Sensitivity and specificity of automated analysis of single-field non-mydriatic fundus photographs by Bosch DR Algorithm—Comparison with mydriatic fundus photography (ETDRS) for screening in undiagnosed diabetic retinopathy

Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Early diagnosis through effective screening programs is likely to improve vision outcomes. The ETDRS seven-standard-field 35-mm stereoscopic color retinal imaging (ETDRS) of the dilated eye is elaborate and requires...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 12; no. 12; p. e0189854
Main Authors Bawankar, Pritam, Shanbhag, Nita, K., S. Smitha, Dhawan, Bodhraj, Palsule, Aratee, Kumar, Devesh, Chandel, Shailja, Sood, Suneet
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.12.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0189854

Cover

Loading…
Abstract Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Early diagnosis through effective screening programs is likely to improve vision outcomes. The ETDRS seven-standard-field 35-mm stereoscopic color retinal imaging (ETDRS) of the dilated eye is elaborate and requires mydriasis, and is unsuitable for screening. We evaluated an image analysis application for the automated diagnosis of DR from non-mydriatic single-field images. Patients suffering from diabetes for at least 5 years were included if they were 18 years or older. Patients already diagnosed with DR were excluded. Physiologic mydriasis was achieved by placing the subjects in a dark room. Images were captured using a Bosch Mobile Eye Care fundus camera. The images were analyzed by the Retinal Imaging Bosch DR Algorithm for the diagnosis of DR. All subjects also subsequently underwent pharmacological mydriasis and ETDRS imaging. Non-mydriatic and mydriatic images were read by ophthalmologists. The ETDRS readings were used as the gold standard for calculating the sensitivity and specificity for the software. 564 consecutive subjects (1128 eyes) were recruited from six centers in India. Each subject was evaluated at a single outpatient visit. Forty-four of 1128 images (3.9%) could not be read by the algorithm, and were categorized as inconclusive. In four subjects, neither eye provided an acceptable image: these four subjects were excluded from the analysis. This left 560 subjects for analysis (1084 eyes). The algorithm correctly diagnosed 531 of 560 cases. The sensitivity, specificity, and positive and negative predictive values were 91%, 97%, 94%, and 95% respectively. The Bosch DR Algorithm shows favorable sensitivity and specificity in diagnosing DR from non-mydriatic images, and can greatly simplify screening for DR. This also has major implications for telemedicine in the use of screening for retinopathy in patients with diabetes mellitus.
AbstractList Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Early diagnosis through effective screening programs is likely to improve vision outcomes. The ETDRS seven-standard-field 35-mm stereoscopic color retinal imaging (ETDRS) of the dilated eye is elaborate and requires mydriasis, and is unsuitable for screening. We evaluated an image analysis application for the automated diagnosis of DR from non-mydriatic single-field images. Patients suffering from diabetes for at least 5 years were included if they were 18 years or older. Patients already diagnosed with DR were excluded. Physiologic mydriasis was achieved by placing the subjects in a dark room. Images were captured using a Bosch Mobile Eye Care fundus camera. The images were analyzed by the Retinal Imaging Bosch DR Algorithm for the diagnosis of DR. All subjects also subsequently underwent pharmacological mydriasis and ETDRS imaging. Non-mydriatic and mydriatic images were read by ophthalmologists. The ETDRS readings were used as the gold standard for calculating the sensitivity and specificity for the software. 564 consecutive subjects (1128 eyes) were recruited from six centers in India. Each subject was evaluated at a single outpatient visit. Forty-four of 1128 images (3.9%) could not be read by the algorithm, and were categorized as inconclusive. In four subjects, neither eye provided an acceptable image: these four subjects were excluded from the analysis. This left 560 subjects for analysis (1084 eyes). The algorithm correctly diagnosed 531 of 560 cases. The sensitivity, specificity, and positive and negative predictive values were 91%, 97%, 94%, and 95% respectively. The Bosch DR Algorithm shows favorable sensitivity and specificity in diagnosing DR from non-mydriatic images, and can greatly simplify screening for DR. This also has major implications for telemedicine in the use of screening for retinopathy in patients with diabetes mellitus.Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Early diagnosis through effective screening programs is likely to improve vision outcomes. The ETDRS seven-standard-field 35-mm stereoscopic color retinal imaging (ETDRS) of the dilated eye is elaborate and requires mydriasis, and is unsuitable for screening. We evaluated an image analysis application for the automated diagnosis of DR from non-mydriatic single-field images. Patients suffering from diabetes for at least 5 years were included if they were 18 years or older. Patients already diagnosed with DR were excluded. Physiologic mydriasis was achieved by placing the subjects in a dark room. Images were captured using a Bosch Mobile Eye Care fundus camera. The images were analyzed by the Retinal Imaging Bosch DR Algorithm for the diagnosis of DR. All subjects also subsequently underwent pharmacological mydriasis and ETDRS imaging. Non-mydriatic and mydriatic images were read by ophthalmologists. The ETDRS readings were used as the gold standard for calculating the sensitivity and specificity for the software. 564 consecutive subjects (1128 eyes) were recruited from six centers in India. Each subject was evaluated at a single outpatient visit. Forty-four of 1128 images (3.9%) could not be read by the algorithm, and were categorized as inconclusive. In four subjects, neither eye provided an acceptable image: these four subjects were excluded from the analysis. This left 560 subjects for analysis (1084 eyes). The algorithm correctly diagnosed 531 of 560 cases. The sensitivity, specificity, and positive and negative predictive values were 91%, 97%, 94%, and 95% respectively. The Bosch DR Algorithm shows favorable sensitivity and specificity in diagnosing DR from non-mydriatic images, and can greatly simplify screening for DR. This also has major implications for telemedicine in the use of screening for retinopathy in patients with diabetes mellitus.
Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Early diagnosis through effective screening programs is likely to improve vision outcomes. The ETDRS seven-standard-field 35-mm stereoscopic color retinal imaging (ETDRS) of the dilated eye is elaborate and requires mydriasis, and is unsuitable for screening. We evaluated an image analysis application for the automated diagnosis of DR from non-mydriatic single-field images. Patients suffering from diabetes for at least 5 years were included if they were 18 years or older. Patients already diagnosed with DR were excluded. Physiologic mydriasis was achieved by placing the subjects in a dark room. Images were captured using a Bosch Mobile Eye Care fundus camera. The images were analyzed by the Retinal Imaging Bosch DR Algorithm for the diagnosis of DR. All subjects also subsequently underwent pharmacological mydriasis and ETDRS imaging. Non-mydriatic and mydriatic images were read by ophthalmologists. The ETDRS readings were used as the gold standard for calculating the sensitivity and specificity for the software. 564 consecutive subjects (1128 eyes) were recruited from six centers in India. Each subject was evaluated at a single outpatient visit. Forty-four of 1128 images (3.9%) could not be read by the algorithm, and were categorized as inconclusive. In four subjects, neither eye provided an acceptable image: these four subjects were excluded from the analysis. This left 560 subjects for analysis (1084 eyes). The algorithm correctly diagnosed 531 of 560 cases. The sensitivity, specificity, and positive and negative predictive values were 91%, 97%, 94%, and 95% respectively. The Bosch DR Algorithm shows favorable sensitivity and specificity in diagnosing DR from non-mydriatic images, and can greatly simplify screening for DR. This also has major implications for telemedicine in the use of screening for retinopathy in patients with diabetes mellitus.
Audience Academic
Author K., S. Smitha
Palsule, Aratee
Kumar, Devesh
Chandel, Shailja
Bawankar, Pritam
Shanbhag, Nita
Sood, Suneet
Dhawan, Bodhraj
AuthorAffiliation 5 Deenanath Mangeshkar Hospital, Pune, Maharashtra, India
Soochow University Medical College, CHINA
2 Department of Ophthalmology, Dr. D.Y Patil Hospital & Research Centre, Mumbai, India
7 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru, Malaysia
6 Think-i, Noida, Uttar Pradesh, India
4 NKP Salve Institute of Medical Sciences and Research Center, Nagpur, Maharashtra, India
3 KLES Dr. Prabhakar Kore Hospital & Research Centre, Belgavi, Karnataka, India
1 Sri Sankaradeva Nethralaya, Guwahati, India
AuthorAffiliation_xml – name: 5 Deenanath Mangeshkar Hospital, Pune, Maharashtra, India
– name: 2 Department of Ophthalmology, Dr. D.Y Patil Hospital & Research Centre, Mumbai, India
– name: 6 Think-i, Noida, Uttar Pradesh, India
– name: 3 KLES Dr. Prabhakar Kore Hospital & Research Centre, Belgavi, Karnataka, India
– name: 1 Sri Sankaradeva Nethralaya, Guwahati, India
– name: Soochow University Medical College, CHINA
– name: 7 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru, Malaysia
– name: 4 NKP Salve Institute of Medical Sciences and Research Center, Nagpur, Maharashtra, India
Author_xml – sequence: 1
  givenname: Pritam
  surname: Bawankar
  fullname: Bawankar, Pritam
– sequence: 2
  givenname: Nita
  surname: Shanbhag
  fullname: Shanbhag, Nita
– sequence: 3
  givenname: S. Smitha
  surname: K.
  fullname: K., S. Smitha
– sequence: 4
  givenname: Bodhraj
  surname: Dhawan
  fullname: Dhawan, Bodhraj
– sequence: 5
  givenname: Aratee
  surname: Palsule
  fullname: Palsule, Aratee
– sequence: 6
  givenname: Devesh
  surname: Kumar
  fullname: Kumar, Devesh
– sequence: 7
  givenname: Shailja
  surname: Chandel
  fullname: Chandel, Shailja
– sequence: 8
  givenname: Suneet
  orcidid: 0000-0003-1125-1721
  surname: Sood
  fullname: Sood, Suneet
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29281690$$D View this record in MEDLINE/PubMed
BookMark eNp9U9tu1DAQjVARvcAfILDES3nYxY6TrMMD0rItUKkSUlueLa8vWa8SO9hJUd74CH4QvoRJd1t1q6qKlNjHZ47PTGYOkz3nnU6S1wRPCZ2RD2vfByfqaQvwFBNWsjx7lhyQkqaTIsV07956PzmMcY1xTllRvEj20zJlpCjxQfL3UrtoO3ttuwEJp1BstbTGynHvDRJ95xvRaQWHoh6ijSMaratqPTFW1wqBr0kzqGBFZyUyvVN9RO3Kd74Kol1FtBzQZx_lCp1coHld-WC7VfPv95-Fb1oRbPQO_QIIPSEyoOPTq5OLy_fI-ICiDFo78ICsQ0C1onI-gkdYLfUoEODtfCu61fAyeW5EHfWr7fco-fHl9GrxbXL-_evZYn4-kXlJu0lGCsOwKZgpaSGlKKXKpaSGzXQqsRYYYLUsmNAUKlcqYVRpUkUIlTjLy5QeJW83um3tI9_-nchJyQgQihvG2YahvFjzNthGhIF7YfkN4EPFRQD3teY4NzhLCaNGZ1m5TFnONNVMakWXMyEFaH3a3tYvG62kdl0Q9Y7o7omzK175a57PQLAYzRxvBYL_2evY8cZGqetaOO37je9ZUUBtgPruAfXx7LasSkAC1hkP98pRlM_zFFqP4NnImj7CgkfpxkpoZWMB3wl4cz_RuwxvWxgI2YYgg48xaHNHIZiPk3Lrlo-TwreTAmEfH4RBy0Pz-bFctn46-D_KQiPt
CitedBy_id crossref_primary_10_1016_j_ajo_2024_02_012
crossref_primary_10_4103_ijo_IJO_966_19
crossref_primary_10_1016_j_oret_2018_12_003
crossref_primary_10_25259_IHOPEJO_20_2022
crossref_primary_10_4103_ijo_IJO_1242_21
crossref_primary_10_17925_USOR_2023_17_2_1
crossref_primary_10_1016_j_eclinm_2025_103089
crossref_primary_10_1016_j_xops_2024_100471
crossref_primary_10_1016_j_diabres_2022_109190
crossref_primary_10_1097_IAE_0000000000004311
crossref_primary_10_1007_s11892_021_01411_6
crossref_primary_10_1007_s40123_021_00353_2
crossref_primary_10_25259_LAJO_4_2022
crossref_primary_10_1016_j_pcd_2023_09_005
crossref_primary_10_17925_USOR_2022_16_1_17
crossref_primary_10_1038_s41746_023_00752_8
crossref_primary_10_1186_s13040_023_00340_2
crossref_primary_10_1097_MD_0000000000020306
crossref_primary_10_1136_bmjdrc_2023_003424
crossref_primary_10_17827_aktd_1518583
crossref_primary_10_4103_ijo_IJO_1212_21
crossref_primary_10_1038_s41433_019_0566_0
crossref_primary_10_1155_2020_6974215
crossref_primary_10_1007_s40123_023_00691_3
crossref_primary_10_1002_dmrr_3414
crossref_primary_10_3389_fcell_2024_1473176
crossref_primary_10_1038_s41746_020_0247_1
crossref_primary_10_3928_23258160_20200108_04
crossref_primary_10_4103_ijo_IJO_2118_19
crossref_primary_10_1016_j_semerg_2022_101921
crossref_primary_10_1371_journal_pone_0255034
crossref_primary_10_1089_tmj_2021_0019
crossref_primary_10_1016_j_diabres_2021_108902
crossref_primary_10_1155_2020_9036847
crossref_primary_10_4239_wjd_v15_i2_251
crossref_primary_10_1136_bmjopen_2021_058485
Cites_doi 10.1016/j.csbj.2016.10.001
10.1109/42.845178
10.1016/j.ophtha.2016.08.021
10.1370/afm.857
10.1016/S0008-4182(03)80111-4
10.1089/tmj.2012.0313
10.1001/archopht.1984.01040030398010
10.1016/S0008-4182(05)80091-2
10.4103/0974-9233.97928
10.1016/j.annemergmed.2013.01.010
10.1007/s12020-015-0553-6
10.1159/000314720
10.1016/S0002-9394(02)01522-2
10.1111/j.1600-0420.2004.00350.x
10.1089/tmj.2006.0046
10.1006/pmed.1994.1127
10.1016/j.ajo.2009.02.031
10.1016/1056-8727(92)90060-X
10.1155/2016/4529824
10.1016/j.jdiacomp.2016.12.011
10.4103/0301-4738.178144
10.1364/BOE.8.001005
10.1109/TMI.2003.815900
10.1007/s40708-016-0045-3
10.2337/diacare.26.1.226
10.1001/jamaophthalmol.2013.1743
10.1001/archopht.1984.01040030405011
10.1177/112067210401400404
10.1016/j.ophtha.2010.03.046
10.1177/014107680309600604
10.4103/0970-0218.91324
10.1001/jama.2016.17216
10.1177/0969141315571953
10.1155/2016/3627465
10.1016/j.ophtha.2016.11.014
10.2174/157339913804143180
10.1089/tmj.2013.0042
10.1007/s10916-017-0712-9
10.1109/GHTC.2014.6970261
10.1371/journal.pone.0139148
10.1177/1932296816628546
10.1038/nature14539
10.1046/j.1464-5491.2000.00338.x
10.1136/bmj.293.6555.1140
10.1136/bmj.291.6504.1256
10.1089/tmj.2015.0068
10.1111/aos.12242
10.1167/iovs.13-12043
10.1117/1.3643719
10.1136/bmj.317.7160.703
10.4103/0974-9233.154391
10.1089/tmj.2006.0084
10.1046/j.1464-5491.2002.00613.x
10.1016/j.compbiomed.2013.10.007
10.1371/journal.pone.0122332
10.1080/09286580701396720
10.4103/0301-4738.178151
10.4103/0301-4738.141039
10.2337/dc07-1312
ContentType Journal Article
Copyright COPYRIGHT 2017 Public Library of Science
2017 Bawankar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2017 Bawankar et al 2017 Bawankar et al
Copyright_xml – notice: COPYRIGHT 2017 Public Library of Science
– notice: 2017 Bawankar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2017 Bawankar et al 2017 Bawankar et al
DBID AAYXX
CITATION
NPM
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0189854
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Agricultural Science Database



PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Automated non-mydriatic fundus photography for diabetic retinopathy
EISSN 1932-6203
ExternalDocumentID 1981045692
oai_doaj_org_article_05f042183fe449b2858e3e8ced3b7aca
PMC5744962
A520531072
29281690
10_1371_journal_pone_0189854
Genre Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
BBORY
IPNFZ
NPM
RIG
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c593t-416f80f68f936cca9cd5cc3f87e2c0ea0936db68ae31699dafd9f2d113c045923
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:28 EST 2021
Wed Aug 27 00:56:52 EDT 2025
Thu Aug 21 14:11:27 EDT 2025
Tue Aug 05 10:01:20 EDT 2025
Fri Jul 25 11:51:53 EDT 2025
Tue Jun 17 21:20:49 EDT 2025
Tue Jun 10 20:20:18 EDT 2025
Thu Apr 03 06:58:57 EDT 2025
Thu Apr 24 23:08:03 EDT 2025
Tue Jul 01 03:08:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c593t-416f80f68f936cca9cd5cc3f87e2c0ea0936db68ae31699dafd9f2d113c045923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: I have read the journal's policy and the authors of this manuscript have the following competing interests: Investigators were given grant per completed subject by Think-i, Unit of Tenet Health Edutech Pvt. Ltd., the CRO conducting the study. DK and SC are employees of Think-i Unit of Tenet Health Edutech Pvt. Ltd., the CRO that was responsible for conducting the research on behalf of Robert Bosch Engineering and Business Solutions Private Limited. SS is a consultant for Cliniminds India, an affiliate of Think-i. The authors declare that this does not alter their adherence to PLOS ONE policies on sharing data and materials. Robert Bosch Engineering and Business Solutions Private Limited has applied for the patent for the product. None of the authors of this paper has any financial interest in any part of the company, the algorithm, or the product.
ORCID 0000-0003-1125-1721
OpenAccessLink https://www.proquest.com/docview/1981045692?pq-origsite=%requestingapplication%
PMID 29281690
PQID 1981045692
PQPubID 1436336
ParticipantIDs plos_journals_1981045692
doaj_primary_oai_doaj_org_article_05f042183fe449b2858e3e8ced3b7aca
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5744962
proquest_miscellaneous_1981766593
proquest_journals_1981045692
gale_infotracmisc_A520531072
gale_infotracacademiconefile_A520531072
pubmed_primary_29281690
crossref_primary_10_1371_journal_pone_0189854
crossref_citationtrail_10_1371_journal_pone_0189854
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-27
PublicationDateYYYYMMDD 2017-12-27
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2017
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Hoover (ref47) 2003; 22
HF Jaafar (ref58) 2011; 16
R Raman (ref27) 2011; 45
JH Hipwell (ref49) 2000; 17
BE Klein (ref43) 2007; 14
(ref13) 1991; 98
KN Fatima (ref55) 2017; 8
DY Lin (ref40) 2002; 134
DS Fong (ref3) 2003; 26
AK Schuster (ref51) 2014; 92
PR Ramavat (ref29) 2013; 7
R Issac (ref72) 2014
C Sinthanayothin (ref21) 2002; 19
R Raman (ref34) 2007; 13
Y LeCun (ref24) 2015; 521
M Bhaskaranand (ref61) 2016; 10
S Akbar (ref54) 2017; 41
MD Abramoff (ref50) 2008; 31
(ref8) 1991; 98
LP Aiello (ref15) 2012; 154
TF Farley (ref46) 2008; 6
JA Lovshin (ref20) 2017; 31
M Perez-de-Arcelus (ref45) 2013; 9
EK Chin (ref31) 2014; 20
HV Nguyen (ref70) 2016; 123
DM Squirrell (ref64) 2003; 96
SS Rahim (ref52) 2016; 3
A Idil (ref4) 2004; 14
EY Chew (ref5) 2015; 49
E Al Alawi (ref67) 2012; 19
V Gupta (ref16) 2014; 62
R Klein (ref2) 1984; 102
A Hoover (ref48) 2000; 19
(ref22) 2016
A Tufail (ref59) 2017; 124
ref35
DJ Eszes (ref69) 2016; 2016
N Panwar (ref11) 2016; 22
R Klein (ref1) 1984; 102
JB Marks (ref14) 1992; 6
T Das (ref66) 2015; 22
MD Abramoff (ref37) 2013; 131
J Choremis (ref75) 2003; 38
BB Bruce (ref33) 2013; 62
MC Boucher (ref74) 2005; 40
(ref6) 1998; 317
VV Kapetanakis (ref60) 2015; 22
M Cuypers (ref17) 2000; 23
T Das (ref73) 2016; 64
RB Moreton (ref19) 2017
AF Castro (ref44) 2007; 13
MB Hansen (ref62) 2015; 10
R Besenczi (ref10) 2016; 14
S Roychowdhury (ref56) 2016; 2016
S Garg (ref65) 2017
T Kauppi (ref39) 2007
S Roychowdhury (ref57) 2016; 2016
V Gulshan (ref25) 2016; 316
A Krizhevsky (ref23) 2012; 25
ref26
AB Hansen (ref63) 2004; 82
FL Ferris 3rd (ref9) 1994; 23
(ref12) 1991; 98
S Vujosevic (ref42) 2009; 148
SL Mansberger (ref71) 2013; 19
LP Aiello (ref18) 2012; 19
MD Abramoff (ref36) 2010; 117
MR Mookiah (ref38) 2013; 43
Y Zhao (ref53) 2015; 10
SS Gadkari (ref28) 2016; 64
S Vujosevic (ref68) 2016; 2016
Y Ouyang (ref32) 2013; 54
R Williams (ref41) 1986; 293
P Vashist (ref7) 2011; 36
RE Ryder (ref30) 1985; 291
References_xml – volume: 14
  start-page: 371
  year: 2016
  ident: ref10
  article-title: A review on automatic analysis techniques for color fundus photographs
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2016.10.001
– volume: 19
  start-page: 203
  issue: 3
  year: 2000
  ident: ref48
  article-title: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.845178
– volume: 123
  start-page: 2571
  issue: 12
  year: 2016
  ident: ref70
  article-title: Cost-effectiveness of a National Telemedicine Diabetic Retinopathy Screening Program in Singapore
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.08.021
– volume: 6
  start-page: 428
  issue: 5
  year: 2008
  ident: ref46
  article-title: Accuracy of primary care clinicians in screening for diabetic retinopathy using single-image retinal photography
  publication-title: Ann Fam Med
  doi: 10.1370/afm.857
– volume: 38
  start-page: 575
  issue: 7
  year: 2003
  ident: ref75
  article-title: Use of telemedicine in screening for diabetic retinopathy
  publication-title: Canadian journal of ophthalmology Journal canadien d'ophtalmologie
  doi: 10.1016/S0008-4182(03)80111-4
– volume: 19
  start-page: 942
  issue: 12
  year: 2013
  ident: ref71
  article-title: Comparing the effectiveness of telemedicine and traditional surveillance in providing diabetic retinopathy screening examinations: a randomized controlled trial
  publication-title: Telemedicine journal and e-health: the official journal of the American Telemedicine Association
  doi: 10.1089/tmj.2012.0313
– volume: 102
  start-page: 520
  issue: 4
  year: 1984
  ident: ref1
  article-title: The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.1984.01040030398010
– volume: 40
  start-page: 734
  issue: 6
  year: 2005
  ident: ref74
  article-title: Mass community screening for diabetic retinopathy using a nonmydriatic camera with telemedicine
  publication-title: Canadian journal of ophthalmology Journal canadien d'ophtalmologie
  doi: 10.1016/S0008-4182(05)80091-2
– volume: 19
  start-page: 295
  issue: 3
  year: 2012
  ident: ref67
  article-title: Screening for diabetic retinopathy: the first telemedicine approach in a primary care setting in Bahrain
  publication-title: Middle East African journal of ophthalmology
  doi: 10.4103/0974-9233.97928
– volume: 62
  start-page: 28
  issue: 1
  year: 2013
  ident: ref33
  article-title: Diagnostic accuracy and use of nonmydriatic ocular fundus photography by emergency physicians: phase II of the FOTO-ED study
  publication-title: Annals of emergency medicine
  doi: 10.1016/j.annemergmed.2013.01.010
– volume: 49
  start-page: 1
  issue: 1
  year: 2015
  ident: ref5
  article-title: There is level 1 evidence for intensive glycemic control for reducing the progression of diabetic retinopathy in persons with type 2 diabetes
  publication-title: Endocrine
  doi: 10.1007/s12020-015-0553-6
– volume: 45
  start-page: 36
  issue: 1
  year: 2011
  ident: ref27
  article-title: Is prevalence of retinopathy related to the age of onset of diabetes? Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Report No. 5
  publication-title: Ophthalmic research
  doi: 10.1159/000314720
– volume: 134
  start-page: 204
  issue: 2
  year: 2002
  ident: ref40
  article-title: The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography
  publication-title: American journal of ophthalmology
  doi: 10.1016/S0002-9394(02)01522-2
– volume: 82
  start-page: 666
  issue: 6
  year: 2004
  ident: ref63
  article-title: Diabetic retinopathy screening using digital non-mydriatic fundus photography and automated image analysis
  publication-title: Acta ophthalmologica Scandinavica
  doi: 10.1111/j.1600-0420.2004.00350.x
– volume: 13
  start-page: 287
  issue: 3
  year: 2007
  ident: ref44
  article-title: Evaluation of retinal digital images by a general practitioner
  publication-title: Telemedicine journal and e-health: the official journal of the American Telemedicine Association
  doi: 10.1089/tmj.2006.0046
– volume: 23
  start-page: 740
  issue: 5
  year: 1994
  ident: ref9
  article-title: Results of 20 years of research on the treatment of diabetic retinopathy
  publication-title: Prev Med
  doi: 10.1006/pmed.1994.1127
– year: 2016
  ident: ref22
  article-title: Diabetic Retinopathy
– volume: 148
  start-page: 111
  issue: 1
  year: 2009
  ident: ref42
  article-title: Screening for diabetic retinopathy: 1 and 3 nonmydriatic 45-degree digital fundus photographs vs 7 standard early treatment diabetic retinopathy study fields
  publication-title: American journal of ophthalmology
  doi: 10.1016/j.ajo.2009.02.031
– volume: 6
  start-page: 247
  issue: 4
  year: 1992
  ident: ref14
  article-title: Nonmydriatic fundus photography in screening for treatable diabetic retinopathy
  publication-title: Journal of diabetes and its complications
  doi: 10.1016/1056-8727(92)90060-X
– volume: 2016
  start-page: 4529824
  year: 2016
  ident: ref69
  article-title: Diabetic Retinopathy Screening Using Telemedicine Tools: Pilot Study in Hungary
  publication-title: Journal of diabetes research
  doi: 10.1155/2016/4529824
– volume: 31
  start-page: 664
  issue: 4
  year: 2017
  ident: ref20
  article-title: Inadequate screening for retinopathy among recent immigrants with type 2 diabetes despite universal health care: A population-based study
  publication-title: Journal of diabetes and its complications
  doi: 10.1016/j.jdiacomp.2016.12.011
– volume: 64
  start-page: 38
  issue: 1
  year: 2016
  ident: ref28
  article-title: Prevalence of diabetic retinopathy in India: The All India Ophthalmological Society Diabetic Retinopathy Eye Screening Study 2014
  publication-title: Indian J Ophthalmol
  doi: 10.4103/0301-4738.178144
– volume: 8
  start-page: 1005
  issue: 2
  year: 2017
  ident: ref55
  article-title: Fully automated diagnosis of papilledema through robust extraction of vascular patterns and ocular pathology from fundus photographs
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.8.001005
– volume: 22
  start-page: 951
  issue: 8
  year: 2003
  ident: ref47
  article-title: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2003.815900
– volume: 3
  start-page: 249
  issue: 4
  year: 2016
  ident: ref52
  article-title: Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing
  publication-title: Brain Inform
  doi: 10.1007/s40708-016-0045-3
– volume: 26
  start-page: 226
  issue: 1
  year: 2003
  ident: ref3
  article-title: Diabetic retinopathy
  publication-title: Diabetes Care
  doi: 10.2337/diacare.26.1.226
– ident: ref26
– volume: 131
  start-page: 351
  issue: 3
  year: 2013
  ident: ref37
  article-title: Automated analysis of retinal images for detection of referable diabetic retinopathy
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2013.1743
– volume: 154
  start-page: 549
  issue: 3
  year: 2012
  ident: ref15
  article-title: Nonmydriatic ultrawide field retinal imaging compared with dilated standard 7-field 35-mm photography and retinal specialist examination for evaluation of diabetic retinopathy
  publication-title: Telemedicine journal and e-health: the official journal of the American Telemedicine Association
– volume: 19
  start-page: 295
  issue: 3
  year: 2012
  ident: ref18
  article-title: Screening for diabetic retinopathy: the first telemedicine approach in a primary care setting in Bahrain
  publication-title: American journal of ophthalmology
– volume: 102
  start-page: 527
  issue: 4
  year: 1984
  ident: ref2
  article-title: The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.1984.01040030405011
– volume: 14
  start-page: 298
  issue: 4
  year: 2004
  ident: ref4
  article-title: The prevalence of blindness and low vision in older onset diabetes mellitus and associated factors: a community-based study
  publication-title: European journal of ophthalmology
  doi: 10.1177/112067210401400404
– volume: 2016
  start-page: 1300
  year: 2016
  ident: ref57
  article-title: Automated detection of neovascularization for proliferative diabetic retinopathy screening
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 117
  start-page: 1147
  issue: 6
  year: 2010
  ident: ref36
  article-title: Automated early detection of diabetic retinopathy
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2010.03.046
– volume: 96
  start-page: 273
  issue: 6
  year: 2003
  ident: ref64
  article-title: Screening for diabetic retinopathy
  publication-title: J R Soc Med
  doi: 10.1177/014107680309600604
– volume: 36
  start-page: 247
  issue: 4
  year: 2011
  ident: ref7
  article-title: Role of early screening for diabetic retinopathy in patients with diabetes mellitus: an overview
  publication-title: Indian J Community Med
  doi: 10.4103/0970-0218.91324
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  ident: ref25
  article-title: Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 22
  start-page: 112
  issue: 3
  year: 2015
  ident: ref60
  article-title: A study of whether automated Diabetic Retinopathy Image Assessment could replace manual grading steps in the English National Screening Programme
  publication-title: J Med Screen
  doi: 10.1177/0969141315571953
– volume: 2016
  start-page: 3627465
  year: 2016
  ident: ref68
  article-title: Diabetic Retinopathy in Italy: Epidemiology Data and Telemedicine Screening Programs
  publication-title: Journal of diabetes research
  doi: 10.1155/2016/3627465
– volume: 124
  start-page: 343
  issue: 3
  year: 2017
  ident: ref59
  article-title: Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.11.014
– volume: 23
  start-page: 345
  issue: 3
  year: 2000
  ident: ref17
  article-title: A telemedical approach to the screening of diabetic retinopathy: digital fundus photography
  publication-title: Clinical & experimental ophthalmology
– volume: 9
  start-page: 2
  issue: 1
  year: 2013
  ident: ref45
  article-title: Diabetic retinopathy screening by general practitioners using non-mydriatic retinography
  publication-title: Current diabetes reviews
  doi: 10.2174/157339913804143180
– volume: 20
  start-page: 102
  issue: 2
  year: 2014
  ident: ref31
  article-title: Nonmydriatic fundus photography for teleophthalmology diabetic retinopathy screening in rural and urban clinics
  publication-title: Telemedicine journal and e-health: the official journal of the American Telemedicine Association
  doi: 10.1089/tmj.2013.0042
– volume: 41
  start-page: 66
  issue: 4
  year: 2017
  ident: ref54
  article-title: Decision Support System for Detection of Papilledema through Fundus Retinal Images
  publication-title: J Med Syst
  doi: 10.1007/s10916-017-0712-9
– volume: 98
  start-page: 766
  issue: 5 Suppl
  year: 1991
  ident: ref8
  article-title: Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study Research Group
  publication-title: Ophthalmology
– volume: 7
  start-page: 1387
  issue: 7
  year: 2013
  ident: ref29
  article-title: Prevalence of Diabetic Retinopathy in Western Indian Type 2 Diabetic Population: A Hospital—based Cross—Sectional Study
  publication-title: J Clin Diagn Res
– year: 2014
  ident: ref72
  article-title: Tele-consulting through rural health centres for tribal community—a case study from Wayanad
  doi: 10.1109/GHTC.2014.6970261
– volume: 10
  start-page: e0139148
  issue: 10
  year: 2015
  ident: ref62
  article-title: Results of Automated Retinal Image Analysis for Detection of Diabetic Retinopathy from the Nakuru Study, Kenya
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0139148
– volume: 10
  start-page: 254
  issue: 2
  year: 2016
  ident: ref61
  article-title: Automated Diabetic Retinopathy Screening and Monitoring Using Retinal Fundus Image Analysis
  publication-title: Journal of diabetes science and technology
  doi: 10.1177/1932296816628546
– volume: 2016
  start-page: 3256
  year: 2016
  ident: ref56
  article-title: Classification of large-scale fundus image data sets: a cloud-computing framework
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: ref24
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 17
  start-page: 588
  issue: 8
  year: 2000
  ident: ref49
  article-title: Automated detection of microaneurysms in digital red-free photographs: a diabetic retinopathy screening tool
  publication-title: Diabetic medicine: a journal of the British Diabetic Association
  doi: 10.1046/j.1464-5491.2000.00338.x
– volume: 293
  start-page: 1140
  issue: 6555
  year: 1986
  ident: ref41
  article-title: Assessment of non-mydriatic fundus photography in detection of diabetic retinopathy
  publication-title: Br Med J
  doi: 10.1136/bmj.293.6555.1140
– volume: 98
  start-page: 786
  issue: 5 Suppl
  year: 1991
  ident: ref12
  article-title: Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group
  publication-title: Ophthalmology
– volume: 291
  start-page: 1256
  issue: 6504
  year: 1985
  ident: ref30
  article-title: Possible new method to improve detection of diabetic retinopathy: Polaroid non-mydriatic retinal photography
  publication-title: Br Med J
  doi: 10.1136/bmj.291.6504.1256
– volume: 22
  start-page: 198
  issue: 3
  year: 2016
  ident: ref11
  article-title: Fundus Photography in the 21st Century—A Review of Recent Technological Advances and Their Implications for Worldwide Healthcare
  publication-title: Telemedicine journal and e-health: the official journal of the American Telemedicine Association
  doi: 10.1089/tmj.2015.0068
– volume: 92
  start-page: e42
  issue: 1
  year: 2014
  ident: ref51
  article-title: Semi-automated retinal vessel analysis in nonmydriatic fundus photography
  publication-title: Acta ophthalmologica
  doi: 10.1111/aos.12242
– volume: 54
  start-page: 5694
  issue: 8
  year: 2013
  ident: ref32
  article-title: The retinal disease screening study: retrospective comparison of nonmydriatic fundus photography and three-dimensional optical coherence tomography for detection of retinal irregularities
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.13-12043
– volume: 16
  start-page: 116001
  issue: 11
  year: 2011
  ident: ref58
  article-title: Decision support system for the detection and grading of hard exudates from color fundus photographs
  publication-title: J Biomed Opt
  doi: 10.1117/1.3643719
– volume: 317
  start-page: 703
  issue: 7160
  year: 1998
  ident: ref6
  article-title: Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group
  publication-title: BMJ
  doi: 10.1136/bmj.317.7160.703
– volume: 22
  start-page: 174
  issue: 2
  year: 2015
  ident: ref66
  article-title: Telemedicine in diabetic retinopathy: current status and future directions
  publication-title: Middle East African journal of ophthalmology
  doi: 10.4103/0974-9233.154391
– volume: 13
  start-page: 597
  issue: 5
  year: 2007
  ident: ref34
  article-title: The tele-screening model for diabetic retinopathy: evaluating the influence of mydriasis on the gradability of a single-field 45 degrees digital fundus image
  publication-title: Telemedicine journal and e-health: the official journal of the American Telemedicine Association
  doi: 10.1089/tmj.2006.0084
– year: 2007
  ident: ref39
  article-title: DIARETDB1—Standard Diabetic Retinopathy Database: Imageret
– volume: 98
  start-page: 823
  issue: 5 Suppl
  year: 1991
  ident: ref13
  article-title: Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Early Treatment Diabetic Retinopathy Study Research Group
  publication-title: Ophthalmology
– volume: 19
  start-page: 105
  issue: 2
  year: 2002
  ident: ref21
  article-title: Automated detection of diabetic retinopathy on digital fundus images
  publication-title: Diabetic medicine: a journal of the British Diabetic Association
  doi: 10.1046/j.1464-5491.2002.00613.x
– volume: 43
  start-page: 2136
  issue: 12
  year: 2013
  ident: ref38
  article-title: Computer-aided diagnosis of diabetic retinopathy: a review
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2013.10.007
– volume: 10
  start-page: e0122332
  issue: 4
  year: 2015
  ident: ref53
  article-title: Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0122332
– volume: 14
  start-page: 179
  issue: 4
  year: 2007
  ident: ref43
  article-title: Overview of epidemiologic studies of diabetic retinopathy
  publication-title: Ophthalmic epidemiology
  doi: 10.1080/09286580701396720
– volume: 64
  start-page: 84
  issue: 1
  year: 2016
  ident: ref73
  article-title: Telemedicine in diabetic retinopathy: Access to rural India
  publication-title: Indian J Ophthalmol
  doi: 10.4103/0301-4738.178151
– year: 2017
  ident: ref19
  article-title: Factors determining uptake of diabetic retinopathy screening in Oxfordshire
  publication-title: Diabetic medicine: a journal of the British Diabetic Association
– volume: 25
  start-page: 1106
  year: 2012
  ident: ref23
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
  publication-title: Advances in Neural Information Processing Systems
– ident: ref35
– volume: 62
  start-page: 851
  issue: 8
  year: 2014
  ident: ref16
  article-title: Sensitivity and specificity of nonmydriatic digital imaging in screening diabetic retinopathy in Indian eyes
  publication-title: Indian J Ophthalmol
  doi: 10.4103/0301-4738.141039
– volume: 31
  start-page: 193
  issue: 2
  year: 2008
  ident: ref50
  article-title: Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc07-1312
– year: 2017
  ident: ref65
  article-title: Diabetic Retinopathy Screening With Telemedicine: A Potential Strategy to Engage Our Youth
  publication-title: JAMA Ophthalmol
SSID ssj0053866
Score 2.415919
Snippet Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Early diagnosis through effective screening programs is likely to improve...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0189854
SubjectTerms Adults
Algorithms
Automation
Biology and Life Sciences
Blindness
Cameras
Care and treatment
Color vision
Cost analysis
Diabetes
Diabetes mellitus
Diabetic retinopathy
Diagnosis
Engineering and Technology
Eye
Eye (anatomy)
Health sciences
Hospitals
Image analysis
Image processing
Medical personnel
Medical tests
Medicine and Health Sciences
Patients
Pharmacology
Photography
Physical Sciences
Research and Analysis Methods
Retina
Retinal images
Retinopathy
Screening
Sensitivity
Sensitivity analysis
Stereoscopy
Telemedicine
Testing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swECYKT12Kpq-oSQoWKNBkUCJSEkWOzgtBgXbIA8gmSHzUBhzJsOTBv7Z_JXeiLERF0CwdTR5livx4_I463hHyjbEyM0zr0LFUgoESFaGUToUlsAFXwBZbCryc_POXuLpLftyn909SfaFPmA8P7AfuJEod4AqA52ySqJLLVNrYSm1NXGaF7qgR7HlbY8rrYFjFQvQX5eKMnfTzcrysK3scMalkmow2oi5e_6CVJ8tF3TxHOf_2nHyyFV2-JW96Dkmnvu875JWt3pGdfpU29LAPJX30nvy5Qf90nyCCFpWheLESnYPwd-1osW5roKzWQKUPToKleHywsGHn3EarugofNmaFU6gpbINm3dDlrG59rOuGlht6WoONTM-v6XTxu17N29lDeDbkN6R41Ev_8YgNPby4Pb--OaJAoCmoMTCtoQd0XlEQ9a6A0EN_SgwPwHuXVY2plDcfyN3lxe3ZVdindAh1quI2BPrnZOQEwCEWAB6lTap17GRmuY5sEUGxKYUsbMyEUqZwRjluGIs1cE8gox_JBN7b7hIqTILWLQjGJmEaWipoH9nScGiqo4DE2_nNdR_vHNNuLPLuI14Gdo-frhxRkfeoCEg4tFr6eB8vyJ8idAZZjNbdFQCG8x7D-UsYDsh3BF6OOgW6qIv-agT8D0bnyqcpR10ZZTwg-yNJ0AV6VL2L0N32tMmZkgxJu8KWWzg_X_11qMaHoutdZeu1l8mEgOkLyCeP_uFtueISv7MGJButi9FwjGuq-awLYp5mMBSCf_4f47dHXnNkWwxvmu2TSbta2wPgim35pVMLjyjob-k
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR3LbtQw0ILlwgVRXg0UZCQk2kPaOA_HPqHtSxUSHPqQ9hYlfnQrbZOwyR72xkfwg_AlzCTeQFBVjmuPvRPPeDxjz4OQD4wVqWZK-ZYlAgyUIPeFsNIvQBuwORyxBcfg5C9f-dlV_HmWzNyFW-PcKjcysRPUulJ4R34AxjFD9UOGn-pvPlaNwtdVV0LjIXmEqcvQpSudDQYX7GXOXbhclLIDR539uirNfsCEFEk8Oo66rP2DbJ7Ui6q5S_H813_yrwPp9Cl54jRJOu1Jv0UemPIZ2XJ7taG7LqH03nPy8wK91PsyETQvNcXwSnQRwt-VpfmqrUBxNRo6-xQl2IqXCAvjdy5utKxK_3atl0hIReEw1KuG1vOq7TNeN7RY08MKLGV6fE6ni2tYuXZ---v7j6OhziHFK196zyRruntyeXx-sUdBkaYgzsDEBhzoTUkBtHcJBBz722KYAOMvywpLKq9fkKvTk8ujM9-VdvBVIqPWBzXQisByYIuIAxNJpROlIitSE6rA5AE064KL3ESMS6lzq6UNNWORAiYApfQlmcCXm21CuY7RygXASMdMwUgJ4wNT6BCGqsAj0YbCmXJ5z7H8xiLrHvNSsH96gmXIF5njC4_4w6i6z_vxH_hDZJ4BFrN2dw3V8jpzQiALEgsyEoSoNXEsi1AkwkRGKKOjIs1V7pGPyHoZyhZAUeUuRAL-B7N0ZdMkRJkZpKFHdkaQIBPUqHsbmXeDaZP92T0wcsPQd3e_H7pxUnTBK0216mFSzoF8HnnV8__wtaEMBb63eiQd7YzRcox7ypt5l8w8SWEpePj6frTekMch6lMMY8l2yKRdrsxb0Abb4l235X8DAb9owQ
  priority: 102
  providerName: ProQuest
Title Sensitivity and specificity of automated analysis of single-field non-mydriatic fundus photographs by Bosch DR Algorithm—Comparison with mydriatic fundus photography (ETDRS) for screening in undiagnosed diabetic retinopathy
URI https://www.ncbi.nlm.nih.gov/pubmed/29281690
https://www.proquest.com/docview/1981045692
https://www.proquest.com/docview/1981766593
https://pubmed.ncbi.nlm.nih.gov/PMC5744962
https://doaj.org/article/05f042183fe449b2858e3e8ced3b7aca
http://dx.doi.org/10.1371/journal.pone.0189854
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1da9swULTpy17Guq-664IGg7UPLpa_JD2MkaTJyqBlpA3kzdiS3ARSO4sdWH7t_srubMcsI_t4MVi6k2Xp7nSS7oOQ94wlXDOl7JQFAjYoTmwLkUo7AW0gjWGJTUJ0Tr65Da8n_pdpMD0g25ytzQAWe7d2mE9qslpcfv-2-QQM_7HK2sDZFulymWfm0mFCisA_JEewNnFk1Ru_vVcA7q5uL1FrsUPX8Rpnuj-1srNYVTH9W8ndWS7yYp9a-rt15S_L1egZedrombRXE8YxOTDZc3LccHJBz5tw0xcvyI87tGGvk0jQONMUnS_RgAjf85TG6zIHtdZoqKwDmGApHjEsjF0ZwNEsz-zHjV7hNCsKS6VeF3Q5y8s6HnZBkw3t5zDY9GpMe4uHfDUvZ4_2oM2BSPE4mP6liQ09H95fje8uKCjZFEQdbL-hB3SeUQCtzQWhh_VJMjSAvplZjumWNy_JZDS8H1zbTdoHWwXSK21QEVPhpCGQjBcCgUmlA6W8VHDjKsfEDhTrJBSx8VgopY5TLVNXM-Yp0E9BYX1FOvDf5oTQUPu4AwZAT_tMAaYEfMck2gVU5VjE285vpJqY6JiaYxFVF30c9kb1dEVIFVFDFRaxW6xlHRPkH_B9JJ0WFiN6VwX56iFqBETkBCnITxCwqfF9mbgiEMYzQhntJTxWsUU-IOFFyAnQRRU37hPwHYzgFfUCF-Wpw12LnO1AgrxQO9UnSLrbnhYRk4KhYi8Rc0vO-6vftdXYKJrnZSZf1zA8DGH6LPK6pv72b13pCryLtQjf4Yud4dityeazKtB5wGEoQvf0P777hjxxUeFi6Gx2Rjrlam3egrpYJl1yyKccnmLA8Dn63CVH_eHt13G3OoDpVhLiJ33ldeE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq5QAXRHk1UMBIINpD2sRJnPiA0Lbbaksfh3Yr7S1NbKdbaZssm6zQ3vgR_A7-E_wSZvKCoKqcekw8Tibx-POMPQ9C3tl27CtbSjOxvQAMFCsygyARZgzaQBLBEhtzDE4-PuHDc_fz2BuvkB9NLAy6VTaYWAK1yiTukW-DcWyj-iHYp9kXE6tG4elqU0KjEotDvfwKJlv-8WAA4_uesf290e7QrKsKmNITTmGCBpIEVsKBI4cD_0IqT0onCXzNpKUjMPG5inkQacfmQqgoUSJhyrYdCe8XmOgAIP8eLLwWzih_3Bp4gB2c1-F5jm9v19KwNctSvWXZgQg8t7P8lVUC2rWgN5tm-U2K7r_-mn8tgPuPyMNac6X9StRWyYpOH5PVGhtyulEnsN58Qn6eoVd8VZaCRqmiGM6JLkl4nSU0WhQZKMpaQWOVEgXv4qbFVJulSx1Ns9S8Xqo5Co6ksPiqRU5nk6yoMmznNF7SnQwsczo4pf3pJYxUMbn-9e37bltXkeIWM73lIUu6sTcanJ5tUlDcKcAnmPTAA71KKZBWLojAY7U7DQ_AeM80wxLOy6fk_E4G_RnpwZfrNUK5ctGqBkJHubaEngL6WzpWDLpKyyBOM8KhrPOsY7mPaVgeHvpgb1UDFqJchLVcGMRse82qPCP_od9B4WlpMUt4eSObX4Y16ISWlwAmA2gn2nVFzAIv0I4OpFZO7EcyMsgHFL0QsQxYlFEdkgHvwaxgYd9jiNGWzwyy3qEEDJKd5jUU3obTPPwzW6FnI9A3N79tm_Gh6PKX6mxR0ficw_AZ5Hkl_-3XMsECPN81iN-ZGZ3f0W1JryZl8nTPh1_B2Yvb2XpD7g9Hx0fh0cHJ4UvygKEuZ2Mc2zrpFfOFfgWaaBG_Lqc_JRd3jTe_AVr6pk4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqRUJcEOXVQAEjgWgP6cZO4iQHhLbdrloKFepD6i0kfnQrbZNlkxXaGz-CX8O_gV_CTF6wqCqnHjceZ8fx-POMPQ9CXjGWBopJaRvmh2CgOIkdhiayU9AGTAJbbCowOPnjodg79d6f-Wcr5EcbC4NulS0mVkCtcoln5H0wjhmqHxHvm8Yt4tNw9G76xcYKUnjT2pbTqEXkQC--gvlWvN0fwly_5ny0e7KzZzcVBmzpR25pgzZiQscI4M4VMJZIKl9K14SB5tLRCZj7QqUiTLTLRBSpxKjIcMWYK4GXCJMeAPzfClyf4RoLzjpjD3BEiCZUzw1Yv5GMrWme6S2HhVHoe0tbYVUxoNsXetNJXlyl9P7ru_nXZji6R-42Wiwd1GK3SlZ0dp-sNjhR0I0mmfXmA_LzGD3k6xIVNMkUxdBOdE_C37mhybzMQWnWChrr9Cj4FA8wJtqu3Otolmf25ULNUIgkhY1YzQs6HedlnW27oOmCbudgpdPhER1MzmGmyvHlr2_fd7oaixSPm-k1L1nQjd2T4dHxJgUlngKUgnkPPNCLjAJp7Y4IPNYn1fACjP3MciznvHhITm9k0h-RHoxcrxEqlIcWNhC6ymMSekbQ39Gp4tBVOhZx2xmOZZNzHUt_TOLqIjEA26uesBjlIm7kwiJ212ta5xz5D_02Ck9HixnDqwf57DxuACh2fAP4DAButOdFKQ_9ULs6lFq5aZDIxCJvUPRixDVgUSZNeAb8D2YIiwc-R7x2Am6R9SVKwCO51LyGwttyWsR_Vi70bAX66uaXXTO-FN3_Mp3Pa5pACJg-izyu5b8bLY94iHe9FgmWVsbS51huyS7GVSJ1P4BPIfiT69l6QW4D0sQf9g8PnpI7HNU6hiFt66RXzub6GSilZfq8Wv2UfL5puPkNrEuqhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+and+specificity+of+automated+analysis+of+single-field+non-mydriatic+fundus+photographs+by+Bosch+DR+Algorithm-Comparison+with+mydriatic+fundus+photography+%28ETDRS%29+for+screening+in+undiagnosed+diabetic+retinopathy&rft.jtitle=PloS+one&rft.au=Bawankar%2C+Pritam&rft.au=Shanbhag%2C+Nita&rft.au=K%2C+S+Smitha&rft.au=Dhawan%2C+Bodhraj&rft.date=2017-12-27&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=12&rft.issue=12&rft.spage=e0189854&rft_id=info:doi/10.1371%2Fjournal.pone.0189854&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon