Multifunctional porous silicon nanoparticles for cancer theranostics
Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocycloo...
Saved in:
Published in | Biomaterials Vol. 48; pp. 108 - 118 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with 111In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development. |
---|---|
AbstractList | Abstract Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with111 In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo . Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development. Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with 111In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development. Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with 111In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development. Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with (111)In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development. Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with ¹¹¹In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development. Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with (111)In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development.Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with (111)In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development. |
Author | Salonen, Jarno J. Airaksinen, Anu J. Hyvönen, Maija L.K. Laakkonen, Pirjo M. Santos, Hélder A. Hirvonen, Jouni T. Mäkilä, Ermei M. Wang, Chang-Fang Sarparanta, Mirkka P. |
Author_xml | – sequence: 1 givenname: Chang-Fang surname: Wang fullname: Wang, Chang-Fang organization: Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 2 givenname: Mirkka P. surname: Sarparanta fullname: Sarparanta, Mirkka P. organization: Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 3 givenname: Ermei M. surname: Mäkilä fullname: Mäkilä, Ermei M. organization: Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 4 givenname: Maija L.K. surname: Hyvönen fullname: Hyvönen, Maija L.K. organization: Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 5 givenname: Pirjo M. surname: Laakkonen fullname: Laakkonen, Pirjo M. organization: Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 6 givenname: Jarno J. surname: Salonen fullname: Salonen, Jarno J. organization: Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland – sequence: 7 givenname: Jouni T. surname: Hirvonen fullname: Hirvonen, Jouni T. organization: Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 8 givenname: Anu J. surname: Airaksinen fullname: Airaksinen, Anu J. email: anu.airaksinen@helsinki.fi organization: Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 9 givenname: Hélder A. surname: Santos fullname: Santos, Hélder A. email: helder.santos@helsinki.fi organization: Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25701036$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFv4AiTlwSZhw7djggSsuXVMQBOFuO7QgvWXuxE6T-exxtK6FKqHuyLD_zejTPnJGTEIMj5AVCg4Ddq20z-LjTs0teT7mhgLwBbADkI7JBKWTNe-AnZAPIaN13SE_JWc5bKHdg9Ak5pVwAQtttyNWXZZr9uAQz-xj0VO1jikuusp-8iaEKOsS9TrM3k8vVGFNldDAuVfNPl8pbLi_5KXk8lk7cs9vznPz48P775af6-uvHz5cX17XhfTvXnOJogduOMwkjorD9iLy3zgoxSGYs69gALbWIg3VDJ6mRcuxZh2MvDDPtOXl5yN2n-HtxeVY7n42bJh1caVrRMp62FYzJB1EU0IsW2647BkUmad_Sh9GOS0aZkG1Bn9-iy7BzVu2T3-l0o-5GX4C3B8CkmHNyozJ-1quFOWk_KQS12lZb9a9ttdpWgKrYLhGv70Xc_XJU8dWh2BVjf7xLKhvvilvrkzOzstEfF_PmXoyZfPBGT7_cjcvbuKSw1qDKVIH6tu7kupLIAYDydVDv_h9wbBd_AUkK9_c |
CitedBy_id | crossref_primary_10_1002_adtp_201800013 crossref_primary_10_1021_acs_nanolett_7b05210 crossref_primary_10_3390_pharmaceutics11120686 crossref_primary_10_1021_acs_chemrev_1c00484 crossref_primary_10_1039_C9TB02340B crossref_primary_10_1002_adma_202008226 crossref_primary_10_1016_j_msec_2017_07_009 crossref_primary_10_1039_C6RA27102B crossref_primary_10_1364_OL_503636 crossref_primary_10_1021_acsami_9b07980 crossref_primary_10_1016_j_nantod_2021_101146 crossref_primary_10_1002_adtp_201800095 crossref_primary_10_1021_acsnano_9b05740 crossref_primary_10_1111_jphp_13092 crossref_primary_10_1088_1742_6596_1439_1_012047 crossref_primary_10_1016_j_micromeso_2020_110673 crossref_primary_10_1007_s40005_017_0374_0 crossref_primary_10_3390_surfaces3030027 crossref_primary_10_1002_adma_201703740 crossref_primary_10_1002_adfm_202002560 crossref_primary_10_1021_acsnano_8b01440 crossref_primary_10_1039_D0BM01881C crossref_primary_10_1016_j_biopha_2016_09_035 crossref_primary_10_3390_polym12091906 crossref_primary_10_1016_j_addr_2016_03_008 crossref_primary_10_1016_j_addr_2021_01_012 crossref_primary_10_1007_s10544_018_0313_5 crossref_primary_10_1016_j_biomaterials_2019_119556 crossref_primary_10_3390_nano10030463 crossref_primary_10_1016_j_ejpb_2017_10_014 crossref_primary_10_1039_C6TB00215C crossref_primary_10_2217_nnm_2016_0207 crossref_primary_10_1016_j_biomaterials_2019_119553 crossref_primary_10_1002_adma_201604634 crossref_primary_10_1016_j_jddst_2024_106432 crossref_primary_10_1002_adhm_202101428 crossref_primary_10_1039_C5RA17101F crossref_primary_10_1021_acs_jpcc_7b07283 crossref_primary_10_1016_j_biotechadv_2018_08_001 crossref_primary_10_1021_acsami_6b12481 crossref_primary_10_1039_D1BM00167A