Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets

Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 35; no. 23; pp. 6069 - 6077
Main Authors Mao, Jian, Guo, Ruohai, Yan, Li-Tang
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm2 membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications.
AbstractList Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm(2) membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications.Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm(2) membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications.
Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm² membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications.
Abstract Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm2 membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications.
Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm(2) membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications.
Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 56 nm2 membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications.
Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm2 membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications.
Author Yan, Li-Tang
Mao, Jian
Guo, Ruohai
Author_xml – sequence: 1
  givenname: Jian
  surname: Mao
  fullname: Mao, Jian
– sequence: 2
  givenname: Ruohai
  surname: Guo
  fullname: Guo, Ruohai
– sequence: 3
  givenname: Li-Tang
  surname: Yan
  fullname: Yan, Li-Tang
  email: ltyan@mail.tsinghua.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24780168$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFv4AiTlwS_B2HAwLKp1SJQ-FsOc6E9ZLYi52All-P07QSqoS6B8uy5pl3xjPvGTrxwQNCzwiuCCbyxa5qXRjNBNGZIVUUE15hVmFVP0AbompVigaLE7TJAVo2ktBTdJbSDuc35vQROqW8VllJbZC_cuM8mMkFXxjf5WOGQ3KpCH1hYRhyLBbO51o54P6s4N5M29_mkK4zRhjbaDwUe4jTHNsV6UMsvkez30KOeOND2gJM6TF62Oee4cnNfY6-fXj_9eJTefnl4-eLN5elFQ2bypYpiZnilBNGqZBC1IbUDIueE6uMhJbVgrfAO8MarKRqu541DcWsY6Qlgp2j56vuPoafM6RJjy4t_8mNhjlpmgfJiGhqfC9KJKeUUdyII1BKZR6yUPejgkrCOGVNRp_eoHM7Qqf30Y0mHvTtkjLwegVsDClF6LV10_WYp2jcoAnWiy_0Tv_rC734QmOmsy-yxMs7ErdVjkp-tyZD3tgvB1En68Bb6FwEO-kuuONkXt2RsYPzzprhBxwg7cK8eCyPRieqsb5a3LuYN5sWM0kXgbf_Fzi2i78MMQav
CitedBy_id crossref_primary_10_1039_C6TB03310E
crossref_primary_10_1002_smsc_202400505
crossref_primary_10_1021_acsnano_7b09095
crossref_primary_10_1088_2053_1591_aab87b
crossref_primary_10_1021_acs_est_7b00663
crossref_primary_10_1016_j_bbamem_2017_08_001
crossref_primary_10_3389_fnsys_2018_00012
crossref_primary_10_1002_aic_17507
crossref_primary_10_3390_ma15238506
crossref_primary_10_1039_C6EN00427J
crossref_primary_10_1039_C9NH00777F
crossref_primary_10_1021_acsnano_9b08078
crossref_primary_10_1038_srep26783
crossref_primary_10_1002_adma_201603610
crossref_primary_10_1088_1674_1056_ac380f
crossref_primary_10_1016_j_desal_2019_114077
crossref_primary_10_1016_j_flatc_2022_100381
crossref_primary_10_1021_acs_jpcb_7b00297
crossref_primary_10_1039_C6NR05706C
crossref_primary_10_1021_acsami_6b15085
crossref_primary_10_1038_ncomms14537
crossref_primary_10_1088_1361_6528_abe43c
crossref_primary_10_1021_acs_chemrev_1c00864
crossref_primary_10_3390_nano8070519
crossref_primary_10_3390_nano13192666
crossref_primary_10_1039_D0NA00904K
crossref_primary_10_1016_j_bbrc_2017_09_052
crossref_primary_10_1016_j_carbon_2015_11_003
crossref_primary_10_1016_j_porgcoat_2021_106356
crossref_primary_10_1039_C7BM00987A
crossref_primary_10_1002_smll_201603685
crossref_primary_10_1038_srep10292
crossref_primary_10_1016_j_jenvman_2019_06_077
crossref_primary_10_3390_ma15155306
crossref_primary_10_1039_C8NR10091H
crossref_primary_10_2147_IJN_S426552
crossref_primary_10_1039_C8TB01590B
crossref_primary_10_3390_ijms23169096
crossref_primary_10_1016_j_apsusc_2015_11_006
crossref_primary_10_1016_j_colsurfb_2021_111767
crossref_primary_10_1021_acsnano_5b02067
crossref_primary_10_1016_j_jcis_2023_01_080
crossref_primary_10_1039_D3NR05354G
crossref_primary_10_1021_acs_nanolett_0c02635
crossref_primary_10_1002_smll_201702600
crossref_primary_10_1021_acs_nanolett_8b04820
crossref_primary_10_3390_nano12040650
crossref_primary_10_1021_acs_biomac_6b00241
crossref_primary_10_1021_acs_langmuir_3c02805
crossref_primary_10_3390_ijms221910578
crossref_primary_10_1002_chem_201404557
crossref_primary_10_1039_C5CS00579E
crossref_primary_10_1002_smll_202404570
crossref_primary_10_1038_s41598_024_82805_w
crossref_primary_10_1016_j_apsusc_2022_155425
crossref_primary_10_1016_j_jmrt_2021_01_093
crossref_primary_10_1021_acsami_8b03224
crossref_primary_10_1039_C5GC02506K
crossref_primary_10_1016_j_colsurfb_2021_111896
crossref_primary_10_1002_adts_201800105
crossref_primary_10_3390_ijms19123939
crossref_primary_10_1016_j_jhazmat_2021_126158
crossref_primary_10_1002_adbi_202100637
crossref_primary_10_1021_acsnano_8b05340
crossref_primary_10_1016_j_cplett_2018_03_010
crossref_primary_10_1039_D4TB01277A
crossref_primary_10_1016_j_bioadv_2023_213662
crossref_primary_10_1002_jrs_5170
crossref_primary_10_1098_rsfs_2017_0060
crossref_primary_10_1016_j_addr_2022_114467
crossref_primary_10_1016_j_actbio_2025_02_023
crossref_primary_10_2147_IJN_S408981
crossref_primary_10_1002_adhm_202201523
crossref_primary_10_1016_j_biomaterials_2014_06_032
crossref_primary_10_1021_acsanm_7b00332
crossref_primary_10_1039_C5RA26273A
crossref_primary_10_3390_molecules27227956
crossref_primary_10_1016_j_apmt_2023_101753
crossref_primary_10_1021_acs_langmuir_9b02536
crossref_primary_10_1002_chem_201901841
crossref_primary_10_2217_nnm_15_65
crossref_primary_10_1039_D2MA00313A
crossref_primary_10_1016_j_mtchem_2019_100199
crossref_primary_10_6023_A21050238
crossref_primary_10_1007_s11433_018_9317_7
crossref_primary_10_1016_j_heliyon_2020_e05360
crossref_primary_10_1021_am508938u
crossref_primary_10_1007_s00339_022_05355_w
crossref_primary_10_1080_08927022_2022_2042529
crossref_primary_10_1038_srep28252
crossref_primary_10_1016_j_carbon_2019_04_067
crossref_primary_10_1016_j_molliq_2019_111714
crossref_primary_10_1088_1361_6463_ac4d4c
crossref_primary_10_1016_j_snb_2017_07_057
crossref_primary_10_1039_D3TB00322A
crossref_primary_10_1126_sciadv_aaw3192
crossref_primary_10_1021_acsbiomaterials_6b00390
crossref_primary_10_1021_acs_langmuir_0c01691
crossref_primary_10_1039_C7NR01020F
crossref_primary_10_1002_pat_5242
crossref_primary_10_1039_C5CS00914F
crossref_primary_10_1021_acs_jpcb_0c05882
crossref_primary_10_1016_j_tiv_2017_03_005
crossref_primary_10_2139_ssrn_3951685
crossref_primary_10_1021_jacs_5b11411
crossref_primary_10_1002_mame_202000724
crossref_primary_10_1360_TB_2022_0913
crossref_primary_10_1016_j_nantod_2019_03_003
crossref_primary_10_1039_C9SM02338K
crossref_primary_10_1039_C5NR02970H
crossref_primary_10_1039_C5CS00021A
crossref_primary_10_1016_j_scib_2017_12_012
crossref_primary_10_1021_acsnano_6b00130
crossref_primary_10_1039_C7TA00009J
crossref_primary_10_1021_acsnano_5b07036
crossref_primary_10_1002_smtd_201700207
crossref_primary_10_1016_j_mtbio_2023_100886
crossref_primary_10_1038_s41598_018_36531_9
crossref_primary_10_1016_j_inoche_2024_113492
crossref_primary_10_1021_acsami_0c16688
crossref_primary_10_1021_acs_chemrev_6b00520
crossref_primary_10_1039_D0NA00365D
crossref_primary_10_1002_admi_201601168
crossref_primary_10_1002_jemt_22690
crossref_primary_10_1002_smll_201804992
crossref_primary_10_1021_acsomega_8b02787
crossref_primary_10_1021_acs_jpcb_4c05025
crossref_primary_10_1016_j_addr_2016_08_009
crossref_primary_10_1002_smll_201903519
crossref_primary_10_1021_acs_jpcc_1c05958
crossref_primary_10_1021_acs_nanolett_8b04903
Cites_doi 10.1126/science.1158877
10.1038/nmat1849
10.1021/nn101390x
10.1116/1.2789446
10.1039/C2CS35342C
10.1073/pnas.1222276110
10.1039/C1CS15078B
10.1103/PhysRevLett.98.018102
10.1038/nnano.2006.209
10.1021/nn8000998
10.1038/nature04235
10.1021/ja803688x
10.1039/c3ra40392k
10.1038/nmat1333
10.1016/j.biomaterials.2013.02.047
10.1016/j.ceb.2009.01.006
10.1021/la063522m
10.1063/1.474784
10.1038/nnano.2013.125
10.1002/smll.201100001
10.1021/nn303508c
10.1080/08958370490439597
10.1126/science.1157996
10.1063/1.1659428
10.1186/1743-8977-10-27
10.1021/nn901739v
10.1021/nn202451x
10.1039/c3nr03543c
10.1002/adma.201202625
10.1038/nnano.2008.130
10.1021/nl802412n
10.1038/nnano.2011.151
10.1073/pnas.0503879102
10.1021/nl100996u
10.1039/c1sm05398a
10.1002/anie.201209099
10.1021/jp9731821
10.1021/nn9015778
10.1021/nn4033344
10.1039/C0NR00647E
10.1038/nmat2442
10.1021/nn101097v
10.1021/la049776u
10.1021/nn1007429
10.1002/adma.200801393
10.1002/adhm.201200248
10.1007/s002320010040
10.1016/j.biomaterials.2012.02.021
10.1021/nn202699t
10.1103/PhysRevE.69.031903
10.1021/nl202515a
10.1039/c2sm26029h
10.1515/znc-1973-11-1209
10.1021/nl9031617
10.1146/annurev.biochem.78.081307.110540
10.1038/nmat2344
10.1038/nature05840
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7S9
L.6
DOI 10.1016/j.biomaterials.2014.03.087
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Engineering Research Database

Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 6077
ExternalDocumentID 24780168
10_1016_j_biomaterials_2014_03_087
S0142961214003627
1_s2_0_S0142961214003627
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c593t-b386038424132256557a17305f41c8a6eb3754be4da390868bdf399203d31b153
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Thu Jul 10 18:28:50 EDT 2025
Fri Jul 11 01:50:04 EDT 2025
Mon Jul 21 11:51:26 EDT 2025
Sun Aug 24 03:32:43 EDT 2025
Wed Feb 19 01:56:51 EST 2025
Tue Jul 01 03:47:44 EDT 2025
Thu Apr 24 23:06:42 EDT 2025
Fri Feb 23 02:31:37 EST 2024
Sun Feb 23 10:18:58 EST 2025
Tue Aug 26 17:20:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Transmembrane transportation
Cell membrane
Graphene
Modeling
Simulation phase diagram
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c593t-b386038424132256557a17305f41c8a6eb3754be4da390868bdf399203d31b153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24780168
PQID 1526134239
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2101315970
proquest_miscellaneous_1642232095
proquest_miscellaneous_1622601458
proquest_miscellaneous_1526134239
pubmed_primary_24780168
crossref_citationtrail_10_1016_j_biomaterials_2014_03_087
crossref_primary_10_1016_j_biomaterials_2014_03_087
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2014_03_087
elsevier_clinicalkeyesjournals_1_s2_0_S0142961214003627
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2014_03_087
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Yan, Stormer, Kim (bib3) 2005; 438
Kostarelos, Lacerda, Pastorin, Wu, Wieckowski, Luangsivilay (bib15) 2007; 2
Shi, von dem Bussche, Hurt, Kane, Gao (bib16) 2011; 6
Titov, Pearson (bib28) 2010; 4
Frank, Tanenbaum, van der Zande, McEuen (bib39) 2007; 25
Gao, Shi, Freund (bib46) 2005; 102
Góźdź (bib54) 2004; 20
Russier, Treossi, Scarsi, Perrozzi, Dumortier, Ottaviano (bib56) 2013; 5
Groot, Warren (bib33) 1997; 107
Helfrich (bib52) 1973; C28
Deserno (bib47) 2004; 69
Geim, Novoselov (bib2) 2007; 6
Min, Lee, Jang (bib37) 2012; 8
Shillcock, Lipowsky (bib26) 2005; 4
Yang, Feng, Shi, Liu (bib9) 2013; 42
Morris, Homann (bib48) 2001; 179
Lerf, He, Forster, Klinowski (bib41) 1998; 102
Galletta, Cooper (bib51) 2009; 21
Reynwar, Illya, Harmandaris, Müller, Kremer, Deserno (bib25) 2007; 447
Góźdź (bib53) 2007; 23
Huang, Qi, Boey, Zhang (bib5) 2012; 41
Zhang, Li, Lykotrafitis, Bao, Suresh (bib45) 2009; 21
Guo, Mao, Yan (bib35) 2013; 7
Doherty, McMahon (bib50) 2009; 78
Yan, Popp, Ghosh, Böker (bib27) 2010; 4
Yue, Zhang (bib36) 2011; 7
Lee, Wei, Kysar, Hone (bib40) 2008; 321
Vacha, Martinez-Veracoechea, Frenkel (bib44) 2012; 6
Yue, Wei, Yue, Wang, Luo, Gao (bib55) 2012; 33
Ruiz, Fernando, Wang, Brown, Luo, McNamara (bib22) 2011; 5
Duch, Budinger, Liang, Soberanes, Urich, Chiarella (bib32) 2011; 11
Yang, Zhang, Zhang, Sun, Lee, Liu (bib8) 2010; 10
Akhavan, Ghaderi (bib19) 2010; 4
Tu, Lv, Xiu, Huynh, Zhang, Castelli (bib21) 2013; 8
Mohanty, Berry (bib6) 2008; 8
Zhao, Zhao, Liu, Chang, Chen, Zhao (bib17) 2011; 10
Akhavan (bib4) 2010; 4
Yang, Xu, Cheng, Sun, Wang, Liu (bib12) 2012; 24
Blakslee, Proctor, Seldin, Spence, Weng (bib38) 1970; 41
Hu, Peng, Luo, Lv, Li, Li (bib18) 2010; 4
Guo, Mao, Yan (bib31) 2013; 34
Sens, Gov (bib49) 2007; 98
Lammel, Boisseaux, Fernandez-Cruz, Navas (bib43) 2013; 10
Alexeev, Uspal, Balazs (bib34) 2008; 2
Liu, Zeng, Hofmann, Burcombe, Wei, Jiang (bib20) 2011; 5
Bianco (bib11) 2013; 52
Wong-Ekkabut, Baoukina, Triampo, Tang, Tieleman, Monticelli (bib14) 2008; 3
Oberdorster, Sharp, Atudorei, Elder, Gelein, Kreyling (bib13) 2004; 16
Nel, Madler, Velegol, Xia, Hoek, Somasundaran (bib23) 2009; 8
Yan, Zhao, Li, Hu, Zhao (bib10) 2011; 3
Li, Yuan, von dem Bussche, Creighton, Hurt, Kane (bib29) 2013; 110
Wang, Wei, Shi, Gao (bib30) 2013; 3
Mitragotri, Lahann (bib24) 2009; 8
Gomez-Navarro, Meyer, Sundaram, Chuvilin, Kurasch, Burghard (bib42) 2010; 10
Liu, Robinson, Sun, Dai (bib7) 2008; 130
Ali-Boucetta, Bitounis, Raveendran-Nair, Servant, van den Bossche, Kostarelos (bib57) 2013; 2
Geim (bib1) 2009; 324
Lee (10.1016/j.biomaterials.2014.03.087_bib40) 2008; 321
Yang (10.1016/j.biomaterials.2014.03.087_bib9) 2013; 42
Akhavan (10.1016/j.biomaterials.2014.03.087_bib19) 2010; 4
Zhang (10.1016/j.biomaterials.2014.03.087_bib3) 2005; 438
Min (10.1016/j.biomaterials.2014.03.087_bib37) 2012; 8
Russier (10.1016/j.biomaterials.2014.03.087_bib56) 2013; 5
Galletta (10.1016/j.biomaterials.2014.03.087_bib51) 2009; 21
Yue (10.1016/j.biomaterials.2014.03.087_bib55) 2012; 33
Wang (10.1016/j.biomaterials.2014.03.087_bib30) 2013; 3
Yang (10.1016/j.biomaterials.2014.03.087_bib8) 2010; 10
Bianco (10.1016/j.biomaterials.2014.03.087_bib11) 2013; 52
Yan (10.1016/j.biomaterials.2014.03.087_bib27) 2010; 4
Zhao (10.1016/j.biomaterials.2014.03.087_bib17) 2011; 10
Guo (10.1016/j.biomaterials.2014.03.087_bib35) 2013; 7
Zhang (10.1016/j.biomaterials.2014.03.087_bib45) 2009; 21
Lammel (10.1016/j.biomaterials.2014.03.087_bib43) 2013; 10
Morris (10.1016/j.biomaterials.2014.03.087_bib48) 2001; 179
Sens (10.1016/j.biomaterials.2014.03.087_bib49) 2007; 98
Nel (10.1016/j.biomaterials.2014.03.087_bib23) 2009; 8
Helfrich (10.1016/j.biomaterials.2014.03.087_bib52) 1973; C28
Deserno (10.1016/j.biomaterials.2014.03.087_bib47) 2004; 69
Vacha (10.1016/j.biomaterials.2014.03.087_bib44) 2012; 6
Góźdź (10.1016/j.biomaterials.2014.03.087_bib54) 2004; 20
Lerf (10.1016/j.biomaterials.2014.03.087_bib41) 1998; 102
Mohanty (10.1016/j.biomaterials.2014.03.087_bib6) 2008; 8
Kostarelos (10.1016/j.biomaterials.2014.03.087_bib15) 2007; 2
Wong-Ekkabut (10.1016/j.biomaterials.2014.03.087_bib14) 2008; 3
Hu (10.1016/j.biomaterials.2014.03.087_bib18) 2010; 4
Blakslee (10.1016/j.biomaterials.2014.03.087_bib38) 1970; 41
Huang (10.1016/j.biomaterials.2014.03.087_bib5) 2012; 41
Shillcock (10.1016/j.biomaterials.2014.03.087_bib26) 2005; 4
Alexeev (10.1016/j.biomaterials.2014.03.087_bib34) 2008; 2
Gao (10.1016/j.biomaterials.2014.03.087_bib46) 2005; 102
Gomez-Navarro (10.1016/j.biomaterials.2014.03.087_bib42) 2010; 10
Oberdorster (10.1016/j.biomaterials.2014.03.087_bib13) 2004; 16
Guo (10.1016/j.biomaterials.2014.03.087_bib31) 2013; 34
Ruiz (10.1016/j.biomaterials.2014.03.087_bib22) 2011; 5
Góźdź (10.1016/j.biomaterials.2014.03.087_bib53) 2007; 23
Liu (10.1016/j.biomaterials.2014.03.087_bib7) 2008; 130
Groot (10.1016/j.biomaterials.2014.03.087_bib33) 1997; 107
Shi (10.1016/j.biomaterials.2014.03.087_bib16) 2011; 6
Geim (10.1016/j.biomaterials.2014.03.087_bib1) 2009; 324
Akhavan (10.1016/j.biomaterials.2014.03.087_bib4) 2010; 4
Li (10.1016/j.biomaterials.2014.03.087_bib29) 2013; 110
Frank (10.1016/j.biomaterials.2014.03.087_bib39) 2007; 25
Liu (10.1016/j.biomaterials.2014.03.087_bib20) 2011; 5
Duch (10.1016/j.biomaterials.2014.03.087_bib32) 2011; 11
Reynwar (10.1016/j.biomaterials.2014.03.087_bib25) 2007; 447
Yan (10.1016/j.biomaterials.2014.03.087_bib10) 2011; 3
Yue (10.1016/j.biomaterials.2014.03.087_bib36) 2011; 7
Doherty (10.1016/j.biomaterials.2014.03.087_bib50) 2009; 78
Yang (10.1016/j.biomaterials.2014.03.087_bib12) 2012; 24
Titov (10.1016/j.biomaterials.2014.03.087_bib28) 2010; 4
Geim (10.1016/j.biomaterials.2014.03.087_bib2) 2007; 6
Tu (10.1016/j.biomaterials.2014.03.087_bib21) 2013; 8
Mitragotri (10.1016/j.biomaterials.2014.03.087_bib24) 2009; 8
Ali-Boucetta (10.1016/j.biomaterials.2014.03.087_bib57) 2013; 2
References_xml – volume: 4
  start-page: 913
  year: 2010
  end-page: 920
  ident: bib27
  article-title: Self-assembly of Janus nanoparticles in diblock copolymers
  publication-title: ACS Nano
– volume: 102
  start-page: 9469
  year: 2005
  end-page: 9474
  ident: bib46
  article-title: Mechanics of receptor-mediated endocytosis
  publication-title: Proc Natl Acad Sci U S A
– volume: 3
  start-page: 363
  year: 2008
  end-page: 368
  ident: bib14
  article-title: Computer simulation study of fullerene translocation through lipid membranes
  publication-title: Nat Nanotech
– volume: 2
  start-page: 108
  year: 2007
  end-page: 113
  ident: bib15
  article-title: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type
  publication-title: Nat Nanotech
– volume: 98
  start-page: 018102
  year: 2007
  ident: bib49
  article-title: Force balance and membrane shedding at the red-blood-cell surface
  publication-title: Phys Rev Lett
– volume: 3
  start-page: 15776
  year: 2013
  end-page: 15782
  ident: bib30
  article-title: Cellular entry of graphene nanosheets: the role of thickness, oxidation and surface adsorption
  publication-title: RSC Adv
– volume: 2
  start-page: 433
  year: 2013
  end-page: 441
  ident: bib57
  article-title: Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity
  publication-title: Adv Healthc Mater
– volume: 10
  start-page: 3318
  year: 2010
  end-page: 3323
  ident: bib8
  article-title: Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy
  publication-title: Nano Lett
– volume: 438
  start-page: 201
  year: 2005
  end-page: 204
  ident: bib3
  article-title: Experimental observation of the quantum Hall effect and Berry's phase in graphene
  publication-title: Nature
– volume: 5
  start-page: 6971
  year: 2011
  end-page: 6980
  ident: bib20
  article-title: Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress
  publication-title: ACS Nano
– volume: 7
  start-page: 10646
  year: 2013
  end-page: 10653
  ident: bib35
  article-title: Unique dynamical approach of fully wrapping dendrimer-like soft nanoparticles by lipid bilayer membrane
  publication-title: ACS Nano
– volume: 41
  start-page: 666
  year: 2012
  end-page: 686
  ident: bib5
  article-title: Graphene-based composites
  publication-title: Chem Soc Rev
– volume: 10
  start-page: 1322
  year: 2011
  end-page: 1337
  ident: bib17
  article-title: Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterial
  publication-title: Small
– volume: 7
  start-page: 9104
  year: 2011
  end-page: 9112
  ident: bib36
  article-title: Molecular understanding of receptor-mediated membrane responses to ligand-coated nanoparticles
  publication-title: Soft Matter
– volume: C28
  start-page: 693
  year: 1973
  end-page: 703
  ident: bib52
  article-title: Elastic properties of lipid bilayers: theory and possible experiments
  publication-title: Naturforsch
– volume: 4
  start-page: 229
  year: 2010
  end-page: 234
  ident: bib28
  article-title: Sandwiched graphene-membrane superstructures
  publication-title: ACS Nano
– volume: 8
  start-page: 594
  year: 2013
  end-page: 601
  ident: bib21
  article-title: Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets
  publication-title: Nat Nanotech
– volume: 52
  start-page: 4986
  year: 2013
  end-page: 4997
  ident: bib11
  article-title: Graphene: safe or toxic? the two faces of the medal
  publication-title: Angew Chem Int Ed
– volume: 3
  start-page: 362
  year: 2011
  end-page: 382
  ident: bib10
  article-title: Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes
  publication-title: Nanoscale
– volume: 5
  start-page: 11234
  year: 2013
  end-page: 11247
  ident: bib56
  article-title: Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells
  publication-title: Nanoscale
– volume: 21
  start-page: 20
  year: 2009
  end-page: 27
  ident: bib51
  article-title: Actin and endocytosis: mechanisms and phylogeny
  publication-title: Curr Opin Cell Biol
– volume: 11
  start-page: 5201
  year: 2011
  end-page: 5207
  ident: bib32
  article-title: Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung
  publication-title: Nano Lett
– volume: 24
  start-page: 5586
  year: 2012
  end-page: 5592
  ident: bib12
  article-title: In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles
  publication-title: Adv Mater
– volume: 4
  start-page: 4174
  year: 2010
  end-page: 4180
  ident: bib4
  article-title: Graphene nanomesh by ZnO nanorod photocatalysts
  publication-title: ACS Nano
– volume: 110
  start-page: 12295
  year: 2013
  end-page: 12300
  ident: bib29
  article-title: Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites
  publication-title: Proc Natl Acad Sci U S A
– volume: 2
  start-page: 1117
  year: 2008
  end-page: 1122
  ident: bib34
  article-title: Harnessing Janus nanoparticles to create controllable pores in membranes
  publication-title: ACS Nano
– volume: 5
  start-page: 8100
  year: 2011
  end-page: 8107
  ident: bib22
  article-title: Graphene oxide: a nonspecific enhancer of cellular growth
  publication-title: ACS Nano
– volume: 6
  start-page: 183
  year: 2007
  end-page: 191
  ident: bib2
  article-title: The rise of graphene
  publication-title: Nat Mater
– volume: 16
  start-page: 437
  year: 2004
  end-page: 445
  ident: bib13
  article-title: Translocation of inhaled ultrafine particles to the brain
  publication-title: Inhal Toxicol
– volume: 102
  start-page: 4477
  year: 1998
  end-page: 4482
  ident: bib41
  article-title: Structure of graphite oxide revisited
  publication-title: J Phys Chem B
– volume: 69
  start-page: 031903
  year: 2004
  ident: bib47
  article-title: Elastic deformation of a fluid membrane upon colloid binding
  publication-title: Phys Rev E
– volume: 130
  start-page: 10876
  year: 2008
  end-page: 10877
  ident: bib7
  article-title: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs
  publication-title: J Am Chem Soc
– volume: 4
  start-page: 5731
  year: 2010
  end-page: 5736
  ident: bib19
  article-title: Toxicity of graphene and graphene oxide nanowalls against bacteria
  publication-title: ACS Nano
– volume: 447
  start-page: 461
  year: 2007
  end-page: 464
  ident: bib25
  article-title: Aggregation and vesiculation of membrane proteins by curvature-mediated interactions
  publication-title: Nature
– volume: 23
  start-page: 5665
  year: 2007
  end-page: 5669
  ident: bib53
  article-title: Deformations of lipid vesicles induced by attached spherical particles
  publication-title: Langmuir
– volume: 4
  start-page: 4317
  year: 2010
  end-page: 4323
  ident: bib18
  article-title: Graphene-based antibacterial paper
  publication-title: ACS Nano
– volume: 25
  start-page: 2558
  year: 2007
  end-page: 2561
  ident: bib39
  article-title: Mechanical properties of suspended graphene Sheets
  publication-title: J Vac Sci Technol B
– volume: 8
  start-page: 15
  year: 2009
  end-page: 23
  ident: bib24
  article-title: Physical approaches to biomaterial design
  publication-title: Nat Mater
– volume: 41
  start-page: 3373
  year: 1970
  end-page: 3382
  ident: bib38
  article-title: Elastic constants of compression-annealed pyrolytic graphite
  publication-title: J Appl Phys
– volume: 10
  start-page: 27
  year: 2013
  ident: bib43
  article-title: Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2
  publication-title: Part Fibre Toxicol
– volume: 179
  start-page: 79
  year: 2001
  end-page: 102
  ident: bib48
  article-title: Cell surface area regulation and membrane tension
  publication-title: J Membr Biol
– volume: 8
  start-page: 4469
  year: 2008
  end-page: 4476
  ident: bib6
  article-title: Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents
  publication-title: Nano Lett
– volume: 321
  start-page: 385
  year: 2008
  end-page: 388
  ident: bib40
  article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene
  publication-title: Science
– volume: 8
  start-page: 8735
  year: 2012
  end-page: 8742
  ident: bib37
  article-title: Dissipative particle dynamics modeling of a graphene nanosheet and its self-Assembly with surfactant molecules
  publication-title: Soft Matter
– volume: 34
  start-page: 4296
  year: 2013
  end-page: 4301
  ident: bib31
  article-title: Computer simulation of cell entry of graphene nanosheet
  publication-title: Biomaterials
– volume: 4
  start-page: 225
  year: 2005
  end-page: 228
  ident: bib26
  article-title: Tension-induced fusion of bilayer membranes and vesicles
  publication-title: Nat Mater
– volume: 33
  start-page: 4013
  year: 2012
  end-page: 4021
  ident: bib55
  article-title: The role of the lateral dimension of graphene oxide in the regulation of cellular responses
  publication-title: Biomaterials
– volume: 78
  start-page: 857
  year: 2009
  end-page: 902
  ident: bib50
  article-title: Mechanisms of endocytosis
  publication-title: Annu Rev Biochem
– volume: 20
  start-page: 7385
  year: 2004
  end-page: 7391
  ident: bib54
  article-title: Spontaneous curvature induced shape transformations of tubular polymersomes
  publication-title: Langmuir
– volume: 324
  start-page: 1530
  year: 2009
  end-page: 1534
  ident: bib1
  article-title: Graphene: status and prospects
  publication-title: Science
– volume: 10
  start-page: 1144
  year: 2010
  end-page: 1148
  ident: bib42
  article-title: Atomic structure of reduced graphene oxide
  publication-title: Nano Lett
– volume: 107
  start-page: 4423
  year: 1997
  end-page: 4435
  ident: bib33
  article-title: Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation
  publication-title: J Chem Phys
– volume: 21
  start-page: 419
  year: 2009
  end-page: 424
  ident: bib45
  article-title: Size-dependent endocytosis of nanoparticles
  publication-title: Adv Mater
– volume: 8
  start-page: 543
  year: 2009
  end-page: 557
  ident: bib23
  article-title: Understanding biophysicochemical interactions at the nano-bio interface
  publication-title: Nat Mater
– volume: 42
  start-page: 530
  year: 2013
  end-page: 547
  ident: bib9
  article-title: Nano-graphene in biomedicine: theranostic applications
  publication-title: Chem Soc Rev
– volume: 6
  start-page: 10598
  year: 2012
  end-page: 10605
  ident: bib44
  article-title: Intracellular release of endocytosed nanoparticles upon a change of ligand-receptor interaction
  publication-title: ACS Nano
– volume: 6
  start-page: 714
  year: 2011
  end-page: 719
  ident: bib16
  article-title: Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation
  publication-title: Nat Nanotech
– volume: 324
  start-page: 1530
  year: 2009
  ident: 10.1016/j.biomaterials.2014.03.087_bib1
  article-title: Graphene: status and prospects
  publication-title: Science
  doi: 10.1126/science.1158877
– volume: 6
  start-page: 183
  year: 2007
  ident: 10.1016/j.biomaterials.2014.03.087_bib2
  article-title: The rise of graphene
  publication-title: Nat Mater
  doi: 10.1038/nmat1849
– volume: 4
  start-page: 5731
  year: 2010
  ident: 10.1016/j.biomaterials.2014.03.087_bib19
  article-title: Toxicity of graphene and graphene oxide nanowalls against bacteria
  publication-title: ACS Nano
  doi: 10.1021/nn101390x
– volume: 25
  start-page: 2558
  year: 2007
  ident: 10.1016/j.biomaterials.2014.03.087_bib39
  article-title: Mechanical properties of suspended graphene Sheets
  publication-title: J Vac Sci Technol B
  doi: 10.1116/1.2789446
– volume: 42
  start-page: 530
  year: 2013
  ident: 10.1016/j.biomaterials.2014.03.087_bib9
  article-title: Nano-graphene in biomedicine: theranostic applications
  publication-title: Chem Soc Rev
  doi: 10.1039/C2CS35342C
– volume: 110
  start-page: 12295
  year: 2013
  ident: 10.1016/j.biomaterials.2014.03.087_bib29
  article-title: Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1222276110
– volume: 41
  start-page: 666
  year: 2012
  ident: 10.1016/j.biomaterials.2014.03.087_bib5
  article-title: Graphene-based composites
  publication-title: Chem Soc Rev
  doi: 10.1039/C1CS15078B
– volume: 98
  start-page: 018102
  year: 2007
  ident: 10.1016/j.biomaterials.2014.03.087_bib49
  article-title: Force balance and membrane shedding at the red-blood-cell surface
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.98.018102
– volume: 2
  start-page: 108
  year: 2007
  ident: 10.1016/j.biomaterials.2014.03.087_bib15
  article-title: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type
  publication-title: Nat Nanotech
  doi: 10.1038/nnano.2006.209
– volume: 2
  start-page: 1117
  year: 2008
  ident: 10.1016/j.biomaterials.2014.03.087_bib34
  article-title: Harnessing Janus nanoparticles to create controllable pores in membranes
  publication-title: ACS Nano
  doi: 10.1021/nn8000998
– volume: 438
  start-page: 201
  year: 2005
  ident: 10.1016/j.biomaterials.2014.03.087_bib3
  article-title: Experimental observation of the quantum Hall effect and Berry's phase in graphene
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 130
  start-page: 10876
  year: 2008
  ident: 10.1016/j.biomaterials.2014.03.087_bib7
  article-title: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs
  publication-title: J Am Chem Soc
  doi: 10.1021/ja803688x
– volume: 3
  start-page: 15776
  year: 2013
  ident: 10.1016/j.biomaterials.2014.03.087_bib30
  article-title: Cellular entry of graphene nanosheets: the role of thickness, oxidation and surface adsorption
  publication-title: RSC Adv
  doi: 10.1039/c3ra40392k
– volume: 4
  start-page: 225
  year: 2005
  ident: 10.1016/j.biomaterials.2014.03.087_bib26
  article-title: Tension-induced fusion of bilayer membranes and vesicles
  publication-title: Nat Mater
  doi: 10.1038/nmat1333
– volume: 34
  start-page: 4296
  year: 2013
  ident: 10.1016/j.biomaterials.2014.03.087_bib31
  article-title: Computer simulation of cell entry of graphene nanosheet
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.02.047
– volume: 21
  start-page: 20
  year: 2009
  ident: 10.1016/j.biomaterials.2014.03.087_bib51
  article-title: Actin and endocytosis: mechanisms and phylogeny
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2009.01.006
– volume: 23
  start-page: 5665
  year: 2007
  ident: 10.1016/j.biomaterials.2014.03.087_bib53
  article-title: Deformations of lipid vesicles induced by attached spherical particles
  publication-title: Langmuir
  doi: 10.1021/la063522m
– volume: 107
  start-page: 4423
  year: 1997
  ident: 10.1016/j.biomaterials.2014.03.087_bib33
  article-title: Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation
  publication-title: J Chem Phys
  doi: 10.1063/1.474784
– volume: 8
  start-page: 594
  year: 2013
  ident: 10.1016/j.biomaterials.2014.03.087_bib21
  article-title: Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets
  publication-title: Nat Nanotech
  doi: 10.1038/nnano.2013.125
– volume: 10
  start-page: 1322
  year: 2011
  ident: 10.1016/j.biomaterials.2014.03.087_bib17
  article-title: Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterial
  publication-title: Small
  doi: 10.1002/smll.201100001
– volume: 6
  start-page: 10598
  year: 2012
  ident: 10.1016/j.biomaterials.2014.03.087_bib44
  article-title: Intracellular release of endocytosed nanoparticles upon a change of ligand-receptor interaction
  publication-title: ACS Nano
  doi: 10.1021/nn303508c
– volume: 16
  start-page: 437
  year: 2004
  ident: 10.1016/j.biomaterials.2014.03.087_bib13
  article-title: Translocation of inhaled ultrafine particles to the brain
  publication-title: Inhal Toxicol
  doi: 10.1080/08958370490439597
– volume: 321
  start-page: 385
  year: 2008
  ident: 10.1016/j.biomaterials.2014.03.087_bib40
  article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene
  publication-title: Science
  doi: 10.1126/science.1157996
– volume: 41
  start-page: 3373
  year: 1970
  ident: 10.1016/j.biomaterials.2014.03.087_bib38
  article-title: Elastic constants of compression-annealed pyrolytic graphite
  publication-title: J Appl Phys
  doi: 10.1063/1.1659428
– volume: 10
  start-page: 27
  year: 2013
  ident: 10.1016/j.biomaterials.2014.03.087_bib43
  article-title: Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2
  publication-title: Part Fibre Toxicol
  doi: 10.1186/1743-8977-10-27
– volume: 4
  start-page: 913
  year: 2010
  ident: 10.1016/j.biomaterials.2014.03.087_bib27
  article-title: Self-assembly of Janus nanoparticles in diblock copolymers
  publication-title: ACS Nano
  doi: 10.1021/nn901739v
– volume: 5
  start-page: 6971
  year: 2011
  ident: 10.1016/j.biomaterials.2014.03.087_bib20
  article-title: Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress
  publication-title: ACS Nano
  doi: 10.1021/nn202451x
– volume: 5
  start-page: 11234
  year: 2013
  ident: 10.1016/j.biomaterials.2014.03.087_bib56
  article-title: Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells
  publication-title: Nanoscale
  doi: 10.1039/c3nr03543c
– volume: 24
  start-page: 5586
  year: 2012
  ident: 10.1016/j.biomaterials.2014.03.087_bib12
  article-title: In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles
  publication-title: Adv Mater
  doi: 10.1002/adma.201202625
– volume: 3
  start-page: 363
  year: 2008
  ident: 10.1016/j.biomaterials.2014.03.087_bib14
  article-title: Computer simulation study of fullerene translocation through lipid membranes
  publication-title: Nat Nanotech
  doi: 10.1038/nnano.2008.130
– volume: 8
  start-page: 4469
  year: 2008
  ident: 10.1016/j.biomaterials.2014.03.087_bib6
  article-title: Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents
  publication-title: Nano Lett
  doi: 10.1021/nl802412n
– volume: 6
  start-page: 714
  year: 2011
  ident: 10.1016/j.biomaterials.2014.03.087_bib16
  article-title: Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation
  publication-title: Nat Nanotech
  doi: 10.1038/nnano.2011.151
– volume: 102
  start-page: 9469
  year: 2005
  ident: 10.1016/j.biomaterials.2014.03.087_bib46
  article-title: Mechanics of receptor-mediated endocytosis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0503879102
– volume: 10
  start-page: 3318
  year: 2010
  ident: 10.1016/j.biomaterials.2014.03.087_bib8
  article-title: Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy
  publication-title: Nano Lett
  doi: 10.1021/nl100996u
– volume: 7
  start-page: 9104
  year: 2011
  ident: 10.1016/j.biomaterials.2014.03.087_bib36
  article-title: Molecular understanding of receptor-mediated membrane responses to ligand-coated nanoparticles
  publication-title: Soft Matter
  doi: 10.1039/c1sm05398a
– volume: 52
  start-page: 4986
  year: 2013
  ident: 10.1016/j.biomaterials.2014.03.087_bib11
  article-title: Graphene: safe or toxic? the two faces of the medal
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201209099
– volume: 102
  start-page: 4477
  year: 1998
  ident: 10.1016/j.biomaterials.2014.03.087_bib41
  article-title: Structure of graphite oxide revisited
  publication-title: J Phys Chem B
  doi: 10.1021/jp9731821
– volume: 4
  start-page: 229
  year: 2010
  ident: 10.1016/j.biomaterials.2014.03.087_bib28
  article-title: Sandwiched graphene-membrane superstructures
  publication-title: ACS Nano
  doi: 10.1021/nn9015778
– volume: 7
  start-page: 10646
  year: 2013
  ident: 10.1016/j.biomaterials.2014.03.087_bib35
  article-title: Unique dynamical approach of fully wrapping dendrimer-like soft nanoparticles by lipid bilayer membrane
  publication-title: ACS Nano
  doi: 10.1021/nn4033344
– volume: 3
  start-page: 362
  year: 2011
  ident: 10.1016/j.biomaterials.2014.03.087_bib10
  article-title: Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes
  publication-title: Nanoscale
  doi: 10.1039/C0NR00647E
– volume: 8
  start-page: 543
  year: 2009
  ident: 10.1016/j.biomaterials.2014.03.087_bib23
  article-title: Understanding biophysicochemical interactions at the nano-bio interface
  publication-title: Nat Mater
  doi: 10.1038/nmat2442
– volume: 4
  start-page: 4317
  year: 2010
  ident: 10.1016/j.biomaterials.2014.03.087_bib18
  article-title: Graphene-based antibacterial paper
  publication-title: ACS Nano
  doi: 10.1021/nn101097v
– volume: 20
  start-page: 7385
  year: 2004
  ident: 10.1016/j.biomaterials.2014.03.087_bib54
  article-title: Spontaneous curvature induced shape transformations of tubular polymersomes
  publication-title: Langmuir
  doi: 10.1021/la049776u
– volume: 4
  start-page: 4174
  year: 2010
  ident: 10.1016/j.biomaterials.2014.03.087_bib4
  article-title: Graphene nanomesh by ZnO nanorod photocatalysts
  publication-title: ACS Nano
  doi: 10.1021/nn1007429
– volume: 21
  start-page: 419
  year: 2009
  ident: 10.1016/j.biomaterials.2014.03.087_bib45
  article-title: Size-dependent endocytosis of nanoparticles
  publication-title: Adv Mater
  doi: 10.1002/adma.200801393
– volume: 2
  start-page: 433
  year: 2013
  ident: 10.1016/j.biomaterials.2014.03.087_bib57
  article-title: Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201200248
– volume: 179
  start-page: 79
  year: 2001
  ident: 10.1016/j.biomaterials.2014.03.087_bib48
  article-title: Cell surface area regulation and membrane tension
  publication-title: J Membr Biol
  doi: 10.1007/s002320010040
– volume: 33
  start-page: 4013
  year: 2012
  ident: 10.1016/j.biomaterials.2014.03.087_bib55
  article-title: The role of the lateral dimension of graphene oxide in the regulation of cellular responses
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.02.021
– volume: 5
  start-page: 8100
  year: 2011
  ident: 10.1016/j.biomaterials.2014.03.087_bib22
  article-title: Graphene oxide: a nonspecific enhancer of cellular growth
  publication-title: ACS Nano
  doi: 10.1021/nn202699t
– volume: 69
  start-page: 031903
  year: 2004
  ident: 10.1016/j.biomaterials.2014.03.087_bib47
  article-title: Elastic deformation of a fluid membrane upon colloid binding
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.69.031903
– volume: 11
  start-page: 5201
  year: 2011
  ident: 10.1016/j.biomaterials.2014.03.087_bib32
  article-title: Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung
  publication-title: Nano Lett
  doi: 10.1021/nl202515a
– volume: 8
  start-page: 8735
  year: 2012
  ident: 10.1016/j.biomaterials.2014.03.087_bib37
  article-title: Dissipative particle dynamics modeling of a graphene nanosheet and its self-Assembly with surfactant molecules
  publication-title: Soft Matter
  doi: 10.1039/c2sm26029h
– volume: C28
  start-page: 693
  year: 1973
  ident: 10.1016/j.biomaterials.2014.03.087_bib52
  article-title: Elastic properties of lipid bilayers: theory and possible experiments
  publication-title: Naturforsch
  doi: 10.1515/znc-1973-11-1209
– volume: 10
  start-page: 1144
  year: 2010
  ident: 10.1016/j.biomaterials.2014.03.087_bib42
  article-title: Atomic structure of reduced graphene oxide
  publication-title: Nano Lett
  doi: 10.1021/nl9031617
– volume: 78
  start-page: 857
  year: 2009
  ident: 10.1016/j.biomaterials.2014.03.087_bib50
  article-title: Mechanisms of endocytosis
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.78.081307.110540
– volume: 8
  start-page: 15
  year: 2009
  ident: 10.1016/j.biomaterials.2014.03.087_bib24
  article-title: Physical approaches to biomaterial design
  publication-title: Nat Mater
  doi: 10.1038/nmat2344
– volume: 447
  start-page: 461
  year: 2007
  ident: 10.1016/j.biomaterials.2014.03.087_bib25
  article-title: Aggregation and vesiculation of membrane proteins by curvature-mediated interactions
  publication-title: Nature
  doi: 10.1038/nature05840
SSID ssj0014042
Score 2.5034907
Snippet Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical...
Abstract Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6069
SubjectTerms Advanced Basic Science
Animals
antibacterial properties
Biomedical materials
Cell membrane
Cell Membrane - chemistry
Cell Membrane - physiology
Cellular
Computer Simulation
cytotoxicity
Dentistry
Graphene
Graphite - chemistry
guidelines
Humans
lipid bilayers
Lipid Bilayers - chemistry
Membrane Fluidity - physiology
Membranes
Modeling
Models, Biological
Models, Chemical
Nanomaterials
Nanoparticles - chemistry
Nanoparticles - ultrastructure
nanosheets
Nanostructure
particle size
Pathways
physical phases
physicochemical properties
Simulation phase diagram
Surface Properties
Transmembrane transportation
Title Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961214003627
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961214003627
https://dx.doi.org/10.1016/j.biomaterials.2014.03.087
https://www.ncbi.nlm.nih.gov/pubmed/24780168
https://www.proquest.com/docview/1526134239
https://www.proquest.com/docview/1622601458
https://www.proquest.com/docview/1642232095
https://www.proquest.com/docview/2101315970
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg7E9jK37ytYVDfbqxdaXZUYfSlnJNtqXrdA3Idkyy2icULuMvfRv750kh461JbCHQBLucKL70J39u58I-aBLVreicllRlTwTNbzTotEZdAJF0zrZ-IB2Pz5Rs1Px9UyebZHDcRYGYZUp98ecHrJ1-maaVnO6ms-nCEtiFRJgiUCqghPlQpTo5R-v1jAPZI9hEcbIMpQeiUcDxgtH3O0QTY0wLxEITxFed_smdVcRGjajo6fkSaoi6UH8oc_Ilu92yOMb3II75OFxemr-nHTf54t0She1XQOvSERCly3FG_eIRKXzeGvwPM1lUjyq-Lf90weNhV9AV915uvIXsEe5KAL1Lg2E15AvaWe7Zf_T-6F_QU6PPv84nGXpnIWslhUfMse1yrkW-IgNwltJWdoCIl-2oqi1VdBvl1I4LxrLK2iBtGta5LPNecMLBynzJdnulp1_TWjDy9xW3hZK1sIrZluhJHR0LfM2r5WbkGpcWFMnEnI8C-PcjGizX-amUQwaxeTcgFEmhK91V5GKYyOtT6P9zDhsCunRwI6xkXZ5m7bvU6T3pjA9M7n5xxsnZH-t-ZdDb3zl96OzGYh49AYw8_ISriih6w3EjffIKIZccULq-2QE1IYMauy7ZViBfEzQdOYT8ip6_HrtmSihvFH6zX_-07fkEX6KGOhdsj1cXPp3UOkNbi-E8h55cPDl2-zkGuDtVaY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1VReLjgEqBEiiwSHA0sffLtlAPCKhS2vRCK_W2rO21mqpxotpV1Qt_ij_IzO46KqKtIqEeIkXJjuzsjN_OZN--IeR9lrKyFnkRJXnKI1HCu0xUWQSVQFLVhaysY7uP99XoUHw_kkcr5Hd_FgZplQH7PaY7tA6fDMNsDueTyRBpSSxHASzhRFXSwKzctZcXULe1WztfwckfGNv-dvBlFIXWAlEpc95FBc9UzDOBu0oQ0UrK1CQQ7LIWSZkZBSVmKkVhRWV4Dll_VlQ1SrjGvOJJkWCrCMD9ewLgAtsmfPy14JWgXA3zvEkW4e31SqeOVIZn6k3nYwt5ZcIprCKf7_pV8aas161-22vkcUhb6Wc_M0_Iim3WyaMrYobr5P44bNM_Jc2PyTS0BaOmqeDllU_orKa4U4DUVzrx_0WehoOgFHsjX5jL1llM7RTK-MbSuT2DRbHwQyDBpk5hGwCaNqaZtcfWdu0zcngns_-crDazxr4gtOJpbHJrEiVLYRUztVASSsiaWROXqhiQvJ9YXQbVc2y-cap7etuJvuoUjU7RMdfglAHhC9u51_5YyupT7z_dn24FPNawRC1lnV5nbdsALa1OdMt0rP8J_wHZWlj-9QQtfeV3fbBpgBiMBnDz7ByuKKHMdkqRt4xRDMXphMxuGyMgGWWQ1N88hiUoAAVVbjwgGz7iF3PPRAr5lMpe_ucvfUsejA7Ge3pvZ3_3FXmI33gC9iZZ7c7O7WtIM7vijXusKfl51zjyB_s6jgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+and+analysis+of+cellular+internalization+pathways+and+membrane+perturbation+for+graphene+nanosheets&rft.jtitle=Biomaterials&rft.au=Mao%2C+Jian&rft.au=Guo%2C+Ruohai&rft.au=Yan%2C+Li-Tang&rft.date=2014-07-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=35&rft.issue=23&rft.spage=6069&rft_id=info:doi/10.1016%2Fj.biomaterials.2014.03.087&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961214X00165%2Fcov150h.gif