehtio, Nolta (bib14) 2016; 34 Haney, Klyachko, Zhao, Gupta, Plotnikova, He, Patel, Piroyan, Sokolsky, Kabanov, Batrakova (bib13) 2015; 207 Würdinger, Tannous, Saydam, Skog, Grau, Soutschek, Weissleder, Breakefield, Krichevsky (bib48) 2008; 14 Lu, Liu, Yang, Zhao, Wang, Gong, Han, Xu, Lu, Liu, Chen, Han (bib23) 2006; 91 Cai, Shen, Song, Lu, Wang, Zhao, Tang, Meng, Li, He (bib32) 2016; 6 Zhang, Xiang, Meng, Sun, Chen (bib8) 2016; 2016 Zhao, Zhang, Song, Ji, Yao, Cui, Shen, Wang, Kong (bib26) 2013; 34 Cai (10.1016/j.biomaterials.2017.04.030_bib32) 2016; 6 Miller (10.1016/j.biomaterials.2017.04.030_bib44) 2007; 151 Waldenstrom (10.1016/j.biomaterials.2017.04.030_bib38) 2014; 114 Sahoo (10.1016/j.biomaterials.2017.04.030_bib11) 2011; 109 Fish (10.1016/j.biomaterials.2017.04.030_bib33) 2008; 15 Ziche (10.1016/j.biomaterials.2017.04.030_bib19) 1997; 80 Zhang (10.1016/j.biomaterials.2017.04.030_bib9) 2015; 4 Kilpinen (10.1016/j.biomaterials.2017.04.030_bib43) 2013; 2 Phinney (10.1016/j.biomaterials.2017.04.030_bib4) 2015; 6 Merino-Gonzalez (10.1016/j.biomaterials.2017.04.030_bib41) 2016; 7 Anderson (10.1016/j.biomaterials.2017.04.030_bib14) 2016; 34 Kilchert (10.1016/j.biomaterials.2017.04.030_bib45) 2016; 17 Haney (10.1016/j.biomaterials.2017.04.030_bib13) 2015; 207 Colombo (10.1016/j.biomaterials.2017.04.030_bib16) 2014; 30 Loscalzo (10.1016/j.biomaterials.2017.04.030_bib18) 2013; 113 Liang (10.1016/j.biomaterials.2017.04.030_bib24) 2017; 26 Mocharla (10.1016/j.biomaterials.2017.04.030_bib47) 2013; 121 Niiyama (10.1016/j.biomaterials.2017.04.030_bib28) 2009 Rossini (10.1016/j.biomaterials.2017.04.030_bib37) 2011; 89 Würdinger (10.1016/j.biomaterials.2017.04.030_bib48) 2008; 14 Tkach (10.1016/j.biomaterials.2017.04.030_bib12) 2016; 164 Yao (10.1016/j.biomaterials.2017.04.030_bib22) 2015; 60 Feng (10.1016/j.biomaterials.2017.04.030_bib29) 2016; 27 Zhang (10.1016/j.biomaterials.2017.04.030_bib10) 2015; 33 Peinado (10.1016/j.biomaterials.2017.04.030_bib27) 2012; 18 Skog (10.1016/j.biomaterials.2017.04.030_bib49) 2008; 10 Kim (10.1016/j.biomaterials.2017.04.030_bib5) 2016; 113 Qin (10.1016/j.biomaterials.2017.04.030_bib21) 2004; 287 Kachgal (10.1016/j.biomaterials.2017.04.030_bib36) 2012; 227 Tao (10.1016/j.biomaterials.2017.04.030_bib2) 2016; 2016 van Hoof (10.1016/j.biomaterials.2017.04.030_bib46) 1999; 99 Chen (10.1016/j.biomaterials.2017.04.030_bib20) 2015; 5 Lu (10.1016/j.biomaterials.2017.04.030_bib23) 2006; 91 Zhao (10.1016/j.biomaterials.2017.04.030_bib26) 2013; 34 Rutherford (10.1016/j.biomaterials.2017.04.030_bib30) 1997; 26 Zernecke (10.1016/j.biomaterials.2017.04.030_bib50) 2009; 2 Chen (10.1016/j.biomaterials.2017.04.030_bib15) 2014; 9 Ye (10.1016/j.biomaterials.2017.04.030_bib34) 2012; 11 Alcayaga-Miranda (10.1016/j.biomaterials.2017.04.030_bib6) 2016; 2016 Sahoo (10.1016/j.biomaterials.2017.04.030_bib7) 2014; 114 Valadi (10.1016/j.biomaterials.2017.04.030_bib42) 2007; 9 Ranganath (10.1016/j.biomaterials.2017.04.030_bib3) 2012; 10 Xie (10.1016/j.biomaterials.2017.04.030_bib40) 2016; 20 Caplan (10.1016/j.biomaterials.2017.04.030_bib35) 2011; 9 Zhang (10.1016/j.biomaterials.2017.04.030_bib8) 2016; 2016 Hoshino (10.1016/j.biomaterials.2017.04.030_bib25) 2015; 527 Lopatina (10.1016/j.biomaterials.2017.04.030_bib17) 2014; 12 Yellon (10.1016/j.biomaterials.2017.04.030_bib39) 2014; 114 Kinnaird (10.1016/j.biomaterials.2017.04.030_bib31) 2004; 109 Karp (10.1016/j.biomaterials.2017.04.030_bib1) 2009; 4 |
References_xml | – volume: 18 start-page: 883 year: 2012 end-page: 891 ident: bib27 article-title: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET publication-title: Nat. Med. – volume: 109 start-page: 1543 year: 2004 end-page: 1549 ident: bib31 article-title: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms publication-title: Circulation – volume: 2 start-page: 81 year: 2009 end-page: 94 ident: bib50 article-title: Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection publication-title: Sci. Signal – volume: 34 start-page: 8450 year: 2013 end-page: 8458 ident: bib26 article-title: Polysaccharide-based biomaterials with on-demand nitric oxide releasing property regulated by enzyme catalysis publication-title: Biomaterials – volume: 121 start-page: 226 year: 2013 end-page: 236 ident: bib47 article-title: AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics publication-title: Blood – volume: 6 start-page: 28250 year: 2016 ident: bib32 article-title: Bone marrow mesenchymal stem cells (BM-MSCs) improve heart function in swine myocardial infarction model through paracrine effects publication-title: Sci. Rep. – volume: 10 start-page: 1470 year: 2008 end-page: 1486 ident: bib49 article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers publication-title: Nat. Cell Biol. – volume: 164 start-page: 1226 year: 2016 end-page: 1232 ident: bib12 article-title: Communication by extracellular vesicles: where we are and where we need to go publication-title: Cell – volume: 2016 start-page: 3409169 year: 2016 ident: bib6 article-title: Harnessing the angiogenic potential of stem cell-derived exosomes for vascular regeneration publication-title: Stem Cells Int. – volume: 287 start-page: 712 year: 2004 end-page: 718 ident: bib21 article-title: Exogenous NO triggers preconditioning via a cGMP- and mitoKATP-dependent mechanism publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 15 start-page: 272 year: 2008 end-page: 284 ident: bib33 article-title: miR-126 regulates angiogenic signaling and vascular integrity publication-title: Dev. Cell – volume: 4 start-page: 206 year: 2009 end-page: 216 ident: bib1 article-title: Mesenchymal stem cell homing: the devil is in the details publication-title: Cell Stem Cell – volume: 113 start-page: 170 year: 2016 end-page: 175 ident: bib5 article-title: Chromatographically isolated CD63+CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 27 start-page: 2357 year: 2016 end-page: 2369 ident: bib29 article-title: IGF-1 C domain-modified hydrogel enhances cell therapy for AKI publication-title: J. Am. Soc. Nephrol. – volume: 527 start-page: 329 year: 2015 end-page: 335 ident: bib25 article-title: Tumour exosome integrins determine organotropic metastasis publication-title: Nature – volume: 80 start-page: 845 year: 1997 end-page: 852 ident: bib19 article-title: Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF publication-title: Circ. Res. – volume: 14 start-page: 382 year: 2008 end-page: 393 ident: bib48 article-title: miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells publication-title: Cancer Cell – volume: 7 start-page: 24 year: 2016 ident: bib41 article-title: Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potential clinical application publication-title: Front. Physiol. – volume: 9 start-page: 654 year: 2007 end-page: 659 ident: bib42 article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat. Cell Biol. – volume: 26 start-page: 517 year: 1997 end-page: 538 ident: bib30 article-title: Recommended standards for reports dealing with lower extremity ischemia: revised version publication-title: J. Vasc. Surg. – volume: 2 start-page: 1 year: 2013 end-page: 15 ident: bib43 article-title: Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning publication-title: J. Extracell. Vesicles – volume: 91 start-page: 1017 year: 2006 end-page: 1026 ident: bib23 article-title: Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials publication-title: Haematologica – volume: 99 start-page: 347 year: 1999 end-page: 350 ident: bib46 article-title: The exosome publication-title: Cell – volume: 109 start-page: 724 year: 2011 end-page: 728 ident: bib11 article-title: Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity publication-title: Circ. Res. – volume: 6 start-page: 8472 year: 2015 ident: bib4 article-title: Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs publication-title: Nat. Commun. – volume: 113 start-page: 100 year: 2013 end-page: 103 ident: bib18 article-title: The identification of nitric oxide as endothelium-derived relaxing factor publication-title: Circ. Res. – volume: 89 start-page: 650 year: 2011 end-page: 660 ident: bib37 article-title: Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin publication-title: Cardiovasc Res. – volume: 60 start-page: 130 year: 2015 end-page: 140 ident: bib22 article-title: Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction publication-title: Biomaterials – volume: 2016 start-page: 4328362 year: 2016 ident: bib8 article-title: Inhibition of myocardial ischemia/reperfusion injury by exosomes secreted from mesenchymal stem cells publication-title: Stem Cells Int. – volume: 30 start-page: 255 year: 2014 end-page: 289 ident: bib16 article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles publication-title: Annu. Rev. Cell Dev. Biol. – volume: 26 start-page: 45 year: 2017 end-page: 61 ident: bib24 article-title: Transplantation of human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats publication-title: Cell Transpl. – volume: 114 start-page: 325 year: 2014 end-page: 332 ident: bib39 article-title: Exosomes: nanoparticles involved in cardioprotection? publication-title: Circ. Res. – volume: 17 start-page: 227 year: 2016 end-page: 239 ident: bib45 article-title: The regulation and functions of the nuclear RNA exosome complex publication-title: Nat. Rev. Mol. Cell Biol. – volume: 2016 start-page: 1314709 year: 2016 ident: bib2 article-title: Proangiogenic features of mesenchymal stem cells and their therapeutic applications publication-title: Stem Cells Int. – volume: 12 start-page: 1 year: 2014 end-page: 12 ident: bib17 article-title: Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential publication-title: Cell Commun. Signal – volume: 4 start-page: 513 year: 2015 end-page: 522 ident: bib9 article-title: Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/beta-catenin pathway publication-title: Stem Cells Transl. Med. – volume: 151 start-page: 305 year: 2007 end-page: 321 ident: bib44 article-title: Recent developments in nitric oxide donor drugs publication-title: Br. J. Pharmacol. – volume: 20 start-page: 29 year: 2016 end-page: 37 ident: bib40 article-title: Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice publication-title: J. Cell Mol. Med. – volume: 5 start-page: 8718 year: 2015 end-page: 8732 ident: bib20 article-title: Pre-activation of mesenchymal stem cells with TNF-alpha, IL-1beta and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury publication-title: Sci. Rep. – volume: 114 start-page: 315 year: 2014 end-page: 324 ident: bib38 article-title: Role of exosomes in myocardial remodeling publication-title: Circ. Res. – volume: 33 start-page: 2158 year: 2015 end-page: 2168 ident: bib10 article-title: HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing publication-title: Stem Cells – volume: 11 start-page: 50 year: 2012 end-page: 61 ident: bib34 article-title: Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs publication-title: Cell Stem Cell – volume: 227 start-page: 3546 year: 2012 end-page: 3555 ident: bib36 article-title: Bone marrow stromal cells stimulate an angiogenic program that requires endothelial MT1-MMP publication-title: J. Cell Physiol. – start-page: e1035 year: 2009 ident: bib28 article-title: Murine model of hindlimb ischemia publication-title: J. Vis. Exp. – volume: 9 start-page: 11 year: 2011 end-page: 15 ident: bib35 article-title: The MSC: an injury drugstore publication-title: Cell Stem Cell – volume: 34 start-page: 601 year: 2016 end-page: 613 ident: bib14 article-title: Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappab signaling publication-title: Stem Cells – volume: 207 start-page: 18 year: 2015 end-page: 30 ident: bib13 article-title: Exosomes as drug delivery vehicles for Parkinson's disease therapy publication-title: J. Control Release – volume: 10 start-page: 244 year: 2012 end-page: 258 ident: bib3 article-title: Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease publication-title: Cell Stem Cell – volume: 114 start-page: 333 year: 2014 end-page: 344 ident: bib7 article-title: Exosomes and cardiac repair after myocardial infarction publication-title: Circ. Res. – volume: 9 start-page: 1 year: 2014 end-page: 16 ident: bib15 article-title: Proangiogenic compositions of microvesicles derived from human umbilical cord mesenchymal stem cells publication-title: PLoS One – volume: 114 start-page: 325 year: 2014 ident: 10.1016/j.biomaterials.2017.04.030_bib39 article-title: Exosomes: nanoparticles involved in cardioprotection? publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.113.300636 – volume: 10 start-page: 1470 year: 2008 ident: 10.1016/j.biomaterials.2017.04.030_bib49 article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers publication-title: Nat. Cell Biol. doi: 10.1038/ncb1800 – volume: 114 start-page: 333 year: 2014 ident: 10.1016/j.biomaterials.2017.04.030_bib7 article-title: Exosomes and cardiac repair after myocardial infarction publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.114.300639 – volume: 27 start-page: 2357 year: 2016 ident: 10.1016/j.biomaterials.2017.04.030_bib29 article-title: IGF-1 C domain-modified hydrogel enhances cell therapy for AKI publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2015050578 – volume: 9 start-page: 1 year: 2014 ident: 10.1016/j.biomaterials.2017.04.030_bib15 article-title: Proangiogenic compositions of microvesicles derived from human umbilical cord mesenchymal stem cells publication-title: PLoS One doi: 10.1371/journal.pone.0115316 – volume: 10 start-page: 244 year: 2012 ident: 10.1016/j.biomaterials.2017.04.030_bib3 article-title: Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.02.005 – volume: 60 start-page: 130 year: 2015 ident: 10.1016/j.biomaterials.2017.04.030_bib22 article-title: Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.04.046 – volume: 114 start-page: 315 year: 2014 ident: 10.1016/j.biomaterials.2017.04.030_bib38 article-title: Role of exosomes in myocardial remodeling publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.114.300584 – volume: 11 start-page: 50 year: 2012 ident: 10.1016/j.biomaterials.2017.04.030_bib34 article-title: Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.04.009 – volume: 113 start-page: 100 year: 2013 ident: 10.1016/j.biomaterials.2017.04.030_bib18 article-title: The identification of nitric oxide as endothelium-derived relaxing factor publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.113.301577 – volume: 7 start-page: 24 year: 2016 ident: 10.1016/j.biomaterials.2017.04.030_bib41 article-title: Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potential clinical application publication-title: Front. Physiol. doi: 10.3389/fphys.2016.00024 – volume: 164 start-page: 1226 year: 2016 ident: 10.1016/j.biomaterials.2017.04.030_bib12 article-title: Communication by extracellular vesicles: where we are and where we need to go publication-title: Cell doi: 10.1016/j.cell.2016.01.043 – volume: 17 start-page: 227 year: 2016 ident: 10.1016/j.biomaterials.2017.04.030_bib45 article-title: The regulation and functions of the nuclear RNA exosome complex publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2015.15 – volume: 109 start-page: 1543 year: 2004 ident: 10.1016/j.biomaterials.2017.04.030_bib31 article-title: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms publication-title: Circulation doi: 10.1161/01.CIR.0000124062.31102.57 – volume: 91 start-page: 1017 year: 2006 ident: 10.1016/j.biomaterials.2017.04.030_bib23 article-title: Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials publication-title: Haematologica – volume: 2 start-page: 1 year: 2013 ident: 10.1016/j.biomaterials.2017.04.030_bib43 article-title: Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning publication-title: J. Extracell. Vesicles – volume: 89 start-page: 650 year: 2011 ident: 10.1016/j.biomaterials.2017.04.030_bib37 article-title: Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin publication-title: Cardiovasc Res. doi: 10.1093/cvr/cvq290 – volume: 9 start-page: 654 year: 2007 ident: 10.1016/j.biomaterials.2017.04.030_bib42 article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb1596 – volume: 2 start-page: 81 year: 2009 ident: 10.1016/j.biomaterials.2017.04.030_bib50 article-title: Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection publication-title: Sci. Signal doi: 10.1126/scisignal.2000610 – volume: 34 start-page: 601 year: 2016 ident: 10.1016/j.biomaterials.2017.04.030_bib14 article-title: Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappab signaling publication-title: Stem Cells doi: 10.1002/stem.2298 – volume: 5 start-page: 8718 year: 2015 ident: 10.1016/j.biomaterials.2017.04.030_bib20 article-title: Pre-activation of mesenchymal stem cells with TNF-alpha, IL-1beta and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury publication-title: Sci. Rep. doi: 10.1038/srep08718 – volume: 4 start-page: 513 year: 2015 ident: 10.1016/j.biomaterials.2017.04.030_bib9 article-title: Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/beta-catenin pathway publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2014-0267 – volume: 4 start-page: 206 year: 2009 ident: 10.1016/j.biomaterials.2017.04.030_bib1 article-title: Mesenchymal stem cell homing: the devil is in the details publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.02.001 – volume: 18 start-page: 883 year: 2012 ident: 10.1016/j.biomaterials.2017.04.030_bib27 article-title: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET publication-title: Nat. Med. doi: 10.1038/nm.2753 – start-page: e1035 issue: 23 year: 2009 ident: 10.1016/j.biomaterials.2017.04.030_bib28 article-title: Murine model of hindlimb ischemia publication-title: J. Vis. Exp. – volume: 99 start-page: 347 year: 1999 ident: 10.1016/j.biomaterials.2017.04.030_bib46 article-title: The exosome publication-title: Cell doi: 10.1016/S0092-8674(00)81520-2 – volume: 34 start-page: 8450 year: 2013 ident: 10.1016/j.biomaterials.2017.04.030_bib26 article-title: Polysaccharide-based biomaterials with on-demand nitric oxide releasing property regulated by enzyme catalysis publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.07.045 – volume: 6 start-page: 28250 year: 2016 ident: 10.1016/j.biomaterials.2017.04.030_bib32 article-title: Bone marrow mesenchymal stem cells (BM-MSCs) improve heart function in swine myocardial infarction model through paracrine effects publication-title: Sci. Rep. doi: 10.1038/srep28250 – volume: 26 start-page: 517 year: 1997 ident: 10.1016/j.biomaterials.2017.04.030_bib30 article-title: Recommended standards for reports dealing with lower extremity ischemia: revised version publication-title: J. Vasc. Surg. doi: 10.1016/S0741-5214(97)70045-4 – volume: 15 start-page: 272 year: 2008 ident: 10.1016/j.biomaterials.2017.04.030_bib33 article-title: miR-126 regulates angiogenic signaling and vascular integrity publication-title: Dev. Cell doi: 10.1016/j.devcel.2008.07.008 – volume: 30 start-page: 255 year: 2014 ident: 10.1016/j.biomaterials.2017.04.030_bib16 article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-101512-122326 – volume: 2016 start-page: 3409169 year: 2016 ident: 10.1016/j.biomaterials.2017.04.030_bib6 article-title: Harnessing the angiogenic potential of stem cell-derived exosomes for vascular regeneration publication-title: Stem Cells Int. doi: 10.1155/2016/3409169 – volume: 151 start-page: 305 year: 2007 ident: 10.1016/j.biomaterials.2017.04.030_bib44 article-title: Recent developments in nitric oxide donor drugs publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0707224 – volume: 80 start-page: 845 year: 1997 ident: 10.1016/j.biomaterials.2017.04.030_bib19 article-title: Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF publication-title: Circ. Res. doi: 10.1161/01.RES.80.6.845 – volume: 9 start-page: 11 year: 2011 ident: 10.1016/j.biomaterials.2017.04.030_bib35 article-title: The MSC: an injury drugstore publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.06.008 – volume: 6 start-page: 8472 year: 2015 ident: 10.1016/j.biomaterials.2017.04.030_bib4 article-title: Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs publication-title: Nat. Commun. doi: 10.1038/ncomms9472 – volume: 527 start-page: 329 year: 2015 ident: 10.1016/j.biomaterials.2017.04.030_bib25 article-title: Tumour exosome integrins determine organotropic metastasis publication-title: Nature doi: 10.1038/nature15756 – volume: 109 start-page: 724 year: 2011 ident: 10.1016/j.biomaterials.2017.04.030_bib11 article-title: Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.111.253286 – volume: 26 start-page: 45 year: 2017 ident: 10.1016/j.biomaterials.2017.04.030_bib24 article-title: Transplantation of human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats publication-title: Cell Transpl. doi: 10.3727/096368916X692726 – volume: 33 start-page: 2158 year: 2015 ident: 10.1016/j.biomaterials.2017.04.030_bib10 article-title: HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing publication-title: Stem Cells doi: 10.1002/stem.1771 – volume: 2016 start-page: 4328362 year: 2016 ident: 10.1016/j.biomaterials.2017.04.030_bib8 article-title: Inhibition of myocardial ischemia/reperfusion injury by exosomes secreted from mesenchymal stem cells publication-title: Stem Cells Int. doi: 10.1155/2016/4328362 – volume: 287 start-page: 712 year: 2004 ident: 10.1016/j.biomaterials.2017.04.030_bib21 article-title: Exogenous NO triggers preconditioning via a cGMP- and mitoKATP-dependent mechanism publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00954.2003 – volume: 2016 start-page: 1314709 year: 2016 ident: 10.1016/j.biomaterials.2017.04.030_bib2 article-title: Proangiogenic features of mesenchymal stem cells and their therapeutic applications publication-title: Stem Cells Int. doi: 10.1155/2016/1314709 – volume: 20 start-page: 29 year: 2016 ident: 10.1016/j.biomaterials.2017.04.030_bib40 article-title: Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.12489 – volume: 113 start-page: 170 year: 2016 ident: 10.1016/j.biomaterials.2017.04.030_bib5 article-title: Chromatographically isolated CD63+CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1522297113 – volume: 227 start-page: 3546 year: 2012 ident: 10.1016/j.biomaterials.2017.04.030_bib36 article-title: Bone marrow stromal cells stimulate an angiogenic program that requires endothelial MT1-MMP publication-title: J. Cell Physiol. doi: 10.1002/jcp.24056 – volume: 121 start-page: 226 year: 2013 ident: 10.1016/j.biomaterials.2017.04.030_bib47 article-title: AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics publication-title: Blood doi: 10.1182/blood-2012-01-407106 – volume: 14 start-page: 382 year: 2008 ident: 10.1016/j.biomaterials.2017.04.030_bib48 article-title: miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.10.005 – volume: 12 start-page: 1 year: 2014 ident: 10.1016/j.biomaterials.2017.04.030_bib17 article-title: Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential publication-title: Cell Commun. Signal doi: 10.1186/1478-811X-12-26 – volume: 207 start-page: 18 year: 2015 ident: 10.1016/j.biomaterials.2017.04.030_bib13 article-title: Exosomes as drug delivery vehicles for Parkinson's disease therapy publication-title: J. Control Release doi: 10.1016/j.jconrel.2015.03.033 |
SSID | ssj0014042 |
Score | 2.6036994 |
Snippet | Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may provide an... Abstract Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for the treatment of degenerative diseases or injury and may... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 70 |
SubjectTerms | Advanced Basic Science Angiogenesis animal models cell culture Cells, Cultured Dentistry encapsulation Exosome exosomes Exosomes - physiology hindlimbs human umbilical vein endothelial cells Human Umbilical Vein Endothelial Cells - drug effects Human Umbilical Vein Endothelial Cells - metabolism Humans ischemia Mesenchymal stem cell(MSC) Mesenchymal Stromal Cells - drug effects Mesenchymal Stromal Cells - metabolism miR-126 Neovascularization, Physiologic - drug effects Nitric oxide Nitric Oxide - chemistry Nitric Oxide - pharmacology polymers Polymers - chemistry Signal Transduction - drug effects stem cells therapeutics Vascular endothelial growth factor (VEGF) Vascular Endothelial Growth Factor A - metabolism vascular endothelial growth factors |
Title | Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S014296121730265X https://www.clinicalkey.es/playcontent/1-s2.0-S014296121730265X https://dx.doi.org/10.1016/j.biomaterials.2017.04.030 https://www.ncbi.nlm.nih.gov/pubmed/28433939 https://www.proquest.com/docview/1891455865 https://www.proquest.com/docview/2000403486 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CCqU9lDZ9bR9BhV7d9UOSJUoPISRsW5JTA3sTliwRl6y9ZJ2SveS3Z8aPJaUJLPRoe0Y2mtFobH_zDcDn2DotPFrA-sTiCwoXkSodj7SILZely1NB1cgnp3J2xn_MxXwHDsdaGIJVDrG_j-ldtB7OTIfZnC6rakqwpFQTARY6aSrFnCrYeU5e_uVmA_Mg9pi0hzGmEUmPxKMdxotK3Iu2NzXBvPKO9pQQ0fdvUg8lod1mdPwcng1ZJDvoH_QF7Ph6D57e4Rbcg8cnw1_zl7A-qs-7H_2M6qdQqEGvqRxbNi1hhXCgJrAFlSG58_UCD4ncmdEn_ajE0f6gor9uVg2K4KVqQR2_8Jxds4JhRMBIyprrqvSMGrAU9PEBh75YL_zlKzg7Pvp1OIuGlguREzprI-e4L5MckwgvtJea6OSTrkGPVz4mrjXhgvNJkebBlpjdWZkoa9G8WbBKh-w17NZN7d8CQy2Vlj53KgQesoQkBSYrUgQptVIT0OMcGzfwkVNbjAszAs9-m7v2MWQfE3OD9plAttFd9qwcW2l9HU1pxrpTjJQGN4-ttPP7tP1qWPQrk5hVamLzj2NO4NtG8y_f3vrOn0a_M7j4yfxF7ZsrvKPSRDSvpHhYhmqxeJxxJSfwpnfazZxhbpJlOtPv_vMJ38MTOuphzB9gt7288h8xWWvtfrca9-HRwfefs9Nby7RCkg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKkaAcEBRKl08jwTFs4tiJLdQDglZb2u2plfZmYsdRg7rJqkmhufCn-IPM5GNVRCuthHrcxONkPfbzJHnzhpB3vrFKOPCAcYGBBxQuPJla7inhGx6lNmYCs5GnR9HkhH-didka-T3kwiCtssf-DtNbtO6PjPvRHC_yfIy0JKZQAAsmKYvErGdWHrjmJzy3VTv7X8DJ7xnb2z3-PPH60gKeFSqsPWu5S4MYNksnlIsUyqYHbSEaJ52PmmLCZtYFCYszk0IUY6JAGgN_I8yMVFkI_d4hdznABZZN-PBryStBuRrW8SaZh7c3KJ22pDLMqU_qbm4hryxudVaRgn39rnhT1NvufnuPyMM-bKWfupF5TNZcsUkeXBEz3CT3pv1n-iek2S1OW2YBxYQtaFTCNM0tXZQ1kpOgozKjc8x7sqfNHH6imjTFbwheCr39AEN3WVYlNIFT-RxLjMEx09CEAgQBdNPyMk8dxYovCb7tgK7Pmrk7f0pObsURW2S9KAu3TShYSZa62Mos41kYYEsB0VEksihSUo6IGsZY214AHetwnOmB6fZdX_WPRv9on2vwz4iES9tFJwOyktXHwZV6SHQFaNawW61kHV9n7aoeZSod6IppX_-zEkZkZ2n512Ja-cpvh3mnAW3Q_Unhygu4olSobC8jcXMbTP7ifshlNCLPukm7HDMIhsJQher5f97hG3J_cjw91If7RwcvyAae6TjUL8l6fX7hXkGkWJvX7cqk5NttQ8EfK3J-QA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+proangiogenic+potential+of+mesenchymal+stem+cell-derived+exosomes+stimulated+by+a+nitric+oxide+releasing+polymer&rft.jtitle=Biomaterials&rft.au=Du%2C+Wei&rft.au=Zhang%2C+Kaiyue&rft.au=Zhang%2C+Shuaiqiang&rft.au=Wang%2C+Ran&rft.date=2017-07-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=133&rft.spage=70&rft_id=info:doi/10.1016%2Fj.biomaterials.2017.04.030&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961217X00148%2Fcov150h.gif |