crossref_primary_10_1016_j_ejps_2017_03_039 crossref_primary_10_4155_ppa_2016_0042 crossref_primary_10_1021_acsami_4c18296 crossref_primary_10_1039_C7TB02614E crossref_primary_10_1021_acsami_6b09518 crossref_primary_10_1016_j_ejpb_2020_11_022 crossref_primary_10_3390_molecules28104122 crossref_primary_10_1016_j_biopha_2022_112672 crossref_primary_10_1002_EXP_20230037 crossref_primary_10_1021_acs_chemrev_0c00779 crossref_primary_10_1021_acs_analchem_8b01580 crossref_primary_10_3390_pharmaceutics11120634 crossref_primary_10_1002_anie_201610162 crossref_primary_10_1016_j_addr_2020_07_017 crossref_primary_10_1016_j_nucmedbio_2020_04_001 crossref_primary_10_1021_acsami_6b11127 crossref_primary_10_1039_C9RA05299B crossref_primary_10_1039_D0NH00077A crossref_primary_10_1002_adhm_201800552 crossref_primary_10_1016_j_nantod_2019_100800 crossref_primary_10_1155_2019_9367845 crossref_primary_10_1039_C7RA02883K crossref_primary_10_1002_adma_201703651 crossref_primary_10_3389_fchem_2018_00539 crossref_primary_10_1016_j_pmatsci_2019_03_003 crossref_primary_10_1002_smll_201600635 crossref_primary_10_1186_s12951_022_01489_4 crossref_primary_10_1002_adma_201703819 crossref_primary_10_1039_C7ME00050B crossref_primary_10_1002_adhm_201700258 crossref_primary_10_1002_ange_201610162 crossref_primary_10_1016_j_jallcom_2016_02_189 crossref_primary_10_1002_macp_201900248 crossref_primary_10_1002_smll_201800131 crossref_primary_10_3389_fbioe_2022_1001899 crossref_primary_10_3390_pharmaceutics10040283 crossref_primary_10_1016_j_biomaterials_2016_12_034 crossref_primary_10_1002_adtp_202000165 crossref_primary_10_1155_2019_3728563 crossref_primary_10_1002_adhm_201900948 crossref_primary_10_2217_nnm_2022_0017 crossref_primary_10_1039_C9TB01042D crossref_primary_10_3892_mmr_2017_6419 crossref_primary_10_3390_ma11122557 crossref_primary_10_1016_j_jconrel_2017_09_016 crossref_primary_10_1139_cjc_2020_0087 crossref_primary_10_1080_17425247_2016_1229298 crossref_primary_10_1038_s41420_023_01778_3 crossref_primary_10_1371_journal_pone_0144613 crossref_primary_10_2217_nnm_2017_0023 crossref_primary_10_1039_C6TB01829G crossref_primary_10_1039_C6TB01978A crossref_primary_10_1186_s41181_024_00295_7 crossref_primary_10_1002_adhm_201601009 crossref_primary_10_1002_admi_202102325 crossref_primary_10_1016_j_biomaterials_2016_03_046 crossref_primary_10_1002_adhm_201500588 crossref_primary_10_1016_j_bioadv_2022_213206 crossref_primary_10_1016_j_jddst_2023_105301 crossref_primary_10_1039_D1CS01022K crossref_primary_10_2217_nnm_15_106 crossref_primary_10_1002_adhm_201700432 crossref_primary_10_1021_acsomega_3c05069 crossref_primary_10_1007_s40336_018_0283_x crossref_primary_10_1039_D1NR03263A crossref_primary_10_1021_acsami_7b02196 crossref_primary_10_1002_adhm_201600688 crossref_primary_10_2217_nnm_2017_0034 crossref_primary_10_1039_D0BM00649A crossref_primary_10_1016_j_bios_2020_112787 crossref_primary_10_1002_smll_201701276 crossref_primary_10_1007_s11481_016_9685_6 crossref_primary_10_1021_acs_langmuir_8b02812 crossref_primary_10_1080_10717544_2023_2183815 |
Cites_doi | 10.1021/mp300601r 10.1016/j.jconrel.2013.05.036 10.1083/jcb.200910104 10.1038/sj.bjc.6602584 10.1002/smll.201303740 10.1021/nn901657w 10.1016/j.jcis.2011.07.063 10.1016/j.ijpharm.2012.04.059 10.1016/j.biomaterials.2012.01.029 10.1155/2012/896562 10.1021/nn402062f 10.1016/j.ejca.2012.12.027 10.1002/anie.201201991 10.1021/la300921e 10.1016/j.jconrel.2005.08.017 10.2174/157016311796799053 10.1016/j.biomaterials.2014.01.011 10.1016/j.biomaterials.2013.01.083 10.1016/j.biomaterials.2013.12.046 10.1126/science.1183057 10.1016/j.jconrel.2014.03.057 10.1021/nn402201w 10.1016/j.biomaterials.2011.08.011 10.1016/j.addr.2014.07.011 10.1002/cncr.28509 10.1038/nrc724 10.1016/j.biomaterials.2013.10.065 10.1016/j.biomaterials.2013.04.062 10.1021/cr3003104 10.1016/j.actbio.2009.12.043 10.1016/j.biomaterials.2013.08.034 10.1007/s11095-011-0568-5 10.1016/j.jconrel.2014.04.027 10.1016/j.addr.2012.04.010 10.1186/1556-276X-9-209 10.1039/b813296h 10.1039/b901970g 10.1111/j.1365-2125.2011.03963.x 10.1016/j.biomaterials.2013.06.052 10.1016/j.ccr.2009.10.013 10.1371/journal.pone.0069884 10.1002/adma.201400953 10.1021/mp2001654 10.1016/j.addr.2010.07.009 10.1021/mp300494p 10.1021/nn402669w 10.1371/journal.pone.0042875 10.1593/neo.06436 10.1200/JCO.2009.25.4888 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2015.01.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database MEDLINE Engineering Research Database AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 118 |
ExternalDocumentID | 25701036 10_1016_j_biomaterials_2015_01_008 S0142961215000253 1_s2_0_S0142961215000253 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 310892 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION CGR CUY CVF ECM EIF NPM SSH 7X8 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c593t-521fd05d65480f117d9f159ded77b84cd464b032d11bdeb682c88f9461f97c4c3 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Tue Aug 05 10:40:10 EDT 2025 Wed Jul 30 11:15:18 EDT 2025 Fri Jul 11 01:48:21 EDT 2025 Fri Jul 11 14:45:19 EDT 2025 Mon Jul 21 05:56:59 EDT 2025 Tue Aug 05 11:59:01 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Fri Feb 23 02:31:34 EST 2024 Sun Feb 23 10:18:54 EST 2025 Tue Aug 26 17:19:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surface multifunctionalization Porous silicon nanoparticles Targeting drug delivery Theranostics Cancer therapy |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c593t-521fd05d65480f117d9f159ded77b84cd464b032d11bdeb682c88f9461f97c4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25701036 |
PQID | 1658424783 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2101337448 proquest_miscellaneous_1709731366 proquest_miscellaneous_1701482932 proquest_miscellaneous_1658424783 pubmed_primary_25701036 crossref_citationtrail_10_1016_j_biomaterials_2015_01_008 crossref_primary_10_1016_j_biomaterials_2015_01_008 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2015_01_008 elsevier_clinicalkeyesjournals_1_s2_0_S0142961215000253 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2015_01_008 |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, He, Sun, Luo, Cai, Pan (bib14) 2014; 35 Couvreur (bib10) 2013; 65 Zhang, Liu, Shahbazi, Mäkilä, Herranz-Blanco, Salonen (bib15) 2014; 26 Jarvis, Barnes, Prestidge (bib28) 2011; 363 Liu, Chen, Li, Huang, Jin, Ren (bib31) 2013; 7 Wang, Mäkilä, Kaasalainen, Liu, Sarparanta, Airaksinen (bib29) 2014; 35 Bimbo, Mäkilä, Raula, Laaksonen, Laaksonen, Strommer (bib20) 2011; 32 Ruoslahti (bib4) 2002; 2 Ruoslahti, Bhatia, Sailor (bib3) 2010; 188 Xie, Lee, Chen (bib9) 2010; 62 Bimbo, Sarparanta, Santos, Airaksinen, Mäkilä, Laaksonen (bib6) 2010; 4 Kovalainen, Mönkäre, Kaasalainen, Riikonen, Lehto, Salonen (bib43) 2013; 10 Boudou-Rouquette, Narjoz, Golmard, Thomas-Schoemann, Mir, Taieb (bib48) 2012; 7 Bimbo, Denisova, Mäkilä, Kaasalainen, De Brabander, Hirvonen (bib19) 2013; 7 Ravandi, Cortes, Jones, Faderl, Garcia-Manero, Konopleva (bib46) 2010; 28 Nichols, Bae (bib41) 2014; 190C Huang, Kim, Lee, Karashima, Bucana, Kedar (bib44) 2002; 62 Sawoo, Dutta, Chakraborty, Mukhopadhyay, Bouloussa, Sarkar (bib34) 2008; 7 Bai, Wang, Lu, Zhao, Ban, Yu (bib11) 2013; 34 Kaasalainen, Mäkilä, Riikonen, Kovalainen, Järvinen, Herzig (bib25) 2012; 431 Ferlay, Steliarova-Foucher, Lortet-Tieulent, Rosso, Coebergh, Comber (bib1) 2013; 49 Sugahara, Teesalu, Karmali, Kotamraju, Agemy, Greenwald (bib39) 2010; 328 Liu, Zhang, Herranz-Blanco, Mäkilä, Lehto, Salonen (bib17) 2014; 10 Santos, Riikonen, Salonen, Mäkilä, Heikkilä, Laaksonen (bib23) 2010; 6 Awada, Hendlisz, Gil, Bartholomeus, Mano, de Valeriola (bib45) 2005; 92 Kinnari, Hyvonen, Mäkilä, Kaasalainen, Rivinoja, Salonen (bib16) 2013; 34 Sarparanta, Bimbo, Mäkilä, Salonen, Laaksonen, Helariutta (bib22) 2012; 33 Ryu, Lee, Son, Kim, Leary, Choi (bib5) 2014; 190 Shahbazi, Hamidi, Mäkilä, Zhang, Almeida, Kaasalainen (bib18) 2013; 34 Liu, Bimbo, Mäkilä, Villanova, Kaasalainen, Herranz-Blanco (bib21) 2013; 170 Hong, Chen, Zhang, Cai (bib7) 2014; 76 Lee, Na, Lee, Kang, Kim, Han (bib36) 2013; 10 Su, Wang, Liu, Wu, Nie (bib50) 2013; 34 Santos, Bimbo, Lehto, Airaksinen, Salonen, Hirvonen (bib27) 2011; 8 Han, Byeon, Jeon, Shin (bib40) 2014; 9 Lallana, Sousa-Herves, Fernandez-Trillo, Riguera, Fernandez-Megia (bib32) 2012; 29 Cutler, Hennkens, Sisay, Huclier-Markai, Jurisson (bib8) 2013; 113 Edwards, Noone, Mariotto, Simard, Boscoe, Henley (bib2) 2014; 120 Sugahara, Teesalu, Karmali, Kotamraju, Agemy, Girard (bib38) 2009; 16 Sarparanta, Mäkilä, Heikkilä, Salonen, Kukk, Lehto (bib30) 2011; 8 Botchkina, Zuniga, Rowehl, Park, Bhalla, Bialkowska (bib49) 2013; 8 Al-Jamal, Nunes, Methven, Ali-Boucetta, Li, Toma (bib37) 2012; 51 Manova, Pujari, Weijers, Zuilhof, van Beek (bib35) 2012; 28 Bigini, Previdi, Casarin, Silvestri, Violatto, Facchin (bib12) 2014; 8 Chen, Wang, Cheng, He, Cheng, Liu (bib13) 2014; 35 Jewett, Bertozzi (bib33) 2010; 39 Rytkönen, Miettinen, Kaasalainen, Lehto, Salonen, Närvänen (bib24) 2012; 2012 Salonen, Laitinen, Kaukonen, Tuura, Bjorkqvist, Heikkilä (bib26) 2005; 108 Lammers, Peschke, Kuhnlein, Subr, Ulbrich, Huber (bib42) 2006; 8 Jain, Woo, Gardner, Dahut, Kohn, Kummar (bib47) 2011; 72 Ruoslahti (10.1016/j.biomaterials.2015.01.008_bib4) 2002; 2 Santos (10.1016/j.biomaterials.2015.01.008_bib23) 2010; 6 Jain (10.1016/j.biomaterials.2015.01.008_bib47) 2011; 72 Sugahara (10.1016/j.biomaterials.2015.01.008_bib39) 2010; 328 Lallana (10.1016/j.biomaterials.2015.01.008_bib32) 2012; 29 Jewett (10.1016/j.biomaterials.2015.01.008_bib33) 2010; 39 Edwards (10.1016/j.biomaterials.2015.01.008_bib2) 2014; 120 Liu (10.1016/j.biomaterials.2015.01.008_bib21) 2013; 170 Awada (10.1016/j.biomaterials.2015.01.008_bib45) 2005; 92 Bimbo (10.1016/j.biomaterials.2015.01.008_bib6) 2010; 4 Li (10.1016/j.biomaterials.2015.01.008_bib14) 2014; 35 Lammers (10.1016/j.biomaterials.2015.01.008_bib42) 2006; 8 Ryu (10.1016/j.biomaterials.2015.01.008_bib5) 2014; 190 Cutler (10.1016/j.biomaterials.2015.01.008_bib8) 2013; 113 Rytkönen (10.1016/j.biomaterials.2015.01.008_bib24) 2012; 2012 Kaasalainen (10.1016/j.biomaterials.2015.01.008_bib25) 2012; 431 Manova (10.1016/j.biomaterials.2015.01.008_bib35) 2012; 28 Sawoo (10.1016/j.biomaterials.2015.01.008_bib34) 2008; 7 Jarvis (10.1016/j.biomaterials.2015.01.008_bib28) 2011; 363 Lee (10.1016/j.biomaterials.2015.01.008_bib36) 2013; 10 Nichols (10.1016/j.biomaterials.2015.01.008_bib41) 2014; 190C Couvreur (10.1016/j.biomaterials.2015.01.008_bib10) 2013; 65 Huang (10.1016/j.biomaterials.2015.01.008_bib44) 2002; 62 Ravandi (10.1016/j.biomaterials.2015.01.008_bib46) 2010; 28 Shahbazi (10.1016/j.biomaterials.2015.01.008_bib18) 2013; 34 Sugahara (10.1016/j.biomaterials.2015.01.008_bib38) 2009; 16 Ruoslahti (10.1016/j.biomaterials.2015.01.008_bib3) 2010; 188 Bimbo (10.1016/j.biomaterials.2015.01.008_bib19) 2013; 7 Han (10.1016/j.biomaterials.2015.01.008_bib40) 2014; 9 Salonen (10.1016/j.biomaterials.2015.01.008_bib26) 2005; 108 Su (10.1016/j.biomaterials.2015.01.008_bib50) 2013; 34 Al-Jamal (10.1016/j.biomaterials.2015.01.008_bib37) 2012; 51 Santos (10.1016/j.biomaterials.2015.01.008_bib27) 2011; 8 Hong (10.1016/j.biomaterials.2015.01.008_bib7) 2014; 76 Zhang (10.1016/j.biomaterials.2015.01.008_bib15) 2014; 26 Liu (10.1016/j.biomaterials.2015.01.008_bib31) 2013; 7 Chen (10.1016/j.biomaterials.2015.01.008_bib13) 2014; 35 Bigini (10.1016/j.biomaterials.2015.01.008_bib12) 2014; 8 Sarparanta (10.1016/j.biomaterials.2015.01.008_bib30) 2011; 8 Xie (10.1016/j.biomaterials.2015.01.008_bib9) 2010; 62 Ferlay (10.1016/j.biomaterials.2015.01.008_bib1) 2013; 49 Bai (10.1016/j.biomaterials.2015.01.008_bib11) 2013; 34 Boudou-Rouquette (10.1016/j.biomaterials.2015.01.008_bib48) 2012; 7 Botchkina (10.1016/j.biomaterials.2015.01.008_bib49) 2013; 8 Sarparanta (10.1016/j.biomaterials.2015.01.008_bib22) 2012; 33 Bimbo (10.1016/j.biomaterials.2015.01.008_bib20) 2011; 32 Kinnari (10.1016/j.biomaterials.2015.01.008_bib16) 2013; 34 Liu (10.1016/j.biomaterials.2015.01.008_bib17) 2014; 10 Wang (10.1016/j.biomaterials.2015.01.008_bib29) 2014; 35 Kovalainen (10.1016/j.biomaterials.2015.01.008_bib43) 2013; 10 |
References_xml | – volume: 35 start-page: 3666 year: 2014 end-page: 3677 ident: bib14 article-title: Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging publication-title: Biomaterials – volume: 65 start-page: 21 year: 2013 end-page: 23 ident: bib10 article-title: Nanoparticles in drug delivery: past, present and future publication-title: Adv Drug Deliv Rev – volume: 8 start-page: 1799 year: 2011 end-page: 1806 ident: bib30 article-title: F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography publication-title: Mol Pharmacol – volume: 7 year: 2012 ident: bib48 article-title: Early sorafenib-induced toxicity is associated with drug exposure and UGTIA9 genetic polymorphism in patients with solid tumors: a preliminary study publication-title: PLoS One – volume: 29 start-page: 1 year: 2012 end-page: 34 ident: bib32 article-title: Click chemistry for drug delivery nanosystems publication-title: Pharm Res – volume: 34 start-page: 3523 year: 2013 end-page: 3533 ident: bib50 article-title: iRGD-coupled responsive fluorescent nanogel for targeted drug delivery publication-title: Biomaterials – volume: 10 start-page: 2029 year: 2014 end-page: 2038 ident: bib17 article-title: Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery publication-title: Small – volume: 28 start-page: 8651 year: 2012 end-page: 8663 ident: bib35 article-title: Copper-free click biofunctionalization of silicon nitride surfaces via strain-promoted alkyne-azide cycloaddition reactions publication-title: Langmuir – volume: 72 start-page: 294 year: 2011 end-page: 305 ident: bib47 article-title: Population pharmacokinetic analysis of sorafenib in patients with solid tumours publication-title: Br J Clin Pharmacol – volume: 92 start-page: 1855 year: 2005 end-page: 1861 ident: bib45 article-title: Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours publication-title: Br J Cancer – volume: 2012 start-page: 896562 year: 2012 ident: bib24 article-title: Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes publication-title: J Nanomater – volume: 8 start-page: 228 year: 2011 end-page: 249 ident: bib27 article-title: Multifunctional porous silicon for therapeutic drug delivery and imaging publication-title: Curr Drug Discov Technol – volume: 7 start-page: 6884 year: 2013 end-page: 6893 ident: bib19 article-title: Inhibition of influenza a virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles publication-title: ACS Nano – volume: 39 start-page: 1272 year: 2010 end-page: 1279 ident: bib33 article-title: Cu-free click cycloaddition reactions in chemical biology publication-title: Chem Soc Rev – volume: 190 start-page: 477 year: 2014 end-page: 484 ident: bib5 article-title: Theranostic nanoparticles for future personalized medicine publication-title: J Control Release – volume: 76 start-page: 2 year: 2014 end-page: 20 ident: bib7 article-title: New radiotracers for imaging of vascular targets in angiogenesis-related diseases publication-title: Adv Drug Deliv Rev – volume: 26 start-page: 4497 year: 2014 end-page: 4503 ident: bib15 article-title: Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix publication-title: Adv Mater – volume: 190C start-page: 451 year: 2014 end-page: 464 ident: bib41 article-title: EPR: evidence and fallacy publication-title: J Control Release – volume: 34 start-page: 9134 year: 2013 end-page: 9141 ident: bib16 article-title: Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy publication-title: Biomaterials – volume: 363 start-page: 327 year: 2011 end-page: 333 ident: bib28 article-title: Surface chemical modification to control molecular interactions with porous silicon publication-title: J Colloid Interface Sci – volume: 7 start-page: 6244 year: 2013 end-page: 6257 ident: bib31 article-title: Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior publication-title: ACS Nano – volume: 4 start-page: 3023 year: 2010 end-page: 3032 ident: bib6 article-title: Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats publication-title: ACS Nano – volume: 120 start-page: 1290 year: 2014 end-page: 1314 ident: bib2 article-title: Annual report to the nation on the status of cancer, 1975–2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer publication-title: Cancer – volume: 431 start-page: 230 year: 2012 end-page: 236 ident: bib25 article-title: Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations publication-title: Int J Pharm – volume: 9 start-page: 9 year: 2014 end-page: 209 ident: bib40 article-title: Enhanced localization of anticancer drug in tumor tissue using polyethylenimine-conjugated cationic liposomes publication-title: Nanoscale Res Lett – volume: 33 start-page: 3353 year: 2012 end-page: 3362 ident: bib22 article-title: The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems publication-title: Biomaterials – volume: 34 start-page: 7776 year: 2013 end-page: 7789 ident: bib18 article-title: The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility publication-title: Biomaterials – volume: 188 start-page: 759 year: 2010 end-page: 768 ident: bib3 article-title: Targeting of drugs and nanoparticles to tumors publication-title: J Cell Biol – volume: 28 start-page: 1856 year: 2010 end-page: 1862 ident: bib46 article-title: Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia publication-title: J Clin Oncol – volume: 8 start-page: 175 year: 2014 end-page: 187 ident: bib12 article-title: In vivo fate of avidin-nucleic acid nanoassemblies as multifunctional diagnostic tools publication-title: ACS Nano – volume: 8 start-page: 788 year: 2006 end-page: 795 ident: bib42 article-title: Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems publication-title: Neoplasia – volume: 2 start-page: 83 year: 2002 end-page: 90 ident: bib4 article-title: Specialization of tumour vasculature publication-title: Nat Rev Cancer – volume: 51 start-page: 6389 year: 2012 end-page: 6393 ident: bib37 article-title: Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile publication-title: Angew Chem Int Ed Engl – volume: 113 start-page: 858 year: 2013 end-page: 883 ident: bib8 article-title: Radiometals for combined imaging and therapy publication-title: Chem Rev – volume: 170 start-page: 268 year: 2013 end-page: 278 ident: bib21 article-title: Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles publication-title: J Control Release – volume: 10 start-page: 353 year: 2013 end-page: 359 ident: bib43 article-title: Development of porous silicon nanocarriers for parenteral peptide delivery publication-title: Mol Pharmacol – volume: 8 year: 2013 ident: bib49 article-title: Prostate cancer stem cell-targeted efficacy of a new-generation taxoid, SBT-1214 and novel polyenolic zinc-binding curcuminoid, CMC2.24 publication-title: PLoS One – volume: 62 start-page: 5720 year: 2002 end-page: 5726 ident: bib44 article-title: Inhibition of growth and metastasis of orthotopic human prostate cancer in athymic mice by combination therapy with pegylated interferon-alpha-2b and docetaxel publication-title: Cancer Res – volume: 16 start-page: 510 year: 2009 end-page: 520 ident: bib38 article-title: Tissue-penetrating delivery of compounds and nanoparticles into tumors publication-title: Cancer Cell – volume: 328 start-page: 1031 year: 2010 end-page: 1035 ident: bib39 article-title: Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs publication-title: Science – volume: 10 start-page: 2190 year: 2013 end-page: 2198 ident: bib36 article-title: Facile method to radiolabel glycol chitosan nanoparticles with Cu via copper-free click chemistry for microPET imaging publication-title: Mol Pharmacol – volume: 7 start-page: 5957 year: 2008 end-page: 5959 ident: bib34 article-title: A new bio-active surface for protein immobilisation via copper-free 'click' between azido SAM and alkynyl Fischer carbene complex publication-title: Chem Commun – volume: 62 start-page: 1064 year: 2010 end-page: 1079 ident: bib9 article-title: Nanoparticle-based theranostic agents publication-title: Adv Drug Deliv Rev – volume: 34 start-page: 6163 year: 2013 end-page: 6174 ident: bib11 article-title: Nanoparticle-mediated drug delivery to tumor neovasculature to combat P-gp expressing multidrug resistant cancer publication-title: Biomaterials – volume: 35 start-page: 2915 year: 2014 end-page: 2923 ident: bib13 article-title: Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy publication-title: Biomaterials – volume: 49 start-page: 1374 year: 2013 end-page: 1403 ident: bib1 article-title: Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012 publication-title: Eur J Cancer – volume: 108 start-page: 362 year: 2005 end-page: 374 ident: bib26 article-title: Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs publication-title: J Control Release – volume: 32 start-page: 9089 year: 2011 end-page: 9099 ident: bib20 article-title: Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles publication-title: Biomaterials – volume: 6 start-page: 2721 year: 2010 end-page: 2731 ident: bib23 article-title: In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size publication-title: Acta Biomater – volume: 35 start-page: 1257 year: 2014 end-page: 1266 ident: bib29 article-title: Copper-free azide-alkyne cycloaddition of targeting peptides to porous silicon nanoparticles for intracellular drug uptake publication-title: Biomaterials – volume: 10 start-page: 2190 year: 2013 ident: 10.1016/j.biomaterials.2015.01.008_bib36 article-title: Facile method to radiolabel glycol chitosan nanoparticles with Cu via copper-free click chemistry for microPET imaging publication-title: Mol Pharmacol doi: 10.1021/mp300601r – volume: 170 start-page: 268 year: 2013 ident: 10.1016/j.biomaterials.2015.01.008_bib21 article-title: Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles publication-title: J Control Release doi: 10.1016/j.jconrel.2013.05.036 – volume: 188 start-page: 759 year: 2010 ident: 10.1016/j.biomaterials.2015.01.008_bib3 article-title: Targeting of drugs and nanoparticles to tumors publication-title: J Cell Biol doi: 10.1083/jcb.200910104 – volume: 92 start-page: 1855 year: 2005 ident: 10.1016/j.biomaterials.2015.01.008_bib45 article-title: Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours publication-title: Br J Cancer doi: 10.1038/sj.bjc.6602584 – volume: 10 start-page: 2029 year: 2014 ident: 10.1016/j.biomaterials.2015.01.008_bib17 article-title: Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery publication-title: Small doi: 10.1002/smll.201303740 – volume: 4 start-page: 3023 year: 2010 ident: 10.1016/j.biomaterials.2015.01.008_bib6 article-title: Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats publication-title: ACS Nano doi: 10.1021/nn901657w – volume: 363 start-page: 327 year: 2011 ident: 10.1016/j.biomaterials.2015.01.008_bib28 article-title: Surface chemical modification to control molecular interactions with porous silicon publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2011.07.063 – volume: 431 start-page: 230 year: 2012 ident: 10.1016/j.biomaterials.2015.01.008_bib25 article-title: Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2012.04.059 – volume: 33 start-page: 3353 year: 2012 ident: 10.1016/j.biomaterials.2015.01.008_bib22 article-title: The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.01.029 – volume: 2012 start-page: 896562 year: 2012 ident: 10.1016/j.biomaterials.2015.01.008_bib24 article-title: Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes publication-title: J Nanomater doi: 10.1155/2012/896562 – volume: 7 start-page: 6884 year: 2013 ident: 10.1016/j.biomaterials.2015.01.008_bib19 article-title: Inhibition of influenza a virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles publication-title: ACS Nano doi: 10.1021/nn402062f – volume: 49 start-page: 1374 year: 2013 ident: 10.1016/j.biomaterials.2015.01.008_bib1 article-title: Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2012.12.027 – volume: 51 start-page: 6389 year: 2012 ident: 10.1016/j.biomaterials.2015.01.008_bib37 article-title: Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201201991 – volume: 28 start-page: 8651 year: 2012 ident: 10.1016/j.biomaterials.2015.01.008_bib35 article-title: Copper-free click biofunctionalization of silicon nitride surfaces via strain-promoted alkyne-azide cycloaddition reactions publication-title: Langmuir doi: 10.1021/la300921e – volume: 108 start-page: 362 year: 2005 ident: 10.1016/j.biomaterials.2015.01.008_bib26 article-title: Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs publication-title: J Control Release doi: 10.1016/j.jconrel.2005.08.017 – volume: 8 start-page: 228 year: 2011 ident: 10.1016/j.biomaterials.2015.01.008_bib27 article-title: Multifunctional porous silicon for therapeutic drug delivery and imaging publication-title: Curr Drug Discov Technol doi: 10.2174/157016311796799053 – volume: 35 start-page: 3666 year: 2014 ident: 10.1016/j.biomaterials.2015.01.008_bib14 article-title: Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.01.011 – volume: 62 start-page: 5720 year: 2002 ident: 10.1016/j.biomaterials.2015.01.008_bib44 article-title: Inhibition of growth and metastasis of orthotopic human prostate cancer in athymic mice by combination therapy with pegylated interferon-alpha-2b and docetaxel publication-title: Cancer Res – volume: 34 start-page: 3523 year: 2013 ident: 10.1016/j.biomaterials.2015.01.008_bib50 article-title: iRGD-coupled responsive fluorescent nanogel for targeted drug delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.01.083 – volume: 35 start-page: 2915 year: 2014 ident: 10.1016/j.biomaterials.2015.01.008_bib13 article-title: Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.12.046 – volume: 328 start-page: 1031 year: 2010 ident: 10.1016/j.biomaterials.2015.01.008_bib39 article-title: Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs publication-title: Science doi: 10.1126/science.1183057 – volume: 190C start-page: 451 year: 2014 ident: 10.1016/j.biomaterials.2015.01.008_bib41 article-title: EPR: evidence and fallacy publication-title: J Control Release doi: 10.1016/j.jconrel.2014.03.057 – volume: 7 start-page: 6244 year: 2013 ident: 10.1016/j.biomaterials.2015.01.008_bib31 article-title: Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior publication-title: ACS Nano doi: 10.1021/nn402201w – volume: 32 start-page: 9089 year: 2011 ident: 10.1016/j.biomaterials.2015.01.008_bib20 article-title: Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.08.011 – volume: 76 start-page: 2 year: 2014 ident: 10.1016/j.biomaterials.2015.01.008_bib7 article-title: New radiotracers for imaging of vascular targets in angiogenesis-related diseases publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2014.07.011 – volume: 120 start-page: 1290 year: 2014 ident: 10.1016/j.biomaterials.2015.01.008_bib2 article-title: Annual report to the nation on the status of cancer, 1975–2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer publication-title: Cancer doi: 10.1002/cncr.28509 – volume: 2 start-page: 83 year: 2002 ident: 10.1016/j.biomaterials.2015.01.008_bib4 article-title: Specialization of tumour vasculature publication-title: Nat Rev Cancer doi: 10.1038/nrc724 – volume: 35 start-page: 1257 year: 2014 ident: 10.1016/j.biomaterials.2015.01.008_bib29 article-title: Copper-free azide-alkyne cycloaddition of targeting peptides to porous silicon nanoparticles for intracellular drug uptake publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.10.065 – volume: 34 start-page: 6163 year: 2013 ident: 10.1016/j.biomaterials.2015.01.008_bib11 article-title: Nanoparticle-mediated drug delivery to tumor neovasculature to combat P-gp expressing multidrug resistant cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.04.062 – volume: 113 start-page: 858 year: 2013 ident: 10.1016/j.biomaterials.2015.01.008_bib8 article-title: Radiometals for combined imaging and therapy publication-title: Chem Rev doi: 10.1021/cr3003104 – volume: 6 start-page: 2721 year: 2010 ident: 10.1016/j.biomaterials.2015.01.008_bib23 article-title: In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size publication-title: Acta Biomater doi: 10.1016/j.actbio.2009.12.043 – volume: 34 start-page: 9134 year: 2013 ident: 10.1016/j.biomaterials.2015.01.008_bib16 article-title: Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.08.034 – volume: 29 start-page: 1 year: 2012 ident: 10.1016/j.biomaterials.2015.01.008_bib32 article-title: Click chemistry for drug delivery nanosystems publication-title: Pharm Res doi: 10.1007/s11095-011-0568-5 – volume: 190 start-page: 477 year: 2014 ident: 10.1016/j.biomaterials.2015.01.008_bib5 article-title: Theranostic nanoparticles for future personalized medicine publication-title: J Control Release doi: 10.1016/j.jconrel.2014.04.027 – volume: 65 start-page: 21 year: 2013 ident: 10.1016/j.biomaterials.2015.01.008_bib10 article-title: Nanoparticles in drug delivery: past, present and future publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2012.04.010 – volume: 9 start-page: 9 year: 2014 ident: 10.1016/j.biomaterials.2015.01.008_bib40 article-title: Enhanced localization of anticancer drug in tumor tissue using polyethylenimine-conjugated cationic liposomes publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-9-209 – volume: 7 start-page: 5957 year: 2008 ident: 10.1016/j.biomaterials.2015.01.008_bib34 article-title: A new bio-active surface for protein immobilisation via copper-free 'click' between azido SAM and alkynyl Fischer carbene complex publication-title: Chem Commun doi: 10.1039/b813296h – volume: 39 start-page: 1272 year: 2010 ident: 10.1016/j.biomaterials.2015.01.008_bib33 article-title: Cu-free click cycloaddition reactions in chemical biology publication-title: Chem Soc Rev doi: 10.1039/b901970g – volume: 72 start-page: 294 year: 2011 ident: 10.1016/j.biomaterials.2015.01.008_bib47 article-title: Population pharmacokinetic analysis of sorafenib in patients with solid tumours publication-title: Br J Clin Pharmacol doi: 10.1111/j.1365-2125.2011.03963.x – volume: 34 start-page: 7776 year: 2013 ident: 10.1016/j.biomaterials.2015.01.008_bib18 article-title: The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.06.052 – volume: 16 start-page: 510 year: 2009 ident: 10.1016/j.biomaterials.2015.01.008_bib38 article-title: Tissue-penetrating delivery of compounds and nanoparticles into tumors publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.10.013 – volume: 8 year: 2013 ident: 10.1016/j.biomaterials.2015.01.008_bib49 article-title: Prostate cancer stem cell-targeted efficacy of a new-generation taxoid, SBT-1214 and novel polyenolic zinc-binding curcuminoid, CMC2.24 publication-title: PLoS One doi: 10.1371/journal.pone.0069884 – volume: 26 start-page: 4497 year: 2014 ident: 10.1016/j.biomaterials.2015.01.008_bib15 article-title: Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix publication-title: Adv Mater doi: 10.1002/adma.201400953 – volume: 8 start-page: 1799 year: 2011 ident: 10.1016/j.biomaterials.2015.01.008_bib30 article-title: 18F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography publication-title: Mol Pharmacol doi: 10.1021/mp2001654 – volume: 62 start-page: 1064 year: 2010 ident: 10.1016/j.biomaterials.2015.01.008_bib9 article-title: Nanoparticle-based theranostic agents publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2010.07.009 – volume: 10 start-page: 353 year: 2013 ident: 10.1016/j.biomaterials.2015.01.008_bib43 article-title: Development of porous silicon nanocarriers for parenteral peptide delivery publication-title: Mol Pharmacol doi: 10.1021/mp300494p – volume: 8 start-page: 175 year: 2014 ident: 10.1016/j.biomaterials.2015.01.008_bib12 article-title: In vivo fate of avidin-nucleic acid nanoassemblies as multifunctional diagnostic tools publication-title: ACS Nano doi: 10.1021/nn402669w – volume: 7 year: 2012 ident: 10.1016/j.biomaterials.2015.01.008_bib48 article-title: Early sorafenib-induced toxicity is associated with drug exposure and UGTIA9 genetic polymorphism in patients with solid tumors: a preliminary study publication-title: PLoS One doi: 10.1371/journal.pone.0042875 – volume: 8 start-page: 788 year: 2006 ident: 10.1016/j.biomaterials.2015.01.008_bib42 article-title: Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems publication-title: Neoplasia doi: 10.1593/neo.06436 – volume: 28 start-page: 1856 year: 2010 ident: 10.1016/j.biomaterials.2015.01.008_bib46 article-title: Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia publication-title: J Clin Oncol doi: 10.1200/JCO.2009.25.4888 |
SSID | ssj0014042 |
Score | 2.517675 |
Snippet | Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a... Abstract Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108 |
SubjectTerms | Advanced Basic Science Angiogenesis Inhibitors - administration & dosage Animals Biocompatibility Biomedical materials Cancer therapy Cell Line, Tumor cycloaddition reactions Dentistry Drugs fluorescent antibody technique fluorescent dyes fluorescent labeling Humans hydrophobicity image analysis intravenous injection Male mice Mice, Nude monitoring nanocarriers Nanoparticles Nanostructure neoplasms Neoplasms - diagnosis Neoplasms - therapy Niacinamide - administration & dosage Niacinamide - analogs & derivatives Phenylurea Compounds - administration & dosage photons Porous silicon Porous silicon nanoparticles precision medicine radiolabeling silicon Silicon - therapeutic use Sorafenib Surface multifunctionalization Surgical implants Targeting drug delivery Theranostic Nanomedicine Theranostics Tomography Tumors |
Title | Multifunctional porous silicon nanoparticles for cancer theranostics |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961215000253 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961215000253 https://dx.doi.org/10.1016/j.biomaterials.2015.01.008 https://www.ncbi.nlm.nih.gov/pubmed/25701036 https://www.proquest.com/docview/1658424783 https://www.proquest.com/docview/1701482932 https://www.proquest.com/docview/1709731366 https://www.proquest.com/docview/2101337448 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CCqU5lDZp0-0jOJCrs9bDlkTpIaQN24bklEBuwrJk2BK8S3Z77W_vjCwvKd0NC70aDbZHI8030sw3ACcY82CIpkweWqNzWbsy14KJXHjmuWplWQYqFL66ria38sddebcD50MtDKVVpr2_39Pjbp2ejJM2x_PpdExpSdwQARZx-vOSGD-lVGTlp79XaR7EHsP7NEae0-iBeDTmeFGJe73sp5rSvHoKT2o1ud5JbQKh0RldvIKXCUVmZ_2Hvoad0O3D3iNuwX14fpVuzQ_ga6yyJQ_WH_xliLkx4M8W03u0gy7r6g5D55QhlyGKzRqyhYcsFmd1s0jl_AZuL77dnE_y1D0hb0ojlhhhstYXpafG8EXLmPKmRezig1fKadl4WUlXCO4Zcz64SvNG69bIirVGNbIRb2G3m3XhHWS-1q71ugoBHb7ShakxDHGqqRGcKOHUCMygLtskanHqcHFvhxyyn_axqi2p2hbMoqpHIFay855gYyupz8Os2KGEFDc9i35gK2m1Tjos0vpdWGYX3Bb2HxsbwZeV5F9muvWbjwcTsriO6XKm7gJOuWUEBUm74okxis5_EaDxJ8dQNzJRVZvHYJjPhFAYmY_gsLfjle6pqyFDWPP-P__0A7yILLfxtOoj7C4ffoVPiN-W7igu0CN4dvb9cnL9B1bVRsU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4ICgUwtNIcDTxPuzdFeoBUaqUNj21Um-L7V1LQZVT1akQF_4Uf5AZ7zoqoq0ioV6TnWQ9O575xp75BuAd5jyYoimT-sboVJZVnmrBRCocc1w1Ms89NQpPD4rJkfx6nB-vwe-hF4bKKqPvDz6999bxk3HU5vh0NhtTWRI3RIBFnP48HyZY7_mfPzBv67Z2t_GQ33O-8-Xw8ySNowXSOjdigekXa1yWO5qanjWMKWcaDOzOO6UqLWsnC1llgjvGKuerQvNa68bIgjVG1bIW-Lu34LZEd0FjEz78WtaVEF0ND3WTPKXtDUynfVEZ9dSXi2BbVFcWOENptuXlUfEq1NtHv52H8CDC1uRT0MwjWPPtBty_QGa4AXem8TX9Y9ju23opZIYnjQmC_Pl5l3SzEzS8NmnLFnP1WJKXIGxOajK-s6TvBmvnPXf0Ezi6EZ1uwno7b_0zSFypq8bpwntEGEpnpsS8p1J1iWhIiUqNwAzqsnXkMqeRGid2KFr7bi-q2pKqbcYsqnoEYil7Ghg9VpL6OJyKHXpW0ctaDDwrSavLpH0XHUZnme24zew_Rj2CraXkX_fFyv_8djAhi46D3gaVrccjt4ywJ2lXXLNG0QNnRIT82jU0_kwUxdVrOO5SCCUl7udpsOOl7mmMIkMc9fw_r_QN3J0cTvft_u7B3gu4R9-ECquXsL44O_evEDwuqtf9zZrAt5v2Dn8AuOyB_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+porous+silicon+nanoparticles+for+cancer+theranostics&rft.jtitle=Biomaterials&rft.au=Wang%2C+Chang-Fang&rft.au=Sarparanta%2C+Mirkka+P&rft.au=Maekilae%2C+Ermei+M&rft.au=Hyvonen%2C+Maija+LK&rft.date=2015-04-01&rft.issn=0142-9612&rft.volume=48&rft.spage=108&rft.epage=118&rft_id=info:doi/10.1016%2Fj.biomaterials.2015.01.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961215X00056%2Fcov150h.gif |