Differential network connectivity analysis for microbiome data adjusted for clinical covariates using jackknife pseudo-values

Background A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs un...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 25; no. 1; pp. 117 - 20
Main Authors Ahn, Seungjun, Datta, Somnath
Format Journal Article
LanguageEnglish
Published London BioMed Central 18.03.2024
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-024-05689-7

Cover

Loading…
Abstract Background A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects. Results We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients. Conclusion SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( https://CRAN.R-project.org/package=SOHPIE ), named SOHPIE (pronounced as Sofie ). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA .
AbstractList Background A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects. Results We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients. Conclusion SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( Keywords: Differential network analysis, Regression modeling, Microbial co-abundance, Jackknife pseudo-values
A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects. We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients. SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository (https://CRAN.R-project.org/package=SOHPIE), named SOHPIE (pronounced as Sofie). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA.
BackgroundA recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects.ResultsWe propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients.ConclusionSOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository (https://CRAN.R-project.org/package=SOHPIE), named SOHPIE (pronounced as Sofie). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA.
A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects. We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients. SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( https://CRAN.R-project.org/package=SOHPIE ), named SOHPIE (pronounced as Sofie). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA .
Abstract Background A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects. Results We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients. Conclusion SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( https://CRAN.R-project.org/package=SOHPIE ), named SOHPIE (pronounced as Sofie). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA .
A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects.BACKGROUNDA recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects.We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients.RESULTSWe propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients.SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( https://CRAN.R-project.org/package=SOHPIE ), named SOHPIE (pronounced as Sofie). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA .CONCLUSIONSOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( https://CRAN.R-project.org/package=SOHPIE ), named SOHPIE (pronounced as Sofie). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA .
Background A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects. Results We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients. Conclusion SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( https://CRAN.R-project.org/package=SOHPIE ), named SOHPIE (pronounced as Sofie ). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA .
ArticleNumber 117
Audience Academic
Author Ahn, Seungjun
Datta, Somnath
Author_xml – sequence: 1
  givenname: Seungjun
  surname: Ahn
  fullname: Ahn, Seungjun
  organization: Department of Biostatistics, University of Florida, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
– sequence: 2
  givenname: Somnath
  surname: Datta
  fullname: Datta, Somnath
  email: somnath.datta@ufl.edu
  organization: Department of Biostatistics, University of Florida
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38500042$$D View this record in MEDLINE/PubMed
BookMark eNp9kstuEzEYhUeoiLaBF2CBRmIDiym-jD32ClXlFqkSEpe15fFlcDKxg-0JZMG74ySlbRBCs_DI_s6xfP5zXp344E1VPYXgAkJGXyWIGOENQG0DCGW86R5UZ7DtYIMgICf3_k-r85QWAMCOAfKoOsWMAABadFb9euOsNdH47ORYe5N_hLisVfDeqOw2Lm9r6eW4TS7VNsR65VQMvQsrU2uZZS31YkrZ6P2hGp13qviosJHRyWxSPSXnh3oh1XLpnTX1OplJh2Yjx8mkx9VDK8dkntyss-rru7dfrj401x_fz68urxtFOM4NazkFSFHNetkyxFELKYB9hxGwstMA0l6TvueYEtASBbjFnYEQYMVagonFs2p-8NVBLsQ6upWMWxGkE_uNEAchY3ZqNEKiYmEQJVqTtu8Ql5a31hJWblAGw-L1-uC1nvqV0apEF-V4ZHp84t03MYSNgIC3FMKdw4sbhxi-lxSyWLmkzDhKb8KUBOJlmAjCjhb0-V_oIkyxDCQJDHDHCKYc3FGDLC9w3oZysdqZisuOUYYwLTnMqot_UOXTpky1VMu6sn8keHkkKEw2P_Mgp5TE_POnY_bZ_VRu4_jTtAKgA1D6k1I09haBQOzqLA51FqXOYl9n0RURPohSgf1g4t3z_6P6DbEc9pw
Cites_doi 10.1038/s41467-020-16222-8
10.1038/nm.3492
10.1007/s001840200191
10.3322/caac.21398
10.1093/biomet/90.1.15
10.3389/fcimb.2021.757718
10.1186/s12918-018-0598-2
10.1038/s41467-019-13036-1
10.1016/j.cmpb.2007.11.017
10.1002/sim.6072
10.1038/s41598-021-82726-y
10.1038/nature11553
10.1080/01621459.1984.10477105
10.1186/1471-2105-9-303
10.1186/s10194-020-1078-9
10.1111/j.1467-9469.2006.00526.x
10.1093/bioinformatics/btz824
10.1073/pnas.1530509100
10.1016/j.molcel.2015.05.004
10.1186/s12874-021-01227-8
10.1523/JNEUROSCI.3299-14.2014
10.1109/JBHI.2020.2980204
10.1111/j.1541-0420.2007.00975.x
10.1093/bioinformatics/btn182
10.1016/j.jaci.2019.11.003
10.1371/journal.pcbi.1002687
10.1111/j.1541-0420.2010.01416.x
10.1214/12-AOAS575
10.18637/jss.v032.i03
10.1080/10543406.2022.2041655
10.1038/s41598-021-84783-9
10.1371/journal.pcbi.1004226
10.1093/bioinformatics/btv349
10.1214/16-AOAS927
10.1093/bioinformatics/btad766
10.1186/1471-2105-8-233
10.3389/fcimb.2019.00470
10.1080/07853890.2020.1758340
10.1128/mSystems.00031-18
10.1214/21-AOAS1581
10.1007/s10985-018-9443-6
10.1002/JPER.19-0051
10.1016/j.tim.2016.11.008
10.1111/1467-9868.00346
10.1053/j.gastro.2020.09.056
10.1111/j.1467-9868.2010.00746.x
10.1186/s10194-018-0902-y
10.1371/journal.pcbi.1008913
10.1038/s41598-020-77673-z
10.1038/s41564-018-0337-x
10.1093/ntr/ntz220
10.1177/0962280219842271
10.18129/B9.bioc.microbiome
10.1186/s12859-022-05123-w
10.1007/978-1-4899-4541-9
10.1016/j.csbj.2021.05.001
10.1093/oxfordjournals.aje.a116014
10.18637/jss.v098.i12
10.1371/journal.pone.0000109
10.1007/s10985-008-9107-z
10.1093/bib/bbaa290
10.1214/16-AOS1516
10.1111/j.2517-6161.1995.tb02031.x
10.1126/science.286.5439.509
10.1038/ncomms7342
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-024-05689-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Science: Gale in Context
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 20
ExternalDocumentID oai_doaj_org_article_a2045e265dd54b729af94ff58d5bce31
PMC10946111
A786823645
38500042
10_1186_s12859_024_05689_7
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Institute on Alcohol Abuse and Alcoholism
  grantid: NIH T32AA025877
  funderid: http://dx.doi.org/10.13039/100000027
– fundername: NIAAA NIH HHS
  grantid: NIH T32AA025877
– fundername: NIAAA NIH HHS
  grantid: T32 AA025877
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c593t-849602c6d8ba4829241601b7320fa7d016bd5bb9365045c09f37e1103c84535f3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Aug 27 01:28:19 EDT 2025
Thu Aug 21 18:34:47 EDT 2025
Fri Sep 05 13:49:33 EDT 2025
Fri Jul 25 10:38:08 EDT 2025
Tue Jun 17 22:19:35 EDT 2025
Tue Jun 10 21:12:51 EDT 2025
Fri Jun 27 06:01:44 EDT 2025
Mon Jul 21 06:02:56 EDT 2025
Tue Jul 01 03:38:40 EDT 2025
Sat Sep 06 07:27:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Jackknife pseudo-values
Differential network analysis
Regression modeling
Microbial co-abundance
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c593t-849602c6d8ba4829241601b7320fa7d016bd5bb9365045c09f37e1103c84535f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3037853690?pq-origsite=%requestingapplication%
PMID 38500042
PQID 3037853690
PQPubID 44065
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_a2045e265dd54b729af94ff58d5bce31
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10946111
proquest_miscellaneous_2968921176
proquest_journals_3037853690
gale_infotracmisc_A786823645
gale_infotracacademiconefile_A786823645
gale_incontextgauss_ISR_A786823645
pubmed_primary_38500042
crossref_primary_10_1186_s12859_024_05689_7
springer_journals_10_1186_s12859_024_05689_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-18
PublicationDateYYYYMMDD 2024-03-18
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References A Alfons (5689_CR49) 2013; 7
G Weinstock (5689_CR1) 2012; 489
Y Taur (5689_CR35) 2014; 20
S Ahn (5689_CR44) 2023; 24
KW Ahn (5689_CR23) 2016; 10
D McDonald (5689_CR33) 2018; 3
5689_CR68
5689_CR69
K McGregor (5689_CR14) 2020; 36
R Nolan-Kenney (5689_CR36) 2020; 22
ZD Kurtz (5689_CR42) 2015; 11
H Fang (5689_CR41) 2015; 31
G Pison (5689_CR50) 2002; 55
J Storey (5689_CR57) 2003; 100
R Krajmalnik-Brown (5689_CR7) 2015; 26
J Friedman (5689_CR43) 2012; 8
M Ahdesmäki (5689_CR48) 2007; 8
P Westfall (5689_CR40) 1993
KL Glassner (5689_CR4) 2020; 145
B Efron (5689_CR17) 1993
K Nie (5689_CR38) 2021; 11
K Strimmer (5689_CR56) 2008; 9
MN Johansen (5689_CR21) 2021; 21
J Hajjar (5689_CR39) 2021; 11
S Zhao (5689_CR32) 2022; 16
I Vujkovic-Cvijin (5689_CR3) 2020; 11
S Peschel (5689_CR15) 2021; 22
M Lee (5689_CR16) 2021; 160
5689_CR52
Y Benjamini (5689_CR54) 2010; 72
BR Logan (5689_CR22) 2011; 67
J Storey (5689_CR55) 2002; 64
L Koivusilta (5689_CR67) 2006; 1
AP Bhatt (5689_CR2) 2017; 67
5689_CR8
E Mostofsky (5689_CR65) 2020; 52
Y Benjamini (5689_CR53) 1995; 57
FM Amin (5689_CR64) 2018; 19
C Sabathé (5689_CR20) 2020; 29
M Layeghifard (5689_CR12) 2017; 25
G Csárdi (5689_CR59) 2006; 1695
F Durazzi (5689_CR9) 2021; 11
MS Matchado (5689_CR13) 2021; 9
P Andersen (5689_CR19) 2007; 34
M Overgaard (5689_CR28) 2017; 45
S Ma (5689_CR61) 2021; 17
PK Andersen (5689_CR18) 2003; 90
P Rousseeuw (5689_CR47) 1984; 79
K Ahn (5689_CR31) 2014; 33
M Valles-Colomer (5689_CR6) 2019; 4
M Ashtiani (5689_CR45) 2018; 12
A Ozgür (5689_CR46) 2008; 24
V Todorov (5689_CR51) 2009; 32
Y Wang (5689_CR30) 2019; 25
A Barabási (5689_CR58) 1999; 286
L Zhao (5689_CR24) 2020; 24
JP Klein (5689_CR29) 2008; 89
J Chen (5689_CR37) 2020; 9
BR Logan (5689_CR26) 2008; 64
JA Reuter (5689_CR11) 2015; 58
WF Stewart (5689_CR63) 1991; 134
F Graw (5689_CR27) 2009; 15
M Arzani (5689_CR62) 2020; 21
SH Lee (5689_CR5) 2020; 10
JS Johnson (5689_CR10) 2019; 10
Y Leira (5689_CR66) 2019; 90
PG Ginestet (5689_CR25) 2022
SJ O’Keefe (5689_CR34) 2015; 6
T Grimes (5689_CR60) 2021; 98
36994149 - ArXiv. 2023 Mar 23
References_xml – volume: 11
  start-page: 2448
  year: 2020
  ident: 5689_CR3
  publication-title: Nat Commun.
  doi: 10.1038/s41467-020-16222-8
– volume-title: Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment
  year: 1993
  ident: 5689_CR40
– volume: 1695
  start-page: 16
  year: 2006
  ident: 5689_CR59
  publication-title: InterJournal, Complex Systems
– volume: 20
  start-page: 246
  year: 2014
  ident: 5689_CR35
  publication-title: Nat Med.
  doi: 10.1038/nm.3492
– volume: 55
  start-page: 111
  year: 2002
  ident: 5689_CR50
  publication-title: Metrika
  doi: 10.1007/s001840200191
– volume: 67
  start-page: 326
  year: 2017
  ident: 5689_CR2
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21398
– volume: 90
  start-page: 15
  year: 2003
  ident: 5689_CR18
  publication-title: Biometrika
  doi: 10.1093/biomet/90.1.15
– volume: 11
  year: 2021
  ident: 5689_CR38
  publication-title: Front Cell Infect Microbiol.
  doi: 10.3389/fcimb.2021.757718
– volume: 12
  start-page: 80
  year: 2018
  ident: 5689_CR45
  publication-title: BMC Syst Biol.
  doi: 10.1186/s12918-018-0598-2
– volume: 10
  start-page: 5029
  year: 2019
  ident: 5689_CR10
  publication-title: Nat Commun.
  doi: 10.1038/s41467-019-13036-1
– volume: 89
  start-page: 289
  year: 2008
  ident: 5689_CR29
  publication-title: Comput Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2007.11.017
– volume: 33
  start-page: 1531
  year: 2014
  ident: 5689_CR31
  publication-title: Stat Med.
  doi: 10.1002/sim.6072
– volume: 11
  start-page: 3030
  year: 2021
  ident: 5689_CR9
  publication-title: Sci Rep.
  doi: 10.1038/s41598-021-82726-y
– volume: 489
  start-page: 250
  year: 2012
  ident: 5689_CR1
  publication-title: Nature
  doi: 10.1038/nature11553
– volume: 79
  start-page: 871
  year: 1984
  ident: 5689_CR47
  publication-title: J Am Stat Assoc.
  doi: 10.1080/01621459.1984.10477105
– volume: 9
  start-page: 303
  year: 2008
  ident: 5689_CR56
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-303
– volume: 21
  start-page: 1
  year: 2020
  ident: 5689_CR62
  publication-title: J Headache Pain.
  doi: 10.1186/s10194-020-1078-9
– volume: 34
  start-page: 3
  year: 2007
  ident: 5689_CR19
  publication-title: Scand J Statist.
  doi: 10.1111/j.1467-9469.2006.00526.x
– volume: 36
  start-page: 1840
  year: 2020
  ident: 5689_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz824
– volume: 100
  start-page: 9440
  year: 2003
  ident: 5689_CR57
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1530509100
– volume: 58
  start-page: 586
  year: 2015
  ident: 5689_CR11
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.05.004
– volume: 21
  start-page: 36
  year: 2021
  ident: 5689_CR21
  publication-title: BMC Med Res Methodol.
  doi: 10.1186/s12874-021-01227-8
– ident: 5689_CR8
  doi: 10.1523/JNEUROSCI.3299-14.2014
– volume: 24
  start-page: 3308
  year: 2020
  ident: 5689_CR24
  publication-title: IEEE J Biomed Health Inform.
  doi: 10.1109/JBHI.2020.2980204
– volume: 64
  start-page: 733
  year: 2008
  ident: 5689_CR26
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00975.x
– volume: 24
  start-page: 277
  year: 2008
  ident: 5689_CR46
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn182
– volume: 145
  start-page: 16
  year: 2020
  ident: 5689_CR4
  publication-title: J Allergy Clin Immunol.
  doi: 10.1016/j.jaci.2019.11.003
– volume: 8
  start-page: 1002687
  year: 2012
  ident: 5689_CR43
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1002687
– volume: 67
  start-page: 1
  year: 2011
  ident: 5689_CR22
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01416.x
– volume: 7
  start-page: 226
  year: 2013
  ident: 5689_CR49
  publication-title: Ann Appl Stat.
  doi: 10.1214/12-AOAS575
– volume: 32
  start-page: 1
  year: 2009
  ident: 5689_CR51
  publication-title: J Stat Soft.
  doi: 10.18637/jss.v032.i03
– year: 2022
  ident: 5689_CR25
  publication-title: J Biopharm Stat.
  doi: 10.1080/10543406.2022.2041655
– volume: 11
  start-page: 5847
  year: 2021
  ident: 5689_CR39
  publication-title: Sci Rep.
  doi: 10.1038/s41598-021-84783-9
– volume: 11
  start-page: 1004226
  year: 2015
  ident: 5689_CR42
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1004226
– volume: 31
  start-page: 3172
  year: 2015
  ident: 5689_CR41
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv349
– volume: 10
  start-page: 618
  year: 2016
  ident: 5689_CR23
  publication-title: Ann Appl Stat.
  doi: 10.1214/16-AOAS927
– ident: 5689_CR69
  doi: 10.1093/bioinformatics/btad766
– volume: 8
  start-page: 233
  year: 2007
  ident: 5689_CR48
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-233
– volume: 9
  start-page: 470
  year: 2020
  ident: 5689_CR37
  publication-title: Front Cell Infect Microbiol.
  doi: 10.3389/fcimb.2019.00470
– volume: 52
  start-page: 386
  year: 2020
  ident: 5689_CR65
  publication-title: Ann Med.
  doi: 10.1080/07853890.2020.1758340
– volume: 3
  start-page: 00031
  year: 2018
  ident: 5689_CR33
  publication-title: mSystems
  doi: 10.1128/mSystems.00031-18
– volume: 16
  start-page: 2166
  year: 2022
  ident: 5689_CR32
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/21-AOAS1581
– volume: 25
  start-page: 206
  year: 2019
  ident: 5689_CR30
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-018-9443-6
– volume: 90
  start-page: 1088
  year: 2019
  ident: 5689_CR66
  publication-title: J Periodontol.
  doi: 10.1002/JPER.19-0051
– volume: 25
  start-page: 217
  year: 2017
  ident: 5689_CR12
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2016.11.008
– volume: 64
  start-page: 479
  year: 2002
  ident: 5689_CR55
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/1467-9868.00346
– volume: 160
  start-page: 524
  year: 2021
  ident: 5689_CR16
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.09.056
– volume: 72
  start-page: 405
  year: 2010
  ident: 5689_CR54
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2010.00746.x
– volume: 19
  start-page: 83
  year: 2018
  ident: 5689_CR64
  publication-title: J Headache Pain.
  doi: 10.1186/s10194-018-0902-y
– volume: 17
  start-page: 1008913
  year: 2021
  ident: 5689_CR61
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1008913
– ident: 5689_CR52
– volume: 10
  start-page: 20736
  year: 2020
  ident: 5689_CR5
  publication-title: Sci Rep.
  doi: 10.1038/s41598-020-77673-z
– volume: 4
  start-page: 623
  year: 2019
  ident: 5689_CR6
  publication-title: Nat Microbiol.
  doi: 10.1038/s41564-018-0337-x
– volume: 22
  start-page: 1339
  year: 2020
  ident: 5689_CR36
  publication-title: Nicotine Tob Res.
  doi: 10.1093/ntr/ntz220
– volume: 29
  start-page: 752
  year: 2020
  ident: 5689_CR20
  publication-title: Stat Methods Med Res.
  doi: 10.1177/0962280219842271
– volume: 26
  start-page: 26914
  year: 2015
  ident: 5689_CR7
  publication-title: Microb Ecol Health Dis.
– ident: 5689_CR68
  doi: 10.18129/B9.bioc.microbiome
– volume: 24
  start-page: 8
  year: 2023
  ident: 5689_CR44
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-022-05123-w
– volume-title: An Introduction to the Bootstrap
  year: 1993
  ident: 5689_CR17
  doi: 10.1007/978-1-4899-4541-9
– volume: 9
  start-page: 2687
  year: 2021
  ident: 5689_CR13
  publication-title: Comput Struct Biotechnol J.
  doi: 10.1016/j.csbj.2021.05.001
– volume: 134
  start-page: 1111
  year: 1991
  ident: 5689_CR63
  publication-title: Am J Epidemiol.
  doi: 10.1093/oxfordjournals.aje.a116014
– volume: 98
  start-page: 10
  year: 2021
  ident: 5689_CR60
  publication-title: J Stat Softw
  doi: 10.18637/jss.v098.i12
– volume: 1
  start-page: 109
  year: 2006
  ident: 5689_CR67
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000109
– volume: 15
  start-page: 241
  year: 2009
  ident: 5689_CR27
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-008-9107-z
– volume: 22
  start-page: 290
  year: 2021
  ident: 5689_CR15
  publication-title: Brief Bioinform.
  doi: 10.1093/bib/bbaa290
– volume: 45
  start-page: 1988
  year: 2017
  ident: 5689_CR28
  publication-title: Ann Stat.
  doi: 10.1214/16-AOS1516
– volume: 57
  start-page: 289
  year: 1995
  ident: 5689_CR53
  publication-title: J. R. Statist. Soc. B.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 286
  start-page: 509
  year: 1999
  ident: 5689_CR58
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– volume: 6
  start-page: 6342
  year: 2015
  ident: 5689_CR34
  publication-title: Nat Commun.
  doi: 10.1038/ncomms7342
– reference: 36994149 - ArXiv. 2023 Mar 23;:
SSID ssj0017805
Score 2.4375749
Snippet Background A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing...
A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies....
Background A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing...
BackgroundA recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing...
Abstract Background A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 117
SubjectTerms Algorithms
Analysis
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Connectivity analysis
Data analysis
Deoxyribonucleic acid
Diet
Differential network analysis
DNA
DNA sequencing
Generalized linear models
Health aspects
Humans
Inflammatory bowel disease
Jackknife pseudo-values
Life Sciences
Linux
Metastases
Metastasis
Methods
Microarrays
Microbial co-abundance
Microbiomes
Microbiota (Symbiotic organisms)
Microbiota - genetics
Microorganisms
Network analysis
Next-generation sequencing
Nucleotide sequencing
Regression
Regression Analysis
Regression modeling
RNA
Simulation
Software
Source code
Statistical analysis
Taxonomy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBggxC4gBRN_H7WB5VQYIDUKk3y3Hsvmi2ajaVOPDfmbGTpSlCXLiuHSmeGXu-2Xz-hpAXzFcsCPAAk9KUPMI52FSJ5LgwQerAFcf7zp8-y909_nFf7F9q9YWcsCwPnA235VAvPdRStK3gDUBBFw2PUehWND7foK4h503F1Pj9AJX6pysyWm71Feq0lZCPSkj42pRqloaSWv-fZ_KlpHSVMHnlq2lKRju3yM0RRdLt_Pa3ybXQ3SHXc1_JH3fJz3dj2xPYvt9pl5ne1COnxeduEdSNYiQUQCs9PcpyTKeBImOUuvZ4wL9B0-B0dxKev4DCGrEpRbb8AT12_uQEuTH0rA9DuyxROTz098jezvtvb3fLsc9C6YVhq1JzKGNqL1vdOK5rqMgqKNMaxepFdKoFUNiAsRvDAM1x4RcmMhUANjCvuWAisvtko1t24SGhMjoWWSUdrxzUUsoBAHF-UbfSCWdiKMiryez2LMtp2FSGaGmzkyw4ySYnWVWQN-iZ9UyUwk4_QIDYMUDsvwKkIM_RrxbFLjpk0xy4oe_th69f7LbSEhu-c1GQl-OkuAQPezdeToBVoT7WbObmbCbsRj8fnsLHjqdBbwEmKIBF0iwK8mw9jE8iw60Ly6G3tYElQzWuZEEe5Ghbr5tpbFvB64LoWRzODDMf6Y4Ok1Z4BeW7hHxWkNdTyP5-r79b_tH_sPxjcqNOW46Vld4kG6vzITwBCLdqnqbd-gsN0EJ5
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyQuiHdDCzIIiQNE3cSP2CfUQquCRIUKlXqzHMde2tJk2-wiceC_M5M4W1IE13gsxZ63Pf6GkJfMZcwL4ACTUqc8gB0ss67Icaq9VJ4XHN87fzqQ-0f847E4jgdubSyrHGxiZ6irxuEZ-RaY2gJcCyRzb-cXKXaNwtvV2ELjJlkDE6zEhKzt7B58PlzdIyBi__BURsmtFol0Cn4pBcevdFqM3FGH2v-3bf7DOV0vnLx2e9o5pb275E6MJul2z_575Iav75NbfX_Jnw_Ir_ex_Qmo8Xda9xXf1GFti-u7RlAbQUkoBK_0_KSHZTr3FCtHqa1Ol3gc2g0Obyhh_g9IsDFGpVg1P6On1p2dYY0Mnbd-WTUpIoj79iE52tv9-m4_jf0WUic0W6SKQzqTO1mp0nKVQ2aWQbpWFiyfBltUEByWlShLzSCq48JNdWCFh_CBOcUFE4E9IpO6qf06oTJYFlgmLc8s5FSFhUDEumleSSusDj4hr4dtN_MeVsN06YiSpmeSASaZjkmmSMgOcmZFiZDY3YfmcmaihhmLwPo-l6KqBC8hZ7BB8xCEgn92nmUJeYF8NQh6UWNVzcwu29Z8-HJotgslsfE7Fwl5FYlCAxx2Nj5SgFUhTtaIcnNECVrpxsOD-JhoFVpzJcMJeb4axplY6Vb7ZtmaXMOSISsvZEIe99K2WjdT2L6C5wlRIzkcbcx4pD751mGGZ5DGS_BrCXkziOzVf_1755_8fxkb5HbeKRNLM7VJJovLpX8KQdqifBY18TfQ7Tre
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCIkL4k2gIIOQOEDEOn4fS6EqSHAAKvVmOY7dF81WZIPEgf_OjJMsTYED19iWYs9M5pt45htCnvHAeJQgAa6ULUWC72DNcpLjwkZlotAC650_fFS7e-L9vtwfaXKwFub8_T0z6lXHkGGtBE9Sgqs2ttSXyRWJPGN4Mau21zcGyM0_FcX8dd3M8WR-_j-_wufc0MUUyQv3pNn97Nwg10fcSLcGQd8kl2J7i1wdOkn-uE1-vhkbnYDBfqXtkNtNA2axhKE_BPUj_QgFmEpPjwYCptNIMUeU-ua4xx-feXCqloT13yGURjRKMT_-gB77cHKC2TD0rIt9syyRKzx2d8jeztsv27vl2FmhDNLyVWkEBC5VUI2pvTAVxGAMArNa82qRvG4ABtaNrGvLAb8JGRY2cR0BKPBghOQy8btko1228T6hKnmeOFNeMA_Rk_YAOXxYVI3y0tsUC_JiOnZ3NhBouBx4GOUGITkQkstCcrogr1Ey65lIfp0fgE640ZacRwr9WCnZNFLUEB34ZEVK0sA7h8hZQZ6iXB3SW7SYP3Pg-65z7z5_clvaKGzxLmRBno-T0hIkHPxYjgC7Qkas2czN2UywvzAfntTHjfbfOQAGGoCQsouCPFkP40rMaWvjsu9cZWHLEH9rVZB7g7at980NNqoQVUHMTA9nBzMfaY8OMzs4g4BdgQcryMtJZX-_179P_sH_TX9IrlXZuHjJzCbZWH3r4yOAZ6v6cbbLX99qMn4
  priority: 102
  providerName: Springer Nature
Title Differential network connectivity analysis for microbiome data adjusted for clinical covariates using jackknife pseudo-values
URI https://link.springer.com/article/10.1186/s12859-024-05689-7
https://www.ncbi.nlm.nih.gov/pubmed/38500042
https://www.proquest.com/docview/3037853690
https://www.proquest.com/docview/2968921176
https://pubmed.ncbi.nlm.nih.gov/PMC10946111
https://doaj.org/article/a2045e265dd54b729af94ff58d5bce31
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF71ISQuiDeGEi0IiQOY2t6nDwiloaFEaoVaIuW2Wq_XoS-nxAmiB_47s2s7xaUcuMSSdx155-H5xp79BqFXxMTEMtAA4TwNaQHPwSz2RY5Rarm0VFC333n_gO-N6WjCJmuobXfUCLC6MbVz_aTG87N3P79ffgCHf-8dXvLtKnYsbCFEmxDCuUxDsY42ITJxZ-X79OqrguPv97uNRBxCqsPaTTQ3_kcnUHk-_7-f2n-Eresllde-q_pwNbyL7jQ4E_drw7iH1mx5H92qO09ePkC_PjaNUcDBz3BZ14Jj46peTN1PAuuGrgQDrMXnxzVh07nFrqYU6_xk6V6U-sF2dyVc_wNSb4desaunn-ITbU5PXfUMvqjsMp-FjlvcVg_ReLj7dbAXNp0YQsNSsgglhUQnMTyXmaYySZ1wozgTJIkKLXKAjVnOsiwlgPcoM1FaEGEBWBAjKSOsII_QRjkr7ROEeaFJQWKuaawh2xIaIIo2UZJzzXRa2AC9acWuLmrCDeUTFclVrSQFSlJeSUoEaMdpZjXTkWX7E7P5VDW-p7Sj3LcJZ3nOaAbZhC5SWhRMwj0bS-IAvXR6VY4Oo3T1NlO9rCr1-ehQ9YXkriU8ZQF63UwqZqBho5vtC7Aqx6DVmbnVmQn-arrDrfmo1twVAAkBwImnUYBerIbdla4GrrSzZaWSFJYM-brgAXpcW9tq3US6xhY0CZDs2GFHMN2R8vibZxOPIcHnEPEC9LY12av7-rfkn_6Xnp6h24n3LRLGcgttLOZL-xzQ3CLroXUxEfArh596aLPfHx2N4Lize_DlEM4O-KDn35P0vCv_BiAISTM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggEEgDhB1HT_iHBAqlGWXPg7QSr0Zx3GWtjRZml1QD_wlfiMzeWxJEdx6XTur2DOeR_zNN4Q85Y5xL0ECXKkkFDnYwZTVIMdB4pX2IhZY77y1rUa74sOe3Fsiv7paGIRVdjaxNtRZ6fAb-SqY2hhcCyRzr6ffQuwahberXQuNRi02_MkPSNmqV-N1kO-zKBq-23k7CtuuAqGTCZ-FWkDQHjmV6dQKHUH-wSApSWMeDXIbZxACpZlM04RD7CKkGyQ5jz04Se60kFzmHP73ArkoOE-Qq18P3y9uLbA_QFeYo9VqxZAdLgQvGEKYoZMw7jm_ukfA357gD1d4FqZ55q62doHDa-RqG7vStUbZrpMlX9wgl5pulic3yc_1ttkKGI2vtGjw5dQhksY1PSqobSlQKITK9Gi_IYE68hRxqtRmB3P8-FoPdhWb8Px3SOcxIqaI0Z_QA-sODxGRQ6eVn2dliHzlvrpFds9FDrfJclEW_i6hKrc850xZwSxkcLGFsMe6QZQpK22S-4C86LbdTBsSD1MnP1qZRkgGhGRqIZk4IG9QMouZSMBd_1AeT0x7no1FGn8fKZllUqSQodg8EXkuNbyz85wF5AnK1SDFRoEYnomdV5UZf_po1mKtsM28kAF53k7KS5Cws21JBKwKWbl6M1d6M8EGuP5wpz6mtUGVOT0xAXm8GMYnEVdX-HJemSiBJUeMxSogdxptW6yba2yWIaKA6J4e9jamP1Lsf6kZytkgEQq8aEBedip7-l7_3vl7_1_GI3J5tLO1aTbH2xv3yZWoPlg8ZHqFLM-O5_4BhIez9GF9Jin5fN5G4DfnInN0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BJxAviM8RGGAQEg8QrYk_4jwWRrUVmBBj0t4sx7HLNpZWS4vEA_87d0lalgEPvNa2FPvufL-r734H8IK7hHuJEuBK5bEIeA8WSZPkOMy90l5kguqdP-6r3UMxOZJHF6r4m2z31ZNkW9NALE3VYntehtbEtdquE-Jdi9G_xOjAdR5nV2FDK4QPA9gYjSYHk_VLAnH2r4pl_rqy55Aa3v4_b-cL7uly6uSl99PGLY1vwc0OT7JRqwC34Yqv7sC1tsPkj7vwc6drgIKG_I1Vbc43c5Td4tq-Ecx2tCQM4Ss7O26Jmc48o9xRZsuTJf0h2gyuqihx_XcMsQmlMsqbn7IT605PKUuGzWu_LGcxcYj7-h4cjt99ebsbdx0XYidzvoi1wIAmdarUhRU6xdgswYCtyHg6DDYrER4WpSyKnCOuE9IN88AzjwCCOy0kl4Hfh0E1q_wDYCpYHniirEgsRlWZRShi3TAtlZU2Dz6CV6tjN_OWWMM0AYlWphWSQSGZRkgmi-ANSWY9k0ixmx9m51PT2ZixRK3vUyXLUooCowYbchGC1PjNzvMkguckV0O0FxXl1Uztsq7N3sFnM8q0otbvQkbwspsUZihhZ7syBdwVMWX1Zm71ZqJduv7wSn1Mdy_UBgFDhgBJ5cMInq2HaSXlulV-tqxNmuOWMS7PVASbrbat9801NbAQaQS6p4e9g-mPVMdfG9bwBAN5hZ4tgtcrlf39Xf8--Yf_N_0pXP-0MzYf9vbfP4IbaWNnPE70FgwW50v_GBHconjSGekvQJE_GQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+network+connectivity+analysis+for+microbiome+data+adjusted+for+clinical+covariates+using+jackknife+pseudo-values&rft.jtitle=BMC+bioinformatics&rft.au=Ahn%2C+Seungjun&rft.au=Datta%2C+Somnath&rft.date=2024-03-18&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-024-05689-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_024_05689_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon