Multifunctional porous silicon nanoparticles for cancer theranostics

Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocycloo...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 48; pp. 108 - 118
Main Authors Wang, Chang-Fang, Sarparanta, Mirkka P., Mäkilä, Ermei M., Hyvönen, Maija L.K., Laakkonen, Pirjo M., Salonen, Jarno J., Hirvonen, Jouni T., Airaksinen, Anu J., Santos, Hélder A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with 111In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development.
AbstractList Abstract Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with111 In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo . Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development.
Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with 111In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development.
Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with 111In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development.
Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with (111)In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development.
Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with ¹¹¹In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development.
Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with (111)In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development.Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with (111)In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development.
Author Salonen, Jarno J.
Airaksinen, Anu J.
Hyvönen, Maija L.K.
Laakkonen, Pirjo M.
Santos, Hélder A.
Hirvonen, Jouni T.
Mäkilä, Ermei M.
Wang, Chang-Fang
Sarparanta, Mirkka P.
Author_xml – sequence: 1
  givenname: Chang-Fang
  surname: Wang
  fullname: Wang, Chang-Fang
  organization: Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 2
  givenname: Mirkka P.
  surname: Sarparanta
  fullname: Sarparanta, Mirkka P.
  organization: Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 3
  givenname: Ermei M.
  surname: Mäkilä
  fullname: Mäkilä, Ermei M.
  organization: Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 4
  givenname: Maija L.K.
  surname: Hyvönen
  fullname: Hyvönen, Maija L.K.
  organization: Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 5
  givenname: Pirjo M.
  surname: Laakkonen
  fullname: Laakkonen, Pirjo M.
  organization: Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 6
  givenname: Jarno J.
  surname: Salonen
  fullname: Salonen, Jarno J.
  organization: Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
– sequence: 7
  givenname: Jouni T.
  surname: Hirvonen
  fullname: Hirvonen, Jouni T.
  organization: Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 8
  givenname: Anu J.
  surname: Airaksinen
  fullname: Airaksinen, Anu J.
  email: anu.airaksinen@helsinki.fi
  organization: Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 9
  givenname: Hélder A.
  surname: Santos
  fullname: Santos, Hélder A.
  email: helder.santos@helsinki.fi
  organization: Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25701036$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFv4AiTlwSZhw7djggSsuXVMQBOFuO7QgvWXuxE6T-exxtK6FKqHuyLD_zejTPnJGTEIMj5AVCg4Ddq20z-LjTs0teT7mhgLwBbADkI7JBKWTNe-AnZAPIaN13SE_JWc5bKHdg9Ak5pVwAQtttyNWXZZr9uAQz-xj0VO1jikuusp-8iaEKOsS9TrM3k8vVGFNldDAuVfNPl8pbLi_5KXk8lk7cs9vznPz48P775af6-uvHz5cX17XhfTvXnOJogduOMwkjorD9iLy3zgoxSGYs69gALbWIg3VDJ6mRcuxZh2MvDDPtOXl5yN2n-HtxeVY7n42bJh1caVrRMp62FYzJB1EU0IsW2647BkUmad_Sh9GOS0aZkG1Bn9-iy7BzVu2T3-l0o-5GX4C3B8CkmHNyozJ-1quFOWk_KQS12lZb9a9ttdpWgKrYLhGv70Xc_XJU8dWh2BVjf7xLKhvvilvrkzOzstEfF_PmXoyZfPBGT7_cjcvbuKSw1qDKVIH6tu7kupLIAYDydVDv_h9wbBd_AUkK9_c
CitedBy_id crossref_primary_10_1002_adtp_201800013
crossref_primary_10_1021_acs_nanolett_7b05210
crossref_primary_10_3390_pharmaceutics11120686
crossref_primary_10_1021_acs_chemrev_1c00484
crossref_primary_10_1039_C9TB02340B
crossref_primary_10_1002_adma_202008226
crossref_primary_10_1016_j_msec_2017_07_009
crossref_primary_10_1039_C6RA27102B
crossref_primary_10_1364_OL_503636
crossref_primary_10_1021_acsami_9b07980
crossref_primary_10_1016_j_nantod_2021_101146
crossref_primary_10_1002_adtp_201800095
crossref_primary_10_1021_acsnano_9b05740
crossref_primary_10_1111_jphp_13092
crossref_primary_10_1088_1742_6596_1439_1_012047
crossref_primary_10_1016_j_micromeso_2020_110673
crossref_primary_10_1007_s40005_017_0374_0
crossref_primary_10_3390_surfaces3030027
crossref_primary_10_1002_adma_201703740
crossref_primary_10_1002_adfm_202002560
crossref_primary_10_1021_acsnano_8b01440
crossref_primary_10_1039_D0BM01881C
crossref_primary_10_1016_j_biopha_2016_09_035
crossref_primary_10_3390_polym12091906
crossref_primary_10_1016_j_addr_2016_03_008
crossref_primary_10_1016_j_addr_2021_01_012
crossref_primary_10_1007_s10544_018_0313_5
crossref_primary_10_1016_j_biomaterials_2019_119556
crossref_primary_10_3390_nano10030463
crossref_primary_10_1016_j_ejpb_2017_10_014
crossref_primary_10_1039_C6TB00215C
crossref_primary_10_2217_nnm_2016_0207
crossref_primary_10_1016_j_biomaterials_2019_119553
crossref_primary_10_1002_adma_201604634
crossref_primary_10_1016_j_jddst_2024_106432
crossref_primary_10_1002_adhm_202101428
crossref_primary_10_1039_C5RA17101F
crossref_primary_10_1021_acs_jpcc_7b07283
crossref_primary_10_1016_j_biotechadv_2018_08_001
crossref_primary_10_1021_acsami_6b12481
crossref_primary_10_1039_D1BM00167A
crossref_primary_10_1016_j_ejps_2017_03_039
crossref_primary_10_4155_ppa_2016_0042
crossref_primary_10_1021_acsami_4c18296
crossref_primary_10_1039_C7TB02614E
