The Marker State Space (MSS) Method for Classifying Clinical Samples
The development of accurate clinical biomarkers has been challenging in part due to the diversity between patients and diseases. One approach to account for the diversity is to use multiple markers to classify patients, based on the concept that each individual marker contributes information from it...
Saved in:
Published in | PloS one Vol. 8; no. 6; p. e65905 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
04.06.2013
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of accurate clinical biomarkers has been challenging in part due to the diversity between patients and diseases. One approach to account for the diversity is to use multiple markers to classify patients, based on the concept that each individual marker contributes information from its respective subclass of patients. Here we present a new strategy for developing biomarker panels that accounts for completely distinct patient subclasses. Marker State Space (MSS) defines "marker states" based on all possible patterns of high and low values among a panel of markers. Each marker state is defined as either a case state or a control state, and a sample is classified as case or control based on the state it occupies. MSS was used to define multi-marker panels that were robust in cross validation and training-set/test-set analyses and that yielded similar classification accuracy to several other classification algorithms. A three-marker panel for discriminating pancreatic cancer patients from control subjects revealed subclasses of patients based on distinct marker states. MSS provides a straightforward approach for modeling highly divergent subclasses of patients, which may be adaptable for diverse applications. |
---|---|
AbstractList | The development of accurate clinical biomarkers has been challenging in part due to the diversity between patients and diseases. One approach to account for the diversity is to use multiple markers to classify patients, based on the concept that each individual marker contributes information from its respective subclass of patients. Here we present a new strategy for developing biomarker panels that accounts for completely distinct patient subclasses. Marker State Space (MSS) defines "marker states" based on all possible patterns of high and low values among a panel of markers. Each marker state is defined as either a case state or a control state, and a sample is classified as case or control based on the state it occupies. MSS was used to define multi-marker panels that were robust in cross validation and training-set/test-set analyses and that yielded similar classification accuracy to several other classification algorithms. A three-marker panel for discriminating pancreatic cancer patients from control subjects revealed subclasses of patients based on distinct marker states. MSS provides a straightforward approach for modeling highly divergent subclasses of patients, which may be adaptable for diverse applications. The development of accurate clinical biomarkers has been challenging in part due to the diversity between patients and diseases. One approach to account for the diversity is to use multiple markers to classify patients, based on the concept that each individual marker contributes information from its respective subclass of patients. Here we present a new strategy for developing biomarker panels that accounts for completely distinct patient subclasses. Marker State Space (MSS) defines "marker states" based on all possible patterns of high and low values among a panel of markers. Each marker state is defined as either a case state or a control state, and a sample is classified as case or control based on the state it occupies. MSS was used to define multi-marker panels that were robust in cross validation and training-set/test-set analyses and that yielded similar classification accuracy to several other classification algorithms. A three-marker panel for discriminating pancreatic cancer patients from control subjects revealed subclasses of patients based on distinct marker states. MSS provides a straightforward approach for modeling highly divergent subclasses of patients, which may be adaptable for diverse applications.The development of accurate clinical biomarkers has been challenging in part due to the diversity between patients and diseases. One approach to account for the diversity is to use multiple markers to classify patients, based on the concept that each individual marker contributes information from its respective subclass of patients. Here we present a new strategy for developing biomarker panels that accounts for completely distinct patient subclasses. Marker State Space (MSS) defines "marker states" based on all possible patterns of high and low values among a panel of markers. Each marker state is defined as either a case state or a control state, and a sample is classified as case or control based on the state it occupies. MSS was used to define multi-marker panels that were robust in cross validation and training-set/test-set analyses and that yielded similar classification accuracy to several other classification algorithms. A three-marker panel for discriminating pancreatic cancer patients from control subjects revealed subclasses of patients based on distinct marker states. MSS provides a straightforward approach for modeling highly divergent subclasses of patients, which may be adaptable for diverse applications. |
Audience | Academic |
Author | Maupin, Kevin A. Langmead, Christopher J. Brand, Randall E. Tembe, Waibhav Partyka, Katie Fallon, Brian P. Curnutte, Bryan Choi, Sunguk Haab, Brian B. |
AuthorAffiliation | 3 University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America 1 Laboratory of Cancer Immunodiagnostics, Van Andel Institute, Grand Rapids, Michigan, United States of America Queen Elizabeth Hospital, Hong Kong 4 Translational Genomics Research Institute, Phoenix, Arizona, United States of America 2 Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America |
AuthorAffiliation_xml | – name: 2 Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America – name: 3 University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America – name: 4 Translational Genomics Research Institute, Phoenix, Arizona, United States of America – name: Queen Elizabeth Hospital, Hong Kong – name: 1 Laboratory of Cancer Immunodiagnostics, Van Andel Institute, Grand Rapids, Michigan, United States of America |
Author_xml | – sequence: 1 givenname: Brian P. surname: Fallon fullname: Fallon, Brian P. – sequence: 2 givenname: Bryan surname: Curnutte fullname: Curnutte, Bryan – sequence: 3 givenname: Kevin A. surname: Maupin fullname: Maupin, Kevin A. – sequence: 4 givenname: Katie surname: Partyka fullname: Partyka, Katie – sequence: 5 givenname: Sunguk surname: Choi fullname: Choi, Sunguk – sequence: 6 givenname: Randall E. surname: Brand fullname: Brand, Randall E. – sequence: 7 givenname: Christopher J. surname: Langmead fullname: Langmead, Christopher J. – sequence: 8 givenname: Waibhav surname: Tembe fullname: Tembe, Waibhav – sequence: 9 givenname: Brian B. surname: Haab fullname: Haab, Brian B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23750276$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuEzEUHaEi-oA_QDASm7JIsMfPYYFUhVelRiymrK0bj504OONgT5D693iaCWqqCnnhq-tzzr3HOufFSRc6UxSvMZpiIvCHddjFDvx0m9tThDirEXtWnOGaVBNeIXLyoD4tzlNaI8SI5PxFcVoRwVAl-Fnx-XZlyjnEXyaWTQ-9KZstaFNezpvmfTk3_Sq0pQ2xnHlIydk71y1z7TqnwZcNbLbepJfFcws-mVfjfVH8_PrldvZ9cvPj2_Xs6maiWU36iaQgrK6ZBi0oh5q2krWYytYisdBkgbmhEjNARggLCFWGMUo5Nm2tsSRALoq3e92tD0mNH5AUJpwKjgSSGXG9R7QB1mob3QbinQrg1H0jxKWC2DvtjRJ5tAFAuqo1tZzUbcuY1FZgYi2XNGt9GqftFhvTatP1EfyR6PFL51ZqGf4owkWFGcoCl6NADL93JvVq45I23kNnwu5-b84kIoJn6LtH0KfdjaglZAOusyHP1YOouqJC0koKMew9fQKVT2s2Tue0WJf7R4Q3D43-c3hISQZ83AN0DClFY5V2OSsuDL6dVxipIZKHndUQSTVGMpPpI_JB_7-0vyE85Qk |
CitedBy_id | crossref_primary_10_1586_17474124_2015_965145 crossref_primary_10_1074_mcp_M113_030700 crossref_primary_10_1038_s41598_017_04164_z crossref_primary_10_1016_j_jcmgh_2015_12_003 crossref_primary_10_1158_1078_0432_CCR_18_3310 |
Cites_doi | 10.5858/133.3.382 10.1093/glycob/cwp187 10.1158/0008-5472.CAN-05-1436 10.1016/0021-9681(84)90041-9 10.1038/35000501 10.1097/SLA.0b013e3181d7738d 10.1093/bib/bbp016 10.1016/j.ccr.2005.10.001 10.1002/pmic.201000827 10.1586/epr.09.102 10.1007/BF00058655 10.1074/mcp.M900135-MCP200 10.1007/978-1-59745-530-5_6 10.1016/j.ejso.2006.10.004 10.1371/journal.pone.0029180 10.1038/nrclinonc.2011.121 10.1038/nmeth1035 10.1007/BF03257193 10.1002/pmic.200300611 10.1002/9783527622153.ch8 10.1198/016214502753479248 10.1093/glycob/cwm047 10.1016/S0304-4165(99)00183-X 10.1378/chest.97.3.639 10.1093/jnci/80.2.97 10.1021/pr8008379 10.1074/mcp.M900418-MCP200 10.1038/nrc1739 10.1038/nrc1041 10.1073/pnas.0230559100 10.1002/pmic.201100676 10.1016/j.molonc.2010.11.003 10.1371/journal.pone.0013002 10.1093/biostatistics/kxp052 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2013 Public Library of Science 2013 Fallon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2013 Fallon et al 2013 Fallon et al |
Copyright_xml | – notice: COPYRIGHT 2013 Public Library of Science – notice: 2013 Fallon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2013 Fallon et al 2013 Fallon et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0065905 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Medicine Biology |
DocumentTitleAlternate | Marker State Space |
EISSN | 1932-6203 |
ExternalDocumentID | 1364760708 oai_doaj_org_article_7d14eaa0c29c4f639dd558cf713ff684 PMC3672150 2987739131 A478428774 23750276 10_1371_journal_pone_0065905 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Pittsburgh Pennsylvania United States--US Pennsylvania Michigan |
GeographicLocations_xml | – name: Michigan – name: Pennsylvania – name: Pittsburgh Pennsylvania – name: United States--US |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: 1U01CA168896 – fundername: NCI NIH HHS grantid: 1U01CA152653 – fundername: NCI NIH HHS grantid: R33 CA122890 – fundername: NCI NIH HHS grantid: U01 CA152653 – fundername: NCI NIH HHS grantid: U01 CA168896 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PV9 RZL BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c593t-84a7fc95cac746a94d85d148df07bc3b16e4815a0e77fa002e554461ed9c183a3 |
IEDL.DBID | DOA |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:12:37 EST 2021 Wed Aug 27 01:29:27 EDT 2025 Thu Aug 21 13:57:28 EDT 2025 Fri Jul 11 03:19:56 EDT 2025 Fri Jul 25 10:34:49 EDT 2025 Tue Jun 17 21:33:22 EDT 2025 Tue Jun 10 20:45:53 EDT 2025 Tue Aug 05 11:41:59 EDT 2025 Tue Jul 01 02:05:56 EDT 2025 Thu Apr 24 23:01:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c593t-84a7fc95cac746a94d85d148df07bc3b16e4815a0e77fa002e554461ed9c183a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Conceived and designed the experiments: BF BC KM KP BH. Performed the experiments: BF BC KM KP. Analyzed the data: BF BC KM KP SC RB CL WT BH. Contributed reagents/materials/analysis tools: RB CL WT. Wrote the paper: BF BH. |
OpenAccessLink | https://doaj.org/article/7d14eaa0c29c4f639dd558cf713ff684 |
PMID | 23750276 |
PQID | 1364760708 |
PQPubID | 1436336 |
ParticipantIDs | plos_journals_1364760708 doaj_primary_oai_doaj_org_article_7d14eaa0c29c4f639dd558cf713ff684 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3672150 proquest_miscellaneous_1366580376 proquest_journals_1364760708 gale_infotracmisc_A478428774 gale_infotracacademiconefile_A478428774 pubmed_primary_23750276 crossref_citationtrail_10_1371_journal_pone_0065905 crossref_primary_10_1371_journal_pone_0065905 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-04 |
PublicationDateYYYYMMDD | 2013-06-04 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2013 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | L Breiman (ref14) 1996; 24 T Yue (ref30) 2011; 6 S Hakomori (ref36) 1999; 1473 R Orchekowski (ref26) 2005; 65 CY Wang (ref37) 2010; 11 EF Cook (ref16) 1984; 37 S Chen (ref21) 2007; 4 AA Alizadeh (ref17) 2000; 403 S Varambally (ref19) 2005; 8 S Baek (ref7) 2009; 10 D Bergsma (ref25) 2010; 9 G Kloppel (ref20) 2009; 133 BB Haab (ref24) 2010; 7 K Partyka (ref32) 2012; 12 NB La Thangue (ref4) 2011; 8 J Hoggatt (ref3) 2011; 15 K Bouwman (ref11) 2003; 3 TA Alonzo (ref6) 2007; 404 ref23 A Porter (ref35) 2010; 20 R Etzioni (ref2) 2003; 3 RO Dillman (ref15) 1983; 43 JA Ludwig (ref1) 2005; 5 MH Gail (ref10) 1988; 80 C Lombardi (ref9) 1990; 97 T Yue (ref31) 2011; 11 JC Manimala (ref34) 2007; 17 T Yue (ref22) 2009; 8 YM Wu (ref29) 2009; 8 S Dudoit (ref12) 2002; 97 JA Koziol (ref8) 2003; 9 M Lukes (ref5) 2001; 47 K Maupin (ref28) 2010; 5 BB Haab (ref27) 2010; 251 H Zhang (ref13) 2003; 100 KS Goonetilleke (ref33) 2007; 33 A Prat (ref18) 2011; 5 |
References_xml | – volume: 133 start-page: 382 year: 2009 ident: ref20 article-title: Chronic pancreatitis and the differential diagnosis versus pancreatic cancer publication-title: Arch Pathol Lab Med doi: 10.5858/133.3.382 – volume: 20 start-page: 369 year: 2010 ident: ref35 article-title: A motif-based analysis of glycan array data to determine the specificities of glycan-binding proteins publication-title: Glycobiology doi: 10.1093/glycob/cwp187 – volume: 43 start-page: 417 year: 1983 ident: ref15 article-title: Statistical approach to immunosuppression classification using lymphocyte surface markers and functional assays publication-title: Cancer Res – volume: 65 start-page: 11193 year: 2005 ident: ref26 article-title: Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-1436 – volume: 37 start-page: 721 year: 1984 ident: ref16 article-title: Empiric comparison of multivariate analytic techniques: advantages and disadvantages of recursive partitioning analysis publication-title: J Chronic Dis doi: 10.1016/0021-9681(84)90041-9 – volume: 403 start-page: 503 year: 2000 ident: ref17 article-title: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling publication-title: Nature doi: 10.1038/35000501 – volume: 251 start-page: 937 year: 2010 ident: ref27 article-title: Glycosylation Variants of Mucins and CEACAMs as Candidate Biomarkers for the Diagnosis of Pancreatic Cystic Neoplasms publication-title: Annals of Surgery doi: 10.1097/SLA.0b013e3181d7738d – volume: 10 start-page: 537 year: 2009 ident: ref7 article-title: Development of biomarker classifiers from high-dimensional data publication-title: Brief Bioinform doi: 10.1093/bib/bbp016 – volume: 9 start-page: 5120 year: 2003 ident: ref8 article-title: Recursive partitioning as an approach to selection of immune markers for tumor diagnosis publication-title: Clin Cancer Res – volume: 8 start-page: 393 year: 2005 ident: ref19 article-title: Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.10.001 – volume: 11 start-page: 3665 year: 2011 ident: ref31 article-title: Identification of blood-protein carriers of the CA 19-9 antigen and characterization of prevalence in pancreatic diseases publication-title: Proteomics doi: 10.1002/pmic.201000827 – volume: 7 start-page: 9 year: 2010 ident: ref24 article-title: Antibody-lectin sandwich arrays for biomarker and glycobiology studies publication-title: Expert Rev Proteomics doi: 10.1586/epr.09.102 – volume: 24 start-page: 123 year: 1996 ident: ref14 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1007/BF00058655 – volume: 8 start-page: 1697 year: 2009 ident: ref22 article-title: The prevalence and nature of glycan alterations on specific proteins in pancreatic cancer patients revealed using antibody-lectin sandwich arrays publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M900135-MCP200 – volume: 404 start-page: 89 year: 2007 ident: ref6 article-title: Development and evaluation of classifiers publication-title: Methods Mol Biol doi: 10.1007/978-1-59745-530-5_6 – volume: 33 start-page: 266 year: 2007 ident: ref33 article-title: Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer publication-title: Eur J Surg Oncol doi: 10.1016/j.ejso.2006.10.004 – volume: 6 start-page: e29180 year: 2011 ident: ref30 article-title: Enhanced discrimination of malignant from benign pancreatic disease by measuring the CA 19-9 antigen on specific protein carriers publication-title: PLoS ONE doi: 10.1371/journal.pone.0029180 – volume: 8 start-page: 587 year: 2011 ident: ref4 article-title: Predictive biomarkers: a paradigm shift towards personalized cancer medicine publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2011.121 – volume: 4 start-page: 437 year: 2007 ident: ref21 article-title: Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays publication-title: Nat Methods doi: 10.1038/nmeth1035 – volume: 15 start-page: 53 year: 2011 ident: ref3 article-title: Personalized medicine—trends in molecular diagnostics: exponential growth expected in the next ten years publication-title: Mol Diagn Ther doi: 10.1007/BF03257193 – volume: 3 start-page: 2200 year: 2003 ident: ref11 article-title: Microarrays of tumor cell derived proteins uncover a distinct pattern of prostate cancer serum immunoreactivity publication-title: Proteomics doi: 10.1002/pmic.200300611 – ident: ref23 doi: 10.1002/9783527622153.ch8 – volume: 97 start-page: 77 year: 2002 ident: ref12 article-title: Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data publication-title: Journal of the American Statistical Association doi: 10.1198/016214502753479248 – volume: 17 start-page: 17C year: 2007 ident: ref34 article-title: High-throughput carbohydrate microarray profiling of 27 antibodies demonstrates widespread specificity problems publication-title: Glycobiology doi: 10.1093/glycob/cwm047 – volume: 1473 start-page: 247 year: 1999 ident: ref36 article-title: Antigen structure and genetic basis of histo-blood groups A, B and O: their changes associated with human cancer publication-title: Biochim Biophys Acta doi: 10.1016/S0304-4165(99)00183-X – volume: 97 start-page: 639 year: 1990 ident: ref9 article-title: Clinical significance of a multiple biomarker assay in patients with lung cancer. A study with logistic regression analysis publication-title: Chest doi: 10.1378/chest.97.3.639 – volume: 80 start-page: 97 year: 1988 ident: ref10 article-title: Multiple markers for lung cancer diagnosis: validation of models for localized lung cancer publication-title: J Natl Cancer Inst doi: 10.1093/jnci/80.2.97 – volume: 8 start-page: 1876 year: 2009 ident: ref29 article-title: Mucin glycosylation is altered by pro-inflammatory signaling in pancreatic-cancer cells publication-title: J Proteome Res doi: 10.1021/pr8008379 – volume: 47 start-page: 41 year: 2001 ident: ref5 article-title: Prostate-specific antigen: current status publication-title: Gynecol Oncol – volume: 9 start-page: 446 year: 2010 ident: ref25 article-title: Antibody-array interaction mapping (AAIM): A new method to detect protein complexes applied to the discovery and study of serum amyloid P interactions with kininogen in human plasma publication-title: Molecular Cellular Proteomics doi: 10.1074/mcp.M900418-MCP200 – volume: 5 start-page: 845 year: 2005 ident: ref1 article-title: Biomarkers in cancer staging, prognosis and treatment selection publication-title: Nat Rev Cancer doi: 10.1038/nrc1739 – volume: 3 start-page: 243 year: 2003 ident: ref2 article-title: The case for early detection publication-title: Nat Rev Cancer doi: 10.1038/nrc1041 – volume: 100 start-page: 4168 year: 2003 ident: ref13 article-title: Cell and tumor classification using gene expression data: construction of forests publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0230559100 – volume: 12 start-page: 2212 year: 2012 ident: ref32 article-title: Diverse monoclonal antibodies against the CA 19-9 antigen show variation in binding specificity with consequences for clinical interpretation publication-title: Proteomics doi: 10.1002/pmic.201100676 – volume: 5 start-page: 5 year: 2011 ident: ref18 article-title: Deconstructing the molecular portraits of breast cancer publication-title: Mol Oncol doi: 10.1016/j.molonc.2010.11.003 – volume: 5 start-page: e13002 year: 2010 ident: ref28 article-title: Glycogene Expression Alterations Associated with Pancreatic Cancer Epithelial-Mesenchymal Transition in Complementary Model Systems publication-title: PLoS ONE doi: 10.1371/journal.pone.0013002 – volume: 11 start-page: 195 year: 2010 ident: ref37 article-title: Boosting with missing predictors publication-title: Biostatistics doi: 10.1093/biostatistics/kxp052 |
SSID | ssj0053866 |
Score | 2.1050036 |
Snippet | The development of accurate clinical biomarkers has been challenging in part due to the diversity between patients and diseases. One approach to account for... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e65905 |
SubjectTerms | Algorithms Antigens Bioindicators Biology Biomarkers Biomarkers - blood Classification Computational Biology - methods Diagnosis, Differential Disease Humans Immunoglobulins Laboratories Marker panels Medical diagnosis Medicine Methods Multiculturalism & pluralism Pancreatic cancer Pancreatic Neoplasms - blood Pancreatic Neoplasms - diagnosis Patients Prostate cancer Proteins Proteomics Reproducibility of Results Software |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZguXBBlFcXCjISEu3BNIkdP06oPKoKabkslfYWObZDK62SZbP9_8w43tCgCq47TtaZl2eSmW8IeWdUAbmOzpgO1jKhGsOMKR3TsobjiNd54Ng7vPguLy7Ft1W5Si_c-lRWufeJ0VH7zuE78tMcgc4lKKj-uPnFcGoUfl1NIzTukwcIXYYlXWo1Jlxgy1Kmdjmu8tMknQ-brg1Yz1UaHFp36ziKqP2jb55t1l1_V-D5d_3krQPp_DF5lCJJejaI_oDcC-0TcpBstafHCVD65Cn5ArpAsSknbGkMLukSMuVAjxfL5QldxBnSFIJXGidkXsfOJ5oAQ9d0aRFAuH9GLs-__vh8wdL0BOZKw3dMC6saB3y3TglpjfC69JD8-CZTtQMpyIBALTYLSjUWHGOAyELIPHjjwM4tf05mLXDqkFBRqDzn1hdeCeElDgGU6BlMbVTWCD0nfM_EyiVocZxwsa7i9zIFKcbAkwpZXyXWzwkbr9oM0Br_Wf8J5TOuRWDs-EO3_VklO6sUPCJoXeYK40QD4Zf3ZaldA7l400gt5uQ9SrdC84UtAnOGLgT4HwTCqs6E0phFKlh5NFkJZucm5EPUj_1O--qPgsKVe525m_x2JONNscqtDd1NXAMBYQY-f05eDCo2Pm3BIbYrkKImyjdhx5TSXl9FvHAuIc0vs5f_3tYr8rAYRn2wTByR2W57E15DwLWr30Sr-g1DXijJ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaq5cIFUV5dWJArVaI9uMrD8eOAUKGtKqTlsqzUW-TYDlRaZZfNVoJ_z4zjRAQt4sJ1Z5x1Ps_Y3yieGUJOtMwg1lEJU94YxmWtmdaFZUpUcBzlVepzzB2efxY3S_7ptrg9IH3P1ghguze0w35Sy-3q_Mf3n-_B4d-Frg0y7Qedb9aNx3tahcaipg_gbJLoqnM-fFcA7xYiJtD9beTogAp1_IfderJZrdt9VPTPG5W_HVHXj8mjyC3pRWcMh-TAN0_IYfTelp7GEtNnT8klWAfFNB2_pYFu0gXEzp6ezheLM9p1laZAZ6lFcn0XcqFon0RJW4MlhdtnZHl99eXjDYv9FJgtdL5jihtZW1gJYyUXRnOnCgfhkKsTWVlYF-GxdItJvJS1ga3SA9fgIvVOW_B8kz8nkwaQOiKUZzJNc-MyJzl3AtsCCtwrdKVlUnM1JXkPYmljsXHsebEqwxc0CUFHh0mJ0JcR-ilhw6hNV2zjH_ofcH0GXSyVHX5Yb7-W0fNKCa8IdpjYTFteAyFzriiUrSE6r2uh-JS8xdUt0cRgigBOl5cA_4OlscoLLhXGlRI0ZyNNcEQ7Eh-hffQzbWHegksBeyrAMettZr_4eBDjQ_HeW-PX90EHKGICp8CUvOhMbHjbLAe2l6FEjoxvBMdY0tx9CxXEcwGBf5G8_B_4vSIPs65FCEv4jEx223v_GojarnoTfO8XPXo8ZQ priority: 102 providerName: Scholars Portal |
Title | The Marker State Space (MSS) Method for Classifying Clinical Samples |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23750276 https://www.proquest.com/docview/1364760708 https://www.proquest.com/docview/1366580376 https://pubmed.ncbi.nlm.nih.gov/PMC3672150 https://doaj.org/article/7d14eaa0c29c4f639dd558cf713ff684 http://dx.doi.org/10.1371/journal.pone.0065905 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBa27LLLsO7VbFmgAgPWHrz6IYvSsY-kxYAUw7ICuRmyLKMFCieo0-t--0jLNuKhQC-96BAxjvKJpEhY_MjYNw0x5joqDJQzJhBQ6kDr1AZK5ngcJXnkEqodXlzJy2vxc5Wudlp90Z0wTw_sgTuGIhL4mNDG2ooSz9OiSFNlS0yuylKqhgkUz7wumfI-GK1YyrZQLoHouN2XH5t15egmV6qpXd3OQdTw9fdeebS5W9ePhZz_35zcOYrmb9mbNobkJ37te-yFq96xvdZKa37YUkkfvWfnqAWcynHcPW_CSr7EHNnxw8VyecR992iOYSu3FETfNjVPvCuW5LUh6uD6A7uez_6cXQZt34TApjrZBkoYKC0ibiwIabQoVIooqqIMIbeIv3RE0WJCB1AadIkOYwohI1doixZuko9sVCFS-4yLGKIoMUVcgBCFpPZ_knyCzjWEpVBjlnQgZrYlFafeFndZ86YMMLnwmGQEfdZCP2ZB_62NJ9V4Qv6U9qeXJUrs5gNUlKxVlOwpRRmz77S7GRkuLhHB8fUH-DtEgZWdCFCUPwJKTgaSaHB2ML1P-tGttMZ1SwESfSfCMel05vHpg36aHkr32yq3fmhkMBQM0duP2SevYv2_jROM6mKagYHyDeAYzlS3Nw1TeCIxwU_Dz8-B3xf2OvatQIJQTNhoe__gvmJAts2n7CWsAEd1FtE4v5iyV6ezq1-_p41V4rgQisa_s39vADiZ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALory6pYCRQLSH0DwcOz4gVCjVlnZ72Vbam-vYDlRaJdvdrRB_it_IjPOgQRWcet2ZZJ3xN6_EM0PIGyliyHWyMMic1gEThQykTE2Q8RzcUZJHLsHa4fEJH52xr9N0ukZ-tbUweKyytYneUNvK4Dvy3QgbnXMAaPZxfhng1Cj8utqO0KhhceR-_oCUbfnhcB_2920cH3w5_TwKmqkCgUllsgoypkVhYD3aCMa1ZDZLLSQFtghFbmB13GEDEx06IQoNBsOBx2U8clYawL9O4L53yF1wvCFqlJh2CR7YDs6b8rxERLsNGt7Pq9Lh-bFU4pC8a-7PTwnofMFgPquWNwW6f5_XvOYADx6SB03kSvdqqK2TNVc-IuuNbVjS7aaB9c5jsg_Yo1gE5BbUB7N0Apm5o9vjyWSHjv3MagrBMvUTOS98pRVtGpTO6ERjw-LlE3J2K3J9SgYlSGqDUBaLKEq0ja1gzHIcOsjREslcirBg2ZAkrRCVaVqZ40SNmfLf5wSkNLVMFIpeNaIfkqC7al638vgP_yfcn44XG3H7H6rFN9XotRLwiIDy0MTSsALCPWvTNDMF5P5FwTM2JO9wdxWaC1giCKeueoD_wcZbao-JDLNWAZxbPU5Qc9MjbyA-2pUu1R-FgCtbzNxMft2R8aZ4qq501ZXngQA0BB8zJM9qiHVPGycQS8ZIET3w9cTRp5QX331_8oQLCCTDzX8v6xW5NzodH6vjw5Oj5-R-XI8ZCUK2RQarxZV7AcHeKn_pNYyS89tW6d8RPWV6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpFQrwgxtcKA4wEYnsITWLHjh8QGpRqY3RCKpP6ZhLHgUlVUppOiL_Gr-POccKKJnjaa--SXs73mdwHIc-VjCHXScMgtVkWcFmqQKnEBKnIwR2xPLIMe4enJ-LwlH-YJ_Mt8qvrhcGyys4mOkNd1AbfkY8iHHQuQEDTUenLIj6NJ2-W3wPcIIVfWrt1Gq2IHNufPyB9a14fjeGsX8Tx5P3nd4eB3zAQmESxdZDyTJYGaMuM5CJTvEiTAhKEogxlboBSYXGYSRZaKcsMjIcF78tFZAtlQBcyBve9Rq5LlkSoY3LeJ3tgR4TwrXpMRiMvGa-WdWWxlixRuDDvgit0GwN6vzBYLurmsqD379rNC85wcpvc8lEsPWjFbpts2eoO2fZ2oqF7fpj1_l0yBjmk2BBkV9QFtnQGWbqle9PZbJ9O3f5qCoEzdds5z1zXFfXDShd0luHw4uYeOb0Svt4ngwo4tUMoj2UUsayIC8l5IXABoUCrpHIlw5KnQ8I6Jmrjx5rjdo2Fdt_qJKQ3LU80sl571g9J0F-1bMd6_Af_LZ5Pj4tDud0P9eqr9jquJTwiSHxoYmV4CaFfUSRJakoZsbIUKR-Sl3i6Gk0HkAjMaTsg4H9wCJc-4DLFDFYC5u4GJqi82QDvoHx0lDb6j3LAlZ3MXA5-1oPxplhhV9n63OFAMBqCvxmSB62I9U8bM4grY4TIDeHbYMcmpDr75maVMyEhqAwf_pusp-QGKLP-eHRy_IjcjNuNI0HId8lgvTq3jyHuW-dPnIJR8uWqNfo3z69psA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Marker+State+Space+%28MSS%29+method+for+classifying+clinical+samples&rft.jtitle=PloS+one&rft.au=Brian+P+Fallon&rft.au=Bryan+Curnutte&rft.au=Kevin+A+Maupin&rft.au=Katie+Partyka&rft.date=2013-06-04&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=8&rft.issue=6&rft.spage=e65905&rft_id=info:doi/10.1371%2Fjournal.pone.0065905&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7d14eaa0c29c4f639dd558cf713ff684 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |