A star-shaped porphyrin-arginine functionalized poly(l-lysine) copolymer for photo-enhanced drug and gene co-delivery
The co-delivery of drug and gene has become the primary strategy in cancer and other disease therapy. To co-deliver hydrophobic drug and functional gene efficiently into tumor cells, a star-shaped copolymer (PP-PLLD-Arg) with a photochemical internalization effect consisting of a porphyrin (PP) core...
Saved in:
Published in | Biomaterials Vol. 35; no. 14; pp. 4357 - 4367 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The co-delivery of drug and gene has become the primary strategy in cancer and other disease therapy. To co-deliver hydrophobic drug and functional gene efficiently into tumor cells, a star-shaped copolymer (PP-PLLD-Arg) with a photochemical internalization effect consisting of a porphyrin (PP) core and arginine-functionalized poly(l-lysine) dendron (PLLD-Arg) arms has been designed, and used to co-deliver docetaxel (DOC) and MMP-9 shRNA plasmid for nasopharyngeal cancer therapy. It was found that PP-PLLD-Arg/MMP-9 nanocomplex showed the photo-enhanced gene transfection efficiency in vitro, and could mediate a significant reduce of MMP-9 protein expression in HNE-1 cells. For co-delivery analysis, the obtained PP-PLLD-Arg/DOC/MMP-9 complexes could induce a more significant apoptosis than DOC or MMP-9 used only, and decreased invasive capacity of HNE-1 cells. Moreover, the star-shaped copolymer exhibited better blood compatibility and lower cytotoxicity compared to PEI-25k in the hemolysis and MTT assays, and also showed a good biocompatibility in vivo. Therefore, PP-PLLD-Arg with suited irradiation is a promising non-toxic and photo-inducible effective drug and gene delivery strategy, which should be encouraged in tumor therapy. |
---|---|
AbstractList | The co-delivery of drug and gene has become the primary strategy in cancer and other disease therapy. To co-deliver hydrophobic drug and functional gene efficiently into tumor cells, a star-shaped copolymer (PP-PLLD-Arg) with a photochemical internalization effect consisting of a porphyrin (PP) core and arginine-functionalized poly(l-lysine) dendron (PLLD-Arg) arms has been designed, and used to co-deliver docetaxel (DOC) and MMP-9 shRNA plasmid for nasopharyngeal cancer therapy. It was found that PP-PLLD-Arg/MMP-9 nanocomplex showed the photo-enhanced gene transfection efficiency in vitro, and could mediate a significant reduce of MMP-9 protein expression in HNE-1 cells. For co-delivery analysis, the obtained PP-PLLD-Arg/DOC/MMP-9 complexes could induce a more significant apoptosis than DOC or MMP-9 used only, and decreased invasive capacity of HNE-1 cells. Moreover, the star-shaped copolymer exhibited better blood compatibility and lower cytotoxicity compared to PEI-25k in the hemolysis and MTT assays, and also showed a good biocompatibility in vivo. Therefore, PP-PLLD-Arg with suited irradiation is a promising non-toxic and photo-inducible effective drug and gene delivery strategy, which should be encouraged in tumor therapy. Abstract The co-delivery of drug and gene has become the primary strategy in cancer and other disease therapy. To co-deliver hydrophobic drug and functional gene efficiently into tumor cells, a star-shaped copolymer (PP-PLLD-Arg) with a photochemical internalization effect consisting of a porphyrin (PP) core and arginine-functionalized poly( l -lysine) dendron (PLLD-Arg) arms has been designed, and used to co-deliver docetaxel (DOC) and MMP-9 shRNA plasmid for nasopharyngeal cancer therapy. It was found that PP-PLLD-Arg/MMP-9 nanocomplex showed the photo-enhanced gene transfection efficiency in vitro , and could mediate a significant reduce of MMP-9 protein expression in HNE-1 cells. For co-delivery analysis, the obtained PP-PLLD-Arg/DOC/MMP-9 complexes could induce a more significant apoptosis than DOC or MMP-9 used only, and decreased invasive capacity of HNE-1 cells. Moreover, the star-shaped copolymer exhibited better blood compatibility and lower cytotoxicity compared to PEI-25k in the hemolysis and MTT assays, and also showed a good biocompatibility in vivo . Therefore, PP-PLLD-Arg with suited irradiation is a promising non-toxic and photo-inducible effective drug and gene delivery strategy, which should be encouraged in tumor therapy. The co-delivery of drug and gene has become the primary strategy in cancer and other disease therapy. To co-deliver hydrophobic drug and functional gene efficiently into tumor cells, a star-shaped copolymer (PP-PLLD-Arg) with a photochemical internalization effect consisting of a porphyrin (PP) core and arginine-functionalized poly(l-lysine) dendron (PLLD-Arg) arms has been designed, and used to co-deliver docetaxel (DOC) and MMP-9 shRNA plasmid for nasopharyngeal cancer therapy. It was found that PP-PLLD-Arg/MMP-9 nanocomplex showed the photo-enhanced gene transfection efficiency in vitro, and could mediate a significant reduce of MMP-9 protein expression in HNE-1 cells. For co-delivery analysis, the obtained PP-PLLD-Arg/DOC/MMP-9 complexes could induce a more significant apoptosis than DOC or MMP-9 used only, and decreased invasive capacity of HNE-1 cells. Moreover, the star-shaped copolymer exhibited better blood compatibility and lower cytotoxicity compared to PEI-25k in the hemolysis and MTT assays, and also showed a good biocompatibility in vivo. Therefore, PP-PLLD-Arg with suited irradiation is a promising non-toxic and photo-inducible effective drug and gene delivery strategy, which should be encouraged in tumor therapy. The co-delivery of drug and gene has become the primary strategy in cancer and other disease therapy. To co-deliver hydrophobic drug and functional gene efficiently into tumor cells, a star-shaped copolymer (PP-PLLD-Arg) with a photochemical internalization effect consisting of a porphyrin (PP) core and arginine-functionalized poly(L-lysine) dendron (PLLD-Arg) arms has been designed, and used to co-deliver docetaxel (DOC) and MMP-9 shRNA plasmid for nasopharyngeal cancer therapy. It was found that PP-PLLD-Arg/MMP-9 nanocomplex showed the photo-enhanced gene transfection efficiency in vitro, and could mediate a significant reduce of MMP-9 protein expression in HNE-1 cells. For co-delivery analysis, the obtained PP-PLLD-Arg/DOC/MMP-9 complexes could induce a more significant apoptosis than DOC or MMP-9 used only, and decreased invasive capacity of HNE-1 cells. Moreover, the star-shaped copolymer exhibited better blood compatibility and lower cytotoxicity compared to PEI-25k in the hemolysis and MTT assays, and also showed a good biocompatibility in vivo. Therefore, PP-PLLD-Arg with suited irradiation is a promising non-toxic and photo-inducible effective drug and gene delivery strategy, which should be encouraged in tumor therapy.The co-delivery of drug and gene has become the primary strategy in cancer and other disease therapy. To co-deliver hydrophobic drug and functional gene efficiently into tumor cells, a star-shaped copolymer (PP-PLLD-Arg) with a photochemical internalization effect consisting of a porphyrin (PP) core and arginine-functionalized poly(L-lysine) dendron (PLLD-Arg) arms has been designed, and used to co-deliver docetaxel (DOC) and MMP-9 shRNA plasmid for nasopharyngeal cancer therapy. It was found that PP-PLLD-Arg/MMP-9 nanocomplex showed the photo-enhanced gene transfection efficiency in vitro, and could mediate a significant reduce of MMP-9 protein expression in HNE-1 cells. For co-delivery analysis, the obtained PP-PLLD-Arg/DOC/MMP-9 complexes could induce a more significant apoptosis than DOC or MMP-9 used only, and decreased invasive capacity of HNE-1 cells. Moreover, the star-shaped copolymer exhibited better blood compatibility and lower cytotoxicity compared to PEI-25k in the hemolysis and MTT assays, and also showed a good biocompatibility in vivo. Therefore, PP-PLLD-Arg with suited irradiation is a promising non-toxic and photo-inducible effective drug and gene delivery strategy, which should be encouraged in tumor therapy. |
Author | Lin, Qian-Ming Xue, Wei Ma, Dong Zhang, Li-Ming Liang, Yuan-Yuan |
Author_xml | – sequence: 1 givenname: Dong surname: Ma fullname: Ma, Dong organization: Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China – sequence: 2 givenname: Qian-Ming surname: Lin fullname: Lin, Qian-Ming organization: Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China – sequence: 3 givenname: Li-Ming surname: Zhang fullname: Zhang, Li-Ming email: ceszhlm@mail.sysu.edu.cn organization: Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China – sequence: 4 givenname: Yuan-Yuan surname: Liang fullname: Liang, Yuan-Yuan organization: Research Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou 310012, China – sequence: 5 givenname: Wei surname: Xue fullname: Xue, Wei email: weixue_jnu@aliyun.com.cn, gdmljt@gmail.com organization: Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24576804$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFv4AiTuWQME7ifHBAlPIpVeIAnC3Hnux6cezUTiqFX4_DFoQqIfZk2fPOo_G87xk5sc4iIc8oZBRo9WKfddoNYkKvhQlZDrTMgGZQwwOyoU3dpKwFdkI2sZCnbUXzU3IWwh7iHcr8ETnNS1ZXDZQbMl8mYRI-DTsxokpG58fd4rVNhd9qqy0m_WzlpJ0VRv_4pTDLhUnNEmLxeSLd-jCgT3rnk3HnJpei3Qkro1b5eZsIq5ItRpB0qUKjb9Evj8nDPo6OT-7Oc_Lt_buvVx_T688fPl1dXqeStcWUyhw6JhgroRZUUdqzupaAffxSGxW1VG0tmMwrqnolO2ygqTpQZUtl0dKqLM7JxYE7enczY5j4oINEY4RFNweex30WlBUN-6-UMqhKyhis1Kd30rkbUPHR60H4hf_eahS8PAikdyF47P9IKPDVQr7nf1vIVws5UB4tjM2v7zVLPYnVgckLbY5DvD0gMO72VqPnQWpcLdEe5cSV08dhXt3DSBMzIYX5jguGvZu9XXsoDzkH_mWN25q2mDKgAE0EvPk34NgpfgJhPu3e |
CitedBy_id | crossref_primary_10_1016_j_jconrel_2014_05_055 crossref_primary_10_1016_j_colsurfb_2018_06_029 crossref_primary_10_1080_10717544_2019_1698674 crossref_primary_10_1039_C5PY00034C crossref_primary_10_1016_j_apsb_2015_03_001 crossref_primary_10_1016_j_eurpolymj_2018_12_044 crossref_primary_10_1039_D0TB02168G crossref_primary_10_1039_D0PY00449A crossref_primary_10_1016_j_cej_2019_01_074 crossref_primary_10_1080_21691401_2017_1376675 crossref_primary_10_1021_cr500542t crossref_primary_10_1021_acs_biomac_7b01037 crossref_primary_10_1016_j_msec_2020_110786 crossref_primary_10_1016_j_addr_2017_06_004 crossref_primary_10_1039_C8TB00489G crossref_primary_10_1007_s10856_015_5498_z crossref_primary_10_3390_polym13152464 crossref_primary_10_1039_C5TB01964H crossref_primary_10_1039_C8TB02650E crossref_primary_10_18632_oncotarget_9771 crossref_primary_10_1080_07388551_2017_1398713 crossref_primary_10_1016_j_jconrel_2016_06_010 crossref_primary_10_1039_C8TB00748A crossref_primary_10_1016_j_msec_2015_02_016 crossref_primary_10_1002_cbic_202300296 crossref_primary_10_1007_s40843_018_9242_3 crossref_primary_10_2174_1385272824999201026203527 crossref_primary_10_1016_j_canlet_2016_01_050 crossref_primary_10_1021_acsami_8b07124 crossref_primary_10_1002_slct_202304817 crossref_primary_10_1021_acsabm_9b01119 crossref_primary_10_1021_acs_molpharmaceut_5b00396 crossref_primary_10_1016_j_actbio_2015_04_037 crossref_primary_10_1002_slct_202100846 crossref_primary_10_1002_jgm_3084 crossref_primary_10_1039_C5CC06937H crossref_primary_10_1007_s11595_015_1241_3 crossref_primary_10_1021_acsami_8b14517 crossref_primary_10_1021_acsami_6b01611 crossref_primary_10_1016_j_addr_2020_10_007 crossref_primary_10_3109_10717544_2015_1038857 crossref_primary_10_1016_j_bios_2016_04_045 crossref_primary_10_1016_j_progpolymsci_2017_06_002 crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2022038398 crossref_primary_10_1016_j_biopha_2018_03_046 crossref_primary_10_1371_journal_pone_0139136 crossref_primary_10_1016_j_carbpol_2018_06_034 crossref_primary_10_1016_j_msec_2016_05_003 crossref_primary_10_3390_jcm9020528 crossref_primary_10_1007_s11010_015_2328_z crossref_primary_10_1016_j_msec_2016_01_023 crossref_primary_10_1021_acsami_8b08230 crossref_primary_10_1016_j_msec_2018_11_031 crossref_primary_10_1039_D2OB00284A crossref_primary_10_3390_bios8040095 crossref_primary_10_1007_s10965_016_1059_5 crossref_primary_10_1021_acs_biomac_4c00128 crossref_primary_10_1049_iet_nbt_2019_0247 crossref_primary_10_3390_polym9050158 crossref_primary_10_3390_ijms19020369 crossref_primary_10_1002_smll_201502760 crossref_primary_10_1016_j_addr_2015_10_014 crossref_primary_10_1039_C5RA14203B crossref_primary_10_1080_10717544_2021_1876182 crossref_primary_10_3390_pharmaceutics14081620 crossref_primary_10_1080_10717544_2021_1876183 crossref_primary_10_1016_j_colsurfb_2017_01_007 crossref_primary_10_1039_C4TB01971G crossref_primary_10_1039_C5BM00532A crossref_primary_10_1016_j_carbpol_2020_117202 crossref_primary_10_1016_j_progpolymsci_2015_11_002 crossref_primary_10_1039_C5TB02764K crossref_primary_10_1016_j_colsurfb_2015_05_027 crossref_primary_10_1016_j_biomaterials_2016_11_055 crossref_primary_10_1002_mabi_201500161 crossref_primary_10_1039_C8BM00503F crossref_primary_10_1007_s10856_015_5573_5 crossref_primary_10_1016_j_ejmech_2021_113988 crossref_primary_10_1016_j_jconrel_2019_03_015 crossref_primary_10_1021_acsabm_8b00675 crossref_primary_10_4155_tde_2018_0041 crossref_primary_10_4015_S1016237217500272 crossref_primary_10_1002_marc_201700410 crossref_primary_10_1016_j_actbio_2016_06_038 crossref_primary_10_1039_C8PY01492B crossref_primary_10_1016_j_msec_2017_07_036 crossref_primary_10_1016_j_colsurfb_2018_08_061 crossref_primary_10_1039_C5NR07719B crossref_primary_10_1080_10717544_2019_1642421 crossref_primary_10_1039_D1NJ00059D crossref_primary_10_3390_biom14040431 crossref_primary_10_1039_D0TB00108B crossref_primary_10_1016_j_polymer_2016_06_032 crossref_primary_10_1002_adtp_201900213 crossref_primary_10_1016_j_biomaterials_2014_07_059 crossref_primary_10_1016_j_jmbbm_2015_07_011 crossref_primary_10_1016_j_msec_2018_05_013 crossref_primary_10_1016_j_msec_2017_04_012 crossref_primary_10_1016_j_progpolymsci_2017_09_003 crossref_primary_10_1016_j_msec_2015_12_049 crossref_primary_10_1016_j_actbio_2016_02_031 crossref_primary_10_1007_s10965_019_1846_x crossref_primary_10_1039_C5BM00328H crossref_primary_10_1039_D4NA00145A crossref_primary_10_1186_s12951_021_01164_0 crossref_primary_10_1007_s41061_017_0183_y crossref_primary_10_1007_s10853_018_2091_0 crossref_primary_10_1016_j_progpolymsci_2015_10_009 crossref_primary_10_1016_j_actbio_2016_11_062 crossref_primary_10_1039_C5PY00013K crossref_primary_10_1016_j_colsurfb_2017_04_002 crossref_primary_10_6000_1929_5995_2016_05_01_4 crossref_primary_10_1016_j_msec_2015_08_055 crossref_primary_10_1021_acs_bioconjchem_6b00509 crossref_primary_10_1177_0883911519894683 crossref_primary_10_18632_oncotarget_6243 crossref_primary_10_1016_j_orgel_2019_04_036 crossref_primary_10_1002_mog2_67 crossref_primary_10_1007_s40005_017_0349_1 crossref_primary_10_3892_mmr_2017_6715 crossref_primary_10_1016_j_msec_2017_04_145 crossref_primary_10_1021_bm501270e crossref_primary_10_1016_j_biopha_2016_08_061 crossref_primary_10_1016_j_actbio_2019_03_051 crossref_primary_10_1016_j_biotechadv_2018_11_009 crossref_primary_10_1039_C4BM00369A crossref_primary_10_1039_C7RA00810D |
Cites_doi | 10.1016/j.biomaterials.2012.12.038 10.1002/mabi.201300139 10.1002/anie.200501944 10.1142/S1088424611004294 10.1002/marc.201200742 10.4155/tde.13.78 10.1016/j.ejpb.2010.04.017 10.1039/c2cs35094g 10.1016/j.biomaterials.2012.08.007 10.1016/j.biomaterials.2012.10.024 10.1002/jgm.573 10.1158/1078-0432.CCR-05-1245 10.1002/jps.2600570102 10.1016/j.biomaterials.2013.01.053 10.1021/jm301270r 10.1016/j.nantod.2012.06.013 10.1016/j.addr.2009.03.010 10.1016/j.biomaterials.2013.03.010 10.1002/adma.201100140 10.1016/j.jconrel.2010.10.006 10.1016/j.jconrel.2007.10.022 10.1002/marc.201100097 10.1016/j.jconrel.2007.06.012 10.1039/b817956e 10.1016/j.jconrel.2005.12.002 10.1016/j.biomaterials.2012.11.007 10.1002/jbm.a.33250 10.2174/138955708785132729 10.1016/j.biomaterials.2013.03.018 10.1016/j.biomaterials.2011.09.067 10.1016/j.jconrel.2008.03.024 10.1002/jpp.328 10.1002/adfm.201301045 10.1038/sj.bjc.6600138 10.1039/c2sm25060h 10.1021/mp100185f 10.1016/j.biomaterials.2009.06.026 10.1016/j.biomaterials.2012.03.030 10.1002/marc.200900182 10.1016/j.biomaterials.2013.06.004 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2014.01.070 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 4367 |
ExternalDocumentID | 24576804 10_1016_j_biomaterials_2014_01_070 S0142961214001008 1_s2_0_S0142961214001008 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c593t-c20b5a55407a1d11f577c0ef9619c597cd97a5c261dfdcbe8086b0d491c391643 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Tue Aug 05 10:44:08 EDT 2025 Fri Jul 11 05:09:23 EDT 2025 Mon Jul 21 06:04:23 EDT 2025 Tue Jul 01 03:47:43 EDT 2025 Thu Apr 24 23:10:15 EDT 2025 Fri Feb 23 02:31:39 EST 2024 Sun Feb 23 10:19:01 EST 2025 Tue Aug 26 17:20:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Star polymers Co-delivery Arginine Lysine Porphyrin Photo-enhanced |
Language | English |
License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c593t-c20b5a55407a1d11f577c0ef9619c597cd97a5c261dfdcbe8086b0d491c391643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24576804 |
PQID | 1506415504 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2101315385 proquest_miscellaneous_1506415504 pubmed_primary_24576804 crossref_primary_10_1016_j_biomaterials_2014_01_070 crossref_citationtrail_10_1016_j_biomaterials_2014_01_070 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2014_01_070 elsevier_clinicalkeyesjournals_1_s2_0_S0142961214001008 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2014_01_070 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Barreto, O'Malley, Kubeil, Graham, Stephan, Spiccia (bib9) 2011; 23 Costa, Tome, Neves, Cavaleiro (bib19) 2011; 15 Ndoye, Merlin, Leroux, Dolivet, Erbacher, Behr (bib23) 2004; 6 Bøe, Hovig (bib35) 2013; 4 Gao, Gao, He, Liu, Qi (bib16) 2008; 8 Inoue, Kurihara, Tsuchida, Hasegawa, Nagashima, Mori (bib17) 2008; 126 Gaware, Håkerud, Leósson, Jónsdóttir, Høgset, Berg (bib36) 2013; 56 Liu, Li, Qian, Wei, Xie, Shen (bib4) 2013; 34 Ma, Liu, Zheng, Zhou, Zhang, Shi (bib27) 2013; 34 Wei, Yuan, Chen, Yu, Hao, Luo (bib37) 2010; 75 Zheng, Zheng, Gong, Deng, Yi, Zhang (bib2) 2013; 34 Aillon, Xie, El-Gendy, Berkland, Forrest (bib39) 2009; 61 Shieh, Peng, Lou, Chiu, Tsai, Hsu (bib33) 2008; 129 Shen, Yin, Chen, Zhang, Li (bib6) 2012; 33 Luo, Li, Wang, Nie, He, Wu (bib13) 2011; 155 Ruthard, Schmidt, Grohn (bib21) 2011; 32 Yang, Liu, Wang, Liu, Wang, Wang (bib38) 2012; 33 Metzke, O'Connor, Maiti, Nelson, Guan (bib31) 2005; 44 Samal, Dash, Van Vlierberghe, Kaplan, Chiellini, van Blitterswijk (bib15) 2012; 41 Berg, Dietze, Kaalhus, Hogset (bib22) 2005; 11 Prasmickaite, Hogset, Selbo, Engesaeter, Hellum, Berg (bib25) 2002; 86 Luo, Li, Li, She, Wang, Gu (bib18) 2012; 33 Liu, Liu, Feng, Li, Zhang, Zhang (bib3) 2013; 34 Biswas, Deshpande, Navarro, Dodwadkar, Torchilin (bib7) 2013; 34 Han, Huang, Liu, Huang, Jiang (bib10) 2010; 7 Hu, Zhang, Wu, Cheng, Zhang, Zhuo (bib32) 2009; 19 Ma, Zhao, Zhou, Lin, Zhang, Lin (bib28) 2013; 13 O'Leary, Guess (bib29) 1968; 57 Han, Chen, Chen, Lei, Liu, Zhuo (bib8) 2013; 34 Kaneshiro, Lu (bib14) 2009; 30 MacDonald, Dougherty (bib34) 2001; 5 Weyergang, Selbo, Berg (bib24) 2006; 111 Ma, Zhang, Tu, Zhang (bib30) 2012; 8 Ge, Liu (bib11) 2009; 30 Dong, Xiang, Gao, Yang, Li, Qi (bib5) 2013; 34 Lai, Lou, Peng, Pai, Yen, Huang (bib26) 2007; 122 Zhao, Yang, Liu, Sun, Zhou, Wang (bib40) 2012; 100 Creixell, Peppas (bib1) 2012; 7 She, Luo, Zhang, Wang, Geng, Li (bib12) 2013; 34 Cheng, He, Gong, Wang, Chen, Cheng (bib20) 2013 Kaneshiro (10.1016/j.biomaterials.2014.01.070_bib14) 2009; 30 Weyergang (10.1016/j.biomaterials.2014.01.070_bib24) 2006; 111 Prasmickaite (10.1016/j.biomaterials.2014.01.070_bib25) 2002; 86 Shieh (10.1016/j.biomaterials.2014.01.070_bib33) 2008; 129 Dong (10.1016/j.biomaterials.2014.01.070_bib5) 2013; 34 Samal (10.1016/j.biomaterials.2014.01.070_bib15) 2012; 41 Barreto (10.1016/j.biomaterials.2014.01.070_bib9) 2011; 23 Biswas (10.1016/j.biomaterials.2014.01.070_bib7) 2013; 34 Han (10.1016/j.biomaterials.2014.01.070_bib8) 2013; 34 Hu (10.1016/j.biomaterials.2014.01.070_bib32) 2009; 19 Bøe (10.1016/j.biomaterials.2014.01.070_bib35) 2013; 4 Luo (10.1016/j.biomaterials.2014.01.070_bib13) 2011; 155 O'Leary (10.1016/j.biomaterials.2014.01.070_bib29) 1968; 57 Metzke (10.1016/j.biomaterials.2014.01.070_bib31) 2005; 44 Ma (10.1016/j.biomaterials.2014.01.070_bib28) 2013; 13 Yang (10.1016/j.biomaterials.2014.01.070_bib38) 2012; 33 Liu (10.1016/j.biomaterials.2014.01.070_bib4) 2013; 34 Ma (10.1016/j.biomaterials.2014.01.070_bib30) 2012; 8 Gao (10.1016/j.biomaterials.2014.01.070_bib16) 2008; 8 Gaware (10.1016/j.biomaterials.2014.01.070_bib36) 2013; 56 Ge (10.1016/j.biomaterials.2014.01.070_bib11) 2009; 30 Costa (10.1016/j.biomaterials.2014.01.070_bib19) 2011; 15 Aillon (10.1016/j.biomaterials.2014.01.070_bib39) 2009; 61 Berg (10.1016/j.biomaterials.2014.01.070_bib22) 2005; 11 Cheng (10.1016/j.biomaterials.2014.01.070_bib20) 2013 Zheng (10.1016/j.biomaterials.2014.01.070_bib2) 2013; 34 Creixell (10.1016/j.biomaterials.2014.01.070_bib1) 2012; 7 Inoue (10.1016/j.biomaterials.2014.01.070_bib17) 2008; 126 Ndoye (10.1016/j.biomaterials.2014.01.070_bib23) 2004; 6 Ma (10.1016/j.biomaterials.2014.01.070_bib27) 2013; 34 Liu (10.1016/j.biomaterials.2014.01.070_bib3) 2013; 34 Zhao (10.1016/j.biomaterials.2014.01.070_bib40) 2012; 100 She (10.1016/j.biomaterials.2014.01.070_bib12) 2013; 34 Lai (10.1016/j.biomaterials.2014.01.070_bib26) 2007; 122 Wei (10.1016/j.biomaterials.2014.01.070_bib37) 2010; 75 Shen (10.1016/j.biomaterials.2014.01.070_bib6) 2012; 33 Luo (10.1016/j.biomaterials.2014.01.070_bib18) 2012; 33 Ruthard (10.1016/j.biomaterials.2014.01.070_bib21) 2011; 32 Han (10.1016/j.biomaterials.2014.01.070_bib10) 2010; 7 MacDonald (10.1016/j.biomaterials.2014.01.070_bib34) 2001; 5 |
References_xml | – volume: 15 start-page: 1116 year: 2011 end-page: 1133 ident: bib19 article-title: 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin: a versatile platform to novel porphyrinic materials publication-title: J Porphyr Phthalocyanines – volume: 32 start-page: 706 year: 2011 end-page: 711 ident: bib21 article-title: Porphyrin–polymer networks, worms, and nanorods: pH-triggerable hierarchical self-assembly publication-title: Macromol Rapid Commun – volume: 4 start-page: 1125 year: 2013 end-page: 1140 ident: bib35 article-title: Enhancing nucleic acid delivery by photochemical internalization publication-title: Ther Deliv – volume: 34 start-page: 3431 year: 2013 end-page: 3438 ident: bib2 article-title: Polypeptide cationic micelles mediated co-delivery of docetaxel and siRNA for synergistic tumor therapy publication-title: Biomaterials – volume: 41 start-page: 7147 year: 2012 end-page: 7194 ident: bib15 article-title: Cationic polymers and their therapeutic potential publication-title: Chem Soc Rev – volume: 122 start-page: 39 year: 2007 end-page: 46 ident: bib26 article-title: Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy publication-title: J Control Release – volume: 23 start-page: 18 year: 2011 end-page: 40 ident: bib9 article-title: Nanomaterials: applications in cancer imaging and therapy publication-title: Adv Mater – volume: 33 start-page: 604 year: 2012 end-page: 613 ident: bib38 article-title: The biocompatibility of fatty acid modified dextran-agmatine bioconjugate gene delivery vector publication-title: Biomaterials – volume: 61 start-page: 457 year: 2009 end-page: 466 ident: bib39 article-title: Effects of nanomaterial physicochemical properties on in vivo toxicity publication-title: Adv Drug Deliv Rev – volume: 34 start-page: 4849 year: 2013 end-page: 4859 ident: bib5 article-title: pH-Responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells publication-title: Biomaterials – volume: 30 start-page: 1523 year: 2009 end-page: 1532 ident: bib11 article-title: Supramolecular self-assembly of nonlinear amphiphilic and double hydrophilic block copolymers in aqueous solutions publication-title: Macromol Rapid Commun – volume: 129 start-page: 200 year: 2008 end-page: 206 ident: bib33 article-title: Non-toxic phototriggered gene transfection by PAMAM-porphyrin conjugates publication-title: J Control Release – year: 2013 ident: bib20 article-title: PEGylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly-effective photothermal agent for publication-title: Adv Funct Mater – volume: 11 start-page: 8476 year: 2005 end-page: 8485 ident: bib22 article-title: Site-specific drug delivery by photochemical internalization enhances the antitumor effect of bleomycin publication-title: Clin Cancer Res – volume: 34 start-page: 4680 year: 2013 end-page: 4689 ident: bib8 article-title: Synergistic gene and drug tumor therapy using a chimeric peptide publication-title: Biomaterials – volume: 6 start-page: 884 year: 2004 end-page: 894 ident: bib23 article-title: Enhanced gene transfer and cell death following p53 gene transfer using photochemical internalisation of glucosylated PEI-DNA complexes publication-title: J Gene Med – volume: 8 start-page: 3665 year: 2012 end-page: 3672 ident: bib30 article-title: Novel supramolecular hydrogel/micelle composite for co-delivery of anticancer drug and growth factor publication-title: Soft Matter – volume: 7 start-page: 2156 year: 2010 end-page: 2165 ident: bib10 article-title: Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors publication-title: Mol Pharm – volume: 30 start-page: 5660 year: 2009 end-page: 5666 ident: bib14 article-title: Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier publication-title: Biomaterials – volume: 100 start-page: 134 year: 2012 end-page: 140 ident: bib40 article-title: Starburst low-molecular weight polyethylenimine for efficient gene delivery publication-title: J Biomed Mater Res A – volume: 33 start-page: 8613 year: 2012 end-page: 8624 ident: bib6 article-title: Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer publication-title: Biomaterials – volume: 86 start-page: 652 year: 2002 end-page: 657 ident: bib25 article-title: Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy publication-title: Br J Cancer – volume: 44 start-page: 6529 year: 2005 end-page: 6533 ident: bib31 article-title: Saccharide–peptide hybrid copolymers as biomaterials publication-title: Angew Chem Int Ed – volume: 33 start-page: 4917 year: 2012 end-page: 4927 ident: bib18 article-title: Arginine functionalized peptide dendrimers as potential gene delivery vehicles publication-title: Biomaterials – volume: 5 start-page: 105 year: 2001 end-page: 129 ident: bib34 article-title: Basic principles of photodynamic therapy publication-title: J Porphyr Phthalocyanines – volume: 34 start-page: 1289 year: 2013 end-page: 1301 ident: bib7 article-title: Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery publication-title: Biomaterials – volume: 126 start-page: 59 year: 2008 end-page: 66 ident: bib17 article-title: Efficient delivery of siRNA using dendritic poly(L-lysine) for loss-of-function analysis publication-title: J Control Release – volume: 34 start-page: 548 year: 2013 end-page: 552 ident: bib27 article-title: Star-shaped polymer consisting of a porphyrin core and poly(L-lysine) dendron arms: synthesis, drug delivery and in vitro chemo/photodynamic therapy publication-title: Macromol Rapid Commun – volume: 34 start-page: 1613 year: 2013 end-page: 1623 ident: bib12 article-title: The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron–doxorubicin conjugates for cancer therapy publication-title: Biomaterials – volume: 155 start-page: 77 year: 2011 end-page: 87 ident: bib13 article-title: Peptide dendrimers as efficient and biocompatible gene delivery vectors: synthesis and publication-title: J Control Release – volume: 56 start-page: 807 year: 2013 end-page: 819 ident: bib36 article-title: Tetraphenylporphyrin tethered chitosan based carriers for photochemical transfection publication-title: J Med Chem – volume: 7 start-page: 367 year: 2012 end-page: 379 ident: bib1 article-title: Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance publication-title: Nano Today – volume: 19 start-page: 3189 year: 2009 end-page: 3197 ident: bib32 article-title: Heparin-modified PEI encapsulated in thermosensitive hydrogels for efficient gene delivery and expression publication-title: J Mater Chem – volume: 13 start-page: 1221 year: 2013 end-page: 1227 ident: bib28 article-title: Photoenhanced gene transfection by a star-shaped polymer consisting of a porphyrin core and poly(L-lysine) dendron arms publication-title: Macromol Biosci – volume: 34 start-page: 2547 year: 2013 end-page: 2564 ident: bib3 article-title: The targeted co-delivery of DNA and doxorubicin to tumor cells via multifunctional PEI-PEG based nanoparticles publication-title: Biomaterials – volume: 8 start-page: 889 year: 2008 end-page: 900 ident: bib16 article-title: Recent advances of dendrimers in delivery of genes and drugs publication-title: Mini-Rev Med Chem – volume: 57 start-page: 12 year: 1968 end-page: 17 ident: bib29 article-title: Toxicological studies on certain medical grade plastics sterilized by ethylene oxide publication-title: J Pharm Sci – volume: 111 start-page: 165 year: 2006 end-page: 173 ident: bib24 article-title: Photochemically stimulated drug delivery increases the cytotoxicity and specificity of EGF–saporin publication-title: J Control Release – volume: 34 start-page: 7191 year: 2013 end-page: 7203 ident: bib4 article-title: Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles publication-title: Biomaterials – volume: 75 start-page: 341 year: 2010 end-page: 353 ident: bib37 article-title: Enhanced antitumor efficacy by paclitaxel-loaded pluronic P123/F127 mixed micelles against nonsmall cell lung cancer based on passive tumor targeting and modulation of drug resistance publication-title: Eur J Pharm Biopharm – volume: 34 start-page: 2547 year: 2013 ident: 10.1016/j.biomaterials.2014.01.070_bib3 article-title: The targeted co-delivery of DNA and doxorubicin to tumor cells via multifunctional PEI-PEG based nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.12.038 – volume: 13 start-page: 1221 year: 2013 ident: 10.1016/j.biomaterials.2014.01.070_bib28 article-title: Photoenhanced gene transfection by a star-shaped polymer consisting of a porphyrin core and poly(L-lysine) dendron arms publication-title: Macromol Biosci doi: 10.1002/mabi.201300139 – volume: 44 start-page: 6529 year: 2005 ident: 10.1016/j.biomaterials.2014.01.070_bib31 article-title: Saccharide–peptide hybrid copolymers as biomaterials publication-title: Angew Chem Int Ed doi: 10.1002/anie.200501944 – volume: 15 start-page: 1116 year: 2011 ident: 10.1016/j.biomaterials.2014.01.070_bib19 article-title: 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin: a versatile platform to novel porphyrinic materials publication-title: J Porphyr Phthalocyanines doi: 10.1142/S1088424611004294 – volume: 34 start-page: 548 year: 2013 ident: 10.1016/j.biomaterials.2014.01.070_bib27 article-title: Star-shaped polymer consisting of a porphyrin core and poly(L-lysine) dendron arms: synthesis, drug delivery and in vitro chemo/photodynamic therapy publication-title: Macromol Rapid Commun doi: 10.1002/marc.201200742 – volume: 4 start-page: 1125 year: 2013 ident: 10.1016/j.biomaterials.2014.01.070_bib35 article-title: Enhancing nucleic acid delivery by photochemical internalization publication-title: Ther Deliv doi: 10.4155/tde.13.78 – volume: 75 start-page: 341 year: 2010 ident: 10.1016/j.biomaterials.2014.01.070_bib37 article-title: Enhanced antitumor efficacy by paclitaxel-loaded pluronic P123/F127 mixed micelles against nonsmall cell lung cancer based on passive tumor targeting and modulation of drug resistance publication-title: Eur J Pharm Biopharm doi: 10.1016/j.ejpb.2010.04.017 – volume: 41 start-page: 7147 year: 2012 ident: 10.1016/j.biomaterials.2014.01.070_bib15 article-title: Cationic polymers and their therapeutic potential publication-title: Chem Soc Rev doi: 10.1039/c2cs35094g – volume: 33 start-page: 8613 year: 2012 ident: 10.1016/j.biomaterials.2014.01.070_bib6 article-title: Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.08.007 – volume: 34 start-page: 1289 year: 2013 ident: 10.1016/j.biomaterials.2014.01.070_bib7 article-title: Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.10.024 – volume: 6 start-page: 884 year: 2004 ident: 10.1016/j.biomaterials.2014.01.070_bib23 article-title: Enhanced gene transfer and cell death following p53 gene transfer using photochemical internalisation of glucosylated PEI-DNA complexes publication-title: J Gene Med doi: 10.1002/jgm.573 – volume: 11 start-page: 8476 year: 2005 ident: 10.1016/j.biomaterials.2014.01.070_bib22 article-title: Site-specific drug delivery by photochemical internalization enhances the antitumor effect of bleomycin publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-05-1245 – volume: 57 start-page: 12 year: 1968 ident: 10.1016/j.biomaterials.2014.01.070_bib29 article-title: Toxicological studies on certain medical grade plastics sterilized by ethylene oxide publication-title: J Pharm Sci doi: 10.1002/jps.2600570102 – volume: 34 start-page: 3431 year: 2013 ident: 10.1016/j.biomaterials.2014.01.070_bib2 article-title: Polypeptide cationic micelles mediated co-delivery of docetaxel and siRNA for synergistic tumor therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.01.053 – volume: 56 start-page: 807 year: 2013 ident: 10.1016/j.biomaterials.2014.01.070_bib36 article-title: Tetraphenylporphyrin tethered chitosan based carriers for photochemical transfection publication-title: J Med Chem doi: 10.1021/jm301270r – volume: 7 start-page: 367 year: 2012 ident: 10.1016/j.biomaterials.2014.01.070_bib1 article-title: Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance publication-title: Nano Today doi: 10.1016/j.nantod.2012.06.013 – volume: 61 start-page: 457 year: 2009 ident: 10.1016/j.biomaterials.2014.01.070_bib39 article-title: Effects of nanomaterial physicochemical properties on in vivo toxicity publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2009.03.010 – volume: 34 start-page: 4680 year: 2013 ident: 10.1016/j.biomaterials.2014.01.070_bib8 article-title: Synergistic gene and drug tumor therapy using a chimeric peptide publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.03.010 – volume: 23 start-page: 18 year: 2011 ident: 10.1016/j.biomaterials.2014.01.070_bib9 article-title: Nanomaterials: applications in cancer imaging and therapy publication-title: Adv Mater doi: 10.1002/adma.201100140 – volume: 155 start-page: 77 year: 2011 ident: 10.1016/j.biomaterials.2014.01.070_bib13 article-title: Peptide dendrimers as efficient and biocompatible gene delivery vectors: synthesis and in vitro characterization publication-title: J Control Release doi: 10.1016/j.jconrel.2010.10.006 – volume: 126 start-page: 59 year: 2008 ident: 10.1016/j.biomaterials.2014.01.070_bib17 article-title: Efficient delivery of siRNA using dendritic poly(L-lysine) for loss-of-function analysis publication-title: J Control Release doi: 10.1016/j.jconrel.2007.10.022 – volume: 32 start-page: 706 year: 2011 ident: 10.1016/j.biomaterials.2014.01.070_bib21 article-title: Porphyrin–polymer networks, worms, and nanorods: pH-triggerable hierarchical self-assembly publication-title: Macromol Rapid Commun doi: 10.1002/marc.201100097 – volume: 122 start-page: 39 year: 2007 ident: 10.1016/j.biomaterials.2014.01.070_bib26 article-title: Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy publication-title: J Control Release doi: 10.1016/j.jconrel.2007.06.012 – volume: 19 start-page: 3189 year: 2009 ident: 10.1016/j.biomaterials.2014.01.070_bib32 article-title: Heparin-modified PEI encapsulated in thermosensitive hydrogels for efficient gene delivery and expression publication-title: J Mater Chem doi: 10.1039/b817956e – volume: 111 start-page: 165 year: 2006 ident: 10.1016/j.biomaterials.2014.01.070_bib24 article-title: Photochemically stimulated drug delivery increases the cytotoxicity and specificity of EGF–saporin publication-title: J Control Release doi: 10.1016/j.jconrel.2005.12.002 – volume: 34 start-page: 1613 year: 2013 ident: 10.1016/j.biomaterials.2014.01.070_bib12 article-title: The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron–doxorubicin conjugates for cancer therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.11.007 – volume: 100 start-page: 134 year: 2012 ident: 10.1016/j.biomaterials.2014.01.070_bib40 article-title: Starburst low-molecular weight polyethylenimine for efficient gene delivery publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.33250 – volume: 8 start-page: 889 year: 2008 ident: 10.1016/j.biomaterials.2014.01.070_bib16 article-title: Recent advances of dendrimers in delivery of genes and drugs publication-title: Mini-Rev Med Chem doi: 10.2174/138955708785132729 – volume: 34 start-page: 4849 year: 2013 ident: 10.1016/j.biomaterials.2014.01.070_bib5 article-title: pH-Responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.03.018 – volume: 33 start-page: 604 year: 2012 ident: 10.1016/j.biomaterials.2014.01.070_bib38 article-title: The biocompatibility of fatty acid modified dextran-agmatine bioconjugate gene delivery vector publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.09.067 – volume: 129 start-page: 200 year: 2008 ident: 10.1016/j.biomaterials.2014.01.070_bib33 article-title: Non-toxic phototriggered gene transfection by PAMAM-porphyrin conjugates publication-title: J Control Release doi: 10.1016/j.jconrel.2008.03.024 – volume: 5 start-page: 105 year: 2001 ident: 10.1016/j.biomaterials.2014.01.070_bib34 article-title: Basic principles of photodynamic therapy publication-title: J Porphyr Phthalocyanines doi: 10.1002/jpp.328 – year: 2013 ident: 10.1016/j.biomaterials.2014.01.070_bib20 article-title: PEGylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly-effective photothermal agent for in vivo cancer therapy publication-title: Adv Funct Mater doi: 10.1002/adfm.201301045 – volume: 86 start-page: 652 year: 2002 ident: 10.1016/j.biomaterials.2014.01.070_bib25 article-title: Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy publication-title: Br J Cancer doi: 10.1038/sj.bjc.6600138 – volume: 8 start-page: 3665 year: 2012 ident: 10.1016/j.biomaterials.2014.01.070_bib30 article-title: Novel supramolecular hydrogel/micelle composite for co-delivery of anticancer drug and growth factor publication-title: Soft Matter doi: 10.1039/c2sm25060h – volume: 7 start-page: 2156 year: 2010 ident: 10.1016/j.biomaterials.2014.01.070_bib10 article-title: Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors publication-title: Mol Pharm doi: 10.1021/mp100185f – volume: 30 start-page: 5660 year: 2009 ident: 10.1016/j.biomaterials.2014.01.070_bib14 article-title: Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.06.026 – volume: 33 start-page: 4917 year: 2012 ident: 10.1016/j.biomaterials.2014.01.070_bib18 article-title: Arginine functionalized peptide dendrimers as potential gene delivery vehicles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.03.030 – volume: 30 start-page: 1523 year: 2009 ident: 10.1016/j.biomaterials.2014.01.070_bib11 article-title: Supramolecular self-assembly of nonlinear amphiphilic and double hydrophilic block copolymers in aqueous solutions publication-title: Macromol Rapid Commun doi: 10.1002/marc.200900182 – volume: 34 start-page: 7191 year: 2013 ident: 10.1016/j.biomaterials.2014.01.070_bib4 article-title: Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.06.004 |
SSID | ssj0014042 |
Score | 2.4938595 |
Snippet | The co-delivery of drug and gene has become the primary strategy in cancer and other disease therapy. To co-deliver hydrophobic drug and functional gene... Abstract The co-delivery of drug and gene has become the primary strategy in cancer and other disease therapy. To co-deliver hydrophobic drug and functional... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4357 |
SubjectTerms | Advanced Basic Science Animals apoptosis Apoptosis - drug effects Arginine Arginine - chemistry biocompatibility Biocompatible Materials - pharmacology Cell Line, Tumor Chromatography, Gel Co-delivery composite polymers cytotoxicity Dentistry Drug Delivery Systems drugs Female Flow Cytometry Gene Transfer Techniques genes hemolysis Hemolysis - drug effects Humans hydrophobicity irradiation Light Lysine Magnetic Resonance Spectroscopy Matrix Metalloproteinase 9 - genetics Matrix Metalloproteinase 9 - metabolism Mice neoplasm cells neoplasms Particle Size Photo-enhanced photochemistry plasmids Polylysine - chemical synthesis Polylysine - chemistry Porphyrin porphyrins Porphyrins - chemical synthesis Porphyrins - chemistry Protein Binding - drug effects protein synthesis RNA, Messenger - genetics RNA, Messenger - metabolism Star polymers Static Electricity Taxoids - pharmacology therapeutics Transfection |
Title | A star-shaped porphyrin-arginine functionalized poly(l-lysine) copolymer for photo-enhanced drug and gene co-delivery |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961214001008 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961214001008 https://dx.doi.org/10.1016/j.biomaterials.2014.01.070 https://www.ncbi.nlm.nih.gov/pubmed/24576804 https://www.proquest.com/docview/1506415504 https://www.proquest.com/docview/2101315385 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5CAqU9hDZ9OU3NFnJIDltr5ZU2IuRgQoPbkJwayG1Z7a5iF0c2snxwDv3tndHDOCQBQ48SM0jszO7MSN98A3AoYpVKExse2DjlUkUxTzBSoEFEklmDQdbSp4Gr63h4I3_dRrdbcN72whCssjn76zO9Oq2bO71mNXuz8bhHsKQwIQIsSYVN1fArpSIv__53BfMg9piwhjGGnKRb4tEK40Ut7qasTU0wL1lReNLg4ueD1EtJaBWMLt7CbpNFskH9ou9gy-d78GaNW3APXl01f83fw2LAMAcs-HxkZt4xzLhxbVGKm-KO5kN4RtGt_ig4fqgkJsujCSe2ktwfM0uDFJb3vmCY4bLZaFpOuc9HFXaAuWJxx0zuGHqiR1Hu_ISwHssPcHPx4_f5kDfjFriNkn7JbRikkYmIkc8IJ0QWKWUDn-GqJSihrEuUiSyWXC5zNvUnWA2lgZOJsNS9K_sfYTuf5v4zMOLUSXHnO6y_pKQq-ERkxqgsSLH89LYDSbu-2jZc5DQSY6Jb0NkfvW4bTbbRgdBomw70V7qzmpFjI63T1oy67TnFU1Jj4NhIWz2n7efNhp9roeehDvQTp-zA2UrzkV9v_ORvrc9p3Pj0N8fkfrrAJxLVIBWY8mUZrOdFn2Ja1IFPtcOu1iyUVGoGcv8_3_ALvKarGgR6ANtlsfBfMVEr0261E7uwM_h5Obz-B3wCPws |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KCtv6MLZua7NPDfawPYhYiWTXjD2EspKuTZ5a6JuQJbnJyJzgOA_ZX787Ww4dayGwV_sOmbuT7s66-x3AJxEnmTSx4ZGNMy4TFfMUPQUqRKS5NehkLf0aGE_i0bX8caNu9uC07YWhsspw9jdnen1ahye9IM3ecjbrUVlSPyUALEmJDTX87hM6lerA_vD8YjTZXibIqJ6hQ_ScGFrs0brMi7rcTdVomyq9ZI3iSbOL7_dTD8WhtT86ewZPQyDJhs23Poc9XxzCwR14wUN4NA4X5y9gPWQYBpZ8NTVL7xgG3ShepOKmvKUREZ6Rg2v-C85-1xTzzec5J8CSwn9hlmYpbH75kmGQy5bTRbXgvpjW5QPMletbZgrH0Bg9knLn51TusXkJ12ffr05HPExc4Falg4rbfpQpowiUzwgnRK6SxEY-R6mlSJFYlyZGWcy6XO5s5k8wIcoiJ1NhqYFXDl5Bp1gU_hgYwepkuPkdpmBSUiJ8InJjkjzKMAP1tgtpK19tAxw5TcWY67bu7Ke-qxtNutGR0KibLgy2vMsGlGMnrq-tGnXbdooHpUbfsRN3ch-3X4U9v9JCr_o60v_YZRe-bTn_Mu2dV_7Y2pzGvU8XOqbwizWuSGiDlGPKh2kwpRcDcmuqC0eNwW5l1peUbUby9X9-4Qd4PLoaX-rL88nFG3hCb5qa0LfQqcq1f4dxW5W9D_vyD0HiQbw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+star-shaped+porphyrin-arginine+functionalized+poly%28l-lysine%29+copolymer+for+photo-enhanced+drug+and+gene+co-delivery&rft.jtitle=Biomaterials&rft.au=Ma%2C+Dong&rft.au=Lin%2C+Qian-Ming&rft.au=Zhang%2C+Li-Ming&rft.au=Liang%2C+Yuan-Yuan&rft.date=2014-05-01&rft.issn=0142-9612&rft.volume=35&rft.issue=14&rft.spage=4357&rft.epage=4367&rft_id=info:doi/10.1016%2Fj.biomaterials.2014.01.070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2014_01_070 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961214X00074%2Fcov150h.gif |