crossref_primary_10_1021_acsami_6b09518
crossref_primary_10_1016_j_ejpb_2020_11_022
crossref_primary_10_3390_molecules28104122
crossref_primary_10_1016_j_biopha_2022_112672
crossref_primary_10_1002_EXP_20230037
crossref_primary_10_1021_acs_chemrev_0c00779
crossref_primary_10_1021_acs_analchem_8b01580
crossref_primary_10_3390_pharmaceutics11120634
crossref_primary_10_1002_anie_201610162
crossref_primary_10_1016_j_addr_2020_07_017
crossref_primary_10_1016_j_nucmedbio_2020_04_001
crossref_primary_10_1021_acsami_6b11127
crossref_primary_10_1039_C9RA05299B
crossref_primary_10_1039_D0NH00077A
crossref_primary_10_1002_adhm_201800552
crossref_primary_10_1016_j_nantod_2019_100800
crossref_primary_10_1155_2019_9367845
crossref_primary_10_1039_C7RA02883K
crossref_primary_10_1002_adma_201703651
crossref_primary_10_3389_fchem_2018_00539
crossref_primary_10_1016_j_pmatsci_2019_03_003
crossref_primary_10_1002_smll_201600635
crossref_primary_10_1186_s12951_022_01489_4
crossref_primary_10_1002_adma_201703819
crossref_primary_10_1039_C7ME00050B
crossref_primary_10_1002_adhm_201700258
crossref_primary_10_1002_ange_201610162
crossref_primary_10_1016_j_jallcom_2016_02_189
crossref_primary_10_1002_macp_201900248
crossref_primary_10_1002_smll_201800131
crossref_primary_10_3389_fbioe_2022_1001899
crossref_primary_10_3390_pharmaceutics10040283
crossref_primary_10_1016_j_biomaterials_2016_12_034
crossref_primary_10_1002_adtp_202000165
crossref_primary_10_1155_2019_3728563
crossref_primary_10_1002_adhm_201900948
crossref_primary_10_2217_nnm_2022_0017
crossref_primary_10_1039_C9TB01042D
crossref_primary_10_3892_mmr_2017_6419
crossref_primary_10_3390_ma11122557
crossref_primary_10_1016_j_jconrel_2017_09_016
crossref_primary_10_1139_cjc_2020_0087
crossref_primary_10_1080_17425247_2016_1229298
crossref_primary_10_1038_s41420_023_01778_3
crossref_primary_10_1371_journal_pone_0144613
crossref_primary_10_2217_nnm_2017_0023
crossref_primary_10_1039_C6TB01829G
crossref_primary_10_1039_C6TB01978A
crossref_primary_10_1186_s41181_024_00295_7
crossref_primary_10_1002_adhm_201601009
crossref_primary_10_1002_admi_202102325
crossref_primary_10_1016_j_biomaterials_2016_03_046
crossref_primary_10_1002_adhm_201500588
crossref_primary_10_1016_j_bioadv_2022_213206
crossref_primary_10_1016_j_jddst_2023_105301
crossref_primary_10_1039_D1CS01022K
crossref_primary_10_2217_nnm_15_106
crossref_primary_10_1002_adhm_201700432
crossref_primary_10_1021_acsomega_3c05069
crossref_primary_10_1007_s40336_018_0283_x
crossref_primary_10_1039_D1NR03263A
crossref_primary_10_1021_acsami_7b02196
crossref_primary_10_1002_adhm_201600688
crossref_primary_10_2217_nnm_2017_0034
crossref_primary_10_1039_D0BM00649A
crossref_primary_10_1016_j_bios_2020_112787
crossref_primary_10_1002_smll_201701276
crossref_primary_10_1007_s11481_016_9685_6
crossref_primary_10_1021_acs_langmuir_8b02812
crossref_primary_10_1080_10717544_2023_2183815
Cites_doi 10.1021/mp300601r
10.1016/j.jconrel.2013.05.036
10.1083/jcb.200910104
10.1038/sj.bjc.6602584
10.1002/smll.201303740
10.1021/nn901657w
10.1016/j.jcis.2011.07.063
10.1016/j.ijpharm.2012.04.059
10.1016/j.biomaterials.2012.01.029
10.1155/2012/896562
10.1021/nn402062f
10.1016/j.ejca.2012.12.027
10.1002/anie.201201991
10.1021/la300921e
10.1016/j.jconrel.2005.08.017
10.2174/157016311796799053
10.1016/j.biomaterials.2014.01.011
10.1016/j.biomaterials.2013.01.083
10.1016/j.biomaterials.2013.12.046
10.1126/science.1183057
10.1016/j.jconrel.2014.03.057
10.1021/nn402201w
10.1016/j.biomaterials.2011.08.011
10.1016/j.addr.2014.07.011
10.1002/cncr.28509
10.1038/nrc724
10.1016/j.biomaterials.2013.10.065
10.1016/j.biomaterials.2013.04.062
10.1021/cr3003104
10.1016/j.actbio.2009.12.043
10.1016/j.biomaterials.2013.08.034
10.1007/s11095-011-0568-5
10.1016/j.jconrel.2014.04.027
10.1016/j.addr.2012.04.010
10.1186/1556-276X-9-209
10.1039/b813296h
10.1039/b901970g
10.1111/j.1365-2125.2011.03963.x
10.1016/j.biomaterials.2013.06.052
10.1016/j.ccr.2009.10.013
10.1371/journal.pone.0069884
10.1002/adma.201400953
10.1021/mp2001654
10.1016/j.addr.2010.07.009
10.1021/mp300494p
10.1021/nn402669w
10.1371/journal.pone.0042875
10.1593/neo.06436
10.1200/JCO.2009.25.4888
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7S9
L.6
DOI 10.1016/j.biomaterials.2015.01.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database

MEDLINE
Engineering Research Database
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 118
ExternalDocumentID 25701036
10_1016_j_biomaterials_2015_01_008
S0142961215000253
1_s2_0_S0142961215000253
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 310892
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c593t-521fd05d65480f117d9f159ded77b84cd464b032d11bdeb682c88f9461f97c4c3
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Tue Aug 05 10:40:10 EDT 2025
Wed Jul 30 11:15:18 EDT 2025
Fri Jul 11 01:48:21 EDT 2025
Fri Jul 11 14:45:19 EDT 2025
Mon Jul 21 05:56:59 EDT 2025
Tue Aug 05 11:59:01 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Fri Feb 23 02:31:34 EST 2024
Sun Feb 23 10:18:54 EST 2025
Tue Aug 26 17:19:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Surface multifunctionalization
Porous silicon nanoparticles
Targeting drug delivery
Theranostics
Cancer therapy
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c593t-521fd05d65480f117d9f159ded77b84cd464b032d11bdeb682c88f9461f97c4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25701036
PQID 1658424783
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2101337448
proquest_miscellaneous_1709731366
proquest_miscellaneous_1701482932
