Differential network connectivity analysis for microbiome data adjusted for clinical covariates using jackknife pseudo-values
Background A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs un...
Saved in:
Published in | BMC bioinformatics Vol. 25; no. 1; pp. 117 - 20 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
18.03.2024
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2105 1471-2105 |
DOI | 10.1186/s12859-024-05689-7 |
Cover
Loading…
Abstract | Background
A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects.
Results
We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients.
Conclusion
SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The
R
package with a vignette of our methodology is available through the CRAN repository (
https://CRAN.R-project.org/package=SOHPIE
), named SOHPIE (pronounced as
Sofie
). The source code and user manual can be found at
https://github.com/sjahnn/SOHPIE-DNA
. |
---|---|
AbstractList | Background A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects. Results We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients. Conclusion SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( Keywords: Differential network analysis, Regression modeling, Microbial co-abundance, Jackknife pseudo-values A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects. We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients. SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository (https://CRAN.R-project.org/package=SOHPIE), named SOHPIE (pronounced as Sofie). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA. BackgroundA recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects.ResultsWe propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients.ConclusionSOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository (https://CRAN.R-project.org/package=SOHPIE), named SOHPIE (pronounced as Sofie). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA. A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects. We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients. SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( https://CRAN.R-project.org/package=SOHPIE ), named SOHPIE (pronounced as Sofie). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA . Abstract Background A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects. Results We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients. Conclusion SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( https://CRAN.R-project.org/package=SOHPIE ), named SOHPIE (pronounced as Sofie). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA . A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects.BACKGROUNDA recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects.We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients.RESULTSWe propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients.SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( https://CRAN.R-project.org/package=SOHPIE ), named SOHPIE (pronounced as Sofie). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA .CONCLUSIONSOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( https://CRAN.R-project.org/package=SOHPIE ), named SOHPIE (pronounced as Sofie). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA . Background A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects. Results We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients. Conclusion SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( https://CRAN.R-project.org/package=SOHPIE ), named SOHPIE (pronounced as Sofie ). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA . |
ArticleNumber | 117 |
Audience | Academic |
Author | Ahn, Seungjun Datta, Somnath |
Author_xml | – sequence: 1 givenname: Seungjun surname: Ahn fullname: Ahn, Seungjun organization: Department of Biostatistics, University of Florida, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai – sequence: 2 givenname: Somnath surname: Datta fullname: Datta, Somnath email: somnath.datta@ufl.edu organization: Department of Biostatistics, University of Florida |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38500042$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstuEzEYhUeoiLaBF2CBRmIDiym-jD32ClXlFqkSEpe15fFlcDKxg-0JZMG74ySlbRBCs_DI_s6xfP5zXp344E1VPYXgAkJGXyWIGOENQG0DCGW86R5UZ7DtYIMgICf3_k-r85QWAMCOAfKoOsWMAABadFb9euOsNdH47ORYe5N_hLisVfDeqOw2Lm9r6eW4TS7VNsR65VQMvQsrU2uZZS31YkrZ6P2hGp13qviosJHRyWxSPSXnh3oh1XLpnTX1OplJh2Yjx8mkx9VDK8dkntyss-rru7dfrj401x_fz68urxtFOM4NazkFSFHNetkyxFELKYB9hxGwstMA0l6TvueYEtASBbjFnYEQYMVagonFs2p-8NVBLsQ6upWMWxGkE_uNEAchY3ZqNEKiYmEQJVqTtu8Ql5a31hJWblAGw-L1-uC1nvqV0apEF-V4ZHp84t03MYSNgIC3FMKdw4sbhxi-lxSyWLmkzDhKb8KUBOJlmAjCjhb0-V_oIkyxDCQJDHDHCKYc3FGDLC9w3oZysdqZisuOUYYwLTnMqot_UOXTpky1VMu6sn8keHkkKEw2P_Mgp5TE_POnY_bZ_VRu4_jTtAKgA1D6k1I09haBQOzqLA51FqXOYl9n0RURPohSgf1g4t3z_6P6DbEc9pw |
Cites_doi | 10.1038/s41467-020-16222-8 10.1038/nm.3492 10.1007/s001840200191 10.3322/caac.21398 10.1093/biomet/90.1.15 10.3389/fcimb.2021.757718 10.1186/s12918-018-0598-2 10.1038/s41467-019-13036-1 10.1016/j.cmpb.2007.11.017 10.1002/sim.6072 10.1038/s41598-021-82726-y 10.1038/nature11553 10.1080/01621459.1984.10477105 10.1186/1471-2105-9-303 10.1186/s10194-020-1078-9 10.1111/j.1467-9469.2006.00526.x 10.1093/bioinformatics/btz824 10.1073/pnas.1530509100 10.1016/j.molcel.2015.05.004 10.1186/s12874-021-01227-8 10.1523/JNEUROSCI.3299-14.2014 10.1109/JBHI.2020.2980204 10.1111/j.1541-0420.2007.00975.x 10.1093/bioinformatics/btn182 10.1016/j.jaci.2019.11.003 10.1371/journal.pcbi.1002687 10.1111/j.1541-0420.2010.01416.x 10.1214/12-AOAS575 10.18637/jss.v032.i03 10.1080/10543406.2022.2041655 10.1038/s41598-021-84783-9 10.1371/journal.pcbi.1004226 10.1093/bioinformatics/btv349 10.1214/16-AOAS927 10.1093/bioinformatics/btad766 10.1186/1471-2105-8-233 10.3389/fcimb.2019.00470 10.1080/07853890.2020.1758340 10.1128/mSystems.00031-18 10.1214/21-AOAS1581 10.1007/s10985-018-9443-6 10.1002/JPER.19-0051 10.1016/j.tim.2016.11.008 10.1111/1467-9868.00346 10.1053/j.gastro.2020.09.056 10.1111/j.1467-9868.2010.00746.x 10.1186/s10194-018-0902-y 10.1371/journal.pcbi.1008913 10.1038/s41598-020-77673-z 10.1038/s41564-018-0337-x 10.1093/ntr/ntz220 10.1177/0962280219842271 10.18129/B9.bioc.microbiome 10.1186/s12859-022-05123-w 10.1007/978-1-4899-4541-9 10.1016/j.csbj.2021.05.001 10.1093/oxfordjournals.aje.a116014 10.18637/jss.v098.i12 10.1371/journal.pone.0000109 10.1007/s10985-008-9107-z 10.1093/bib/bbaa290 10.1214/16-AOS1516 10.1111/j.2517-6161.1995.tb02031.x 10.1126/science.286.5439.509 10.1038/ncomms7342 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12859-024-05689-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Science: Gale in Context ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_a2045e265dd54b729af94ff58d5bce31 PMC10946111 A786823645 38500042 10_1186_s12859_024_05689_7 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: National Institute on Alcohol Abuse and Alcoholism grantid: NIH T32AA025877 funderid: http://dx.doi.org/10.13039/100000027 – fundername: NIAAA NIH HHS grantid: NIH T32AA025877 – fundername: NIAAA NIH HHS grantid: T32 AA025877 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c593t-849602c6d8ba4829241601b7320fa7d016bd5bb9365045c09f37e1103c84535f3 |
IEDL.DBID | M48 |
ISSN | 1471-2105 |
IngestDate | Wed Aug 27 01:28:19 EDT 2025 Thu Aug 21 18:34:47 EDT 2025 Fri Sep 05 13:49:33 EDT 2025 Fri Jul 25 10:38:08 EDT 2025 Tue Jun 17 22:19:35 EDT 2025 Tue Jun 10 21:12:51 EDT 2025 Fri Jun 27 06:01:44 EDT 2025 Mon Jul 21 06:02:56 EDT 2025 Tue Jul 01 03:38:40 EDT 2025 Sat Sep 06 07:27:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Jackknife pseudo-values Differential network analysis Regression modeling Microbial co-abundance |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c593t-849602c6d8ba4829241601b7320fa7d016bd5bb9365045c09f37e1103c84535f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3037853690?pq-origsite=%requestingapplication% |
PMID | 38500042 |
PQID | 3037853690 |
PQPubID | 44065 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a2045e265dd54b729af94ff58d5bce31 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10946111 proquest_miscellaneous_2968921176 proquest_journals_3037853690 gale_infotracmisc_A786823645 gale_infotracacademiconefile_A786823645 gale_incontextgauss_ISR_A786823645 pubmed_primary_38500042 crossref_primary_10_1186_s12859_024_05689_7 springer_journals_10_1186_s12859_024_05689_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-18 |
PublicationDateYYYYMMDD | 2024-03-18 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC bioinformatics |
PublicationTitleAbbrev | BMC Bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2024 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | A Alfons (5689_CR49) 2013; 7 G Weinstock (5689_CR1) 2012; 489 Y Taur (5689_CR35) 2014; 20 S Ahn (5689_CR44) 2023; 24 KW Ahn (5689_CR23) 2016; 10 D McDonald (5689_CR33) 2018; 3 5689_CR68 5689_CR69 K McGregor (5689_CR14) 2020; 36 R Nolan-Kenney (5689_CR36) 2020; 22 ZD Kurtz (5689_CR42) 2015; 11 H Fang (5689_CR41) 2015; 31 G Pison (5689_CR50) 2002; 55 J Storey (5689_CR57) 2003; 100 R Krajmalnik-Brown (5689_CR7) 2015; 26 J Friedman (5689_CR43) 2012; 8 M Ahdesmäki (5689_CR48) 2007; 8 P Westfall (5689_CR40) 1993 KL Glassner (5689_CR4) 2020; 145 B Efron (5689_CR17) 1993 K Nie (5689_CR38) 2021; 11 K Strimmer (5689_CR56) 2008; 9 MN Johansen (5689_CR21) 2021; 21 J Hajjar (5689_CR39) 2021; 11 S Zhao (5689_CR32) 2022; 16 I Vujkovic-Cvijin (5689_CR3) 2020; 11 S Peschel (5689_CR15) 2021; 22 M Lee (5689_CR16) 2021; 160 5689_CR52 Y Benjamini (5689_CR54) 2010; 72 BR Logan (5689_CR22) 2011; 67 J Storey (5689_CR55) 2002; 64 L Koivusilta (5689_CR67) 2006; 1 AP Bhatt (5689_CR2) 2017; 67 5689_CR8 E Mostofsky (5689_CR65) 2020; 52 Y Benjamini (5689_CR53) 1995; 57 FM Amin (5689_CR64) 2018; 19 C Sabathé (5689_CR20) 2020; 29 M Layeghifard (5689_CR12) 2017; 25 G Csárdi (5689_CR59) 2006; 1695 F Durazzi (5689_CR9) 2021; 11 MS Matchado (5689_CR13) 2021; 9 P Andersen (5689_CR19) 2007; 34 M Overgaard (5689_CR28) 2017; 45 S Ma (5689_CR61) 2021; 17 PK Andersen (5689_CR18) 2003; 90 P Rousseeuw (5689_CR47) 1984; 79 K Ahn (5689_CR31) 2014; 33 M Valles-Colomer (5689_CR6) 2019; 4 M Ashtiani (5689_CR45) 2018; 12 A Ozgür (5689_CR46) 2008; 24 V Todorov (5689_CR51) 2009; 32 Y Wang (5689_CR30) 2019; 25 A Barabási (5689_CR58) 1999; 286 L Zhao (5689_CR24) 2020; 24 JP Klein (5689_CR29) 2008; 89 J Chen (5689_CR37) 2020; 9 BR Logan (5689_CR26) 2008; 64 JA Reuter (5689_CR11) 2015; 58 WF Stewart (5689_CR63) 1991; 134 F Graw (5689_CR27) 2009; 15 M Arzani (5689_CR62) 2020; 21 SH Lee (5689_CR5) 2020; 10 JS Johnson (5689_CR10) 2019; 10 Y Leira (5689_CR66) 2019; 90 PG Ginestet (5689_CR25) 2022 SJ O’Keefe (5689_CR34) 2015; 6 T Grimes (5689_CR60) 2021; 98 36994149 - ArXiv. 2023 Mar 23 |
References_xml | – volume: 11 start-page: 2448 year: 2020 ident: 5689_CR3 publication-title: Nat Commun. doi: 10.1038/s41467-020-16222-8 – volume-title: Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment year: 1993 ident: 5689_CR40 – volume: 1695 start-page: 16 year: 2006 ident: 5689_CR59 publication-title: InterJournal, Complex Systems – volume: 20 start-page: 246 year: 2014 ident: 5689_CR35 publication-title: Nat Med. doi: 10.1038/nm.3492 – volume: 55 start-page: 111 year: 2002 ident: 5689_CR50 publication-title: Metrika doi: 10.1007/s001840200191 – volume: 67 start-page: 326 year: 2017 ident: 5689_CR2 publication-title: CA Cancer J Clin doi: 10.3322/caac.21398 – volume: 90 start-page: 15 year: 2003 ident: 5689_CR18 publication-title: Biometrika doi: 10.1093/biomet/90.1.15 – volume: 11 year: 2021 ident: 5689_CR38 publication-title: Front Cell Infect Microbiol. doi: 10.3389/fcimb.2021.757718 – volume: 12 start-page: 80 year: 2018 ident: 5689_CR45 publication-title: BMC Syst Biol. doi: 10.1186/s12918-018-0598-2 – volume: 10 start-page: 5029 year: 2019 ident: 5689_CR10 publication-title: Nat Commun. doi: 10.1038/s41467-019-13036-1 – volume: 89 start-page: 289 year: 2008 ident: 5689_CR29 publication-title: Comput Methods Programs Biomed. doi: 10.1016/j.cmpb.2007.11.017 – volume: 33 start-page: 1531 year: 2014 ident: 5689_CR31 publication-title: Stat Med. doi: 10.1002/sim.6072 – volume: 11 start-page: 3030 year: 2021 ident: 5689_CR9 publication-title: Sci Rep. doi: 10.1038/s41598-021-82726-y – volume: 489 start-page: 250 year: 2012 ident: 5689_CR1 publication-title: Nature doi: 10.1038/nature11553 – volume: 79 start-page: 871 year: 1984 ident: 5689_CR47 publication-title: J Am Stat Assoc. doi: 10.1080/01621459.1984.10477105 – volume: 9 start-page: 303 year: 2008 ident: 5689_CR56 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-303 – volume: 21 start-page: 1 year: 2020 ident: 5689_CR62 publication-title: J Headache Pain. doi: 10.1186/s10194-020-1078-9 – volume: 34 start-page: 3 year: 2007 ident: 5689_CR19 publication-title: Scand J Statist. doi: 10.1111/j.1467-9469.2006.00526.x – volume: 36 start-page: 1840 year: 2020 ident: 5689_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz824 – volume: 100 start-page: 9440 year: 2003 ident: 5689_CR57 publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1530509100 – volume: 58 start-page: 586 year: 2015 ident: 5689_CR11 publication-title: Mol Cell doi: 10.1016/j.molcel.2015.05.004 – volume: 21 start-page: 36 year: 2021 ident: 5689_CR21 publication-title: BMC Med Res Methodol. doi: 10.1186/s12874-021-01227-8 – ident: 5689_CR8 doi: 10.1523/JNEUROSCI.3299-14.2014 – volume: 24 start-page: 3308 year: 2020 ident: 5689_CR24 publication-title: IEEE J Biomed Health Inform. doi: 10.1109/JBHI.2020.2980204 – volume: 64 start-page: 733 year: 2008 ident: 5689_CR26 publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00975.x – volume: 24 start-page: 277 year: 2008 ident: 5689_CR46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn182 – volume: 145 start-page: 16 year: 2020 ident: 5689_CR4 publication-title: J Allergy Clin Immunol. doi: 10.1016/j.jaci.2019.11.003 – volume: 8 start-page: 1002687 year: 2012 ident: 5689_CR43 publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1002687 – volume: 67 start-page: 1 year: 2011 ident: 5689_CR22 publication-title: Biometrics doi: 10.1111/j.1541-0420.2010.01416.x – volume: 7 start-page: 226 year: 2013 ident: 5689_CR49 publication-title: Ann Appl Stat. doi: 10.1214/12-AOAS575 – volume: 32 start-page: 1 year: 2009 ident: 5689_CR51 publication-title: J Stat Soft. doi: 10.18637/jss.v032.i03 – year: 2022 ident: 5689_CR25 publication-title: J Biopharm Stat. doi: 10.1080/10543406.2022.2041655 – volume: 11 start-page: 5847 year: 2021 ident: 5689_CR39 publication-title: Sci Rep. doi: 10.1038/s41598-021-84783-9 – volume: 11 start-page: 1004226 year: 2015 ident: 5689_CR42 publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1004226 – volume: 31 start-page: 3172 year: 2015 ident: 5689_CR41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv349 – volume: 10 start-page: 618 year: 2016 ident: 5689_CR23 publication-title: Ann Appl Stat. doi: 10.1214/16-AOAS927 – ident: 5689_CR69 doi: 10.1093/bioinformatics/btad766 – volume: 8 start-page: 233 year: 2007 ident: 5689_CR48 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-233 – volume: 9 start-page: 470 year: 2020 ident: 5689_CR37 publication-title: Front Cell Infect Microbiol. doi: 10.3389/fcimb.2019.00470 – volume: 52 start-page: 386 year: 2020 ident: 5689_CR65 publication-title: Ann Med. doi: 10.1080/07853890.2020.1758340 – volume: 3 start-page: 00031 year: 2018 ident: 5689_CR33 publication-title: mSystems doi: 10.1128/mSystems.00031-18 – volume: 16 start-page: 2166 year: 2022 ident: 5689_CR32 publication-title: Ann. Appl. Stat. doi: 10.1214/21-AOAS1581 – volume: 25 start-page: 206 year: 2019 ident: 5689_CR30 publication-title: Lifetime Data Anal. doi: 10.1007/s10985-018-9443-6 – volume: 90 start-page: 1088 year: 2019 ident: 5689_CR66 publication-title: J Periodontol. doi: 10.1002/JPER.19-0051 – volume: 25 start-page: 217 year: 2017 ident: 5689_CR12 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2016.11.008 – volume: 64 start-page: 479 year: 2002 ident: 5689_CR55 publication-title: J. R. Statist. Soc. B doi: 10.1111/1467-9868.00346 – volume: 160 start-page: 524 year: 2021 ident: 5689_CR16 publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.09.056 – volume: 72 start-page: 405 year: 2010 ident: 5689_CR54 publication-title: J. R. Statist. Soc. B doi: 10.1111/j.1467-9868.2010.00746.x – volume: 19 start-page: 83 year: 2018 ident: 5689_CR64 publication-title: J Headache Pain. doi: 10.1186/s10194-018-0902-y – volume: 17 start-page: 1008913 year: 2021 ident: 5689_CR61 publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1008913 – ident: 5689_CR52 – volume: 10 start-page: 20736 year: 2020 ident: 5689_CR5 publication-title: Sci Rep. doi: 10.1038/s41598-020-77673-z – volume: 4 start-page: 623 year: 2019 ident: 5689_CR6 publication-title: Nat Microbiol. doi: 10.1038/s41564-018-0337-x – volume: 22 start-page: 1339 year: 2020 ident: 5689_CR36 publication-title: Nicotine Tob Res. doi: 10.1093/ntr/ntz220 – volume: 29 start-page: 752 year: 2020 ident: 5689_CR20 publication-title: Stat Methods Med Res. doi: 10.1177/0962280219842271 – volume: 26 start-page: 26914 year: 2015 ident: 5689_CR7 publication-title: Microb Ecol Health Dis. – ident: 5689_CR68 doi: 10.18129/B9.bioc.microbiome – volume: 24 start-page: 8 year: 2023 ident: 5689_CR44 publication-title: BMC Bioinformatics doi: 10.1186/s12859-022-05123-w – volume-title: An Introduction to the Bootstrap year: 1993 ident: 5689_CR17 doi: 10.1007/978-1-4899-4541-9 – volume: 9 start-page: 2687 year: 2021 ident: 5689_CR13 publication-title: Comput Struct Biotechnol J. doi: 10.1016/j.csbj.2021.05.001 – volume: 134 start-page: 1111 year: 1991 ident: 5689_CR63 publication-title: Am J Epidemiol. doi: 10.1093/oxfordjournals.aje.a116014 – volume: 98 start-page: 10 year: 2021 ident: 5689_CR60 publication-title: J Stat Softw doi: 10.18637/jss.v098.i12 – volume: 1 start-page: 109 year: 2006 ident: 5689_CR67 publication-title: PLoS One doi: 10.1371/journal.pone.0000109 – volume: 15 start-page: 241 year: 2009 ident: 5689_CR27 publication-title: Lifetime Data Anal. doi: 10.1007/s10985-008-9107-z – volume: 22 start-page: 290 year: 2021 ident: 5689_CR15 publication-title: Brief Bioinform. doi: 10.1093/bib/bbaa290 – volume: 45 start-page: 1988 year: 2017 ident: 5689_CR28 publication-title: Ann Stat. doi: 10.1214/16-AOS1516 – volume: 57 start-page: 289 year: 1995 ident: 5689_CR53 publication-title: J. R. Statist. Soc. B. doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 286 start-page: 509 year: 1999 ident: 5689_CR58 publication-title: Science doi: 10.1126/science.286.5439.509 – volume: 6 start-page: 6342 year: 2015 ident: 5689_CR34 publication-title: Nat Commun. doi: 10.1038/ncomms7342 – reference: 36994149 - ArXiv. 2023 Mar 23;: |
SSID | ssj0017805 |
Score | 2.4375749 |
Snippet | Background
A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing... A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies.... Background A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing... BackgroundA recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing... Abstract Background A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 117 |
SubjectTerms | Algorithms Analysis Bioinformatics Biomedical and Life Sciences Computational Biology/Bioinformatics Computer Appl. in Life Sciences Connectivity analysis Data analysis Deoxyribonucleic acid Diet Differential network analysis DNA DNA sequencing Generalized linear models Health aspects Humans Inflammatory bowel disease Jackknife pseudo-values Life Sciences Linux Metastases Metastasis Methods Microarrays Microbial co-abundance Microbiomes Microbiota (Symbiotic organisms) Microbiota - genetics Microorganisms Network analysis Next-generation sequencing Nucleotide sequencing Regression Regression Analysis Regression modeling RNA Simulation Software Source code Statistical analysis Taxonomy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBggxC4gBRN_H7WB5VQYIDUKk3y3Hsvmi2ajaVOPDfmbGTpSlCXLiuHSmeGXu-2Xz-hpAXzFcsCPAAk9KUPMI52FSJ5LgwQerAFcf7zp8-y909_nFf7F9q9YWcsCwPnA235VAvPdRStK3gDUBBFw2PUehWND7foK4h503F1Pj9AJX6pysyWm71Feq0lZCPSkj42pRqloaSWv-fZ_KlpHSVMHnlq2lKRju3yM0RRdLt_Pa3ybXQ3SHXc1_JH3fJz3dj2xPYvt9pl5ne1COnxeduEdSNYiQUQCs9PcpyTKeBImOUuvZ4wL9B0-B0dxKev4DCGrEpRbb8AT12_uQEuTH0rA9DuyxROTz098jezvtvb3fLsc9C6YVhq1JzKGNqL1vdOK5rqMgqKNMaxepFdKoFUNiAsRvDAM1x4RcmMhUANjCvuWAisvtko1t24SGhMjoWWSUdrxzUUsoBAHF-UbfSCWdiKMiryez2LMtp2FSGaGmzkyw4ySYnWVWQN-iZ9UyUwk4_QIDYMUDsvwKkIM_RrxbFLjpk0xy4oe_th69f7LbSEhu-c1GQl-OkuAQPezdeToBVoT7WbObmbCbsRj8fnsLHjqdBbwEmKIBF0iwK8mw9jE8iw60Ly6G3tYElQzWuZEEe5Ghbr5tpbFvB64LoWRzODDMf6Y4Ok1Z4BeW7hHxWkNdTyP5-r79b_tH_sPxjcqNOW46Vld4kG6vzITwBCLdqnqbd-gsN0EJ5 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyQuiHdDCzIIiQNE3cSP2CfUQquCRIUKlXqzHMde2tJk2-wiceC_M5M4W1IE13gsxZ63Pf6GkJfMZcwL4ACTUqc8gB0ss67Icaq9VJ4XHN87fzqQ-0f847E4jgdubSyrHGxiZ6irxuEZ-RaY2gJcCyRzb-cXKXaNwtvV2ELjJlkDE6zEhKzt7B58PlzdIyBi__BURsmtFol0Cn4pBcevdFqM3FGH2v-3bf7DOV0vnLx2e9o5pb275E6MJul2z_575Iav75NbfX_Jnw_Ir_ex_Qmo8Xda9xXf1GFti-u7RlAbQUkoBK_0_KSHZTr3FCtHqa1Ol3gc2g0Obyhh_g9IsDFGpVg1P6On1p2dYY0Mnbd-WTUpIoj79iE52tv9-m4_jf0WUic0W6SKQzqTO1mp0nKVQ2aWQbpWFiyfBltUEByWlShLzSCq48JNdWCFh_CBOcUFE4E9IpO6qf06oTJYFlgmLc8s5FSFhUDEumleSSusDj4hr4dtN_MeVsN06YiSpmeSASaZjkmmSMgOcmZFiZDY3YfmcmaihhmLwPo-l6KqBC8hZ7BB8xCEgn92nmUJeYF8NQh6UWNVzcwu29Z8-HJotgslsfE7Fwl5FYlCAxx2Nj5SgFUhTtaIcnNECVrpxsOD-JhoFVpzJcMJeb4axplY6Vb7ZtmaXMOSISsvZEIe99K2WjdT2L6C5wlRIzkcbcx4pD751mGGZ5DGS_BrCXkziOzVf_1755_8fxkb5HbeKRNLM7VJJovLpX8KQdqifBY18TfQ7Tre priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCIkL4k2gIIOQOEDEOn4fS6EqSHAAKvVmOY7dF81WZIPEgf_OjJMsTYED19iWYs9M5pt45htCnvHAeJQgAa6ULUWC72DNcpLjwkZlotAC650_fFS7e-L9vtwfaXKwFub8_T0z6lXHkGGtBE9Sgqs2ttSXyRWJPGN4Mau21zcGyM0_FcX8dd3M8WR-_j-_wufc0MUUyQv3pNn97Nwg10fcSLcGQd8kl2J7i1wdOkn-uE1-vhkbnYDBfqXtkNtNA2axhKE_BPUj_QgFmEpPjwYCptNIMUeU-ua4xx-feXCqloT13yGURjRKMT_-gB77cHKC2TD0rIt9syyRKzx2d8jeztsv27vl2FmhDNLyVWkEBC5VUI2pvTAVxGAMArNa82qRvG4ABtaNrGvLAb8JGRY2cR0BKPBghOQy8btko1228T6hKnmeOFNeMA_Rk_YAOXxYVI3y0tsUC_JiOnZ3NhBouBx4GOUGITkQkstCcrogr1Ey65lIfp0fgE640ZacRwr9WCnZNFLUEB34ZEVK0sA7h8hZQZ6iXB3SW7SYP3Pg-65z7z5_clvaKGzxLmRBno-T0hIkHPxYjgC7Qkas2czN2UywvzAfntTHjfbfOQAGGoCQsouCPFkP40rMaWvjsu9cZWHLEH9rVZB7g7at980NNqoQVUHMTA9nBzMfaY8OMzs4g4BdgQcryMtJZX-_179P_sH_TX9IrlXZuHjJzCbZWH3r4yOAZ6v6cbbLX99qMn4 priority: 102 providerName: Springer Nature |
Title | Differential network connectivity analysis for microbiome data adjusted for clinical covariates using jackknife pseudo-values |
URI | https://link.springer.com/article/10.1186/s12859-024-05689-7 https://www.ncbi.nlm.nih.gov/pubmed/38500042 https://www.proquest.com/docview/3037853690 https://www.proquest.com/docview/2968921176 https://pubmed.ncbi.nlm.nih.gov/PMC10946111 https://doaj.org/article/a2045e265dd54b729af94ff58d5bce31 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF71ISQuiDeGEi0IiQOY2t6nDwiloaFEaoVaIuW2Wq_XoS-nxAmiB_47s2s7xaUcuMSSdx155-H5xp79BqFXxMTEMtAA4TwNaQHPwSz2RY5Rarm0VFC333n_gO-N6WjCJmuobXfUCLC6MbVz_aTG87N3P79ffgCHf-8dXvLtKnYsbCFEmxDCuUxDsY42ITJxZ-X79OqrguPv97uNRBxCqsPaTTQ3_kcnUHk-_7-f2n-Eresllde-q_pwNbyL7jQ4E_drw7iH1mx5H92qO09ePkC_PjaNUcDBz3BZ14Jj46peTN1PAuuGrgQDrMXnxzVh07nFrqYU6_xk6V6U-sF2dyVc_wNSb4desaunn-ITbU5PXfUMvqjsMp-FjlvcVg_ReLj7dbAXNp0YQsNSsgglhUQnMTyXmaYySZ1wozgTJIkKLXKAjVnOsiwlgPcoM1FaEGEBWBAjKSOsII_QRjkr7ROEeaFJQWKuaawh2xIaIIo2UZJzzXRa2AC9acWuLmrCDeUTFclVrSQFSlJeSUoEaMdpZjXTkWX7E7P5VDW-p7Sj3LcJZ3nOaAbZhC5SWhRMwj0bS-IAvXR6VY4Oo3T1NlO9rCr1-ehQ9YXkriU8ZQF63UwqZqBho5vtC7Aqx6DVmbnVmQn-arrDrfmo1twVAAkBwImnUYBerIbdla4GrrSzZaWSFJYM-brgAXpcW9tq3US6xhY0CZDs2GFHMN2R8vibZxOPIcHnEPEC9LY12av7-rfkn_6Xnp6h24n3LRLGcgttLOZL-xzQ3CLroXUxEfArh596aLPfHx2N4Lize_DlEM4O-KDn35P0vCv_BiAISTM |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggEEgDhB1HT_iHBAqlGWXPg7QSr0Zx3GWtjRZml1QD_wlfiMzeWxJEdx6XTur2DOeR_zNN4Q85Y5xL0ECXKkkFDnYwZTVIMdB4pX2IhZY77y1rUa74sOe3Fsiv7paGIRVdjaxNtRZ6fAb-SqY2hhcCyRzr6ffQuwahberXQuNRi02_MkPSNmqV-N1kO-zKBq-23k7CtuuAqGTCZ-FWkDQHjmV6dQKHUH-wSApSWMeDXIbZxACpZlM04RD7CKkGyQ5jz04Se60kFzmHP73ArkoOE-Qq18P3y9uLbA_QFeYo9VqxZAdLgQvGEKYoZMw7jm_ukfA357gD1d4FqZ55q62doHDa-RqG7vStUbZrpMlX9wgl5pulic3yc_1ttkKGI2vtGjw5dQhksY1PSqobSlQKITK9Gi_IYE68hRxqtRmB3P8-FoPdhWb8Px3SOcxIqaI0Z_QA-sODxGRQ6eVn2dliHzlvrpFds9FDrfJclEW_i6hKrc850xZwSxkcLGFsMe6QZQpK22S-4C86LbdTBsSD1MnP1qZRkgGhGRqIZk4IG9QMouZSMBd_1AeT0x7no1FGn8fKZllUqSQodg8EXkuNbyz85wF5AnK1SDFRoEYnomdV5UZf_po1mKtsM28kAF53k7KS5Cws21JBKwKWbl6M1d6M8EGuP5wpz6mtUGVOT0xAXm8GMYnEVdX-HJemSiBJUeMxSogdxptW6yba2yWIaKA6J4e9jamP1Lsf6kZytkgEQq8aEBedip7-l7_3vl7_1_GI3J5tLO1aTbH2xv3yZWoPlg8ZHqFLM-O5_4BhIez9GF9Jin5fN5G4DfnInN0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BJxAviM8RGGAQEg8QrYk_4jwWRrUVmBBj0t4sx7HLNpZWS4vEA_87d0lalgEPvNa2FPvufL-r734H8IK7hHuJEuBK5bEIeA8WSZPkOMy90l5kguqdP-6r3UMxOZJHF6r4m2z31ZNkW9NALE3VYntehtbEtdquE-Jdi9G_xOjAdR5nV2FDK4QPA9gYjSYHk_VLAnH2r4pl_rqy55Aa3v4_b-cL7uly6uSl99PGLY1vwc0OT7JRqwC34Yqv7sC1tsPkj7vwc6drgIKG_I1Vbc43c5Td4tq-Ecx2tCQM4Ss7O26Jmc48o9xRZsuTJf0h2gyuqihx_XcMsQmlMsqbn7IT605PKUuGzWu_LGcxcYj7-h4cjt99ebsbdx0XYidzvoi1wIAmdarUhRU6xdgswYCtyHg6DDYrER4WpSyKnCOuE9IN88AzjwCCOy0kl4Hfh0E1q_wDYCpYHniirEgsRlWZRShi3TAtlZU2Dz6CV6tjN_OWWMM0AYlWphWSQSGZRkgmi-ANSWY9k0ixmx9m51PT2ZixRK3vUyXLUooCowYbchGC1PjNzvMkguckV0O0FxXl1Uztsq7N3sFnM8q0otbvQkbwspsUZihhZ7syBdwVMWX1Zm71ZqJduv7wSn1Mdy_UBgFDhgBJ5cMInq2HaSXlulV-tqxNmuOWMS7PVASbrbat9801NbAQaQS6p4e9g-mPVMdfG9bwBAN5hZ4tgtcrlf39Xf8--Yf_N_0pXP-0MzYf9vbfP4IbaWNnPE70FgwW50v_GBHconjSGekvQJE_GQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+network+connectivity+analysis+for+microbiome+data+adjusted+for+clinical+covariates+using+jackknife+pseudo-values&rft.jtitle=BMC+bioinformatics&rft.au=Ahn%2C+Seungjun&rft.au=Datta%2C+Somnath&rft.date=2024-03-18&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-024-05689-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_024_05689_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |