Integration of artificial intelligence performance prediction and learning analytics to improve student learning in online engineering course

As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is widely used to identify at-risk students that tend to fail, establish student-centered learning pathways, and optimize instructional design and d...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Educational Technology in Higher Education Vol. 20; no. 1; pp. 4 - 23
Main Authors Ouyang, Fan, Wu, Mian, Zheng, Luyi, Zhang, Liyin, Jiao, Pengcheng
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2023
BioMed Central, Ltd
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2365-9440
2365-9440
DOI10.1186/s41239-022-00372-4

Cover

Loading…
Abstract As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is widely used to identify at-risk students that tend to fail, establish student-centered learning pathways, and optimize instructional design and development. A majority of the existing AI prediction models focus on the development and optimization of the accuracy of AI algorithms rather than applying AI models to provide student with in-time and continuous feedback and improve the students’ learning quality. To fill this gap, this research integrated an AI performance prediction model with learning analytics approaches with a goal to improve student learning effects in a collaborative learning context. Quasi-experimental research was conducted in an online engineering course to examine the differences of students’ collaborative learning effect with and without the support of the integrated approach. Results showed that the integrated approach increased student engagement, improved collaborative learning performances, and strengthen student satisfactions about learning. This research made contributions to proposing an integrated approach of AI models and learning analytics (LA) feedback and providing paradigmatic implications for future development of AI-driven learning analytics. Highlights Integrated approach was used to combine AI with learning analytics (LA) feedback Quasi-experiment research was conducted to investigate student learning effects Integrated approach to foster student engagement, performances and satisfactions Paradigmatic implication was proposed for develop AI-driven learning analytics Closed loop was established for both AI model development and educational application.
AbstractList Abstract As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is widely used to identify at-risk students that tend to fail, establish student-centered learning pathways, and optimize instructional design and development. A majority of the existing AI prediction models focus on the development and optimization of the accuracy of AI algorithms rather than applying AI models to provide student with in-time and continuous feedback and improve the students’ learning quality. To fill this gap, this research integrated an AI performance prediction model with learning analytics approaches with a goal to improve student learning effects in a collaborative learning context. Quasi-experimental research was conducted in an online engineering course to examine the differences of students’ collaborative learning effect with and without the support of the integrated approach. Results showed that the integrated approach increased student engagement, improved collaborative learning performances, and strengthen student satisfactions about learning. This research made contributions to proposing an integrated approach of AI models and learning analytics (LA) feedback and providing paradigmatic implications for future development of AI-driven learning analytics.
As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is widely used to identify at-risk students that tend to fail, establish student-centered learning pathways, and optimize instructional design and development. A majority of the existing AI prediction models focus on the development and optimization of the accuracy of AI algorithms rather than applying AI models to provide student with in-time and continuous feedback and improve the students’ learning quality. To fill this gap, this research integrated an AI performance prediction model with learning analytics approaches with a goal to improve student learning effects in a collaborative learning context. Quasi-experimental research was conducted in an online engineering course to examine the differences of students’ collaborative learning effect with and without the support of the integrated approach. Results showed that the integrated approach increased student engagement, improved collaborative learning performances, and strengthen student satisfactions about learning. This research made contributions to proposing an integrated approach of AI models and learning analytics (LA) feedback and providing paradigmatic implications for future development of AI-driven learning analytics.
As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is widely used to identify at-risk students that tend to fail, establish student-centered learning pathways, and optimize instructional design and development. A majority of the existing AI prediction models focus on the development and optimization of the accuracy of AI algorithms rather than applying AI models to provide student with in-time and continuous feedback and improve the students’ learning quality. To fill this gap, this research integrated an AI performance prediction model with learning analytics approaches with a goal to improve student learning effects in a collaborative learning context. Quasi-experimental research was conducted in an online engineering course to examine the differences of students’ collaborative learning effect with and without the support of the integrated approach. Results showed that the integrated approach increased student engagement, improved collaborative learning performances, and strengthen student satisfactions about learning. This research made contributions to proposing an integrated approach of AI models and learning analytics (LA) feedback and providing paradigmatic implications for future development of AI-driven learning analytics. Highlights Integrated approach was used to combine AI with learning analytics (LA) feedback Quasi-experiment research was conducted to investigate student learning effects Integrated approach to foster student engagement, performances and satisfactions Paradigmatic implication was proposed for develop AI-driven learning analytics Closed loop was established for both AI model development and educational application.
As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is widely used to identify at-risk students that tend to fail, establish student-centered learning pathways, and optimize instructional design and development. A majority of the existing AI prediction models focus on the development and optimization of the accuracy of AI algorithms rather than applying AI models to provide student with in-time and continuous feedback and improve the students’ learning quality. To fill this gap, this research integrated an AI performance prediction model with learning analytics approaches with a goal to improve student learning effects in a collaborative learning context. Quasi-experimental research was conducted in an online engineering course to examine the differences of students’ collaborative learning effect with and without the support of the integrated approach. Results showed that the integrated approach increased student engagement, improved collaborative learning performances, and strengthen student satisfactions about learning. This research made contributions to proposing an integrated approach of AI models and learning analytics (LA) feedback and providing paradigmatic implications for future development of AI-driven learning analytics.HighlightsIntegrated approach was used to combine AI with learning analytics (LA) feedbackQuasi-experiment research was conducted to investigate student learning effectsIntegrated approach to foster student engagement, performances and satisfactionsParadigmatic implication was proposed for develop AI-driven learning analyticsClosed loop was established for both AI model development and educational application.
As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is widely used to identify at-risk students that tend to fail, establish student-centered learning pathways, and optimize instructional design and development. A majority of the existing AI prediction models focus on the development and optimization of the accuracy of AI algorithms rather than applying AI models to provide student with in-time and continuous feedback and improve the students' learning quality. To fill this gap, this research integrated an AI performance prediction model with learning analytics approaches with a goal to improve student learning effects in a collaborative learning context. Quasi-experimental research was conducted in an online engineering course to examine the differences of students' collaborative learning effect with and without the support of the integrated approach. Results showed that the integrated approach increased student engagement, improved collaborative learning performances, and strengthen student satisfactions about learning. This research made contributions to proposing an integrated approach of AI models and learning analytics (LA) feedback and providing paradigmatic implications for future development of AI-driven learning analytics.As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is widely used to identify at-risk students that tend to fail, establish student-centered learning pathways, and optimize instructional design and development. A majority of the existing AI prediction models focus on the development and optimization of the accuracy of AI algorithms rather than applying AI models to provide student with in-time and continuous feedback and improve the students' learning quality. To fill this gap, this research integrated an AI performance prediction model with learning analytics approaches with a goal to improve student learning effects in a collaborative learning context. Quasi-experimental research was conducted in an online engineering course to examine the differences of students' collaborative learning effect with and without the support of the integrated approach. Results showed that the integrated approach increased student engagement, improved collaborative learning performances, and strengthen student satisfactions about learning. This research made contributions to proposing an integrated approach of AI models and learning analytics (LA) feedback and providing paradigmatic implications for future development of AI-driven learning analytics.
