Impact of Obstructive Sleep Apnea on the Atrial Electromechanical Activation Time

Background Obstructive sleep apnea (OSA) is closely associated with atrial fibrillation, which is provoked by electrical and structural remodeling. However, the association between OSA and atrial remodeling has not been fully elucidated. Methods and Results Atrial electromechanical activation time (...

Full description

Saved in:
Bibliographic Details
Published inCirculation Journal Vol. 73; no. 2; pp. 249 - 255
Main Authors Kim, Young-Hoon, Kim, Eung Ju, Kim, Yong Hyun, Lim, Hong Euy, Shin, Chol, Kim, Seong Hwan, Pak, Hui-Nam, Baik, Inkyung
Format Journal Article
LanguageEnglish
Published Japan The Japanese Circulation Society 2009
Subjects
Online AccessGet full text
ISSN1346-9843
1347-4820
DOI10.1253/circj.CJ-08-0813

Cover

Abstract Background Obstructive sleep apnea (OSA) is closely associated with atrial fibrillation, which is provoked by electrical and structural remodeling. However, the association between OSA and atrial remodeling has not been fully elucidated. Methods and Results Atrial electromechanical activation time (EMAT) was investigated using tissue Doppler imaging (TDI) in men with severe OSA (n=24) and control subjects (n=24). The EMAT was determined as the time interval from the initiation of P-wave deflection until the peak of local lateral left atrial (LA) TDI signal. The early diastolic velocity of the mitral annulus (Ea) and the EMAT were significantly lower and longer in OSA cases than in controls (Ea: 6.1±0.9 cm/s vs 7.3±1.5 cm/s, P=0.001; EMAT: 129.7±11.5 ms vs 118.5±12.3 ms, P=0.002). Among OSA cases, the apnea - hypopnea index (AHI) was significantly correlated with EMAT (r=0.660, P<0.001), Ea (r=-0.609, P=0.002), LA dimension (r=0.486, P=0.016), and early diastolic velocity of mitral flow (E)/Ea ratio (r=0.418, P=0.042). In multivariate stepwise linear regression analysis, EMAT was independently associated with AHI (P=0.025) and Ea (P=0.028) in OSA cases. Conclusion EMAT measured by TDI could be a useful parameter for identifying atrial remodeling in patients with severe OSA. (Circ J 2009; 73: 249 - 255)
AbstractList Obstructive sleep apnea (OSA) is closely associated with atrial fibrillation, which is provoked by electrical and structural remodeling. However, the association between OSA and atrial remodeling has not been fully elucidated. Atrial electromechanical activation time (EMAT) was investigated using tissue Doppler imaging (TDI) in men with severe OSA (n=24) and control subjects (n=24). The EMAT was determined as the time interval from the initiation of P-wave deflection until the peak of local lateral left atrial (LA) TDI signal. The early diastolic velocity of the mitral annulus (E(a)) and the EMAT were significantly lower and longer in OSA cases than in controls (E(a): 6.1+/-0.9 cm/s vs 7.3+/-1.5 cm/s, P=0.001; EMAT: 129.7+/-11.5 ms vs 118.5+/-12.3 ms, P=0.002). Among OSA cases, the apnea - hypopnea index (AHI) was significantly correlated with EMAT (r=0.660, P<0.001), E(a) (r=-0.609, P=0.002), LA dimension (r=0.486, P=0.016), and early diastolic velocity of mitral flow (E)/E(a) ratio (r=0.418, P=0.042). In multivariate stepwise linear regression analysis, EMAT was independently associated with AHI (P=0.025) and E(a) (P=0.028) in OSA cases. EMAT measured by TDI could be a useful parameter for identifying atrial remodeling in patients with severe OSA.