proquest_miscellaneous_1658424783
pubmed_primary_25701036
crossref_citationtrail_10_1016_j_biomaterials_2015_01_008
crossref_primary_10_1016_j_biomaterials_2015_01_008
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2015_01_008
elsevier_clinicalkeyesjournals_1_s2_0_S0142961215000253
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2015_01_008
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, He, Sun, Luo, Cai, Pan (bib14) 2014; 35
Couvreur (bib10) 2013; 65
Zhang, Liu, Shahbazi, Mäkilä, Herranz-Blanco, Salonen (bib15) 2014; 26
Jarvis, Barnes, Prestidge (bib28) 2011; 363
Liu, Chen, Li, Huang, Jin, Ren (bib31) 2013; 7
Wang, Mäkilä, Kaasalainen, Liu, Sarparanta, Airaksinen (bib29) 2014; 35
Bimbo, Mäkilä, Raula, Laaksonen, Laaksonen, Strommer (bib20) 2011; 32
Ruoslahti (bib4) 2002; 2
Ruoslahti, Bhatia, Sailor (bib3) 2010; 188
Xie, Lee, Chen (bib9) 2010; 62
Bimbo, Sarparanta, Santos, Airaksinen, Mäkilä, Laaksonen (bib6) 2010; 4
Kovalainen, Mönkäre, Kaasalainen, Riikonen, Lehto, Salonen (bib43) 2013; 10
Boudou-Rouquette, Narjoz, Golmard, Thomas-Schoemann, Mir, Taieb (bib48) 2012; 7
Bimbo, Denisova, Mäkilä, Kaasalainen, De Brabander, Hirvonen (bib19) 2013; 7
Ravandi, Cortes, Jones, Faderl, Garcia-Manero, Konopleva (bib46) 2010; 28
Nichols, Bae (bib41) 2014; 190C
Huang, Kim, Lee, Karashima, Bucana, Kedar (bib44) 2002; 62
Sawoo, Dutta, Chakraborty, Mukhopadhyay, Bouloussa, Sarkar (bib34) 2008; 7
Bai, Wang, Lu, Zhao, Ban, Yu (bib11) 2013; 34
Kaasalainen, Mäkilä, Riikonen, Kovalainen, Järvinen, Herzig (bib25) 2012; 431
Ferlay, Steliarova-Foucher, Lortet-Tieulent, Rosso, Coebergh, Comber (bib1) 2013; 49
Sugahara, Teesalu, Karmali, Kotamraju, Agemy, Greenwald (bib39) 2010; 328
Liu, Zhang, Herranz-Blanco, Mäkilä, Lehto, Salonen (bib17) 2014; 10
Santos, Riikonen, Salonen, Mäkilä, Heikkilä, Laaksonen (bib23) 2010; 6
Awada, Hendlisz, Gil, Bartholomeus, Mano, de Valeriola (bib45) 2005; 92
Kinnari, Hyvonen, Mäkilä, Kaasalainen, Rivinoja, Salonen (bib16) 2013; 34
Sarparanta, Bimbo, Mäkilä, Salonen, Laaksonen, Helariutta (bib22) 2012; 33
Ryu, Lee, Son, Kim, Leary, Choi (bib5) 2014; 190
Shahbazi, Hamidi, Mäkilä, Zhang, Almeida, Kaasalainen (bib18) 2013; 34
Liu, Bimbo, Mäkilä, Villanova, Kaasalainen, Herranz-Blanco (bib21) 2013; 170
Hong, Chen, Zhang, Cai (bib7) 2014; 76
Lee, Na, Lee, Kang, Kim, Han (bib36) 2013; 10
Su, Wang, Liu, Wu, Nie (bib50) 2013; 34
Santos, Bimbo, Lehto, Airaksinen, Salonen, Hirvonen (bib27) 2011; 8
Han, Byeon, Jeon, Shin (bib40) 2014; 9
Lallana, Sousa-Herves, Fernandez-Trillo, Riguera, Fernandez-Megia (bib32) 2012; 29
Cutler, Hennkens, Sisay, Huclier-Markai, Jurisson (bib8) 2013; 113
Edwards, Noone, Mariotto, Simard, Boscoe, Henley (bib2) 2014; 120
Sugahara, Teesalu, Karmali, Kotamraju, Agemy, Girard (bib38) 2009; 16
Sarparanta, Mäkilä, Heikkilä, Salonen, Kukk, Lehto (bib30) 2011; 8
Botchkina, Zuniga, Rowehl, Park, Bhalla, Bialkowska (bib49) 2013; 8
Al-Jamal, Nunes, Methven, Ali-Boucetta, Li, Toma (bib37) 2012; 51
Manova, Pujari, Weijers, Zuilhof, van Beek (bib35) 2012; 28
Bigini, Previdi, Casarin, Silvestri, Violatto, Facchin (bib12) 2014; 8
Chen, Wang, Cheng, He, Cheng, Liu (bib13) 2014; 35
Jewett, Bertozzi (bib33) 2010; 39
Rytkönen, Miettinen, Kaasalainen, Lehto, Salonen, Närvänen (bib24) 2012; 2012
Salonen, Laitinen, Kaukonen, Tuura, Bjorkqvist, Heikkilä (bib26) 2005; 108
Lammers, Peschke, Kuhnlein, Subr, Ulbrich, Huber (bib42) 2006; 8
Jain, Woo, Gardner, Dahut, Kohn, Kummar (bib47) 2011; 72
Ruoslahti (10.1016/j.biomaterials.2015.01.008_bib4) 2002; 2
Santos (10.1016/j.biomaterials.2015.01.008_bib23) 2010; 6
Jain (10.1016/j.biomaterials.2015.01.008_bib47) 2011; 72
Sugahara (10.1016/j.biomaterials.2015.01.008_bib39) 2010; 328
Lallana (10.1016/j.biomaterials.2015.01.008_bib32) 2012; 29
Jewett (10.1016/j.biomaterials.2015.01.008_bib33) 2010; 39
Edwards (10.1016/j.biomaterials.2015.01.008_bib2) 2014; 120
Liu (10.1016/j.biomaterials.2015.01.008_bib21) 2013; 170
Awada (10.1016/j.biomaterials.2015.01.008_bib45) 2005; 92
Bimbo (10.1016/j.biomaterials.2015.01.008_bib6) 2010; 4
Li (10.1016/j.biomaterials.2015.01.008_bib14) 2014; 35
Lammers (10.1016/j.biomaterials.2015.01.008_bib42) 2006; 8
Ryu (10.1016/j.biomaterials.2015.01.008_bib5) 2014; 190
Cutler (10.1016/j.biomaterials.2015.01.008_bib8) 2013; 113
Rytkönen (10.1016/j.biomaterials.2015.01.008_bib24) 2012; 2012
Kaasalainen (10.1016/j.biomaterials.2015.01.008_bib25) 2012; 431
Manova (10.1016/j.biomaterials.2015.01.008_bib35) 2012; 28
Sawoo (10.1016/j.biomaterials.2015.01.008_bib34) 2008; 7
Jarvis (10.1016/j.biomaterials.2015.01.008_bib28) 2011; 363
Lee (10.1016/j.biomaterials.2015.01.008_bib36) 2013; 10
Nichols (10.1016/j.biomaterials.2015.01.008_bib41) 2014; 190C
Couvreur (10.1016/j.biomaterials.2015.01.008_bib10) 2013; 65
Huang (10.1016/j.biomaterials.2015.01.008_bib44) 2002; 62
Ravandi (10.1016/j.biomaterials.2015.01.008_bib46) 2010; 28
Shahbazi (10.1016/j.biomaterials.2015.01.008_bib18) 2013; 34
Sugahara (10.1016/j.biomaterials.2015.01.008_bib38) 2009; 16
Ruoslahti (10.1016/j.biomaterials.2015.01.008_bib3) 2010; 188
Bimbo (10.1016/j.biomaterials.2015.01.008_bib19) 2013; 7
Han (10.1016/j.biomaterials.2015.01.008_bib40) 2014; 9
Salonen (10.1016/j.biomaterials.2015.01.008_bib26) 2005; 108
Su (10.1016/j.biomaterials.2015.01.008_bib50) 2013; 34
Al-Jamal (10.1016/j.biomaterials.2015.01.008_bib37) 2012; 51
Santos (10.1016/j.biomaterials.2015.01.008_bib27) 2011; 8
Hong (10.1016/j.biomaterials.2015.01.008_bib7) 2014; 76
Zhang (10.1016/j.biomaterials.2015.01.008_bib15) 2014; 26
Liu (10.1016/j.biomaterials.2015.01.008_bib31) 2013; 7
Chen (10.1016/j.biomaterials.2015.01.008_bib13) 2014; 35
Bigini (10.1016/j.biomaterials.2015.01.008_bib12) 2014; 8
Sarparanta (10.1016/j.biomaterials.2015.01.008_bib30) 2011; 8
Xie (10.1016/j.biomaterials.2015.01.008_bib9) 2010; 62
Ferlay (10.1016/j.biomaterials.2015.01.008_bib1) 2013; 49
Bai (10.1016/j.biomaterials.2015.01.008_bib11) 2013; 34
Boudou-Rouquette (10.1016/j.biomaterials.2015.01.008_bib48) 2012; 7
Botchkina (10.1016/j.biomaterials.2015.01.008_bib49) 2013; 8
Sarparanta (10.1016/j.biomaterials.2015.01.008_bib22) 2012; 33
Bimbo (10.1016/j.biomaterials.2015.01.008_bib20) 2011; 32
Kinnari (10.1016/j.biomaterials.2015.01.008_bib16) 2013; 34
Liu (10.1016/j.biomaterials.2015.01.008_bib17) 2014; 10
Wang (10.1016/j.biomaterials.2015.01.008_bib29) 2014; 35
Kovalainen (10.1016/j.biomaterials.2015.01.008_bib43) 2013; 10
References_xml – volume: 35
  start-page: 3666
  year: 2014
  end-page: 3677
  ident: bib14
  article-title: Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging
  publication-title: Biomaterials
– volume: 65
  start-page: 21
  year: 2013
  end-page: 23
  ident: bib10
  article-title: Nanoparticles in drug delivery: past, present and future
  publication-title: Adv Drug Deliv Rev
– volume: 8
  start-page: 1799
  year: 2011
  end-page: 1806
  ident: bib30
  article-title: F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography
  publication-title: Mol Pharmacol
– volume: 7
  year: 2012
  ident: bib48
  article-title: Early sorafenib-induced toxicity is associated with drug exposure and UGTIA9 genetic polymorphism in patients with solid tumors: a preliminary study
  publication-title: PLoS One
– volume: 29
  start-page: 1
  year: 2012
  end-page: 34
  ident: bib32
  article-title: Click chemistry for drug delivery nanosystems
  publication-title: Pharm Res
– volume: 34
  start-page: 3523
  year: 2013
  end-page: 3533
  ident: bib50
  article-title: iRGD-coupled responsive fluorescent nanogel for targeted drug delivery
  publication-title: Biomaterials
– volume: 10
  start-page: 2029
  year: 2014
  end-page: 2038
  ident: bib17
  article-title: Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery
  publication-title: Small
– volume: 28
  start-page: 8651
  year: 2012
  end-page: 8663
  ident: bib35
  article-title: Copper-free click biofunctionalization of silicon nitride surfaces via strain-promoted alkyne-azide cycloaddition reactions
  publication-title: Langmuir
– volume: 72
  start-page: 294
  year: 2011
  end-page: 305
  ident: bib47
  article-title: Population pharmacokinetic analysis of sorafenib in patients with solid tumours
  publication-title: Br J Clin Pharmacol
– volume: 92
  start-page: 1855
  year: 2005
  end-page: 1861
  ident: bib45
  article-title: Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours
  publication-title: Br J Cancer
– volume: 2012
  start-page: 896562
  year: 2012
  ident: bib24
  article-title: Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes
  publication-title: J Nanomater
– volume: 8
  start-page: 228
  year: 2011
  end-page: 249
  ident: bib27
  article-title: Multifunctional porous silicon for therapeutic drug delivery and imaging
  publication-title: Curr Drug Discov Technol
– volume: 7
  start-page: 6884
  year: 2013
  end-page: 6893
  ident: bib19
  article-title: Inhibition of influenza a virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles
  publication-title: ACS Nano
– volume: 39
  start-page: 1272
  year: 2010
  end-page: 1279
  ident: bib33
  article-title: Cu-free click cycloaddition reactions in chemical biology
  publication-title: Chem Soc Rev
– volume: 190
  start-page: 477
  year: 2014
  end-page: 484
  ident: bib5
  article-title: Theranostic nanoparticles for future personalized medicine
  publication-title: J Control Release
– volume: 76
  start-page: 2
  year: 2014
  end-page: 20
  ident: bib7
  article-title: New radiotracers for imaging of vascular targets in angiogenesis-related diseases
  publication-title: Adv Drug Deliv Rev
– volume: 26
  start-page: 4497
  year: 2014
  end-page: 4503
  ident: bib15
  article-title: Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix
  publication-title: Adv Mater
– volume: 190C
  start-page: 451
  year: 2014
  end-page: 464
  ident: bib41
  article-title: EPR: evidence and fallacy
  publication-title: J Control Release
– volume: 34
  start-page: 9134
  year: 2013
  end-page: 9141
  ident: bib16
  article-title: Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy
  publication-title: Biomaterials
– volume: 363
  start-page: 327
  year: 2011
  end-page: 333
  ident: bib28
  article-title: Surface chemical modification to control molecular interactions with porous silicon
  publication-title: J Colloid Interface Sci
– volume: 7
  start-page: 6244
  year: 2013
  end-page: 6257
  ident: bib31
  article-title: Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior
  publication-title: ACS Nano
– volume: 4
  start-page: 3023
  year: 2010
  end-page: 3032
  ident: bib6
  article-title: Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats
  publication-title: ACS Nano
– volume: 120
  start-page: 1290
  year: 2014
  end-page: 1314
  ident: bib2
  article-title: Annual report to the nation on the status of cancer, 1975–2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer
  publication-title: Cancer
– volume: 431
  start-page: 230
  year: 2012
  end-page: 236
  ident: bib25
  article-title: Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations
  publication-title: Int J Pharm
– volume: 9
  start-page: 9
  year: 2014
  end-page: 209
  ident: bib40
  article-title: Enhanced localization of anticancer drug in tumor tissue using polyethylenimine-conjugated cationic liposomes
  publication-title: Nanoscale Res Lett
– volume: 33
  start-page: 3353
  year: 2012
  end-page: 3362
  ident: bib22
  article-title: The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems
  publication-title: Biomaterials
– volume: 34
  start-page: 7776
  year: 2013
  end-page: 7789
  ident: bib18
  article-title: The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility
  publication-title: Biomaterials
– volume: 188
  start-page: 759
  year: 2010
  end-page: 768
  ident: bib3
  article-title: Targeting of drugs and nanoparticles to tumors
  publication-title: J Cell Biol
– volume: 28
  start-page: 1856
  year: 2010
  end-page: 1862
  ident: bib46
  article-title: Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia
  publication-title: J Clin Oncol
– volume: 8
  start-page: 175
  year: 2014
  end-page: 187
  ident: bib12
  article-title: In vivo fate of avidin-nucleic acid nanoassemblies as multifunctional diagnostic tools
  publication-title: ACS Nano
– volume: 8
  start-page: 788
  year: 2006
  end-page: 795
  ident: bib42
  article-title: Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems
  publication-title: Neoplasia
– volume: 2
  start-page: 83
  year: 2002
  end-page: 90
  ident: bib4
  article-title: Specialization of tumour vasculature
  publication-title: Nat Rev Cancer
– volume: 51
  start-page: 6389
  year: 2012
  end-page: 6393
  ident: bib37
  article-title: Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile
  publication-title: Angew Chem Int Ed Engl
– volume: 113
  start-page: 858
  year: 2013
  end-page: 883
  ident: bib8
  article-title: Radiometals for combined imaging and therapy
  publication-title: Chem Rev
– volume: 170
  start-page: 268
  year: 2013
  end-page: 278
  ident: bib21
  article-title: Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles
  publication-title: J Control Release
– volume: 10
  start-page: 353
  year: 2013
  end-page: 359
  ident: bib43
  article-title: Development of porous silicon nanocarriers for parenteral peptide delivery
  publication-title: Mol Pharmacol
– volume: 8
  year: 2013
  ident: bib49
  article-title: Prostate cancer stem cell-targeted efficacy of a new-generation taxoid, SBT-1214 and novel polyenolic zinc-binding curcuminoid, CMC2.24
  publication-title: PLoS One
– volume: 62
  start-page: 5720
  year: 2002
  end-page: 5726
  ident: bib44
  article-title: Inhibition of growth and metastasis of orthotopic human prostate cancer in athymic mice by combination therapy with pegylated interferon-alpha-2b and docetaxel
  publication-title: Cancer Res
– volume: 16
  start-page: 510
  year: 2009
  end-page: 520
  ident: bib38
  article-title: Tissue-penetrating delivery of compounds and nanoparticles into tumors
  publication-title: Cancer Cell
– volume: 328
  start-page: 1031
  year: 2010
  end-page: 1035
  ident: bib39
  article-title: Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs
  publication-title: Science
– volume: 10
  start-page: 2190
  year: 2013
  end-page: 2198
  ident: bib36
  article-title: Facile method to radiolabel glycol chitosan nanoparticles with Cu via copper-free click chemistry for microPET imaging
  publication-title: Mol Pharmacol
– volume: 7
  start-page: 5957
  year: 2008
  end-page: 5959
  ident: bib34
  article-title: A new bio-active surface for protein immobilisation via copper-free 'click' between azido SAM and alkynyl Fischer carbene complex
  publication-title: Chem Commun
– volume: 62
  start-page: 1064
  year: 2010
  end-page: 1079
  ident: bib9
  article-title: Nanoparticle-based theranostic agents
  publication-title: Adv Drug Deliv Rev
– volume: 34
  start-page: 6163
  year: 2013
  end-page: 6174
  ident: bib11
  article-title: Nanoparticle-mediated drug delivery to tumor neovasculature to combat P-gp expressing multidrug resistant cancer
  publication-title: Biomaterials
– volume: 35
  start-page: 2915
  year: 2014
  end-page: 2923
  ident: bib13
  article-title: Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy
  publication-title: Biomaterials
– volume: 49
  start-page: 1374
  year: 2013
  end-page: 1403
  ident: bib1
  article-title: Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012
  publication-title: Eur J Cancer
– volume: 108
  start-page: 362
  year: 2005
  end-page: 374
  ident: bib26
  article-title: Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs
  publication-title: J Control Release
– volume: 32
  start-page: 9089
  year: 2011
  end-page: 9099
  ident: bib20
  article-title: Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles
  publication-title: Biomaterials
– volume: 6
  start-page: 2721
  year: 2010
  end-page: 2731
  ident: bib23
  article-title: In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size
  publication-title: Acta Biomater
– volume: 35
  start-page: 1257
  year: 2014
  end-page: 1266
  ident: bib29
  article-title: Copper-free azide-alkyne cycloaddition of targeting peptides to porous silicon nanoparticles for intracellular drug uptake
  publication-title: Biomaterials
– volume: 10
  start-page: 2190
  year: 2013
  ident: 10.1016/j.biomaterials.2015.01.008_bib36
  article-title: Facile method to radiolabel glycol chitosan nanoparticles with Cu via copper-free click chemistry for microPET imaging
  publication-title: Mol Pharmacol
  doi: 10.1021/mp300601r
– volume: 170
  start-page: 268
  year: 2013
  ident: 10.1016/j.biomaterials.2015.01.008_bib21
  article-title: Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2013.05.036
– volume: 188
  start-page: 759
  year: 2010
  ident: 10.1016/j.biomaterials.2015.01.008_bib3
  article-title: Targeting of drugs and nanoparticles to tumors
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200910104
– volume: 92
  start-page: 1855
  year: 2005
  ident: 10.1016/j.biomaterials.2015.01.008_bib45
  article-title: Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6602584
– volume: 10
  start-page: 2029
  year: 2014
  ident: 10.1016/j.biomaterials.2015.01.008_bib17
  article-title: Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery
  publication-title: Small
  doi: 10.1002/smll.201303740
– volume: 4
  start-page: 3023
  year: 2010
  ident: 10.1016/j.biomaterials.2015.01.008_bib6
  article-title: Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats
  publication-title: ACS Nano
  doi: 10.1021/nn901657w
– volume: 363
  start-page: 327
  year: 2011
  ident: 10.1016/j.biomaterials.2015.01.008_bib28
  article-title: Surface chemical modification to control molecular interactions with porous silicon
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2011.07.063
– volume: 431
  start-page: 230
  year: 2012
  ident: 10.1016/j.biomaterials.2015.01.008_bib25
  article-title: Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2012.04.059
– volume: 33
  start-page: 3353
  year: 2012
  ident: 10.1016/j.biomaterials.2015.01.008_bib22
  article-title: The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.01.029
– volume: 2012
  start-page: 896562
  year: 2012
  ident: 10.1016/j.biomaterials.2015.01.008_bib24
  article-title: Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes
  publication-title: J Nanomater
  doi: 10.1155/2012/896562
– volume: 7
  start-page: 6884
  year: 2013
  ident: 10.1016/j.biomaterials.2015.01.008_bib19
  article-title: Inhibition of influenza a virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/nn402062f
– volume: 49
  start-page: 1374
  year: 2013
  ident: 10.1016/j.biomaterials.2015.01.008_bib1
  article-title: Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2012.12.027
– volume: 51
  start-page: 6389
  year: 2012
  ident: 10.1016/j.biomaterials.2015.01.008_bib37
  article-title: Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201201991
– volume: 28
  start-page: 8651
  year: 2012
  ident: 10.1016/j.biomaterials.2015.01.008_bib35
  article-title: Copper-free click biofunctionalization of silicon nitride surfaces via strain-promoted alkyne-azide cycloaddition reactions
  publication-title: Langmuir
  doi: 10.1021/la300921e
– volume: 108
  start-page: 362
  year: 2005
  ident: 10.1016/j.biomaterials.2015.01.008_bib26
  article-title: Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2005.08.017
– volume: 8
  start-page: 228
  year: 2011
  ident: 10.1016/j.biomaterials.2015.01.008_bib27
  article-title: Multifunctional porous silicon for therapeutic drug delivery and imaging
  publication-title: Curr Drug Discov Technol
  doi: 10.2174/157016311796799053
– volume: 35
  start-page: 3666
  year: 2014
  ident: 10.1016/j.biomaterials.2015.01.008_bib14
  article-title: Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.01.011
– volume: 62
  start-page: 5720
  year: 2002
  ident: 10.1016/j.biomaterials.2015.01.008_bib44
  article-title: Inhibition of growth and metastasis of orthotopic human prostate cancer in athymic mice by combination therapy with pegylated interferon-alpha-2b and docetaxel
  publication-title: Cancer Res
– volume: 34
  start-page: 3523
  year: 2013
  ident: 10.1016/j.biomaterials.2015.01.008_bib50
  article-title: iRGD-coupled responsive fluorescent nanogel for targeted drug delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.01.083
– volume: 35
  start-page: 2915
  year: 2014
  ident: 10.1016/j.biomaterials.2015.01.008_bib13
  article-title: Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.12.046
– volume: 328
  start-page: 1031
  year: 2010
  ident: 10.1016/j.biomaterials.2015.01.008_bib39
  article-title: Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs
  publication-title: Science
  doi: 10.1126/science.1183057
– volume: 190C
  start-page: 451
  year: 2014
  ident: 10.1016/j.biomaterials.2015.01.008_bib41
  article-title: EPR: evidence and fallacy
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2014.03.057
– volume: 7
  start-page: 6244
  year: 2013
  ident: 10.1016/j.biomaterials.2015.01.008_bib31
  article-title: Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior
  publication-title: ACS Nano
  doi: 10.1021/nn402201w
– volume: 32
  start-page: 9089
  year: 2011
  ident: 10.1016/j.biomaterials.2015.01.008_bib20
  article-title: Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.08.011
– volume: 76
  start-page: 2
  year: 2014
  ident: 10.1016/j.biomaterials.2015.01.008_bib7
  article-title: New radiotracers for imaging of vascular targets in angiogenesis-related diseases
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2014.07.011
– volume: 120
  start-page: 1290
  year: 2014
  ident: 10.1016/j.biomaterials.2015.01.008_bib2
  article-title: Annual report to the nation on the status of cancer, 1975–2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer
  publication-title: Cancer
  doi: 10.1002/cncr.28509
– volume: 2
  start-page: 83
  year: 2002
  ident: 10.1016/j.biomaterials.2015.01.008_bib4
  article-title: Specialization of tumour vasculature
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc724
– volume: 35
  start-page: 1257
  year: 2014
  ident: 10.1016/j.biomaterials.2015.01.008_bib29
  article-title: Copper-free azide-alkyne cycloaddition of targeting peptides to porous silicon nanoparticles for intracellular drug uptake
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.10.065
– volume: 34
  start-page: 6163
  year: 2013
  ident: 10.1016/j.biomaterials.2015.01.008_bib11
  article-title: Nanoparticle-mediated drug delivery to tumor neovasculature to combat P-gp expressing multidrug resistant cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.04.062
– volume: 113
  start-page: 858
  year: 2013
  ident: 10.1016/j.biomaterials.2015.01.008_bib8
  article-title: Radiometals for combined imaging and therapy
  publication-title: Chem Rev
  doi: 10.1021/cr3003104
– volume: 6
  start-page: 2721
  year: 2010
  ident: 10.1016/j.biomaterials.2015.01.008_bib23
  article-title: In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2009.12.043
– volume: 34
  start-page: 9134
  year: 2013
  ident: 10.1016/j.biomaterials.2015.01.008_bib16
  article-title: Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.08.034
– volume: 29
  start-page: 1
  year: 2012
  ident: 10.1016/j.biomaterials.2015.01.008_bib32
  article-title: Click chemistry for drug delivery nanosystems
  publication-title: Pharm Res
  doi: 10.1007/s11095-011-0568-5
– volume: 190
  start-page: 477
  year: 2014
  ident: 10.1016/j.biomaterials.2015.01.008_bib5
  article-title: Theranostic nanoparticles for future personalized medicine
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2014.04.027
– volume: 65
  start-page: 21
  year: 2013
  ident: 10.1016/j.biomaterials.2015.01.008_bib10
  article-title: Nanoparticles in drug delivery: past, present and future
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2012.04.010
– volume: 9
  start-page: 9
  year: 2014
  ident: 10.1016/j.biomaterials.2015.01.008_bib40
  article-title: Enhanced localization of anticancer drug in tumor tissue using polyethylenimine-conjugated cationic liposomes
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-9-209
– volume: 7
  start-page: 5957
  year: 2008
  ident: 10.1016/j.biomaterials.2015.01.008_bib34
  article-title: A new bio-active surface for protein immobilisation via copper-free 'click' between azido SAM and alkynyl Fischer carbene complex
  publication-title: Chem Commun
  doi: 10.1039/b813296h
– volume: 39
  start-page: 1272
  year: 2010
  ident: 10.1016/j.biomaterials.2015.01.008_bib33
  article-title: Cu-free click cycloaddition reactions in chemical biology
  publication-title: Chem Soc Rev
  doi: 10.1039/b901970g
– volume: 72
  start-page: 294
  year: 2011
  ident: 10.1016/j.biomaterials.2015.01.008_bib47
  article-title: Population pharmacokinetic analysis of sorafenib in patients with solid tumours
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.2011.03963.x
– volume: 34
  start-page: 7776
  year: 2013
  ident: 10.1016/j.biomaterials.2015.01.008_bib18
  article-title: The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.06.052
– volume: 16
  start-page: 510
  year: 2009
  ident: 10.1016/j.biomaterials.2015.01.008_bib38
  article-title: Tissue-penetrating delivery of compounds and nanoparticles into tumors
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.10.013
– volume: 8
  year: 2013
  ident: 10.1016/j.biomaterials.2015.01.008_bib49
  article-title: Prostate cancer stem cell-targeted efficacy of a new-generation taxoid, SBT-1214 and novel polyenolic zinc-binding curcuminoid, CMC2.24
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0069884
– volume: 26
  start-page: 4497
  year: 2014
  ident: 10.1016/j.biomaterials.2015.01.008_bib15
  article-title: Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix
  publication-title: Adv Mater
  doi: 10.1002/adma.201400953
– volume: 8
  start-page: 1799
  year: 2011
  ident: 10.1016/j.biomaterials.2015.01.008_bib30
  article-title: 18F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography
  publication-title: Mol Pharmacol
  doi: 10.1021/mp2001654
– volume: 62
  start-page: 1064
  year: 2010
  ident: 10.1016/j.biomaterials.2015.01.008_bib9
  article-title: Nanoparticle-based theranostic agents
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2010.07.009
– volume: 10
  start-page: 353
  year: 2013
  ident: 10.1016/j.biomaterials.2015.01.008_bib43
  article-title: Development of porous silicon nanocarriers for parenteral peptide delivery
  publication-title: Mol Pharmacol
  doi: 10.1021/mp300494p
– volume: 8
  start-page: 175
  year: 2014
  ident: 10.1016/j.biomaterials.2015.01.008_bib12
  article-title: In vivo fate of avidin-nucleic acid nanoassemblies as multifunctional diagnostic tools
  publication-title: ACS Nano
  doi: 10.1021/nn402669w
– volume: 7
  year: 2012
  ident: 10.1016/j.biomaterials.2015.01.008_bib48
  article-title: Early sorafenib-induced toxicity is associated with drug exposure and UGTIA9 genetic polymorphism in patients with solid tumors: a preliminary study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0042875
– volume: 8
  start-page: 788
  year: 2006
  ident: 10.1016/j.biomaterials.2015.01.008_bib42
  article-title: Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems
  publication-title: Neoplasia
  doi: 10.1593/neo.06436
– volume: 28
  start-page: 1856
  year: 2010
  ident: 10.1016/j.biomaterials.2015.01.008_bib46
  article-title: Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2009.25.4888
SSID ssj0014042
Score 2.517675
Snippet Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a...
Abstract Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108
SubjectTerms Advanced Basic Science
Angiogenesis Inhibitors - administration & dosage
Animals
Biocompatibility
Biomedical materials
Cancer therapy
Cell Line, Tumor
cycloaddition reactions
Dentistry
Drugs
fluorescent antibody technique
fluorescent dyes
fluorescent labeling
Humans
hydrophobicity
image analysis
intravenous injection
Male
mice
Mice, Nude
monitoring
nanocarriers
Nanoparticles
Nanostructure
neoplasms
Neoplasms - diagnosis
Neoplasms - therapy
Niacinamide - administration & dosage
Niacinamide - analogs & derivatives
Phenylurea Compounds - administration & dosage
photons
Porous silicon
Porous silicon nanoparticles
precision medicine
radiolabeling
silicon
Silicon - therapeutic use
Sorafenib
Surface multifunctionalization
Surgical implants
Targeting drug delivery
Theranostic Nanomedicine
Theranostics
Tomography
Tumors
Title Multifunctional porous silicon nanoparticles for cancer theranostics
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961215000253
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961215000253
https://dx.doi.org/10.1016/j.biomaterials.2015.01.008
https://www.ncbi.nlm.nih.gov/pubmed/25701036
https://www.proquest.com/docview/1658424783
https://www.proquest.com/docview/1701482932
https://www.proquest.com/docview/1709731366
https://www.proquest.com/docview/2101337448
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CCqU5lDZp0-0jOJCrs9bDlkTpIaQN24bklEBuwrJk2BK8S3Z77W_vjCwvKd0NC70aDbZHI8030sw3ACcY82CIpkweWqNzWbsy14KJXHjmuWplWQYqFL66ria38sddebcD50MtDKVVpr2_39Pjbp2ejJM2x_PpdExpSdwQARZx-vOSGD-lVGTlp79XaR7EHsP7NEae0-iBeDTmeFGJe73sp5rSvHoKT2o1ud5JbQKh0RldvIKXCUVmZ_2Hvoad0O3D3iNuwX14fpVuzQ_ga6yyJQ_WH_xliLkx4M8W03u0gy7r6g5D55QhlyGKzRqyhYcsFmd1s0jl_AZuL77dnE_y1D0hb0ojlhhhstYXpafG8EXLmPKmRezig1fKadl4WUlXCO4Zcz64SvNG69bIirVGNbIRb2G3m3XhHWS-1q71ugoBHb7ShakxDHGqqRGcKOHUCMygLtskanHqcHFvhxyyn_axqi2p2hbMoqpHIFay855gYyupz8Os2KGEFDc9i35gK2m1Tjos0vpdWGYX3Bb2HxsbwZeV5F9muvWbjwcTsriO6XKm7gJOuWUEBUm74okxis5_EaDxJ8dQNzJRVZvHYJjPhFAYmY_gsLfjle6pqyFDWPP-P__0A7yILLfxtOoj7C4ffoVPiN-W7igu0CN4dvb9cnL9B1bVRsU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4ICgUwtNIcDTxPuzdFeoBUaqUNj21Um-L7V1LQZVT1akQF_4Uf5AZ7zoqoq0ioV6TnWQ9O575xp75BuAd5jyYoimT-sboVJZVnmrBRCocc1w1Ms89NQpPD4rJkfx6nB-vwe-hF4bKKqPvDz6999bxk3HU5vh0NhtTWRI3RIBFnP48HyZY7_mfPzBv67Z2t_GQ33O-8-Xw8ySNowXSOjdigekXa1yWO5qanjWMKWcaDOzOO6UqLWsnC1llgjvGKuerQvNa68bIgjVG1bIW-Lu34LZEd0FjEz78WtaVEF0ND3WTPKXtDUynfVEZ9dSXi2BbVFcWOENptuXlUfEq1NtHv52H8CDC1uRT0MwjWPPtBty_QGa4AXem8TX9Y9ju23opZIYnjQmC_Pl5l3SzEzS8NmnLFnP1WJKXIGxOajK-s6TvBmvnPXf0Ezi6EZ1uwno7b_0zSFypq8bpwntEGEpnpsS8p1J1iWhIiUqNwAzqsnXkMqeRGid2KFr7bi-q2pKqbcYsqnoEYil7Ghg9VpL6OJyKHXpW0ctaDDwrSavLpH0XHUZnme24zew_Rj2CraXkX_fFyv_8djAhi46D3gaVrccjt4ywJ2lXXLNG0QNnRIT82jU0_kwUxdVrOO5SCCUl7udpsOOl7mmMIkMc9fw_r_QN3J0cTvft_u7B3gu4R9-ECquXsL44O_evEDwuqtf9zZrAt5v2Dn8AuOyB_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+porous+silicon+nanoparticles+for+cancer+theranostics&rft.jtitle=Biomaterials&rft.au=Wang%2C+Chang-Fang&rft.au=Sarparanta%2C+Mirkka+P&rft.au=Maekilae%2C+Ermei+M&rft.au=Hyvonen%2C+Maija+LK&rft.date=2015-04-01&rft.issn=0142-9612&rft.volume=48&rft.spage=108&rft.epage=118&rft_id=info:doi/10.1016%2Fj.biomaterials.2015.01.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961215X00056%2Fcov150h.gif