As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is widely used to identify at-risk students that tend to fail, establish student-centered learning pathways, and optimize instructional design and development. A majority of the existing AI prediction models focus on the development and optimization of the accuracy of AI algorithms rather than applying AI models to provide student with in-time and continuous feedback and improve the students’ learning quality. To fill this gap, this research integrated an AI performance prediction model with learning analytics approaches with a goal to improve student learning effects in a collaborative learning context. Quasi-experimental research was conducted in an online engineering course to examine the differences of students’ collaborative learning effect with and without the support of the integrated approach. Results showed that the integrated approach increased student engagement, improved collaborative learning performances, and strengthen student satisfactions about learning. This research made contributions to proposing an integrated approach of AI models and learning analytics (LA) feedback and providing paradigmatic implications for future development of AI-driven learning analytics. Integrated approach was used to combine AI with learning analytics (LA) feedback Quasi-experiment research was conducted to investigate student learning effects Integrated approach to foster student engagement, performances and satisfactions Paradigmatic implication was proposed for develop AI-driven learning analytics Closed loop was established for both AI model development and educational application.
ArticleNumber 4
Author Zheng, Luyi
Jiao, Pengcheng
Ouyang, Fan
Zhang, Liyin
Wu, Mian
Author_xml – sequence: 1
  givenname: Fan
  surname: Ouyang
  fullname: Ouyang, Fan
  organization: College of Education, Zhejiang University
– sequence: 2
  givenname: Mian
  surname: Wu
  fullname: Wu, Mian
  organization: College of Education, Zhejiang University
– sequence: 3
  givenname: Luyi
  surname: Zheng
  fullname: Zheng, Luyi
  organization: College of Education, Zhejiang University
– sequence: 4
  givenname: Liyin
  surname: Zhang
  fullname: Zhang, Liyin
  organization: College of Education, Zhejiang University
– sequence: 5
  givenname: Pengcheng
  surname: Jiao
  fullname: Jiao, Pengcheng
  email: pjiao@zju.edu.cn
  organization: Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1362228$$DView record in ERIC
https://www.ncbi.nlm.nih.gov/pubmed/36683653$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARLUN_AAkUiQ2bgB-JHxskVBUYVIkNrC2PfR08ytiDnanUj-CfcZIyfSy6suPziO_xeVmdhBigql5j9AFjwT7mFhMqG0RIgxDlpGmfVWeEsq6RbYtO7u1Pq_OctwghLAmhgryoTiljosD0rPq7DiP0SY8-hjq6WqfRO2-8HmpfkGHwPQQD9R6Si2mn530C682s0MHWA-gUfOjLhx5uRm9yPcba7_YpXkOdx4OFMN6xfPlPGHyAGkJfFkjTqYmHlOFV9dzpIcP57bqqfn25_Hnxrbn68XV98fmqMZ2kY8OxA8esYU6gjRS0s8RKhkS34RikcYA7xjpLwSHXtWbDW0m5NgY2DFPBEV1V68XXRr1V--R3Ot2oqL2aD2Lq1RSEGUAx6zinRHauJa01WnYGrCYEaSyckW3x-rR47Q-bHVhThk16eGD6EAn-t-rjtZKiOCJaDN7fGqT45wB5VDufTYleB4iHrAhnQmDEy3utqnePqNuSW4l9ZnVCcEZwYb29f6PjVf6_eiG8WQgle3OEL79jygghouBkwU2KOSdwRw5GamqfWtqnSvvU3D415SAeiYwf516Vqf3wtJQu0ryfygDpbqwnVP8AlEPw5g
CitedBy_id crossref_primary_10_1186_s41239_024_00493_y
crossref_primary_10_18009_jcer_1477709
crossref_primary_10_1007_s10758_024_09762_1
crossref_primary_10_1186_s41239_024_00452_7
crossref_primary_10_3390_fi16120467
crossref_primary_10_56294_saludcyt20251336
crossref_primary_10_3390_su16209066
crossref_primary_10_59652_jetm_v2i2_158
crossref_primary_10_1007_s10639_024_13225_6
crossref_primary_10_1007_s11423_024_10425_2
crossref_primary_10_37995_jotcsc_1366999
crossref_primary_10_1016_j_caeai_2024_100306
crossref_primary_10_1016_j_heliyon_2024_e29523
crossref_primary_10_1007_s10639_024_13112_0
crossref_primary_10_3390_su152115190
crossref_primary_10_1016_j_jds_2024_10_012
crossref_primary_10_1016_j_system_2024_103428
crossref_primary_10_1080_02635143_2024_2370764
crossref_primary_10_22144_ctujoisd_2023_039
crossref_primary_10_3390_su16031347
crossref_primary_10_1080_00098655_2025_2450435
crossref_primary_10_3390_informatics11030046
crossref_primary_10_21449_ijate_1467476
crossref_primary_10_1007_s10639_025_13463_2
crossref_primary_10_3390_educsci13070632
crossref_primary_10_57568_iulresearch_v5i9_529
crossref_primary_10_1016_j_compedu_2024_105152
crossref_primary_10_4236_ojml_2024_146058
crossref_primary_10_3389_feduc_2024_1438715
crossref_primary_10_1186_s40537_024_00918_5
crossref_primary_10_1111_jcal_12860
crossref_primary_10_1007_s12198_024_00292_6
crossref_primary_10_1016_j_compedu_2024_105110
crossref_primary_10_1109_ACCESS_2024_3361479
crossref_primary_10_1007_s10639_024_12700_4
crossref_primary_10_33418_education_1423732
crossref_primary_10_3390_electronics13142808
crossref_primary_10_57175_evsos_v2i4_157
crossref_primary_10_1016_j_heliyon_2024_e40025
crossref_primary_10_1080_09588221_2024_2428943
crossref_primary_10_1186_s41239_024_00492_z
crossref_primary_10_56294_saludcyt20251636
crossref_primary_10_1186_s40561_023_00260_y
crossref_primary_10_12973_eu_jer_13_1_183
crossref_primary_10_1080_10494820_2024_2440877
crossref_primary_10_1007_s10758_024_09757_y
crossref_primary_10_3390_soc14060089
crossref_primary_10_3916_C77_2023_08
crossref_primary_10_1016_j_ssaho_2025_101335
crossref_primary_10_1038_s41598_025_94642_6
crossref_primary_10_1080_10447318_2024_2430433
crossref_primary_10_1080_10447318_2024_2359222
crossref_primary_10_37251_sjpe_v5i1_905
crossref_primary_10_24310_mar_6_1_2025_20784
crossref_primary_10_1016_j_ijhcs_2024_103410
crossref_primary_10_1016_j_caeai_2024_100331
crossref_primary_10_1080_10447318_2023_2188539
crossref_primary_10_1111_jcal_12830
crossref_primary_10_3390_info15100590
crossref_primary_10_2139_ssrn_4515129
crossref_primary_10_3390_educsci13100990
crossref_primary_10_1177_00472395241231815
crossref_primary_10_1109_ACCESS_2025_3548309
crossref_primary_10_1007_s00287_024_01570_2
crossref_primary_10_1109_TLT_2024_3431473
crossref_primary_10_1016_j_heliyon_2024_e25896
crossref_primary_10_51535_tell_1489304
crossref_primary_10_54691_j4ddc779
crossref_primary_10_1002_rev3_70044
crossref_primary_10_59324_ejceel_2024_2_3__04
crossref_primary_10_1016_j_caeai_2023_100191
crossref_primary_10_1016_j_edurev_2024_100616
Cites_doi 10.1186/s41239-022-00349-3
10.1016/j.compedu.2016.09.005
10.1177/0735633120969216
10.1016/j.iheduc.2018.02.002
10.1108/IJILT-04-2020-0046
10.1016/j.compedu.2017.05.007
10.1186/s41239-022-00347-5
10.1016/j.caeai.2020.100001
10.1007/3-540-44566-8_35
10.1016/j.caeai.2020.100002
10.1145/2460296
10.1007/s40593-020-00229-9
10.1016/j.eswa.2020.113596
10.1007/s12528-022-09321-6
10.1111/bjet.12879
10.1007/s42452-019-0884-7
10.4018/JCIT.2021010101
10.1007/s11412-014-9193-8
10.1080/00207720412331303651
10.1016/j.caeai.2021.100008
10.1177/1609406917733847
10.1016/j.learninstruc.2009.01.003
10.1016/j.future.2022.05.014
10.1016/j.procs.2018.08.233
10.1109/MIS.2007.71
10.1002/j.2168-9830.1999.tb00445.x
10.1111/bjet.12861
10.1109/TLT.2021.3107349
10.1016/j.ins.2021.06.064
10.1007/s11412-016-9234-6
10.1002/j.2168-9830.2010.tb01057.x
10.1016/j.compedu.2018.04.006
10.1016/j.compedu.2019.103599
10.1016/j.compedu.2020.103999
10.1016/j.chb.2020.106595
10.1007/s12528-021-09298-8
10.1111/bjet.13233
10.1007/s10462-022-10155-y
10.1111/cogs.12787
10.1016/j.caeai.2021.100020
10.1111/bjet.12875
10.1186/s41239-019-0171-0
10.1073/pnas.1900370116
10.1109/TLT.2019.2912167
10.1016/j.compedu.2019.103676
10.1177/0735633118757015
10.1016/j.chb.2019.106189
10.1109/EDUCON.2014.6826192
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
NPM
0-V
3V.
7XB
88B
89V
8BY
8FE
8FG
8FK
8G5
ABUWG
AFKRA
AHOVV
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJNVE
CLZPN
COVID
DPSOV
DWQXO
GNUQQ
GUQSH
HCIFZ
KC-
M0P
M2L
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
7X8
5PM
DOA
DOI 10.1186/s41239-022-00372-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
PubMed
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Education Database (Alumni Edition)
PRISMA Database
PRISMA Database with HAPI Index
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Education Research Index
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
Education Collection
Latin America & Iberian Database (ProQuest)
Coronavirus Research Database
Politics Collection
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Politics Collection
Education Database
Political Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ERIC
PubMed
Publicly Available Content Database
ProQuest One Education
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
PRISMA (without HAPI)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Politics Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest Political Science
Education Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Education Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Latin America & Iberian Database
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
PRISMA (with HAPI)
ProQuest Politics Collection
ProQuest One Academic
ProQuest Education Journals (Alumni Edition)
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
ERIC
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Education
Law
Computer Science
EISSN 2365-9440
ERIC EJ1362228
EndPage 23
ExternalDocumentID oai_doaj_org_article_6df773295f424dca95ceda220a18fc94
PMC9842403
36683653
EJ1362228
10_1186_s41239_022_00372_4
Genre Journal Article
GrantInformation_xml – fundername: the Graduate Education Research Project of Zhejiang University
  grantid: 20210308
– fundername: National Natural Science Foundation of China
  grantid: 62177041
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Universitat Oberta de Catalunya
– fundername: ;
– fundername: ;
  grantid: 62177041
– fundername: ;
  grantid: 20210308
GroupedDBID -W8
0R~
5VS
89V
8BY
8G5
AAFWJ
AAHSB
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADUOI
AFGXO
AFKRA
AHBYD
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
ARAPS
ASPBG
AZQEC
B14
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CJNVE
CLZPN
DPSOV
DWQXO
EBS
EDJ
EJD
FAEIB
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HISYW
IAO
IER
INF
ITC
KC-
KPI
M0P
M2L
M2O
M~E
OK1
PIMPY
PQEDU
PQQKQ
PROAC
RHO
RSV
SOJ
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
AHSBF
H13
NPM
0-V
3V.
7XB
8FE
8FG
8FK
AHOVV
COVID
MBDVC
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PRQQA
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c593t-71fef6dc6f80b9835d2d96085b71e9cfe15665d3ef0f54cb74937acceb6138703
IEDL.DBID DOA
ISSN 2365-9440
IngestDate Wed Aug 27 01:05:17 EDT 2025
Thu Aug 21 18:39:28 EDT 2025
Thu Jul 10 23:32:00 EDT 2025
Sat Aug 23 14:38:18 EDT 2025
Wed Feb 19 02:26:18 EST 2025
Tue Sep 02 19:35:25 EDT 2025
Thu Apr 24 22:53:38 EDT 2025
Tue Jul 01 04:32:46 EDT 2025
Fri Feb 21 02:42:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Artificial intelligence in education (AIEd)
Academic performance prediction
Collaborative learning
AI prediction models
Online higher education
Language English
License The Author(s) 2023.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c593t-71fef6dc6f80b9835d2d96085b71e9cfe15665d3ef0f54cb74937acceb6138703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/6df773295f424dca95ceda220a18fc94
PMID 36683653
PQID 2765887621
PQPubID 396499
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_6df773295f424dca95ceda220a18fc94
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9842403
proquest_miscellaneous_2768810765
proquest_journals_2765887621
pubmed_primary_36683653
eric_primary_EJ1362228
crossref_primary_10_1186_s41239_022_00372_4
crossref_citationtrail_10_1186_s41239_022_00372_4
springer_journals_10_1186_s41239_022_00372_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230101
  day: 1
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: Heidelberg
PublicationTitle International Journal of Educational Technology in Higher Education
PublicationTitleAbbrev Int J Educ Technol High Educ
PublicationTitleAlternate Int J Educ Technol High Educ
PublicationYear 2023
Publisher Springer International Publishing
BioMed Central, Ltd
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: BioMed Central, Ltd
– name: Springer Nature B.V
– name: SpringerOpen
References de Carvalho, Zárate (CR13) 2020; 38
Nowell, Norris, White, Moules (CR32) 2017; 16
Waheed, Hassan, Aljohami, Hardman, Alelyani, Nawaz (CR44) 2021; 104
CR36
CR34
Yang, Li (CR49) 2018; 123
Xing, Du, Bakhshi, Chiu, Du (CR48) 2021; 14
Marbouti, Diefes-Dux, Madhavan (CR27) 2016; 103
Chassignol, Khoroshavin, Klimova, Bilyatdinova (CR9) 2018; 136
Amon, Vrzakova, D’Mello (CR1) 2019; 43
Tahiru (CR41) 2021; 23
Ouyang, Jiao (CR33) 2021; 2
Mitrovic, Bauer, Gmytrasiewicz, Vassileva (CR28) 2001
Li, Ouyang, Chen (CR24) 2022
Damşa (CR11) 2014; 9
Hwang, Xie, Wah, Gašević (CR20) 2020; 1
Suthers, Verbert, Suthers, Berbert, Duval, Ochoa (CR39) 2013
Dillenbourg, Dillenbourg (CR14) 1999
Luckin, Cukurova (CR26) 2019; 50
Nabizadeh, Leal, Rafsanjani, Shah (CR30) 2020; 159
Chen, Xie, Zou, Hwang (CR10) 2020; 1
Yang, Ogata, Matsui, Chen (CR50) 2021; 2
Tomasevic, Gvozdenovic, Vranes (CR42) 2020; 143
Lam, Doverspike, Mawasha (CR22) 1999; 88
Darvishi, Khosravi, Sadiq, Gašević (CR12) 2022; 53
FoK, He, Yeung, Law, Cheung, Ai, Ho, Li (CR16) 2018
Asif, Merceron, Ali, Haider (CR2) 2017; 113
Lau, Sun, Yang (CR23) 2019; 1
Xie, Chu, Hwang, Wang (CR46) 2019; 140
Hoppe, Doberstein, Hecking (CR19) 2021; 31
Zawacki-Richter, Marín, Bond, Gouverneur (CR52) 2019; 16
Toyoda, Russo-Abegao, Glassey (CR43) 2022; 19
Baneres, Rodriguez-Gonzalez, Serra (CR4) 2019; 12
Fung, Li, Wong, Wong (CR17) 2004; 35
Nicholls, Wolfe, Besterfield-Sacre, Shuman (CR31) 2010; 99
Aydoğdu (CR3) 2021; 59
Sullivan, Keith (CR38) 2019; 50
Bravo-Agapito, Romero, Pamplona (CR6) 2021; 115
Chango, Cerezo, Sanchez-Santillan, Azevedo, Romero (CR8) 2021; 33
Bernacki, Chavez, Uesbeck (CR5) 2020; 158
Taheri, RahimiZadeh, Rao (CR40) 2021; 576
Sandoval, Gonzalez, Alarcon, Pichara, Montenegro (CR35) 2018; 37
Wu, Xiao, Sun, Zhang, Ma, He (CR45) 2022; 135
Drake (CR15) 1998; 14
Yang, Tsai (CR51) 2010; 20
Cen, Ruta, Powell, Hirsch, Ng (CR7) 2016; 11
Jiao, Ouyang, Zhang, Alavi (CR21) 2022
Guzman, Conejo, Perez-de-la-Cruz (CR18) 2007; 22
Liao, Chiang, Chen, Parker (CR25) 2022; 19
Xing, Du (CR47) 2019; 57
Starcic (CR37) 2019; 50
Mozer, Wiseheart, Novikoff (CR29) 2019; 116
CH Liao (372_CR25) 2022; 19
R Luckin (372_CR26) 2019; 50
AH Nabizadeh (372_CR30) 2020; 159
E Guzman (372_CR18) 2007; 22
W Xing (372_CR47) 2019; 57
P Dillenbourg (372_CR14) 1999
LS Nowell (372_CR32) 2017; 16
M Chassignol (372_CR9) 2018; 136
F Ouyang (372_CR33) 2021; 2
372_CR36
CC Fung (372_CR17) 2004; 35
372_CR34
X Chen (372_CR10) 2020; 1
WF de Carvalho (372_CR13) 2020; 38
R Toyoda (372_CR43) 2022; 19
A Taheri (372_CR40) 2021; 576
H Xie (372_CR46) 2019; 140
W Xing (372_CR48) 2021; 14
ML Bernacki (372_CR5) 2020; 158
A Mitrovic (372_CR28) 2001
O Zawacki-Richter (372_CR52) 2019; 16
W Chango (372_CR8) 2021; 33
N Tomasevic (372_CR42) 2020; 143
S Aydoğdu (372_CR3) 2021; 59
GM Nicholls (372_CR31) 2010; 99
HU Hoppe (372_CR19) 2021; 31
GJ Hwang (372_CR20) 2020; 1
J Bravo-Agapito (372_CR6) 2021; 115
L Cen (372_CR7) 2016; 11
F Yang (372_CR49) 2018; 123
X Li (372_CR24) 2022
AI Starcic (372_CR37) 2019; 50
F Marbouti (372_CR27) 2016; 103
A Darvishi (372_CR12) 2022; 53
F Tahiru (372_CR41) 2021; 23
P Jiao (372_CR21) 2022
X Wu (372_CR45) 2022; 135
SJH Yang (372_CR50) 2021; 2
D Baneres (372_CR4) 2019; 12
ET Lau (372_CR23) 2019; 1
MC Mozer (372_CR29) 2019; 116
YF Yang (372_CR51) 2010; 20
PC Lam (372_CR22) 1999; 88
R Asif (372_CR2) 2017; 113
WWT FoK (372_CR16) 2018
A Sandoval (372_CR35) 2018; 37
H Waheed (372_CR44) 2021; 104
PR Drake (372_CR15) 1998; 14
FR Sullivan (372_CR38) 2019; 50
CI Damşa (372_CR11) 2014; 9
D Suthers (372_CR39) 2013
MJ Amon (372_CR1) 2019; 43
References_xml – volume: 19
  start-page: 42
  year: 2022
  ident: CR43
  article-title: VR-based health and safety training in various high-risk engineering industries: A literature review
  publication-title: International Journal of Educational Technology in Higher Education.
  doi: 10.1186/s41239-022-00349-3
– volume: 103
  start-page: 1
  year: 2016
  end-page: 15
  ident: CR27
  article-title: Models for early prediction of at-risk students in a course using standards-based grading
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2016.09.005
– volume: 59
  start-page: 603
  issue: 4
  year: 2021
  end-page: 619
  ident: CR3
  article-title: A new student modeling technique with convolutional neural networks: Learnerprints
  publication-title: Journal of Educational Computing Research
  doi: 10.1177/0735633120969216
– volume: 37
  start-page: 76
  year: 2018
  end-page: 89
  ident: CR35
  article-title: Centralized student performance prediction in large courses based on low-cost variables in an institutional context
  publication-title: The Internet and Higher Education
  doi: 10.1016/j.iheduc.2018.02.002
– volume: 38
  start-page: 103
  issue: 1
  year: 2020
  end-page: 115
  ident: CR13
  article-title: A new local causal learning algorithm applied in learning analytics
  publication-title: The International Journal of Information and Learning Technology
  doi: 10.1108/IJILT-04-2020-0046
– volume: 113
  start-page: 177
  year: 2017
  end-page: 194
  ident: CR2
  article-title: Analyzing undergraduate students’ performance using educational data mining
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2017.05.007
– volume: 19
  start-page: 43
  year: 2022
  ident: CR25
  article-title: Exploring the relationship between computational thinking and learning satisfaction for non-STEM college students
  publication-title: International Journal of Educational Technology in Higher Education.
  doi: 10.1186/s41239-022-00347-5
– volume: 1
  start-page: 100001
  year: 2020
  ident: CR20
  article-title: Vision, challenges, roles and research issues of artificial intelligence in education
  publication-title: Computers and Education: Artificial Intelligence
  doi: 10.1016/j.caeai.2020.100001
– start-page: 247
  year: 2001
  end-page: 250
  ident: CR28
  article-title: Investigating students' self-assessment skills
  publication-title: UM2001: User modeling
  doi: 10.1007/3-540-44566-8_35
– volume: 14
  start-page: 191
  issue: 3
  year: 1998
  end-page: 196
  ident: CR15
  article-title: Using the analytic hierarchy process in engineering education
  publication-title: International Journal of Engineering Education
– volume: 1
  start-page: 100002
  year: 2020
  ident: CR10
  article-title: Application and theory gaps during the rise of artificial intelligence in education
  publication-title: Computers and Education: Artificial Intelligence
  doi: 10.1016/j.caeai.2020.100002
– start-page: 1
  year: 2013
  end-page: 4
  ident: CR39
  article-title: Learning analytics as a “middle space”
  publication-title: Proceedings of the 3rd international conference on learning analytics & knowledge
  doi: 10.1145/2460296
– volume: 31
  start-page: 680
  year: 2021
  end-page: 699
  ident: CR19
  article-title: Using sequence analysis to determine the well-functioning of small groups in large online courses
  publication-title: International Journal of Artificial Intelligence in Education
  doi: 10.1007/s40593-020-00229-9
– volume: 159
  start-page: 113596
  year: 2020
  ident: CR30
  article-title: Learning path personalization and recommendation methods: A survey of the state-of-the-art
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113596
– year: 2022
  ident: CR24
  article-title: Examining the effect of a genetic algorithm-enabled grouping method on collaborative performances, processes, and perceptions
  publication-title: Journal of Computing in Higher Education
  doi: 10.1007/s12528-022-09321-6
– start-page: 1
  year: 1999
  end-page: 15
  ident: CR14
  article-title: What do you mean by “collaborative learning”?
  publication-title: Collaborative learning: Cognitive and computational approaches (Vol 1)
– volume: 50
  start-page: 2974
  issue: 6
  year: 2019
  end-page: 2976
  ident: CR37
  article-title: Human learning and learning analytics in the age of artificial intelligence
  publication-title: British Journal of Educational Technology
  doi: 10.1111/bjet.12879
– volume: 1
  start-page: 982
  year: 2019
  ident: CR23
  article-title: Modelling, prediction and classification of student academic performance using artificial neural networks
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-019-0884-7
– ident: CR36
– start-page: 103
  year: 2018
  end-page: 106
  ident: CR16
  article-title: Prediction model for students’ future development by deep learning and tensorflow artificial intelligence engine
  publication-title: 4th IEEE international conference on information management
– volume: 23
  start-page: 1
  issue: 1
  year: 2021
  end-page: 20
  ident: CR41
  article-title: AI in education: A systematic literature review
  publication-title: Journal of Cases on Information Technology
  doi: 10.4018/JCIT.2021010101
– volume: 9
  start-page: 247
  year: 2014
  end-page: 281
  ident: CR11
  article-title: The multi-layered nature of small-group learning: Productive interactions in object-oriented collaboration
  publication-title: International Journal of Computer-Supported Collaborative Learning
  doi: 10.1007/s11412-014-9193-8
– volume: 35
  start-page: 741
  year: 2004
  end-page: 750
  ident: CR17
  article-title: A java-based parallel platform for the implementation of evolutionary computation for engineering applications
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207720412331303651
– volume: 2
  start-page: 100008
  year: 2021
  ident: CR50
  article-title: Human-centered artificial intelligence in education: Seeing the invisible through the visible
  publication-title: Computers and Education: Artificial Intelligence
  doi: 10.1016/j.caeai.2021.100008
– volume: 16
  start-page: 1
  issue: 1
  year: 2017
  end-page: 13
  ident: CR32
  article-title: Thematic analysis: Striving to meet the trustworthiness criteria
  publication-title: International Journal of Qualitative Methods
  doi: 10.1177/1609406917733847
– volume: 20
  start-page: 72
  year: 2010
  end-page: 83
  ident: CR51
  article-title: Conceptions of and approaches to learning through online peer assessment
  publication-title: Learning and Instruction
  doi: 10.1016/j.learninstruc.2009.01.003
– volume: 135
  start-page: 364
  year: 2022
  end-page: 381
  ident: CR45
  article-title: A survey of human-in-the-loop for machine learning
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2022.05.014
– volume: 136
  start-page: 16
  year: 2018
  end-page: 24
  ident: CR9
  article-title: Artificial intelligence trends in education: A narrative overview
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.08.233
– volume: 22
  start-page: 46
  issue: 4
  year: 2007
  end-page: 52
  ident: CR18
  article-title: Improving student performance using self-assessment tests
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2007.71
– volume: 88
  start-page: 265
  issue: 3
  year: 1999
  end-page: 267
  ident: CR22
  article-title: Predicting success in a minority engineering program
  publication-title: Journal of Engineering Education
  doi: 10.1002/j.2168-9830.1999.tb00445.x
– volume: 50
  start-page: 2824
  issue: 6
  year: 2019
  end-page: 2838
  ident: CR26
  article-title: Designing educational technologies in the age of AI: A learning sciences driven approach
  publication-title: British Journal of Educational Technology
  doi: 10.1111/bjet.12861
– volume: 14
  start-page: 474
  issue: 4
  year: 2021
  end-page: 485
  ident: CR48
  article-title: Designing a transferable predictive model for online learning using a Bayesian updating approach
  publication-title: IEEE Transactions on Learning Technologies
  doi: 10.1109/TLT.2021.3107349
– volume: 576
  start-page: 68
  year: 2021
  end-page: 104
  ident: CR40
  article-title: An efficient balanced teaching-learning-based optimization algorithm with individual restarting strategy for solving global optimization problems
  publication-title: Information Sciences.
  doi: 10.1016/j.ins.2021.06.064
– volume: 11
  start-page: 187
  year: 2016
  end-page: 225
  ident: CR7
  article-title: Quantitative approach to collaborative learning: Performance prediction, individual assessment, and group composition
  publication-title: International Journal of Computer-Supported Collaborative Learning
  doi: 10.1007/s11412-016-9234-6
– volume: 99
  start-page: 209
  issue: 3
  year: 2010
  end-page: 223
  ident: CR31
  article-title: Predicting STEM degree outcomes based on eighth grade data and standard test scores
  publication-title: Journal of Engineering Education
  doi: 10.1002/j.2168-9830.2010.tb01057.x
– volume: 123
  start-page: 97
  year: 2018
  end-page: 108
  ident: CR49
  article-title: Study on student performance estimation, student progress analysis, and student potential prediction based on data mining
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2018.04.006
– volume: 140
  start-page: 103599
  year: 2019
  ident: CR46
  article-title: Trends and development in technology-enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2019.103599
– volume: 158
  start-page: 103999
  year: 2020
  ident: CR5
  article-title: Predicting achievement and providing support before STEM majors begin to fail
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2020.103999
– volume: 115
  start-page: 106595
  year: 2021
  ident: CR6
  article-title: Early prediction of undergraduate Student’s academic performance in completely online learning: A five-year study
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2020.106595
– volume: 33
  start-page: 614
  issue: 3
  year: 2021
  end-page: 634
  ident: CR8
  article-title: Improving prediction of students’ performance in intelligent tutoring systems using attribute selection and ensembles of different multimodal data sources
  publication-title: Journal of Computing in Higher Education
  doi: 10.1007/s12528-021-09298-8
– volume: 53
  start-page: 844
  issue: 4
  year: 2022
  end-page: 875
  ident: CR12
  article-title: Incorporating AI and learning analytics to build trustworthy peer assessment systems
  publication-title: British Journal of Educational Technology
  doi: 10.1111/bjet.13233
– year: 2022
  ident: CR21
  article-title: Artificial intelligence-enabled prediction model of student academic performance in online engineering education
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-022-10155-y
– volume: 43
  start-page: e12787
  issue: 10
  year: 2019
  ident: CR1
  article-title: Beyond dyadic coordination: Multimodal behavioral irregularity in triads predicts facets of collaborative problem solving
  publication-title: Cognitive Science
  doi: 10.1111/cogs.12787
– volume: 2
  start-page: 100020
  year: 2021
  ident: CR33
  article-title: Artificial intelligence in education: The three paradigms
  publication-title: Computers and Education: Artificial Intelligence
  doi: 10.1016/j.caeai.2021.100020
– volume: 50
  start-page: 3047
  issue: 6
  year: 2019
  end-page: 3063
  ident: CR38
  article-title: Exploring the potential of natural language processing to support microgenetic analysis of collaborative learning discussions
  publication-title: British Journal of Educational Technology
  doi: 10.1111/bjet.12875
– volume: 16
  start-page: 39
  year: 2019
  ident: CR52
  article-title: Systematic review of research on artificial intelligence applications in higher education – where are the educators?
  publication-title: International Journal of Educational Technology in Higher Education
  doi: 10.1186/s41239-019-0171-0
– volume: 116
  start-page: 3953
  issue: 10
  year: 2019
  end-page: 3955
  ident: CR29
  article-title: Artificial intelligence to support human instruction
  publication-title: Proceedings of the National Association of Science
  doi: 10.1073/pnas.1900370116
– ident: CR34
– volume: 12
  start-page: 249
  issue: 2
  year: 2019
  end-page: 263
  ident: CR4
  article-title: An early feedback prediction system for learners at-risk within a first-year higher education course
  publication-title: IEEE Transactions on Learning Technologies
  doi: 10.1109/TLT.2019.2912167
– volume: 143
  start-page: 103676
  year: 2020
  ident: CR42
  article-title: An overview and comparison of supervised data mining techniques for student exam performance prediction
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2019.103676
– volume: 57
  start-page: 547
  issue: 3
  year: 2019
  end-page: 570
  ident: CR47
  article-title: Dropout prediction in MOOCs: Using deep learning for personalized intervention
  publication-title: Journal of Educational Computing Research
  doi: 10.1177/0735633118757015
– volume: 104
  start-page: 106189
  year: 2021
  ident: CR44
  article-title: Predicting academic performance of students from VLE big data using deep learning models
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2019.106189
– year: 2022
  ident: 372_CR24
  publication-title: Journal of Computing in Higher Education
  doi: 10.1007/s12528-022-09321-6
– volume: 104
  start-page: 106189
  year: 2021
  ident: 372_CR44
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2019.106189
– ident: 372_CR34
– volume: 19
  start-page: 42
  year: 2022
  ident: 372_CR43
  publication-title: International Journal of Educational Technology in Higher Education.
  doi: 10.1186/s41239-022-00349-3
– volume: 38
  start-page: 103
  issue: 1
  year: 2020
  ident: 372_CR13
  publication-title: The International Journal of Information and Learning Technology
  doi: 10.1108/IJILT-04-2020-0046
– volume: 135
  start-page: 364
  year: 2022
  ident: 372_CR45
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2022.05.014
– volume: 14
  start-page: 474
  issue: 4
  year: 2021
  ident: 372_CR48
  publication-title: IEEE Transactions on Learning Technologies
  doi: 10.1109/TLT.2021.3107349
– start-page: 1
  volume-title: Collaborative learning: Cognitive and computational approaches (Vol 1)
  year: 1999
  ident: 372_CR14
– volume: 576
  start-page: 68
  year: 2021
  ident: 372_CR40
  publication-title: Information Sciences.
  doi: 10.1016/j.ins.2021.06.064
– volume: 116
  start-page: 3953
  issue: 10
  year: 2019
  ident: 372_CR29
  publication-title: Proceedings of the National Association of Science
  doi: 10.1073/pnas.1900370116
– volume: 9
  start-page: 247
  year: 2014
  ident: 372_CR11
  publication-title: International Journal of Computer-Supported Collaborative Learning
  doi: 10.1007/s11412-014-9193-8
– volume: 43
  start-page: e12787
  issue: 10
  year: 2019
  ident: 372_CR1
  publication-title: Cognitive Science
  doi: 10.1111/cogs.12787
– start-page: 247
  volume-title: UM2001: User modeling
  year: 2001
  ident: 372_CR28
  doi: 10.1007/3-540-44566-8_35
– volume: 1
  start-page: 100001
  year: 2020
  ident: 372_CR20
  publication-title: Computers and Education: Artificial Intelligence
  doi: 10.1016/j.caeai.2020.100001
– volume: 20
  start-page: 72
  year: 2010
  ident: 372_CR51
  publication-title: Learning and Instruction
  doi: 10.1016/j.learninstruc.2009.01.003
– volume: 22
  start-page: 46
  issue: 4
  year: 2007
  ident: 372_CR18
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2007.71
– volume: 115
  start-page: 106595
  year: 2021
  ident: 372_CR6
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2020.106595
– volume: 11
  start-page: 187
  year: 2016
  ident: 372_CR7
  publication-title: International Journal of Computer-Supported Collaborative Learning
  doi: 10.1007/s11412-016-9234-6
– volume: 12
  start-page: 249
  issue: 2
  year: 2019
  ident: 372_CR4
  publication-title: IEEE Transactions on Learning Technologies
  doi: 10.1109/TLT.2019.2912167
– year: 2022
  ident: 372_CR21
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-022-10155-y
– volume: 123
  start-page: 97
  year: 2018
  ident: 372_CR49
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2018.04.006
– start-page: 1
  volume-title: Proceedings of the 3rd international conference on learning analytics & knowledge
  year: 2013
  ident: 372_CR39
  doi: 10.1145/2460296
– volume: 57
  start-page: 547
  issue: 3
  year: 2019
  ident: 372_CR47
  publication-title: Journal of Educational Computing Research
  doi: 10.1177/0735633118757015
– volume: 1
  start-page: 100002
  year: 2020
  ident: 372_CR10
  publication-title: Computers and Education: Artificial Intelligence
  doi: 10.1016/j.caeai.2020.100002
– volume: 2
  start-page: 100020
  year: 2021
  ident: 372_CR33
  publication-title: Computers and Education: Artificial Intelligence
  doi: 10.1016/j.caeai.2021.100020
– volume: 33
  start-page: 614
  issue: 3
  year: 2021
  ident: 372_CR8
  publication-title: Journal of Computing in Higher Education
  doi: 10.1007/s12528-021-09298-8
– volume: 158
  start-page: 103999
  year: 2020
  ident: 372_CR5
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2020.103999
– volume: 113
  start-page: 177
  year: 2017
  ident: 372_CR2
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2017.05.007
– ident: 372_CR36
  doi: 10.1109/EDUCON.2014.6826192
– volume: 19
  start-page: 43
  year: 2022
  ident: 372_CR25
  publication-title: International Journal of Educational Technology in Higher Education.
  doi: 10.1186/s41239-022-00347-5
– volume: 159
  start-page: 113596
  year: 2020
  ident: 372_CR30
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113596
– volume: 140
  start-page: 103599
  year: 2019
  ident: 372_CR46
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2019.103599
– volume: 16
  start-page: 39
  year: 2019
  ident: 372_CR52
  publication-title: International Journal of Educational Technology in Higher Education
  doi: 10.1186/s41239-019-0171-0
– volume: 50
  start-page: 2824
  issue: 6
  year: 2019
  ident: 372_CR26
  publication-title: British Journal of Educational Technology
  doi: 10.1111/bjet.12861
– volume: 143
  start-page: 103676
  year: 2020
  ident: 372_CR42
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2019.103676
– volume: 37
  start-page: 76
  year: 2018
  ident: 372_CR35
  publication-title: The Internet and Higher Education
  doi: 10.1016/j.iheduc.2018.02.002
– start-page: 103
  volume-title: 4th IEEE international conference on information management
  year: 2018
  ident: 372_CR16
– volume: 88
  start-page: 265
  issue: 3
  year: 1999
  ident: 372_CR22
  publication-title: Journal of Engineering Education
  doi: 10.1002/j.2168-9830.1999.tb00445.x
– volume: 50
  start-page: 2974
  issue: 6
  year: 2019
  ident: 372_CR37
  publication-title: British Journal of Educational Technology
  doi: 10.1111/bjet.12879
– volume: 1
  start-page: 982
  year: 2019
  ident: 372_CR23
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-019-0884-7
– volume: 23
  start-page: 1
  issue: 1
  year: 2021
  ident: 372_CR41
  publication-title: Journal of Cases on Information Technology
  doi: 10.4018/JCIT.2021010101
– volume: 14
  start-page: 191
  issue: 3
  year: 1998
  ident: 372_CR15
  publication-title: International Journal of Engineering Education
– volume: 136
  start-page: 16
  year: 2018
  ident: 372_CR9
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.08.233
– volume: 31
  start-page: 680
  year: 2021
  ident: 372_CR19
  publication-title: International Journal of Artificial Intelligence in Education
  doi: 10.1007/s40593-020-00229-9
– volume: 35
  start-page: 741
  year: 2004
  ident: 372_CR17
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207720412331303651
– volume: 16
  start-page: 1
  issue: 1
  year: 2017
  ident: 372_CR32
  publication-title: International Journal of Qualitative Methods
  doi: 10.1177/1609406917733847
– volume: 59
  start-page: 603
  issue: 4
  year: 2021
  ident: 372_CR3
  publication-title: Journal of Educational Computing Research
  doi: 10.1177/0735633120969216
– volume: 103
  start-page: 1
  year: 2016
  ident: 372_CR27
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2016.09.005
– volume: 53
  start-page: 844
  issue: 4
  year: 2022
  ident: 372_CR12
  publication-title: British Journal of Educational Technology
  doi: 10.1111/bjet.13233
– volume: 99
  start-page: 209
  issue: 3
  year: 2010
  ident: 372_CR31
  publication-title: Journal of Engineering Education
  doi: 10.1002/j.2168-9830.2010.tb01057.x
– volume: 50
  start-page: 3047
  issue: 6
  year: 2019
  ident: 372_CR38
  publication-title: British Journal of Educational Technology
  doi: 10.1111/bjet.12875
– volume: 2
  start-page: 100008
  year: 2021
  ident: 372_CR50
  publication-title: Computers and Education: Artificial Intelligence
  doi: 10.1016/j.caeai.2021.100008
SSID ssj0001922382
Score 2.5282507
Snippet As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is...
Abstract As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction...
SourceID doaj
pubmedcentral
proquest
pubmed
eric
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4
SubjectTerms Academic Achievement
Academic performance prediction
AI prediction models
Algorithms
Artificial Intelligence
Artificial intelligence in education (AIEd)
At Risk Students
Closed loops
Collaborative learning
Computer Appl. in Social and Behavioral Sciences
Computer Science
Computers and Education
Cooperative Learning
Design optimization
Distance learning
Educational Improvement
Educational Technology
Engineering Education
Feedback
Higher Education
Humanities
Information Systems Applications (incl.Internet)
Instructional Design
Integrated approach
Law
Learner Engagement
Learning
Learning Analytics
Mathematical analysis
Online Courses
Online higher education
Performance prediction
Prediction
Prediction models
Research Article
Statistics for Social Sciences
Student Centered Learning
Student Improvement
Student participation
Student Satisfaction
Students
Technology Integration
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBvAqhBRmJG0Td-BXnhCjaqlSiQohKvVl-lpWqZNndHvgR_c-MHSfpFtFj4keczMMz48k3CL2fGV1F3VuCHJGS1TaU4ILNSs-FJkFQI3SMQ347Eyfn7PSCX-SA2zqnVQ46MSlq19kYIz8kNeyVUXSrT8vfZawaFU9XcwmNh2gXVLAE52v3aH72_ccUZWlg-5Nk-FtGisM1A13dlDGJPWKvwPq2dqQE3H839_mW0flv7uSdA9S0Lx0_QY-zQYk_9xzwFD3w7bNYiznnbTxHN18zIgRc4S7gyCs9bARe3MLjxMvpFwK8XMXzmzRCtw7n0hKXcKGv_kRgZ7zp8CLFIzxe9_CYU68FPCcBcGA_oR1i28V8kRfo_Hj-88tJmYswlJY3dFPWVfBBOCuCnJkG7DVHHHg9kpu68o0NPjqA3FEfZoEza2oGBo-21hswFEAZ0D2003atf4WwB-rpYC0NwTAegma2IqY2tOJeOmMLVA2EUDYjlMdCGVcqeSpSqJ54CoinEvEUK9CHccyyx-e4t_dRpO_YM2Jrpxvd6lJlUVXChbqmpOGBEeasbrj1ThMy05UMtoFJ9iJ3jJPMTyuwAgiRBToY-EVlTbBWE98W6N3YDDIcD2Z067vr1EdK8MMFL9DLnr3G2akQkgpOC1RvMd7WO2y3tItfCSe8kSyiLRbo48Ci07L-_41e3_8W--gRATuvj0IdoJ3N6tq_AbtsY95m4fsLqjc5fA
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RcuHCY6EQKMhI3CAi8SvOEapWpQJOVOotsh27LKqS1e5WqD-i_5mx42S75SFxjDN2HvPwjD3-BuBNYXQZbG-OekRzXlmfYwhW5E5ITb1kRuqwDvnlqzw-5Sdn4iwdCluN2e7jlmS01FGtlXy_4mhk6zxknwfQFBx4B-4KjN2DXB-kMw4_Bp8F5yE6npD5Y9etWSiC9d_Od77haP6eL3lr0zTORUcP4X5yIsmHgeuP4I7rZvBgLNBAkr7OQknmlL4xg53P-udjuP6U4CGwjfSeBMEZMCTI_AY4J1lszhOQxTJs5sQeumtJqjNxjhf64iqgPJN1T-ZxccKR1YCVuaGa43MiGgdxG-hDYvuQPPIETo8Ovx0c56kiQ25FzdZ5VXrnZWulV4Wp0XlraYshkBKmKl1tvQvRoGiZ84UX3JqKo_ejrXUGvQa0DGwPdru-c8-AOLTC2lvLvDdceK-5LampDCuFU62xGZQjhxqb4MpD1YyLJoYtSjYDVxvkahO52vAM3k59FgNYxz-pPwbGT5QBaDs29MvzJultI1tfVYzWwnPKW6trYV2rKS10qbytcZC9IDbTIIcnJboElKoM9kdBapJZWDW0QocvzD9lBq-n26jQYZdGd66_jDRKYVAuRQZPB7mbRmdSKiYFy6Daksitb9i-082_R9DwWvEAvZjBu1F2N6_193_0_P_IX8A9VEg2LFHtw-56eeleotO2Nq-ijv4CRBA8OA
  priority: 102
  providerName: Springer Nature
Title Integration of artificial intelligence performance prediction and learning analytics to improve student learning in online engineering course
URI https://link.springer.com/article/10.1186/s41239-022-00372-4
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1362228
https://www.ncbi.nlm.nih.gov/pubmed/36683653
https://www.proquest.com/docview/2765887621
https://www.proquest.com/docview/2768810765
https://pubmed.ncbi.nlm.nih.gov/PMC9842403
https://doaj.org/article/6df773295f424dca95ceda220a18fc94
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BuXBBvAqhZWUkbhB141ecI13tUipRIUSl3iLbsWGrKll1twd-BP-5Yzub3S0CLlwiObGT2DOehz3-BuDt2OgiyN4c5xHNeWl9ji7YOHdCauolM1KHdcjPZ_LknJ9eiIutVF8hJizBA6eBO5KNL0tGK-E55Y3VlbCu0ZSOdaG8rSISKOq8LWfqMtktqIvo-pSMkkdLjjK6ykPwesBcwf_a0UQRsP9uzPOWsfl7zOSdjdOoj2aP4VFvSJIPqQNP4J5rn4YczH28xjP49alHgsAS6TwJXU1wEWS-hcNJFpujA2RxHfZtYgvdNqRPKfEdC_rqZwB0JquOzOM6hCPLBIu5qTXH70TgDeI2KIfEdiFO5Dmcz6bfJid5n3wht6Jiq7wsvPOysdKrsanQTmtog96OEqYsXGW9C46faJjzYy-4NSVHQ0db6wwaCCgE2D7stV3rXgJxKHC1t5Z5b7jwXnNbUFMaVginGmMzKNaEqG2PTB4SZFzV0UNRsk7Eq5F4dSRezTN4N7RZJFyOv9Y-DvQdagZM7XgDOa3uOa3-F6dlsB-4Y3jJ9LRA7U-pyuBwzS91LwGWNS3RtguqpsjgzfAY527YkNGt625iHaXQ_5YigxeJvYa3MykVk4JlUO4w3k4fdp-08x8RH7xSPKAsZvB-zaKb3_rzGL36H2N0AA8pWoFpjeoQ9lbXN-41Wm0rM4L7avZxBA-Op2dfvmJpQnm4yskoTt1RXLm4BURfRi8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOcAFsRVCCxgJThB14i3OASGWDjPdTq3Um7Edu4xUJdOZqVB_BH-F38izk0w6RfTWYxLHWd7-_Pw9hN4OjM6C7k1BjkjKcutTCMEGqeNCEy-oETrkIQ8OxeiY7Z7wkzX0p9sLE8oqO50YFXVZ25Aj3yY52Mogutmn6XkaukaF1dWuhUbDFnvu8heEbPOP429A33eEDHeOvo7StqtAanlBF2meeedFaYWXA1OAA1KSEtx4yU2eucJ6FyIaXlLnB54za3IGFlxb6wxYPuBuCvPeQXcZpUWQKDn83ud0CjC2knR7c6TYnjOwDEUaSuYD0gv8jRX7F9sEXK-0vuLi_lupeW25NlrB4UP0oHVf8eeG3x6hNVc9Dp2f2yqRJ-j3uMWfgCNcexw4swGpwJMr6J942m9YwNNZWC2Kd-iqxG0ji1M40GeXAUYaL2o8idkPh-cNGGc_agLPiXAf2PXYitjWoTrlKTq-FeJsoPWqrtxzhB3wivbWUu8N495rZjNickMz7mRpbIKyjhDKtnjooS3HmYpxkRSqIZ4C4qlIPMUS9H55z7RBA7lx9JdA3-XIgOQdT9SzU9UqBiVKn-eUFNwzwkqrC25dqQkZ6Ex6W8AkG4E7lpPs7GbgcxAiE7TV8Ytq9c5c9VKSoDfLy6AxwjKQrlx9EcdICVG_4Al61rDXcnYqhKSC0wTlK4y38g2rV6rJz4hKXkgWsB0T9KFj0f61_v-PXtz8Fa_RvdHRwb7aHx_ubaL7BDzMJv-1hdYXswv3EjzChXkVxRCjH7ct938BQDF1aA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcEK9CoICR4ARRE8d2nANClO6q28KqQlTqzdiOXVaqkmV3K9QfwR_i1zF2kk23iN56TDJxHvP0ePwNQq8TrVJve2PQIxLT3LgYpmBJbBlXxPFMc-XzkF8mfP-YHpywkw30p9sL48sqO5sYDHVZG58j3yE5-EqvuumOa8sijvZGH2Y_Y99Byq-0du00GhE5tBe_YPq2eD_eA16_IWQ0_PZpP247DMSGFdkyzlNnHS8NdyLRBQQjJSkhpBdM56ktjLN-dsPKzLrEMWp0TsGbK2OsBi8Ikp7BuLfQZg6zomSANneHk6OvfYanANcrSLdTR_CdBQU_UcS-gN7jvsC_WfOGoWnA1brrSwHvv3WbVxZvg08c3UN322AWf2yk7z7asNUD3we6rRl5iH6PWzQKOMK1w15OG8gKPL2EBYpn_fYFPJv7taNwh6pK3La1OIUDdXbhQaXxssbTkAuxeNFAc_ZUU3hOAP_AtkdaxKb2tSqP0PGNsGcLDaq6sk8QtiA5yhmTOacpc05RkxKd6yxlVpTaRCjtGCFNi47um3ScyTBLElw2zJPAPBmYJ2mE3q7umTXYINdS73r-rig9rnc4Uc9PZWsmJC9dnmekYI4SWhpVMGNLRUiiUuFMAYNseelYDTI8SCECIUREaLuTF9laoYXsdSZCr1aXwX74RSFV2fo80AiRJkAZoceNeK1GzzgXGWdZhPI1wVv7hvUr1fRHwCgvBPVIjxF614lo_1r__0dPr_-Kl-g26Lz8PJ4cPkN3CISbTTJsGw2W83P7HMLDpX7R6iFG329a9f8CzFB6-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+artificial+intelligence+performance+prediction+and+learning+analytics+to+improve+student+learning+in+online+engineering+course&rft.jtitle=International+Journal+of+Educational+Technology+in+Higher+Education&rft.au=Fan+Ouyang&rft.au=Mian+Wu&rft.au=Luyi+Zheng&rft.au=Liyin+Zhang&rft.date=2023-01-01&rft.pub=SpringerOpen&rft.eissn=2365-9440&rft.volume=20&rft.issue=1&rft.spage=1&rft.epage=23&rft_id=info:doi/10.1186%2Fs41239-022-00372-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6df773295f424dca95ceda220a18fc94
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-9440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-9440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-9440&client=summon