Background Obstructive sleep apnea (OSA) is closely associated with atrial fibrillation, which is provoked by electrical and structural remodeling. However, the association between OSA and atrial remodeling has not been fully elucidated. Methods and Results Atrial electromechanical activation time (EMAT) was investigated using tissue Doppler imaging (TDI) in men with severe OSA (n=24) and control subjects (n=24). The EMAT was determined as the time interval from the initiation of P-wave deflection until the peak of local lateral left atrial (LA) TDI signal. The early diastolic velocity of the mitral annulus (Ea) and the EMAT were significantly lower and longer in OSA cases than in controls (Ea: 6.1±0.9 cm/s vs 7.3±1.5 cm/s, P=0.001; EMAT: 129.7±11.5 ms vs 118.5±12.3 ms, P=0.002). Among OSA cases, the apnea - hypopnea index (AHI) was significantly correlated with EMAT (r=0.660, P<0.001), Ea (r=-0.609, P=0.002), LA dimension (r=0.486, P=0.016), and early diastolic velocity of mitral flow (E)/Ea ratio (r=0.418, P=0.042). In multivariate stepwise linear regression analysis, EMAT was independently associated with AHI (P=0.025) and Ea (P=0.028) in OSA cases. Conclusion EMAT measured by TDI could be a useful parameter for identifying atrial remodeling in patients with severe OSA. (Circ J 2009; 73: 249 - 255)
Obstructive sleep apnea (OSA) is closely associated with atrial fibrillation, which is provoked by electrical and structural remodeling. However, the association between OSA and atrial remodeling has not been fully elucidated.BACKGROUNDObstructive sleep apnea (OSA) is closely associated with atrial fibrillation, which is provoked by electrical and structural remodeling. However, the association between OSA and atrial remodeling has not been fully elucidated.Atrial electromechanical activation time (EMAT) was investigated using tissue Doppler imaging (TDI) in men with severe OSA (n=24) and control subjects (n=24). The EMAT was determined as the time interval from the initiation of P-wave deflection until the peak of local lateral left atrial (LA) TDI signal. The early diastolic velocity of the mitral annulus (E(a)) and the EMAT were significantly lower and longer in OSA cases than in controls (E(a): 6.1+/-0.9 cm/s vs 7.3+/-1.5 cm/s, P=0.001; EMAT: 129.7+/-11.5 ms vs 118.5+/-12.3 ms, P=0.002). Among OSA cases, the apnea - hypopnea index (AHI) was significantly correlated with EMAT (r=0.660, P<0.001), E(a) (r=-0.609, P=0.002), LA dimension (r=0.486, P=0.016), and early diastolic velocity of mitral flow (E)/E(a) ratio (r=0.418, P=0.042). In multivariate stepwise linear regression analysis, EMAT was independently associated with AHI (P=0.025) and E(a) (P=0.028) in OSA cases.METHODS AND RESULTSAtrial electromechanical activation time (EMAT) was investigated using tissue Doppler imaging (TDI) in men with severe OSA (n=24) and control subjects (n=24). The EMAT was determined as the time interval from the initiation of P-wave deflection until the peak of local lateral left atrial (LA) TDI signal. The early diastolic velocity of the mitral annulus (E(a)) and the EMAT were significantly lower and longer in OSA cases than in controls (E(a): 6.1+/-0.9 cm/s vs 7.3+/-1.5 cm/s, P=0.001; EMAT: 129.7+/-11.5 ms vs 118.5+/-12.3 ms, P=0.002). Among OSA cases, the apnea - hypopnea index (AHI) was significantly correlated with EMAT (r=0.660, P<0.001), E(a) (r=-0.609, P=0.002), LA dimension (r=0.486, P=0.016), and early diastolic velocity of mitral flow (E)/E(a) ratio (r=0.418, P=0.042). In multivariate stepwise linear regression analysis, EMAT was independently associated with AHI (P=0.025) and E(a) (P=0.028) in OSA cases.EMAT measured by TDI could be a useful parameter for identifying atrial remodeling in patients with severe OSA.CONCLUSIONEMAT measured by TDI could be a useful parameter for identifying atrial remodeling in patients with severe OSA.
Author Pak, Hui-Nam
Kim, Yong Hyun
Lim, Hong Euy
Kim, Eung Ju
Kim, Seong Hwan
Kim, Young-Hoon
Shin, Chol
Baik, Inkyung
Author_xml – sequence: 1
  fullname: Kim, Young-Hoon
  organization: Division of Cardiology, Cardiovascular Center
– sequence: 1
  fullname: Kim, Eung Ju
  organization: Division of Cardiology, Cardiovascular Center
– sequence: 1
  fullname: Kim, Yong Hyun
  organization: Division of Cardiology, Cardiovascular Center
– sequence: 1
  fullname: Lim, Hong Euy
  organization: Division of Cardiology, Cardiovascular Center
– sequence: 1
  fullname: Shin, Chol
  organization: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine
– sequence: 1
  fullname: Kim, Seong Hwan
  organization: Division of Cardiology, Cardiovascular Center
– sequence: 1
  fullname: Pak, Hui-Nam
  organization: Division of Cardiology, Cardiovascular Center
– sequence: 1
  fullname: Baik, Inkyung
  organization: Department of Food and Nutrition, College of Natural Science, Kookmin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19106459$$D View this record in MEDLINE/PubMed
BookMark eNp1kMtLxDAQh4Morq-7J-nJWzVp0jY5LourLsIi6jmk06mbpS-TrOB_b_ehC4IQkiF83zDzOyWHbdciIZeM3rAk5bdgHSxvJrOYyuEwfkBOGBd5LGRCDzd1Fisp-Iicer-kNFE0VcdkxBSjmUjVCXl-bHoDIeqqaF744FYQ7CdGLzViH437Fk3UtVFYYDQOzpo6uqsRgusahIVpLQw_47Vigh24V9vgOTmqTO3xYveekbfp3evkIX6a3z9Oxk8xpIqHGGROq0SYMucyZypNjChRKJ5WKhMZJJkqirIAAQZhGDtnw05QFWXKpeSsFPyMXG_79q77WKEPurEesK5Ni93K6yyTQjDGBvBqB66KBkvdO9sY96V_QhiAbAuA67x3WGmwYbNQcMbWmlG9Tltv0taTmaZSr9MeRPpH_O39vzLdKksfzDv-CsYFCzXuhJzrZH3txT2wME5jy78BG1-caQ
CitedBy_id crossref_primary_10_1183_09059180_00004513
crossref_primary_10_1016_j_ijcard_2016_12_120
crossref_primary_10_1253_circj_CJ_09_0562
crossref_primary_10_1016_j_ahj_2023_03_014
crossref_primary_10_1253_circj_CJ_09_0557
crossref_primary_10_1097_CRD_0b013e318223bd08
crossref_primary_10_1111_jcmm_13145
crossref_primary_10_4070_kcj_2015_45_6_479
crossref_primary_10_1097_MCP_0b013e3283328a80
crossref_primary_10_1111_j_1440_1843_2012_02157_x
crossref_primary_10_1155_2013_621736
crossref_primary_10_1016_j_jelectrocard_2011_03_009
crossref_primary_10_20538_1682_0363_2021_2_102_112
Cites_doi 10.1016/0735-1097(93)90381-A
10.1161/01.CIR.0000068337.25994.21
10.1111/j.1540-8167.2007.00723.x
10.1183/09031936.00043306
10.1001/archinternmed.2007.8
10.1016/j.ahj.2004.04.029
10.1093/aje/154.1.50
10.1161/01.CIR.0000118216.84358.22
10.1097/01.hco.0000131538.55528.8f
10.1172/JCI118235
10.1016/0002-9149(86)90771-X
10.1161/01.CIR.0000136587.68725.8E
10.1161/CIRCULATIONAHA.107.727081
10.1016/S0002-8703(00)90048-6
10.1016/j.echo.2005.03.022
10.1097/00004872-200108000-00013
10.1164/rccm.200404-519OC
10.1016/S0735-1097(03)00464-9
10.1001/jama.292.20.2471
10.1016/S0008-6363(02)00258-4
10.1161/01.CIR.83.1.162
10.1016/S0002-9149(02)02864-3
10.1253/circj.70.737
10.1253/circj.71.1636
10.1111/j.1540-8159.2007.00700.x
10.1111/j.1540-8159.2007.00656.x
10.1016/j.amjcard.2006.12.052
10.1016/j.echo.2006.01.009
10.1253/circj.71.252
10.1378/chest.119.1.62
10.1016/j.jacc.2006.08.060
10.1164/rccm.200610-1527OC
ContentType Journal Article
Copyright 2009 THE JAPANESE CIRCULATION SOCIETY
Copyright_xml – notice: 2009 THE JAPANESE CIRCULATION SOCIETY
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1253/circj.CJ-08-0813
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1347-4820
EndPage 255
ExternalDocumentID 19106459
10_1253_circj_CJ_08_0813
article_circj_73_2_73_CJ_08_0813_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
.GJ
29B
2WC
3O-
53G
5GY
5RE
6J9
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
JSF
JSH
KQ8
OK1
OVT
P2P
RJT
RNS
RZJ
TKC
TR2
W2D
X7M
XSB
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RYR
7X8
ID FETCH-LOGICAL-c593t-c870f24ad73871952a4de4935f9646c269bbdbc4caec29071482cfbd538831d43
ISSN 1346-9843
IngestDate Fri Jul 11 07:51:45 EDT 2025
Sat Sep 28 08:40:05 EDT 2024
Thu Apr 24 22:59:16 EDT 2025
Tue Jul 01 02:00:54 EDT 2025
Wed Sep 03 06:29:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c593t-c870f24ad73871952a4de4935f9646c269bbdbc4caec29071482cfbd538831d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/circj/73/2/73_CJ-08-0813/_article/-char/en
PMID 19106459
PQID 66844111
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_66844111
pubmed_primary_19106459
crossref_citationtrail_10_1253_circj_CJ_08_0813
crossref_primary_10_1253_circj_CJ_08_0813
jstage_primary_article_circj_73_2_73_CJ_08_0813_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-00-00
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009-00-00
PublicationDecade 2000
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Circulation Journal
PublicationTitleAlternate Circ J
PublicationYear 2009
Publisher The Japanese Circulation Society
Publisher_xml – name: The Japanese Circulation Society
References 10. Tang M, Zhang S, Sun Q, Huang C. Alterations in electrophysiology and tissue structure of the left atrial posterior wall in a canine model of atrial fibrillation caused by chronic atrial dilatation. Circ J 2007; 71: 1636-1642.
19. Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol 2002; 90: 1284-1289.
29. Otto ME, Belohlavek M, Romero-Corral A, Gami AS, Gilman G, Svatikova A, et al. Comparison of cardiac structural and functional changes in obese otherwise healthy adults with versus without obstructive sleep apnea. Am J Cardiol 2007; 99: 1298-1302.
1. Quan SF, Gersh BJ. Cardiovascular consequences of sleep-disordered breathing: Past, present and future: Report of a workshop from the National Center on Sleep Disorders Research and the National Heart, Lung, and Blood Institute. Circulation 2004; 109: 951-957.
15. Parkash R, Green MS, Kerr CR, Connolly SJ, Klein GJ, Sheldon R, et al. The association of left atrial size and occurrence of atrial fibrillation: A prospective cohort study from the Canadian Registry of Atrial Fibrillation. Am Heart J 2004; 148: 649-654.
24. Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 2002; 54: 230-246.
17. Peterson LR, Waggoner AD, de las Fuentes L, Schechtman KB, McGill JB, Gropler RJ, et al. Alterations in left ventricular structure and function in type-1 diabetics: A focus on left atrial contribution to function. J Am Soc Echocardiogr 2006; 19: 749-755.
9. Kanagala R, Murali NS, Friedman PA, Ammash NM, Gersh BJ, Ballman KV, et al. Obstructive sleep apnea and the recurrence of atrial fibrillation. Circulation 2003; 107: 2589-2594.
12. Baik I, Kim J, Abbott RD, Joo S, Jung K, Lee S, et al. Association of snoring with chronic bronchitis. Arch Intern Med 2008; 168: 167-173.
28. Merckx KL, De Vos CB, Palmans A, Habets J, Cheriex EC, Crijns HJ, et al. Atrial activation time determined by transthoracic Doppler tissue imaging can be used as an estimate of the total duration of atrial electrical activation. J Am Soc Echocardiogr 2005; 18: 940-944.
11. Roshanali F, Mandegar MH, Yousefnia MA, Rayatzadeh H, Alaeddini F, Amouzadeh F. Prediction of atrial fibrillation via atrial electromechanical interval after coronary artery bypass grafting. Circulation 2007; 116: 2012-2017.
23. Ishimoto N, Ito M, Kinoshita M. Signal-averaged P-wave abnormalities and atrial size in patients with and without idiopathic paroxysmal atrial fibrillation. Am Heart J 2000; 139: 684-689.
20. Wang TJ, Parise H, Levy D, D'Agostino RB Sr, Wolf PA, Vasan RS, et al. Obesity and the risk of new-onset atrial fibrillation. JAMA 2004; 292: 2471-2477.
21. Fukunami M, Yamada T, Ohmori M, Kumagai K, Umemoto K, Sakai A, et al. Detection of patients at risk for paroxysmal atrial fibrillation during sinus rhythm by P wave-triggered signal-averaged electrocardiogram. Circulation 1991; 83: 162-169.
18. Umetani K, Kodama Y, Nakamura T, Mende A, Kitta Y, Kawabata K, et al. High prevalence of paroxysmal atrial fibrillation and/or atrial flutter in metabolic syndrome. Circ J 2007; 71: 252-255.
14. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am J Cardiol 1986; 57: 450-458.
16. Dokainish H. Tissue Doppler imaging in the evaluation of left ventricular diastolic function. Curr Opin Cardiol 2004; 19: 437-441.
6. von Kanel R, Le DT, Nelesen RA, Mills PJ, Ancoli-Israel S, Dimsdale JE. The hypercoagulable state in sleep apnea is related to comorbid hypertension. J Hypertens 2001; 19: 1445-1451.
32. Kumagai K, Nakashima H, Urata H, Gondo N, Arakawa K, Saku K. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J Am Coll Cardiol 2003; 41: 2197-2204.
4. Tanriverdi H, Evrengul H, Kaftan A, Kara CO, Kuru O, Tanriverdi S, et al. Effect of obstructive sleep apnea on aortic elastic parameters: Relationship to left ventricular mass and function. Circ J 2006; 70: 737-743.
31. Ip MS, Lam B, Lauder IJ, Tsang KW, Chung KF, Mok YW, et al. A community study of sleep-disordered breathing in middle-aged Chinese men in Hong Kong. Chest 2001; 119: 62-69.
7. Gami AS, Hodge DO, Herges RM, Olson EJ, Nykodym J, Kara T, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J Am Coll Cardiol 2007; 49: 565-571.
3. Iiyori N, Alonso LC, Li J, Sanders MH, Garcia-Ocana A, O'Doherty RM, et al. Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am J Respir Crit Care Med 2007; 175: 851-857.
8. Gami AS, Pressman G, Caples SM, Kanagala R, Gard JJ, Davison DE, et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation 2004; 110: 364-367.
5. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 1995; 96: 1897-1904.
13. Kim J, In K, You S, Kang K, Shim J, Lee S, et al. Prevalence of sleep-disordered breathing in middle-aged Korean men and women. Am J Respir Crit Care Med 2004; 170: 1108-1113.
25. Kojodjojo P, Peters NS, Davies DW, Kanagaratnam P. Characterization of the electroanatomical substrate in human atrial fibrillation: The relationship between changes in atrial volume, refractoriness, wavefront propagation velocities, and AF burden. J Cardiovasc Electrophysiol 2007; 18: 269-275.
26. Budeus M, Felix O, Hennersdorf M, Wieneke H, Erbel R, Sack S. Prediction of conversion from paroxysmal to permanent atrial fibrillation. Pacing Clin Electrophysiol 2007; 30: 243-252.
2. Coughlin SR, Mawdsley L, Mugarza JA, Wilding JP, Calverley PM. Cardiovascular and metabolic effects of CPAP in obese males with OSA. Eur Respir J 2007; 29: 720-727.
22. Guidera SA, Steinberg JS. The signal-averaged P wave duration: A rapid and noninvasive marker of risk of atrial fibrillation. J Am Coll Cardiol 1993; 21: 1645-1651.
27. Chalfoun N, Harnick D, Pe E, Undavia M, Mehta D, Gomes JA. Reverse electrical remodeling of the atria post cardioversion in patients who remain in sinus rhythm assessed by signal averaging of the P-wave. Pacing Clin Electrophysiol 2007; 30: 502-509.
30. Newman AB, Nieto FJ, Guidry U, Lind BK, Redline S, Pickering TG, et al. Relation of sleep-disordered breathing to cardiovascular disease risk factors: The Sleep Heart Health Study. Am J Epidemiol 2001; 154: 50-59.
22
23
24
25
26
27
28
29
30
31
10
32
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 28. Merckx KL, De Vos CB, Palmans A, Habets J, Cheriex EC, Crijns HJ, et al. Atrial activation time determined by transthoracic Doppler tissue imaging can be used as an estimate of the total duration of atrial electrical activation. J Am Soc Echocardiogr 2005; 18: 940-944.
– reference: 21. Fukunami M, Yamada T, Ohmori M, Kumagai K, Umemoto K, Sakai A, et al. Detection of patients at risk for paroxysmal atrial fibrillation during sinus rhythm by P wave-triggered signal-averaged electrocardiogram. Circulation 1991; 83: 162-169.
– reference: 16. Dokainish H. Tissue Doppler imaging in the evaluation of left ventricular diastolic function. Curr Opin Cardiol 2004; 19: 437-441.
– reference: 22. Guidera SA, Steinberg JS. The signal-averaged P wave duration: A rapid and noninvasive marker of risk of atrial fibrillation. J Am Coll Cardiol 1993; 21: 1645-1651.
– reference: 25. Kojodjojo P, Peters NS, Davies DW, Kanagaratnam P. Characterization of the electroanatomical substrate in human atrial fibrillation: The relationship between changes in atrial volume, refractoriness, wavefront propagation velocities, and AF burden. J Cardiovasc Electrophysiol 2007; 18: 269-275.
– reference: 8. Gami AS, Pressman G, Caples SM, Kanagala R, Gard JJ, Davison DE, et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation 2004; 110: 364-367.
– reference: 3. Iiyori N, Alonso LC, Li J, Sanders MH, Garcia-Ocana A, O'Doherty RM, et al. Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am J Respir Crit Care Med 2007; 175: 851-857.
– reference: 23. Ishimoto N, Ito M, Kinoshita M. Signal-averaged P-wave abnormalities and atrial size in patients with and without idiopathic paroxysmal atrial fibrillation. Am Heart J 2000; 139: 684-689.
– reference: 12. Baik I, Kim J, Abbott RD, Joo S, Jung K, Lee S, et al. Association of snoring with chronic bronchitis. Arch Intern Med 2008; 168: 167-173.
– reference: 29. Otto ME, Belohlavek M, Romero-Corral A, Gami AS, Gilman G, Svatikova A, et al. Comparison of cardiac structural and functional changes in obese otherwise healthy adults with versus without obstructive sleep apnea. Am J Cardiol 2007; 99: 1298-1302.
– reference: 17. Peterson LR, Waggoner AD, de las Fuentes L, Schechtman KB, McGill JB, Gropler RJ, et al. Alterations in left ventricular structure and function in type-1 diabetics: A focus on left atrial contribution to function. J Am Soc Echocardiogr 2006; 19: 749-755.
– reference: 20. Wang TJ, Parise H, Levy D, D'Agostino RB Sr, Wolf PA, Vasan RS, et al. Obesity and the risk of new-onset atrial fibrillation. JAMA 2004; 292: 2471-2477.
– reference: 2. Coughlin SR, Mawdsley L, Mugarza JA, Wilding JP, Calverley PM. Cardiovascular and metabolic effects of CPAP in obese males with OSA. Eur Respir J 2007; 29: 720-727.
– reference: 15. Parkash R, Green MS, Kerr CR, Connolly SJ, Klein GJ, Sheldon R, et al. The association of left atrial size and occurrence of atrial fibrillation: A prospective cohort study from the Canadian Registry of Atrial Fibrillation. Am Heart J 2004; 148: 649-654.
– reference: 5. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 1995; 96: 1897-1904.
– reference: 19. Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol 2002; 90: 1284-1289.
– reference: 1. Quan SF, Gersh BJ. Cardiovascular consequences of sleep-disordered breathing: Past, present and future: Report of a workshop from the National Center on Sleep Disorders Research and the National Heart, Lung, and Blood Institute. Circulation 2004; 109: 951-957.
– reference: 7. Gami AS, Hodge DO, Herges RM, Olson EJ, Nykodym J, Kara T, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J Am Coll Cardiol 2007; 49: 565-571.
– reference: 10. Tang M, Zhang S, Sun Q, Huang C. Alterations in electrophysiology and tissue structure of the left atrial posterior wall in a canine model of atrial fibrillation caused by chronic atrial dilatation. Circ J 2007; 71: 1636-1642.
– reference: 27. Chalfoun N, Harnick D, Pe E, Undavia M, Mehta D, Gomes JA. Reverse electrical remodeling of the atria post cardioversion in patients who remain in sinus rhythm assessed by signal averaging of the P-wave. Pacing Clin Electrophysiol 2007; 30: 502-509.
– reference: 26. Budeus M, Felix O, Hennersdorf M, Wieneke H, Erbel R, Sack S. Prediction of conversion from paroxysmal to permanent atrial fibrillation. Pacing Clin Electrophysiol 2007; 30: 243-252.
– reference: 9. Kanagala R, Murali NS, Friedman PA, Ammash NM, Gersh BJ, Ballman KV, et al. Obstructive sleep apnea and the recurrence of atrial fibrillation. Circulation 2003; 107: 2589-2594.
– reference: 13. Kim J, In K, You S, Kang K, Shim J, Lee S, et al. Prevalence of sleep-disordered breathing in middle-aged Korean men and women. Am J Respir Crit Care Med 2004; 170: 1108-1113.
– reference: 32. Kumagai K, Nakashima H, Urata H, Gondo N, Arakawa K, Saku K. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J Am Coll Cardiol 2003; 41: 2197-2204.
– reference: 31. Ip MS, Lam B, Lauder IJ, Tsang KW, Chung KF, Mok YW, et al. A community study of sleep-disordered breathing in middle-aged Chinese men in Hong Kong. Chest 2001; 119: 62-69.
– reference: 4. Tanriverdi H, Evrengul H, Kaftan A, Kara CO, Kuru O, Tanriverdi S, et al. Effect of obstructive sleep apnea on aortic elastic parameters: Relationship to left ventricular mass and function. Circ J 2006; 70: 737-743.
– reference: 24. Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 2002; 54: 230-246.
– reference: 6. von Kanel R, Le DT, Nelesen RA, Mills PJ, Ancoli-Israel S, Dimsdale JE. The hypercoagulable state in sleep apnea is related to comorbid hypertension. J Hypertens 2001; 19: 1445-1451.
– reference: 18. Umetani K, Kodama Y, Nakamura T, Mende A, Kitta Y, Kawabata K, et al. High prevalence of paroxysmal atrial fibrillation and/or atrial flutter in metabolic syndrome. Circ J 2007; 71: 252-255.
– reference: 11. Roshanali F, Mandegar MH, Yousefnia MA, Rayatzadeh H, Alaeddini F, Amouzadeh F. Prediction of atrial fibrillation via atrial electromechanical interval after coronary artery bypass grafting. Circulation 2007; 116: 2012-2017.
– reference: 30. Newman AB, Nieto FJ, Guidry U, Lind BK, Redline S, Pickering TG, et al. Relation of sleep-disordered breathing to cardiovascular disease risk factors: The Sleep Heart Health Study. Am J Epidemiol 2001; 154: 50-59.
– reference: 14. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am J Cardiol 1986; 57: 450-458.
– ident: 22
  doi: 10.1016/0735-1097(93)90381-A
– ident: 9
  doi: 10.1161/01.CIR.0000068337.25994.21
– ident: 25
  doi: 10.1111/j.1540-8167.2007.00723.x
– ident: 2
  doi: 10.1183/09031936.00043306
– ident: 12
  doi: 10.1001/archinternmed.2007.8
– ident: 15
  doi: 10.1016/j.ahj.2004.04.029
– ident: 30
  doi: 10.1093/aje/154.1.50
– ident: 1
  doi: 10.1161/01.CIR.0000118216.84358.22
– ident: 16
  doi: 10.1097/01.hco.0000131538.55528.8f
– ident: 5
  doi: 10.1172/JCI118235
– ident: 14
  doi: 10.1016/0002-9149(86)90771-X
– ident: 8
  doi: 10.1161/01.CIR.0000136587.68725.8E
– ident: 11
  doi: 10.1161/CIRCULATIONAHA.107.727081
– ident: 23
  doi: 10.1016/S0002-8703(00)90048-6
– ident: 28
  doi: 10.1016/j.echo.2005.03.022
– ident: 6
  doi: 10.1097/00004872-200108000-00013
– ident: 13
  doi: 10.1164/rccm.200404-519OC
– ident: 32
  doi: 10.1016/S0735-1097(03)00464-9
– ident: 20
  doi: 10.1001/jama.292.20.2471
– ident: 24
  doi: 10.1016/S0008-6363(02)00258-4
– ident: 21
  doi: 10.1161/01.CIR.83.1.162
– ident: 19
  doi: 10.1016/S0002-9149(02)02864-3
– ident: 4
  doi: 10.1253/circj.70.737
– ident: 10
  doi: 10.1253/circj.71.1636
– ident: 27
  doi: 10.1111/j.1540-8159.2007.00700.x
– ident: 26
  doi: 10.1111/j.1540-8159.2007.00656.x
– ident: 29
  doi: 10.1016/j.amjcard.2006.12.052
– ident: 17
  doi: 10.1016/j.echo.2006.01.009
– ident: 18
  doi: 10.1253/circj.71.252
– ident: 31
  doi: 10.1378/chest.119.1.62
– ident: 7
  doi: 10.1016/j.jacc.2006.08.060
– ident: 3
  doi: 10.1164/rccm.200610-1527OC
SSID ssj0029059
Score 1.9446048
Snippet Background Obstructive sleep apnea (OSA) is closely associated with atrial fibrillation, which is provoked by electrical and structural remodeling. However,...
Obstructive sleep apnea (OSA) is closely associated with atrial fibrillation, which is provoked by electrical and structural remodeling. However, the...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 249
SubjectTerms Adult
Aged
Apnea - hypopnea index
Atrial remodeling
Blood Pressure - physiology
Case-Control Studies
Echocardiography
Heart Atria - diagnostic imaging
Heart Atria - physiopathology
Heart Conduction System - physiopathology
Heart Ventricles - physiopathology
Humans
Linear Models
Male
Middle Aged
Obstructive sleep apnea
Polysomnography
Sleep Apnea, Obstructive - physiopathology
Tissue Doppler imaging
Title Impact of Obstructive Sleep Apnea on the Atrial Electromechanical Activation Time
URI https://www.jstage.jst.go.jp/article/circj/73/2/73_CJ-08-0813/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/19106459
https://www.proquest.com/docview/66844111
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Circulation Journal, 2009, Vol.73(2), pp.249-255
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWglAviDfL0wcuKErbdRwnPiG0WlgiFQnRSsspchynULXJqt0UwZU_zvgRJ92yCLhYkR9xMjMZz8Tj-RB6mXBWcqG33YnaC6nkZci5KMK4mjAhJE9LpQ8n739g80OaLeLFaPRzELXUrood-eO350r-h6tQB3zVp2T_gbP-plAB18BfKIHDUP4Vj9_7I45N4RLBXqjg_ESpZSCWtRJuKyAQFpzDYd6cKn3c16YJkB28mUGZH5qq069n0mF7-fwSm5JO6DkyWHY1nGUwHOiCQn3Yj8VunmuAo1nrqx2k82ddPf_e1mv1n5Rp-CbWG2agqYKsvfTngg_UbERZyFOboKnTwxbSxMkbGSpVm9T0irInBrFDwksd70wzE5WX2oOtA94vTw3zwS3Vmfl4v-z5YMSu6Rq6TpJkouNC3y18nBDhewZxzz-y2-uGyXfXpzYZaO3NLpk5N47B0j9Sm50YY8wc3Ea3nBeC31iRuoNGqr6Lbu67OIt76KOVLNxUeCBZ2EgWNpKFmxoD17GVLHxFsnAvWVhL1n10-HZ2MJ2HDnwjlDGPVqEERV4RKsokAp-ax0TQUlEexRVnlEnCeFGUhaRSKAk0SnQ-WVkVJSygaTQpafQAbdVNrR4hHMlIgaYgZUXBXmUMiAh2t0oLcBZiuO0Y7Xa0yqXLTK8BUk5y7aECoXND6Hya5RoyFQg9Rq_8iKXNyvKHvq8t-X1P9726nkmUE130I_oOX8QZ6JkxetHxLQflq3fU4Htq2vNcvwsFa2GMHlp29k_j5ODxxpYnaNvuTOrfeU_RFvBSPQMDd1U8NwL4C30RqO8
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+obstructive+sleep+apnea+on+the+atrial+electromechanical+activation+time&rft.jtitle=Circulation+journal+%3A+official+journal+of+the+Japanese+Circulation+Society&rft.au=Lim%2C+Hong+Euy&rft.au=Kim%2C+Yong+Hyun&rft.au=Kim%2C+Seong+Hwan&rft.au=Kim%2C+Eung+Ju&rft.date=2009&rft.issn=1346-9843&rft.volume=73&rft.issue=2&rft.spage=249&rft_id=info:doi/10.1253%2Fcircj.CJ-08-0813&rft_id=info%3Apmid%2F19106459&rft.externalDocID=19106459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon