Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets
Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and...
Saved in:
Published in | Biomaterials Vol. 35; no. 23; pp. 6069 - 6077 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm2 membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications. |
---|---|
AbstractList | Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm(2) membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications.Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm(2) membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications. Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm² membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications. Abstract Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm2 membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications. Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm(2) membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications. Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 56 nm2 membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications. Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical applications and to the evaluation of health and environment impacts. By combining large-scale computer simulations, theoretical analysis, and experimental discussions, here we present a systematic study on the interactions of graphene nanosheets having various oxidization degrees with a model lipid bilayer membrane. In the mesoscopic simulations, we investigate the detailed translocation pathways of these materials across a 56 × 56 nm2 membrane patch which allows us to fully consider the role of membrane perturbation during this process. A phase diagram regarding the transmembrane translocation mechanisms of graphene nanosheets is thereby obtained in the space of oxidization degree and particle size. Then, we propose a theoretical approach to analyze the effects of various initial equilibrium states of graphene nanosheets with membrane on their following cellular uptake process. Finally, we demonstrate that the simulation and theoretical results reproduce some important experimental findings towards the mechanisms of cytotoxicity and antibacterial activity of graphene materials. These results not only provide new insight into the cellular internalization mechanism of graphene-based nanomaterials but also offer fundamental understanding on their physicochemical properties which can be precisely tailored for safer biomedical and environment applications. |
Author | Yan, Li-Tang Mao, Jian Guo, Ruohai |
Author_xml | – sequence: 1 givenname: Jian surname: Mao fullname: Mao, Jian – sequence: 2 givenname: Ruohai surname: Guo fullname: Guo, Ruohai – sequence: 3 givenname: Li-Tang surname: Yan fullname: Yan, Li-Tang email: ltyan@mail.tsinghua.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24780168$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFv4AiTlwS_B2HAwLKp1SJQ-FsOc6E9ZLYi52All-P07QSqoS6B8uy5pl3xjPvGTrxwQNCzwiuCCbyxa5qXRjNBNGZIVUUE15hVmFVP0AbompVigaLE7TJAVo2ktBTdJbSDuc35vQROqW8VllJbZC_cuM8mMkFXxjf5WOGQ3KpCH1hYRhyLBbO51o54P6s4N5M29_mkK4zRhjbaDwUe4jTHNsV6UMsvkez30KOeOND2gJM6TF62Oee4cnNfY6-fXj_9eJTefnl4-eLN5elFQ2bypYpiZnilBNGqZBC1IbUDIueE6uMhJbVgrfAO8MarKRqu541DcWsY6Qlgp2j56vuPoafM6RJjy4t_8mNhjlpmgfJiGhqfC9KJKeUUdyII1BKZR6yUPejgkrCOGVNRp_eoHM7Qqf30Y0mHvTtkjLwegVsDClF6LV10_WYp2jcoAnWiy_0Tv_rC734QmOmsy-yxMs7ErdVjkp-tyZD3tgvB1En68Bb6FwEO-kuuONkXt2RsYPzzprhBxwg7cK8eCyPRieqsb5a3LuYN5sWM0kXgbf_Fzi2i78MMQav |
CitedBy_id | crossref_primary_10_1039_C6TB03310E crossref_primary_10_1002_smsc_202400505 crossref_primary_10_1021_acsnano_7b09095 crossref_primary_10_1088_2053_1591_aab87b crossref_primary_10_1021_acs_est_7b00663 crossref_primary_10_1016_j_bbamem_2017_08_001 crossref_primary_10_3389_fnsys_2018_00012 crossref_primary_10_1002_aic_17507 crossref_primary_10_3390_ma15238506 crossref_primary_10_1039_C6EN00427J crossref_primary_10_1039_C9NH00777F crossref_primary_10_1021_acsnano_9b08078 crossref_primary_10_1038_srep26783 crossref_primary_10_1002_adma_201603610 crossref_primary_10_1088_1674_1056_ac380f crossref_primary_10_1016_j_desal_2019_114077 crossref_primary_10_1016_j_flatc_2022_100381 crossref_primary_10_1021_acs_jpcb_7b00297 crossref_primary_10_1039_C6NR05706C crossref_primary_10_1021_acsami_6b15085 crossref_primary_10_1038_ncomms14537 crossref_primary_10_1088_1361_6528_abe43c crossref_primary_10_1021_acs_chemrev_1c00864 crossref_primary_10_3390_nano8070519 crossref_primary_10_3390_nano13192666 crossref_primary_10_1039_D0NA00904K crossref_primary_10_1016_j_bbrc_2017_09_052 crossref_primary_10_1016_j_carbon_2015_11_003 crossref_primary_10_1016_j_porgcoat_2021_106356 crossref_primary_10_1039_C7BM00987A crossref_primary_10_1002_smll_201603685 crossref_primary_10_1038_srep10292 crossref_primary_10_1016_j_jenvman_2019_06_077 crossref_primary_10_3390_ma15155306 crossref_primary_10_1039_C8NR10091H crossref_primary_10_2147_IJN_S426552 crossref_primary_10_1039_C8TB01590B crossref_primary_10_3390_ijms23169096 crossref_primary_10_1016_j_apsusc_2015_11_006 crossref_primary_10_1016_j_colsurfb_2021_111767 crossref_primary_10_1021_acsnano_5b02067 crossref_primary_10_1016_j_jcis_2023_01_080 crossref_primary_10_1039_D3NR05354G crossref_primary_10_1021_acs_nanolett_0c02635 crossref_primary_10_1002_smll_201702600 crossref_primary_10_1021_acs_nanolett_8b04820 crossref_primary_10_3390_nano12040650 crossref_primary_10_1021_acs_biomac_6b00241 crossref_primary_10_1021_acs_langmuir_3c02805 crossref_primary_10_3390_ijms221910578 crossref_primary_10_1002_chem_201404557 crossref_primary_10_1039_C5CS00579E crossref_primary_10_1002_smll_202404570 crossref_primary_10_1038_s41598_024_82805_w crossref_primary_10_1016_j_apsusc_2022_155425 crossref_primary_10_1016_j_jmrt_2021_01_093 crossref_primary_10_1021_acsami_8b03224 crossref_primary_10_1039_C5GC02506K crossref_primary_10_1016_j_colsurfb_2021_111896 crossref_primary_10_1002_adts_201800105 crossref_primary_10_3390_ijms19123939 crossref_primary_10_1016_j_jhazmat_2021_126158 crossref_primary_10_1002_adbi_202100637 crossref_primary_10_1021_acsnano_8b05340 crossref_primary_10_1016_j_cplett_2018_03_010 crossref_primary_10_1039_D4TB01277A crossref_primary_10_1016_j_bioadv_2023_213662 crossref_primary_10_1002_jrs_5170 crossref_primary_10_1098_rsfs_2017_0060 crossref_primary_10_1016_j_addr_2022_114467 crossref_primary_10_1016_j_actbio_2025_02_023 crossref_primary_10_2147_IJN_S408981 crossref_primary_10_1002_adhm_202201523 crossref_primary_10_1016_j_biomaterials_2014_06_032 crossref_primary_10_1021_acsanm_7b00332 crossref_primary_10_1039_C5RA26273A crossref_primary_10_3390_molecules27227956 crossref_primary_10_1016_j_apmt_2023_101753 crossref_primary_10_1021_acs_langmuir_9b02536 crossref_primary_10_1002_chem_201901841 crossref_primary_10_2217_nnm_15_65 crossref_primary_10_1039_D2MA00313A crossref_primary_10_1016_j_mtchem_2019_100199 crossref_primary_10_6023_A21050238 crossref_primary_10_1007_s11433_018_9317_7 crossref_primary_10_1016_j_heliyon_2020_e05360 crossref_primary_10_1021_am508938u crossref_primary_10_1007_s00339_022_05355_w crossref_primary_10_1080_08927022_2022_2042529 crossref_primary_10_1038_srep28252 crossref_primary_10_1016_j_carbon_2019_04_067 crossref_primary_10_1016_j_molliq_2019_111714 crossref_primary_10_1088_1361_6463_ac4d4c crossref_primary_10_1016_j_snb_2017_07_057 crossref_primary_10_1039_D3TB00322A crossref_primary_10_1126_sciadv_aaw3192 crossref_primary_10_1021_acsbiomaterials_6b00390 crossref_primary_10_1021_acs_langmuir_0c01691 crossref_primary_10_1039_C7NR01020F crossref_primary_10_1002_pat_5242 crossref_primary_10_1039_C5CS00914F crossref_primary_10_1021_acs_jpcb_0c05882 crossref_primary_10_1016_j_tiv_2017_03_005 crossref_primary_10_2139_ssrn_3951685 crossref_primary_10_1021_jacs_5b11411 crossref_primary_10_1002_mame_202000724 crossref_primary_10_1360_TB_2022_0913 crossref_primary_10_1016_j_nantod_2019_03_003 crossref_primary_10_1039_C9SM02338K crossref_primary_10_1039_C5NR02970H crossref_primary_10_1039_C5CS00021A crossref_primary_10_1016_j_scib_2017_12_012 crossref_primary_10_1021_acsnano_6b00130 crossref_primary_10_1039_C7TA00009J crossref_primary_10_1021_acsnano_5b07036 crossref_primary_10_1002_smtd_201700207 crossref_primary_10_1016_j_mtbio_2023_100886 crossref_primary_10_1038_s41598_018_36531_9 crossref_primary_10_1016_j_inoche_2024_113492 crossref_primary_10_1021_acsami_0c16688 crossref_primary_10_1021_acs_chemrev_6b00520 crossref_primary_10_1039_D0NA00365D crossref_primary_10_1002_admi_201601168 crossref_primary_10_1002_jemt_22690 crossref_primary_10_1002_smll_201804992 crossref_primary_10_1021_acsomega_8b02787 crossref_primary_10_1021_acs_jpcb_4c05025 crossref_primary_10_1016_j_addr_2016_08_009 crossref_primary_10_1002_smll_201903519 crossref_primary_10_1021_acs_jpcc_1c05958 crossref_primary_10_1021_acs_nanolett_8b04903 |
Cites_doi | 10.1126/science.1158877 10.1038/nmat1849 10.1021/nn101390x 10.1116/1.2789446 10.1039/C2CS35342C 10.1073/pnas.1222276110 10.1039/C1CS15078B 10.1103/PhysRevLett.98.018102 10.1038/nnano.2006.209 10.1021/nn8000998 10.1038/nature04235 10.1021/ja803688x 10.1039/c3ra40392k 10.1038/nmat1333 10.1016/j.biomaterials.2013.02.047 10.1016/j.ceb.2009.01.006 10.1021/la063522m 10.1063/1.474784 10.1038/nnano.2013.125 10.1002/smll.201100001 10.1021/nn303508c 10.1080/08958370490439597 10.1126/science.1157996 10.1063/1.1659428 10.1186/1743-8977-10-27 10.1021/nn901739v 10.1021/nn202451x 10.1039/c3nr03543c 10.1002/adma.201202625 10.1038/nnano.2008.130 10.1021/nl802412n 10.1038/nnano.2011.151 10.1073/pnas.0503879102 10.1021/nl100996u 10.1039/c1sm05398a 10.1002/anie.201209099 10.1021/jp9731821 10.1021/nn9015778 10.1021/nn4033344 10.1039/C0NR00647E 10.1038/nmat2442 10.1021/nn101097v 10.1021/la049776u 10.1021/nn1007429 10.1002/adma.200801393 10.1002/adhm.201200248 10.1007/s002320010040 10.1016/j.biomaterials.2012.02.021 10.1021/nn202699t 10.1103/PhysRevE.69.031903 10.1021/nl202515a 10.1039/c2sm26029h 10.1515/znc-1973-11-1209 10.1021/nl9031617 10.1146/annurev.biochem.78.081307.110540 10.1038/nmat2344 10.1038/nature05840 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2014.03.087 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE Engineering Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 6077 |
ExternalDocumentID | 24780168 10_1016_j_biomaterials_2014_03_087 S0142961214003627 1_s2_0_S0142961214003627 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c593t-b386038424132256557a17305f41c8a6eb3754be4da390868bdf399203d31b153 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Thu Jul 10 18:28:50 EDT 2025 Fri Jul 11 01:50:04 EDT 2025 Mon Jul 21 11:51:26 EDT 2025 Sun Aug 24 03:32:43 EDT 2025 Wed Feb 19 01:56:51 EST 2025 Tue Jul 01 03:47:44 EDT 2025 Thu Apr 24 23:06:42 EDT 2025 Fri Feb 23 02:31:37 EST 2024 Sun Feb 23 10:18:58 EST 2025 Tue Aug 26 17:20:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | Transmembrane transportation Cell membrane Graphene Modeling Simulation phase diagram |
Language | English |
License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c593t-b386038424132256557a17305f41c8a6eb3754be4da390868bdf399203d31b153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24780168 |
PQID | 1526134239 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2101315970 proquest_miscellaneous_1642232095 proquest_miscellaneous_1622601458 proquest_miscellaneous_1526134239 pubmed_primary_24780168 crossref_citationtrail_10_1016_j_biomaterials_2014_03_087 crossref_primary_10_1016_j_biomaterials_2014_03_087 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2014_03_087 elsevier_clinicalkeyesjournals_1_s2_0_S0142961214003627 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2014_03_087 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Yan, Stormer, Kim (bib3) 2005; 438 Kostarelos, Lacerda, Pastorin, Wu, Wieckowski, Luangsivilay (bib15) 2007; 2 Shi, von dem Bussche, Hurt, Kane, Gao (bib16) 2011; 6 Titov, Pearson (bib28) 2010; 4 Frank, Tanenbaum, van der Zande, McEuen (bib39) 2007; 25 Gao, Shi, Freund (bib46) 2005; 102 Góźdź (bib54) 2004; 20 Russier, Treossi, Scarsi, Perrozzi, Dumortier, Ottaviano (bib56) 2013; 5 Groot, Warren (bib33) 1997; 107 Helfrich (bib52) 1973; C28 Deserno (bib47) 2004; 69 Geim, Novoselov (bib2) 2007; 6 Min, Lee, Jang (bib37) 2012; 8 Shillcock, Lipowsky (bib26) 2005; 4 Yang, Feng, Shi, Liu (bib9) 2013; 42 Morris, Homann (bib48) 2001; 179 Lerf, He, Forster, Klinowski (bib41) 1998; 102 Galletta, Cooper (bib51) 2009; 21 Reynwar, Illya, Harmandaris, Müller, Kremer, Deserno (bib25) 2007; 447 Góźdź (bib53) 2007; 23 Huang, Qi, Boey, Zhang (bib5) 2012; 41 Zhang, Li, Lykotrafitis, Bao, Suresh (bib45) 2009; 21 Guo, Mao, Yan (bib35) 2013; 7 Doherty, McMahon (bib50) 2009; 78 Yan, Popp, Ghosh, Böker (bib27) 2010; 4 Yue, Zhang (bib36) 2011; 7 Lee, Wei, Kysar, Hone (bib40) 2008; 321 Vacha, Martinez-Veracoechea, Frenkel (bib44) 2012; 6 Yue, Wei, Yue, Wang, Luo, Gao (bib55) 2012; 33 Ruiz, Fernando, Wang, Brown, Luo, McNamara (bib22) 2011; 5 Duch, Budinger, Liang, Soberanes, Urich, Chiarella (bib32) 2011; 11 Yang, Zhang, Zhang, Sun, Lee, Liu (bib8) 2010; 10 Akhavan, Ghaderi (bib19) 2010; 4 Tu, Lv, Xiu, Huynh, Zhang, Castelli (bib21) 2013; 8 Mohanty, Berry (bib6) 2008; 8 Zhao, Zhao, Liu, Chang, Chen, Zhao (bib17) 2011; 10 Akhavan (bib4) 2010; 4 Yang, Xu, Cheng, Sun, Wang, Liu (bib12) 2012; 24 Blakslee, Proctor, Seldin, Spence, Weng (bib38) 1970; 41 Hu, Peng, Luo, Lv, Li, Li (bib18) 2010; 4 Guo, Mao, Yan (bib31) 2013; 34 Sens, Gov (bib49) 2007; 98 Lammel, Boisseaux, Fernandez-Cruz, Navas (bib43) 2013; 10 Alexeev, Uspal, Balazs (bib34) 2008; 2 Liu, Zeng, Hofmann, Burcombe, Wei, Jiang (bib20) 2011; 5 Bianco (bib11) 2013; 52 Wong-Ekkabut, Baoukina, Triampo, Tang, Tieleman, Monticelli (bib14) 2008; 3 Oberdorster, Sharp, Atudorei, Elder, Gelein, Kreyling (bib13) 2004; 16 Nel, Madler, Velegol, Xia, Hoek, Somasundaran (bib23) 2009; 8 Yan, Zhao, Li, Hu, Zhao (bib10) 2011; 3 Li, Yuan, von dem Bussche, Creighton, Hurt, Kane (bib29) 2013; 110 Wang, Wei, Shi, Gao (bib30) 2013; 3 Mitragotri, Lahann (bib24) 2009; 8 Gomez-Navarro, Meyer, Sundaram, Chuvilin, Kurasch, Burghard (bib42) 2010; 10 Liu, Robinson, Sun, Dai (bib7) 2008; 130 Ali-Boucetta, Bitounis, Raveendran-Nair, Servant, van den Bossche, Kostarelos (bib57) 2013; 2 Geim (bib1) 2009; 324 Lee (10.1016/j.biomaterials.2014.03.087_bib40) 2008; 321 Yang (10.1016/j.biomaterials.2014.03.087_bib9) 2013; 42 Akhavan (10.1016/j.biomaterials.2014.03.087_bib19) 2010; 4 Zhang (10.1016/j.biomaterials.2014.03.087_bib3) 2005; 438 Min (10.1016/j.biomaterials.2014.03.087_bib37) 2012; 8 Russier (10.1016/j.biomaterials.2014.03.087_bib56) 2013; 5 Galletta (10.1016/j.biomaterials.2014.03.087_bib51) 2009; 21 Yue (10.1016/j.biomaterials.2014.03.087_bib55) 2012; 33 Wang (10.1016/j.biomaterials.2014.03.087_bib30) 2013; 3 Yang (10.1016/j.biomaterials.2014.03.087_bib8) 2010; 10 Bianco (10.1016/j.biomaterials.2014.03.087_bib11) 2013; 52 Yan (10.1016/j.biomaterials.2014.03.087_bib27) 2010; 4 Zhao (10.1016/j.biomaterials.2014.03.087_bib17) 2011; 10 Guo (10.1016/j.biomaterials.2014.03.087_bib35) 2013; 7 Zhang (10.1016/j.biomaterials.2014.03.087_bib45) 2009; 21 Lammel (10.1016/j.biomaterials.2014.03.087_bib43) 2013; 10 Morris (10.1016/j.biomaterials.2014.03.087_bib48) 2001; 179 Sens (10.1016/j.biomaterials.2014.03.087_bib49) 2007; 98 Nel (10.1016/j.biomaterials.2014.03.087_bib23) 2009; 8 Helfrich (10.1016/j.biomaterials.2014.03.087_bib52) 1973; C28 Deserno (10.1016/j.biomaterials.2014.03.087_bib47) 2004; 69 Vacha (10.1016/j.biomaterials.2014.03.087_bib44) 2012; 6 Góźdź (10.1016/j.biomaterials.2014.03.087_bib54) 2004; 20 Lerf (10.1016/j.biomaterials.2014.03.087_bib41) 1998; 102 Mohanty (10.1016/j.biomaterials.2014.03.087_bib6) 2008; 8 Kostarelos (10.1016/j.biomaterials.2014.03.087_bib15) 2007; 2 Wong-Ekkabut (10.1016/j.biomaterials.2014.03.087_bib14) 2008; 3 Hu (10.1016/j.biomaterials.2014.03.087_bib18) 2010; 4 Blakslee (10.1016/j.biomaterials.2014.03.087_bib38) 1970; 41 Huang (10.1016/j.biomaterials.2014.03.087_bib5) 2012; 41 Shillcock (10.1016/j.biomaterials.2014.03.087_bib26) 2005; 4 Alexeev (10.1016/j.biomaterials.2014.03.087_bib34) 2008; 2 Gao (10.1016/j.biomaterials.2014.03.087_bib46) 2005; 102 Gomez-Navarro (10.1016/j.biomaterials.2014.03.087_bib42) 2010; 10 Oberdorster (10.1016/j.biomaterials.2014.03.087_bib13) 2004; 16 Guo (10.1016/j.biomaterials.2014.03.087_bib31) 2013; 34 Ruiz (10.1016/j.biomaterials.2014.03.087_bib22) 2011; 5 Góźdź (10.1016/j.biomaterials.2014.03.087_bib53) 2007; 23 Liu (10.1016/j.biomaterials.2014.03.087_bib7) 2008; 130 Groot (10.1016/j.biomaterials.2014.03.087_bib33) 1997; 107 Shi (10.1016/j.biomaterials.2014.03.087_bib16) 2011; 6 Geim (10.1016/j.biomaterials.2014.03.087_bib1) 2009; 324 Akhavan (10.1016/j.biomaterials.2014.03.087_bib4) 2010; 4 Li (10.1016/j.biomaterials.2014.03.087_bib29) 2013; 110 Frank (10.1016/j.biomaterials.2014.03.087_bib39) 2007; 25 Liu (10.1016/j.biomaterials.2014.03.087_bib20) 2011; 5 Duch (10.1016/j.biomaterials.2014.03.087_bib32) 2011; 11 Reynwar (10.1016/j.biomaterials.2014.03.087_bib25) 2007; 447 Yan (10.1016/j.biomaterials.2014.03.087_bib10) 2011; 3 Yue (10.1016/j.biomaterials.2014.03.087_bib36) 2011; 7 Doherty (10.1016/j.biomaterials.2014.03.087_bib50) 2009; 78 Yang (10.1016/j.biomaterials.2014.03.087_bib12) 2012; 24 Titov (10.1016/j.biomaterials.2014.03.087_bib28) 2010; 4 Geim (10.1016/j.biomaterials.2014.03.087_bib2) 2007; 6 Tu (10.1016/j.biomaterials.2014.03.087_bib21) 2013; 8 Mitragotri (10.1016/j.biomaterials.2014.03.087_bib24) 2009; 8 Ali-Boucetta (10.1016/j.biomaterials.2014.03.087_bib57) 2013; 2 |
References_xml | – volume: 4 start-page: 913 year: 2010 end-page: 920 ident: bib27 article-title: Self-assembly of Janus nanoparticles in diblock copolymers publication-title: ACS Nano – volume: 102 start-page: 9469 year: 2005 end-page: 9474 ident: bib46 article-title: Mechanics of receptor-mediated endocytosis publication-title: Proc Natl Acad Sci U S A – volume: 3 start-page: 363 year: 2008 end-page: 368 ident: bib14 article-title: Computer simulation study of fullerene translocation through lipid membranes publication-title: Nat Nanotech – volume: 2 start-page: 108 year: 2007 end-page: 113 ident: bib15 article-title: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type publication-title: Nat Nanotech – volume: 98 start-page: 018102 year: 2007 ident: bib49 article-title: Force balance and membrane shedding at the red-blood-cell surface publication-title: Phys Rev Lett – volume: 3 start-page: 15776 year: 2013 end-page: 15782 ident: bib30 article-title: Cellular entry of graphene nanosheets: the role of thickness, oxidation and surface adsorption publication-title: RSC Adv – volume: 2 start-page: 433 year: 2013 end-page: 441 ident: bib57 article-title: Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity publication-title: Adv Healthc Mater – volume: 10 start-page: 3318 year: 2010 end-page: 3323 ident: bib8 article-title: Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy publication-title: Nano Lett – volume: 438 start-page: 201 year: 2005 end-page: 204 ident: bib3 article-title: Experimental observation of the quantum Hall effect and Berry's phase in graphene publication-title: Nature – volume: 5 start-page: 6971 year: 2011 end-page: 6980 ident: bib20 article-title: Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress publication-title: ACS Nano – volume: 7 start-page: 10646 year: 2013 end-page: 10653 ident: bib35 article-title: Unique dynamical approach of fully wrapping dendrimer-like soft nanoparticles by lipid bilayer membrane publication-title: ACS Nano – volume: 41 start-page: 666 year: 2012 end-page: 686 ident: bib5 article-title: Graphene-based composites publication-title: Chem Soc Rev – volume: 10 start-page: 1322 year: 2011 end-page: 1337 ident: bib17 article-title: Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterial publication-title: Small – volume: 7 start-page: 9104 year: 2011 end-page: 9112 ident: bib36 article-title: Molecular understanding of receptor-mediated membrane responses to ligand-coated nanoparticles publication-title: Soft Matter – volume: C28 start-page: 693 year: 1973 end-page: 703 ident: bib52 article-title: Elastic properties of lipid bilayers: theory and possible experiments publication-title: Naturforsch – volume: 4 start-page: 229 year: 2010 end-page: 234 ident: bib28 article-title: Sandwiched graphene-membrane superstructures publication-title: ACS Nano – volume: 8 start-page: 594 year: 2013 end-page: 601 ident: bib21 article-title: Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets publication-title: Nat Nanotech – volume: 52 start-page: 4986 year: 2013 end-page: 4997 ident: bib11 article-title: Graphene: safe or toxic? the two faces of the medal publication-title: Angew Chem Int Ed – volume: 3 start-page: 362 year: 2011 end-page: 382 ident: bib10 article-title: Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes publication-title: Nanoscale – volume: 5 start-page: 11234 year: 2013 end-page: 11247 ident: bib56 article-title: Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells publication-title: Nanoscale – volume: 21 start-page: 20 year: 2009 end-page: 27 ident: bib51 article-title: Actin and endocytosis: mechanisms and phylogeny publication-title: Curr Opin Cell Biol – volume: 11 start-page: 5201 year: 2011 end-page: 5207 ident: bib32 article-title: Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung publication-title: Nano Lett – volume: 24 start-page: 5586 year: 2012 end-page: 5592 ident: bib12 article-title: In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles publication-title: Adv Mater – volume: 4 start-page: 4174 year: 2010 end-page: 4180 ident: bib4 article-title: Graphene nanomesh by ZnO nanorod photocatalysts publication-title: ACS Nano – volume: 110 start-page: 12295 year: 2013 end-page: 12300 ident: bib29 article-title: Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites publication-title: Proc Natl Acad Sci U S A – volume: 2 start-page: 1117 year: 2008 end-page: 1122 ident: bib34 article-title: Harnessing Janus nanoparticles to create controllable pores in membranes publication-title: ACS Nano – volume: 5 start-page: 8100 year: 2011 end-page: 8107 ident: bib22 article-title: Graphene oxide: a nonspecific enhancer of cellular growth publication-title: ACS Nano – volume: 6 start-page: 183 year: 2007 end-page: 191 ident: bib2 article-title: The rise of graphene publication-title: Nat Mater – volume: 16 start-page: 437 year: 2004 end-page: 445 ident: bib13 article-title: Translocation of inhaled ultrafine particles to the brain publication-title: Inhal Toxicol – volume: 102 start-page: 4477 year: 1998 end-page: 4482 ident: bib41 article-title: Structure of graphite oxide revisited publication-title: J Phys Chem B – volume: 69 start-page: 031903 year: 2004 ident: bib47 article-title: Elastic deformation of a fluid membrane upon colloid binding publication-title: Phys Rev E – volume: 130 start-page: 10876 year: 2008 end-page: 10877 ident: bib7 article-title: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs publication-title: J Am Chem Soc – volume: 4 start-page: 5731 year: 2010 end-page: 5736 ident: bib19 article-title: Toxicity of graphene and graphene oxide nanowalls against bacteria publication-title: ACS Nano – volume: 447 start-page: 461 year: 2007 end-page: 464 ident: bib25 article-title: Aggregation and vesiculation of membrane proteins by curvature-mediated interactions publication-title: Nature – volume: 23 start-page: 5665 year: 2007 end-page: 5669 ident: bib53 article-title: Deformations of lipid vesicles induced by attached spherical particles publication-title: Langmuir – volume: 4 start-page: 4317 year: 2010 end-page: 4323 ident: bib18 article-title: Graphene-based antibacterial paper publication-title: ACS Nano – volume: 25 start-page: 2558 year: 2007 end-page: 2561 ident: bib39 article-title: Mechanical properties of suspended graphene Sheets publication-title: J Vac Sci Technol B – volume: 8 start-page: 15 year: 2009 end-page: 23 ident: bib24 article-title: Physical approaches to biomaterial design publication-title: Nat Mater – volume: 41 start-page: 3373 year: 1970 end-page: 3382 ident: bib38 article-title: Elastic constants of compression-annealed pyrolytic graphite publication-title: J Appl Phys – volume: 10 start-page: 27 year: 2013 ident: bib43 article-title: Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2 publication-title: Part Fibre Toxicol – volume: 179 start-page: 79 year: 2001 end-page: 102 ident: bib48 article-title: Cell surface area regulation and membrane tension publication-title: J Membr Biol – volume: 8 start-page: 4469 year: 2008 end-page: 4476 ident: bib6 article-title: Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents publication-title: Nano Lett – volume: 321 start-page: 385 year: 2008 end-page: 388 ident: bib40 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science – volume: 8 start-page: 8735 year: 2012 end-page: 8742 ident: bib37 article-title: Dissipative particle dynamics modeling of a graphene nanosheet and its self-Assembly with surfactant molecules publication-title: Soft Matter – volume: 34 start-page: 4296 year: 2013 end-page: 4301 ident: bib31 article-title: Computer simulation of cell entry of graphene nanosheet publication-title: Biomaterials – volume: 4 start-page: 225 year: 2005 end-page: 228 ident: bib26 article-title: Tension-induced fusion of bilayer membranes and vesicles publication-title: Nat Mater – volume: 33 start-page: 4013 year: 2012 end-page: 4021 ident: bib55 article-title: The role of the lateral dimension of graphene oxide in the regulation of cellular responses publication-title: Biomaterials – volume: 78 start-page: 857 year: 2009 end-page: 902 ident: bib50 article-title: Mechanisms of endocytosis publication-title: Annu Rev Biochem – volume: 20 start-page: 7385 year: 2004 end-page: 7391 ident: bib54 article-title: Spontaneous curvature induced shape transformations of tubular polymersomes publication-title: Langmuir – volume: 324 start-page: 1530 year: 2009 end-page: 1534 ident: bib1 article-title: Graphene: status and prospects publication-title: Science – volume: 10 start-page: 1144 year: 2010 end-page: 1148 ident: bib42 article-title: Atomic structure of reduced graphene oxide publication-title: Nano Lett – volume: 107 start-page: 4423 year: 1997 end-page: 4435 ident: bib33 article-title: Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation publication-title: J Chem Phys – volume: 21 start-page: 419 year: 2009 end-page: 424 ident: bib45 article-title: Size-dependent endocytosis of nanoparticles publication-title: Adv Mater – volume: 8 start-page: 543 year: 2009 end-page: 557 ident: bib23 article-title: Understanding biophysicochemical interactions at the nano-bio interface publication-title: Nat Mater – volume: 42 start-page: 530 year: 2013 end-page: 547 ident: bib9 article-title: Nano-graphene in biomedicine: theranostic applications publication-title: Chem Soc Rev – volume: 6 start-page: 10598 year: 2012 end-page: 10605 ident: bib44 article-title: Intracellular release of endocytosed nanoparticles upon a change of ligand-receptor interaction publication-title: ACS Nano – volume: 6 start-page: 714 year: 2011 end-page: 719 ident: bib16 article-title: Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation publication-title: Nat Nanotech – volume: 324 start-page: 1530 year: 2009 ident: 10.1016/j.biomaterials.2014.03.087_bib1 article-title: Graphene: status and prospects publication-title: Science doi: 10.1126/science.1158877 – volume: 6 start-page: 183 year: 2007 ident: 10.1016/j.biomaterials.2014.03.087_bib2 article-title: The rise of graphene publication-title: Nat Mater doi: 10.1038/nmat1849 – volume: 4 start-page: 5731 year: 2010 ident: 10.1016/j.biomaterials.2014.03.087_bib19 article-title: Toxicity of graphene and graphene oxide nanowalls against bacteria publication-title: ACS Nano doi: 10.1021/nn101390x – volume: 25 start-page: 2558 year: 2007 ident: 10.1016/j.biomaterials.2014.03.087_bib39 article-title: Mechanical properties of suspended graphene Sheets publication-title: J Vac Sci Technol B doi: 10.1116/1.2789446 – volume: 42 start-page: 530 year: 2013 ident: 10.1016/j.biomaterials.2014.03.087_bib9 article-title: Nano-graphene in biomedicine: theranostic applications publication-title: Chem Soc Rev doi: 10.1039/C2CS35342C – volume: 110 start-page: 12295 year: 2013 ident: 10.1016/j.biomaterials.2014.03.087_bib29 article-title: Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1222276110 – volume: 41 start-page: 666 year: 2012 ident: 10.1016/j.biomaterials.2014.03.087_bib5 article-title: Graphene-based composites publication-title: Chem Soc Rev doi: 10.1039/C1CS15078B – volume: 98 start-page: 018102 year: 2007 ident: 10.1016/j.biomaterials.2014.03.087_bib49 article-title: Force balance and membrane shedding at the red-blood-cell surface publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.98.018102 – volume: 2 start-page: 108 year: 2007 ident: 10.1016/j.biomaterials.2014.03.087_bib15 article-title: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type publication-title: Nat Nanotech doi: 10.1038/nnano.2006.209 – volume: 2 start-page: 1117 year: 2008 ident: 10.1016/j.biomaterials.2014.03.087_bib34 article-title: Harnessing Janus nanoparticles to create controllable pores in membranes publication-title: ACS Nano doi: 10.1021/nn8000998 – volume: 438 start-page: 201 year: 2005 ident: 10.1016/j.biomaterials.2014.03.087_bib3 article-title: Experimental observation of the quantum Hall effect and Berry's phase in graphene publication-title: Nature doi: 10.1038/nature04235 – volume: 130 start-page: 10876 year: 2008 ident: 10.1016/j.biomaterials.2014.03.087_bib7 article-title: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs publication-title: J Am Chem Soc doi: 10.1021/ja803688x – volume: 3 start-page: 15776 year: 2013 ident: 10.1016/j.biomaterials.2014.03.087_bib30 article-title: Cellular entry of graphene nanosheets: the role of thickness, oxidation and surface adsorption publication-title: RSC Adv doi: 10.1039/c3ra40392k – volume: 4 start-page: 225 year: 2005 ident: 10.1016/j.biomaterials.2014.03.087_bib26 article-title: Tension-induced fusion of bilayer membranes and vesicles publication-title: Nat Mater doi: 10.1038/nmat1333 – volume: 34 start-page: 4296 year: 2013 ident: 10.1016/j.biomaterials.2014.03.087_bib31 article-title: Computer simulation of cell entry of graphene nanosheet publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.02.047 – volume: 21 start-page: 20 year: 2009 ident: 10.1016/j.biomaterials.2014.03.087_bib51 article-title: Actin and endocytosis: mechanisms and phylogeny publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2009.01.006 – volume: 23 start-page: 5665 year: 2007 ident: 10.1016/j.biomaterials.2014.03.087_bib53 article-title: Deformations of lipid vesicles induced by attached spherical particles publication-title: Langmuir doi: 10.1021/la063522m – volume: 107 start-page: 4423 year: 1997 ident: 10.1016/j.biomaterials.2014.03.087_bib33 article-title: Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation publication-title: J Chem Phys doi: 10.1063/1.474784 – volume: 8 start-page: 594 year: 2013 ident: 10.1016/j.biomaterials.2014.03.087_bib21 article-title: Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets publication-title: Nat Nanotech doi: 10.1038/nnano.2013.125 – volume: 10 start-page: 1322 year: 2011 ident: 10.1016/j.biomaterials.2014.03.087_bib17 article-title: Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterial publication-title: Small doi: 10.1002/smll.201100001 – volume: 6 start-page: 10598 year: 2012 ident: 10.1016/j.biomaterials.2014.03.087_bib44 article-title: Intracellular release of endocytosed nanoparticles upon a change of ligand-receptor interaction publication-title: ACS Nano doi: 10.1021/nn303508c – volume: 16 start-page: 437 year: 2004 ident: 10.1016/j.biomaterials.2014.03.087_bib13 article-title: Translocation of inhaled ultrafine particles to the brain publication-title: Inhal Toxicol doi: 10.1080/08958370490439597 – volume: 321 start-page: 385 year: 2008 ident: 10.1016/j.biomaterials.2014.03.087_bib40 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science doi: 10.1126/science.1157996 – volume: 41 start-page: 3373 year: 1970 ident: 10.1016/j.biomaterials.2014.03.087_bib38 article-title: Elastic constants of compression-annealed pyrolytic graphite publication-title: J Appl Phys doi: 10.1063/1.1659428 – volume: 10 start-page: 27 year: 2013 ident: 10.1016/j.biomaterials.2014.03.087_bib43 article-title: Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2 publication-title: Part Fibre Toxicol doi: 10.1186/1743-8977-10-27 – volume: 4 start-page: 913 year: 2010 ident: 10.1016/j.biomaterials.2014.03.087_bib27 article-title: Self-assembly of Janus nanoparticles in diblock copolymers publication-title: ACS Nano doi: 10.1021/nn901739v – volume: 5 start-page: 6971 year: 2011 ident: 10.1016/j.biomaterials.2014.03.087_bib20 article-title: Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress publication-title: ACS Nano doi: 10.1021/nn202451x – volume: 5 start-page: 11234 year: 2013 ident: 10.1016/j.biomaterials.2014.03.087_bib56 article-title: Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells publication-title: Nanoscale doi: 10.1039/c3nr03543c – volume: 24 start-page: 5586 year: 2012 ident: 10.1016/j.biomaterials.2014.03.087_bib12 article-title: In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles publication-title: Adv Mater doi: 10.1002/adma.201202625 – volume: 3 start-page: 363 year: 2008 ident: 10.1016/j.biomaterials.2014.03.087_bib14 article-title: Computer simulation study of fullerene translocation through lipid membranes publication-title: Nat Nanotech doi: 10.1038/nnano.2008.130 – volume: 8 start-page: 4469 year: 2008 ident: 10.1016/j.biomaterials.2014.03.087_bib6 article-title: Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents publication-title: Nano Lett doi: 10.1021/nl802412n – volume: 6 start-page: 714 year: 2011 ident: 10.1016/j.biomaterials.2014.03.087_bib16 article-title: Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation publication-title: Nat Nanotech doi: 10.1038/nnano.2011.151 – volume: 102 start-page: 9469 year: 2005 ident: 10.1016/j.biomaterials.2014.03.087_bib46 article-title: Mechanics of receptor-mediated endocytosis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0503879102 – volume: 10 start-page: 3318 year: 2010 ident: 10.1016/j.biomaterials.2014.03.087_bib8 article-title: Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy publication-title: Nano Lett doi: 10.1021/nl100996u – volume: 7 start-page: 9104 year: 2011 ident: 10.1016/j.biomaterials.2014.03.087_bib36 article-title: Molecular understanding of receptor-mediated membrane responses to ligand-coated nanoparticles publication-title: Soft Matter doi: 10.1039/c1sm05398a – volume: 52 start-page: 4986 year: 2013 ident: 10.1016/j.biomaterials.2014.03.087_bib11 article-title: Graphene: safe or toxic? the two faces of the medal publication-title: Angew Chem Int Ed doi: 10.1002/anie.201209099 – volume: 102 start-page: 4477 year: 1998 ident: 10.1016/j.biomaterials.2014.03.087_bib41 article-title: Structure of graphite oxide revisited publication-title: J Phys Chem B doi: 10.1021/jp9731821 – volume: 4 start-page: 229 year: 2010 ident: 10.1016/j.biomaterials.2014.03.087_bib28 article-title: Sandwiched graphene-membrane superstructures publication-title: ACS Nano doi: 10.1021/nn9015778 – volume: 7 start-page: 10646 year: 2013 ident: 10.1016/j.biomaterials.2014.03.087_bib35 article-title: Unique dynamical approach of fully wrapping dendrimer-like soft nanoparticles by lipid bilayer membrane publication-title: ACS Nano doi: 10.1021/nn4033344 – volume: 3 start-page: 362 year: 2011 ident: 10.1016/j.biomaterials.2014.03.087_bib10 article-title: Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes publication-title: Nanoscale doi: 10.1039/C0NR00647E – volume: 8 start-page: 543 year: 2009 ident: 10.1016/j.biomaterials.2014.03.087_bib23 article-title: Understanding biophysicochemical interactions at the nano-bio interface publication-title: Nat Mater doi: 10.1038/nmat2442 – volume: 4 start-page: 4317 year: 2010 ident: 10.1016/j.biomaterials.2014.03.087_bib18 article-title: Graphene-based antibacterial paper publication-title: ACS Nano doi: 10.1021/nn101097v – volume: 20 start-page: 7385 year: 2004 ident: 10.1016/j.biomaterials.2014.03.087_bib54 article-title: Spontaneous curvature induced shape transformations of tubular polymersomes publication-title: Langmuir doi: 10.1021/la049776u – volume: 4 start-page: 4174 year: 2010 ident: 10.1016/j.biomaterials.2014.03.087_bib4 article-title: Graphene nanomesh by ZnO nanorod photocatalysts publication-title: ACS Nano doi: 10.1021/nn1007429 – volume: 21 start-page: 419 year: 2009 ident: 10.1016/j.biomaterials.2014.03.087_bib45 article-title: Size-dependent endocytosis of nanoparticles publication-title: Adv Mater doi: 10.1002/adma.200801393 – volume: 2 start-page: 433 year: 2013 ident: 10.1016/j.biomaterials.2014.03.087_bib57 article-title: Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity publication-title: Adv Healthc Mater doi: 10.1002/adhm.201200248 – volume: 179 start-page: 79 year: 2001 ident: 10.1016/j.biomaterials.2014.03.087_bib48 article-title: Cell surface area regulation and membrane tension publication-title: J Membr Biol doi: 10.1007/s002320010040 – volume: 33 start-page: 4013 year: 2012 ident: 10.1016/j.biomaterials.2014.03.087_bib55 article-title: The role of the lateral dimension of graphene oxide in the regulation of cellular responses publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.02.021 – volume: 5 start-page: 8100 year: 2011 ident: 10.1016/j.biomaterials.2014.03.087_bib22 article-title: Graphene oxide: a nonspecific enhancer of cellular growth publication-title: ACS Nano doi: 10.1021/nn202699t – volume: 69 start-page: 031903 year: 2004 ident: 10.1016/j.biomaterials.2014.03.087_bib47 article-title: Elastic deformation of a fluid membrane upon colloid binding publication-title: Phys Rev E doi: 10.1103/PhysRevE.69.031903 – volume: 11 start-page: 5201 year: 2011 ident: 10.1016/j.biomaterials.2014.03.087_bib32 article-title: Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung publication-title: Nano Lett doi: 10.1021/nl202515a – volume: 8 start-page: 8735 year: 2012 ident: 10.1016/j.biomaterials.2014.03.087_bib37 article-title: Dissipative particle dynamics modeling of a graphene nanosheet and its self-Assembly with surfactant molecules publication-title: Soft Matter doi: 10.1039/c2sm26029h – volume: C28 start-page: 693 year: 1973 ident: 10.1016/j.biomaterials.2014.03.087_bib52 article-title: Elastic properties of lipid bilayers: theory and possible experiments publication-title: Naturforsch doi: 10.1515/znc-1973-11-1209 – volume: 10 start-page: 1144 year: 2010 ident: 10.1016/j.biomaterials.2014.03.087_bib42 article-title: Atomic structure of reduced graphene oxide publication-title: Nano Lett doi: 10.1021/nl9031617 – volume: 78 start-page: 857 year: 2009 ident: 10.1016/j.biomaterials.2014.03.087_bib50 article-title: Mechanisms of endocytosis publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.78.081307.110540 – volume: 8 start-page: 15 year: 2009 ident: 10.1016/j.biomaterials.2014.03.087_bib24 article-title: Physical approaches to biomaterial design publication-title: Nat Mater doi: 10.1038/nmat2344 – volume: 447 start-page: 461 year: 2007 ident: 10.1016/j.biomaterials.2014.03.087_bib25 article-title: Aggregation and vesiculation of membrane proteins by curvature-mediated interactions publication-title: Nature doi: 10.1038/nature05840 |
SSID | ssj0014042 |
Score | 2.5034907 |
Snippet | Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer biomedical... Abstract Clarifying the mechanisms of cellular interactions of graphene family nanomaterials is an urgent issue to the development of guidelines for safer... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6069 |
SubjectTerms | Advanced Basic Science Animals antibacterial properties Biomedical materials Cell membrane Cell Membrane - chemistry Cell Membrane - physiology Cellular Computer Simulation cytotoxicity Dentistry Graphene Graphite - chemistry guidelines Humans lipid bilayers Lipid Bilayers - chemistry Membrane Fluidity - physiology Membranes Modeling Models, Biological Models, Chemical Nanomaterials Nanoparticles - chemistry Nanoparticles - ultrastructure nanosheets Nanostructure particle size Pathways physical phases physicochemical properties Simulation phase diagram Surface Properties Transmembrane transportation |
Title | Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961214003627 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961214003627 https://dx.doi.org/10.1016/j.biomaterials.2014.03.087 https://www.ncbi.nlm.nih.gov/pubmed/24780168 https://www.proquest.com/docview/1526134239 https://www.proquest.com/docview/1622601458 https://www.proquest.com/docview/1642232095 https://www.proquest.com/docview/2101315970 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg7E9jK37ytYVDfbqxdaXZUYfSlnJNtqXrdA3Idkyy2icULuMvfRv750kh461JbCHQBLucKL70J39u58I-aBLVreicllRlTwTNbzTotEZdAJF0zrZ-IB2Pz5Rs1Px9UyebZHDcRYGYZUp98ecHrJ1-maaVnO6ms-nCEtiFRJgiUCqghPlQpTo5R-v1jAPZI9hEcbIMpQeiUcDxgtH3O0QTY0wLxEITxFed_smdVcRGjajo6fkSaoi6UH8oc_Ilu92yOMb3II75OFxemr-nHTf54t0She1XQOvSERCly3FG_eIRKXzeGvwPM1lUjyq-Lf90weNhV9AV915uvIXsEe5KAL1Lg2E15AvaWe7Zf_T-6F_QU6PPv84nGXpnIWslhUfMse1yrkW-IgNwltJWdoCIl-2oqi1VdBvl1I4LxrLK2iBtGta5LPNecMLBynzJdnulp1_TWjDy9xW3hZK1sIrZluhJHR0LfM2r5WbkGpcWFMnEnI8C-PcjGizX-amUQwaxeTcgFEmhK91V5GKYyOtT6P9zDhsCunRwI6xkXZ5m7bvU6T3pjA9M7n5xxsnZH-t-ZdDb3zl96OzGYh49AYw8_ISriih6w3EjffIKIZccULq-2QE1IYMauy7ZViBfEzQdOYT8ip6_HrtmSihvFH6zX_-07fkEX6KGOhdsj1cXPp3UOkNbi-E8h55cPDl2-zkGuDtVaY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1VReLjgEqBEiiwSHA0sffLtlAPCKhS2vRCK_W2rO21mqpxotpV1Qt_ij_IzO46KqKtIqEeIkXJjuzsjN_OZN--IeR9lrKyFnkRJXnKI1HCu0xUWQSVQFLVhaysY7uP99XoUHw_kkcr5Hd_FgZplQH7PaY7tA6fDMNsDueTyRBpSSxHASzhRFXSwKzctZcXULe1WztfwckfGNv-dvBlFIXWAlEpc95FBc9UzDOBu0oQ0UrK1CQQ7LIWSZkZBSVmKkVhRWV4Dll_VlQ1SrjGvOJJkWCrCMD9ewLgAtsmfPy14JWgXA3zvEkW4e31SqeOVIZn6k3nYwt5ZcIprCKf7_pV8aas161-22vkcUhb6Wc_M0_Iim3WyaMrYobr5P44bNM_Jc2PyTS0BaOmqeDllU_orKa4U4DUVzrx_0WehoOgFHsjX5jL1llM7RTK-MbSuT2DRbHwQyDBpk5hGwCaNqaZtcfWdu0zcngns_-crDazxr4gtOJpbHJrEiVLYRUztVASSsiaWROXqhiQvJ9YXQbVc2y-cap7etuJvuoUjU7RMdfglAHhC9u51_5YyupT7z_dn24FPNawRC1lnV5nbdsALa1OdMt0rP8J_wHZWlj-9QQtfeV3fbBpgBiMBnDz7ByuKKHMdkqRt4xRDMXphMxuGyMgGWWQ1N88hiUoAAVVbjwgGz7iF3PPRAr5lMpe_ucvfUsejA7Ge3pvZ3_3FXmI33gC9iZZ7c7O7WtIM7vijXusKfl51zjyB_s6jgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+and+analysis+of+cellular+internalization+pathways+and+membrane+perturbation+for+graphene+nanosheets&rft.jtitle=Biomaterials&rft.au=Mao%2C+Jian&rft.au=Guo%2C+Ruohai&rft.au=Yan%2C+Li-Tang&rft.date=2014-07-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=35&rft.issue=23&rft.spage=6069&rft_id=info:doi/10.1016%2Fj.biomaterials.2014.03.087&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961214X00165%2Fcov150h.gif |