Phytoplankton can actively diversify their migration strategy in response to turbulent cues
Here, marine phytoplankton are shown to diversify their migratory strategy in response to turbulent cues through a rapid change in shape, thus challenging a fundamental paradigm in oceanography that phytoplankton are passively at the mercy of ocean turbulence. Phytoplankton evade rough seas Until no...
Saved in:
Published in | Nature (London) Vol. 543; no. 7646; pp. 555 - 558 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.03.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Here, marine phytoplankton are shown to diversify their migratory strategy in response to turbulent cues through a rapid change in shape, thus challenging a fundamental paradigm in oceanography that phytoplankton are passively at the mercy of ocean turbulence.
Phytoplankton evade rough seas
Until now, phytoplankton have been considered as passive subjects to ocean turbulence, which can change as suddenly as nutrient and light availability in the dynamic underwater environment. Roman Stocker and colleagues now show that several species of phytoplankton actively respond to turbulent cues by altering their migration routes to avoid layers of strong turbulence. They report that phytoplankton split into two groups, one swimming upward and another downward. This migratory behaviour could affect which species will survive in a changing ocean and will contribute to understanding of how communities respond to a warming climate.
Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and selection
1
,
2
. Many species of phytoplankton are motile and undertake diel vertical migrations to gain access to nutrient-rich deeper layers at night and well-lit surface waters during the day
3
,
4
. Disruption of this migratory strategy by turbulence is considered to be an important cause of the succession between motile and non-motile species when conditions turn turbulent
1
,
5
,
6
. However, this classical view neglects the possibility that motile species may actively respond to turbulent cues to avoid layers of strong turbulence
7
. Here we report that phytoplankton, including raphidophytes and dinoflagellates, can actively diversify their migratory strategy in response to hydrodynamic cues characteristic of overturning by Kolmogorov-scale eddies. Upon experiencing repeated overturning with timescales and statistics representative of ocean turbulence, an upward-swimming population rapidly (5–60 min) splits into two subpopulations, one swimming upward and one swimming downward. Quantitative morphological analysis of the harmful-algal-bloom-forming raphidophyte
Heterosigma akashiwo
together with a model of cell mechanics revealed that this behaviour was accompanied by a modulation of the cells’ fore–aft asymmetry. The minute magnitude of the required modulation, sufficient to invert the preferential swimming direction of the cells, highlights the advanced level of control that phytoplankton can exert on their migratory behaviour. Together with observations of enhanced cellular stress after overturning and the typically deleterious effects of strong turbulence on motile phytoplankton
5
,
8
, these results point to an active adaptation of
H. akashiwo
to increase the chance of evading turbulent layers by diversifying the direction of migration within the population, in a manner suggestive of evolutionary bet-hedging. This migratory behaviour relaxes the boundaries between the fluid dynamic niches of motile and non-motile phytoplankton, and highlights that rapid responses to hydrodynamic cues are important survival strategies for phytoplankton in the ocean. |
---|---|
AbstractList | Here, marine phytoplankton are shown to diversify their migratory strategy in response to turbulent cues through a rapid change in shape, thus challenging a fundamental paradigm in oceanography that phytoplankton are passively at the mercy of ocean turbulence.
Phytoplankton evade rough seas
Until now, phytoplankton have been considered as passive subjects to ocean turbulence, which can change as suddenly as nutrient and light availability in the dynamic underwater environment. Roman Stocker and colleagues now show that several species of phytoplankton actively respond to turbulent cues by altering their migration routes to avoid layers of strong turbulence. They report that phytoplankton split into two groups, one swimming upward and another downward. This migratory behaviour could affect which species will survive in a changing ocean and will contribute to understanding of how communities respond to a warming climate.
Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and selection
1
,
2
. Many species of phytoplankton are motile and undertake diel vertical migrations to gain access to nutrient-rich deeper layers at night and well-lit surface waters during the day
3
,
4
. Disruption of this migratory strategy by turbulence is considered to be an important cause of the succession between motile and non-motile species when conditions turn turbulent
1
,
5
,
6
. However, this classical view neglects the possibility that motile species may actively respond to turbulent cues to avoid layers of strong turbulence
7
. Here we report that phytoplankton, including raphidophytes and dinoflagellates, can actively diversify their migratory strategy in response to hydrodynamic cues characteristic of overturning by Kolmogorov-scale eddies. Upon experiencing repeated overturning with timescales and statistics representative of ocean turbulence, an upward-swimming population rapidly (5–60 min) splits into two subpopulations, one swimming upward and one swimming downward. Quantitative morphological analysis of the harmful-algal-bloom-forming raphidophyte
Heterosigma akashiwo
together with a model of cell mechanics revealed that this behaviour was accompanied by a modulation of the cells’ fore–aft asymmetry. The minute magnitude of the required modulation, sufficient to invert the preferential swimming direction of the cells, highlights the advanced level of control that phytoplankton can exert on their migratory behaviour. Together with observations of enhanced cellular stress after overturning and the typically deleterious effects of strong turbulence on motile phytoplankton
5
,
8
, these results point to an active adaptation of
H. akashiwo
to increase the chance of evading turbulent layers by diversifying the direction of migration within the population, in a manner suggestive of evolutionary bet-hedging. This migratory behaviour relaxes the boundaries between the fluid dynamic niches of motile and non-motile phytoplankton, and highlights that rapid responses to hydrodynamic cues are important survival strategies for phytoplankton in the ocean. Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and selection. Many species of phytoplankton are motile and undertake diel vertical migrations to gain access to nutrient-rich deeper layers at night and well-lit surface waters during the day. Disruption of this migratory strategy by turbulence is considered to be an important cause of the succession between motile and non-motile species when conditions turn turbulent. However, this classical view neglects the possibility that motile species may actively respond to turbulent cues to avoid layers of strong turbulence. Here we report that phytoplankton, including raphidophytes and dinoflagellates, can actively diversify their migratory strategy in response to hydrodynamic cues characteristic of overturning by Kolmogorov-scale eddies. Upon experiencing repeated overturning with timescales and statistics representative of ocean turbulence, an upward-swimming population rapidly (5-60 min) splits into two subpopulations, one swimming upward and one swimming downward. Quantitative morphological analysis of the harmful-algal-bloom-forming raphidophyte Heterosigma akashiwo together with a model of cell mechanics revealed that this behaviour was accompanied by a modulation of the cells' fore-aft asymmetry. The minute magnitude of the required modulation, sufficient to invert the preferential swimming direction of the cells, highlights the advanced level of control that phytoplankton can exert on their migratory behaviour. Together with observations of enhanced cellular stress after overturning and the typically deleterious effects of strong turbulence on motile phytoplankton, these results point to an active adaptation of H. akashiwo to increase the chance of evading turbulent layers by diversifying the direction of migration within the population, in a manner suggestive of evolutionary bet-hedging. This migratory behaviour relaxes the boundaries between the fluid dynamic niches of motile and non-motile phytoplankton, and highlights that rapid responses to hydrodynamic cues are important survival strategies for phytoplankton in the ocean. Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and selection. Many species of phytoplankton are motile and undertake diel vertical migrations to gain access to nutrient-rich deeper layers at night and well-lit surface waters during the day. Disruption of this migratory strategy by turbulence is considered to be an important cause of the succession between motile and non-motile species when conditions turn turbulent. However, this classical view neglects the possibility that motile species may actively respond to turbulent cues to avoid layers of strong turbulence. Here we report that phytoplankton, including raphidophytes and dinoflagellates, can actively diversify their migratory strategy in response to hydrodynamic cues characteristic of overturning by Kolmogorov-scale eddies. Upon experiencing repeated overturning with timescales and statistics representative of ocean turbulence, an upward-swimming population rapidly (5-60 min) splits into two subpopulations, one swimming upward and one swimming downward. Quantitative morphological analysis of the harmful-algal-bloom-forming raphidophyte Heterosigma akashiwo together with a model of cell mechanics revealed that this behaviour was accompanied by a modulation of the cells' fore-aft asymmetry. The minute magnitude of the required modulation, sufficient to invert the preferential swimming direction of the cells, highlights the advanced level of control that phytoplankton can exert on their migratory behaviour. Together with observations of enhanced cellular stress after overturning and the typically deleterious effects of strong turbulence on motile phytoplankton, these results point to an active adaptation of H. akashiwo to increase the chance of evading turbulent layers by diversifying the direction of migration within the population, in a manner suggestive of evolutionary bet-hedging. This migratory behaviour relaxes the boundaries between the fluid dynamic niches of motile and non-motile phytoplankton, and highlights that rapid responses to hydrodynamic cues are important survival strategies for phytoplankton in the ocean.Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and selection. Many species of phytoplankton are motile and undertake diel vertical migrations to gain access to nutrient-rich deeper layers at night and well-lit surface waters during the day. Disruption of this migratory strategy by turbulence is considered to be an important cause of the succession between motile and non-motile species when conditions turn turbulent. However, this classical view neglects the possibility that motile species may actively respond to turbulent cues to avoid layers of strong turbulence. Here we report that phytoplankton, including raphidophytes and dinoflagellates, can actively diversify their migratory strategy in response to hydrodynamic cues characteristic of overturning by Kolmogorov-scale eddies. Upon experiencing repeated overturning with timescales and statistics representative of ocean turbulence, an upward-swimming population rapidly (5-60 min) splits into two subpopulations, one swimming upward and one swimming downward. Quantitative morphological analysis of the harmful-algal-bloom-forming raphidophyte Heterosigma akashiwo together with a model of cell mechanics revealed that this behaviour was accompanied by a modulation of the cells' fore-aft asymmetry. The minute magnitude of the required modulation, sufficient to invert the preferential swimming direction of the cells, highlights the advanced level of control that phytoplankton can exert on their migratory behaviour. Together with observations of enhanced cellular stress after overturning and the typically deleterious effects of strong turbulence on motile phytoplankton, these results point to an active adaptation of H. akashiwo to increase the chance of evading turbulent layers by diversifying the direction of migration within the population, in a manner suggestive of evolutionary bet-hedging. This migratory behaviour relaxes the boundaries between the fluid dynamic niches of motile and non-motile phytoplankton, and highlights that rapid responses to hydrodynamic cues are important survival strategies for phytoplankton in the ocean. |
Audience | Academic |
Author | Sengupta, Anupam Carrara, Francesco Stocker, Roman |
Author_xml | – sequence: 1 givenname: Anupam surname: Sengupta fullname: Sengupta, Anupam organization: Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, Department of Civil and Environmental Engineering, Ralph M. Parsons Laboratory, Massachusetts Institute of Technology – sequence: 2 givenname: Francesco surname: Carrara fullname: Carrara, Francesco organization: Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, Department of Civil and Environmental Engineering, Ralph M. Parsons Laboratory, Massachusetts Institute of Technology – sequence: 3 givenname: Roman surname: Stocker fullname: Stocker, Roman email: romanstocker@ethz.ch organization: Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, Department of Civil and Environmental Engineering, Ralph M. Parsons Laboratory, Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28297706$$D View this record in MEDLINE/PubMed |
BookMark | eNp10t9vlTAUB_DGzLi76ZPvpnEvGmW2tNDyeHPjjyWLGp3xwQdSyoF1QmFtMfLf27np7l1YeCghn_Olpz0HaM8OFhB6SskxJUy-sSpMDlLKafYArSgXecJzKfbQipBUJkSyfB8deH9BCMmo4I_QfirTQgiSr9CPz-dzGMZO2Z9hsFgri5UO5hd0M67j4rxpZhzOwTjcm9apYCLzIb5AO2NjsQM_DtYDDgOOG6mmDmzAegL_GD1sVOfhyc16iL69e3u2-ZCcfnp_slmfJjorWEg4qRtCGdM6L6DWRGRVCoprVbGsgDQnikuRsQqkyklVkZrygja1VkVF64yl7BC9uM4d3XAZ_xvK3ngNXWwKhsmXVApJRcEkifToDr0YJmfj7qKSXEhRpPmtalUHpbHNEPvVV6HlmstcxGOkRVTJgmrBglNdvKLGxM87_vmC16O5LLfR8QKKTw290YupL3cKognwO7Rq8r48-fpl1766367Pvm8-7upnN2c1VT3U5ehMr9xc_hue2zjtBu8dNP8JJeXVaJZboxk1vaO1CX_HKXZountqXl_X-JhsW3Bb17XA_wA5lvMh |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1073_pnas_2005944118 crossref_primary_10_1103_PhysRevLett_132_054005 crossref_primary_10_3390_ijms222111311 crossref_primary_10_7554_eLife_47732 crossref_primary_10_1002_lno_11465 crossref_primary_10_3389_fpls_2021_707541 crossref_primary_10_1016_j_jembe_2018_09_008 crossref_primary_10_1021_acs_langmuir_2c03088 crossref_primary_10_1103_PhysRevFluids_4_124304 crossref_primary_10_1002_lol2_10392 crossref_primary_10_1098_rsif_2019_0324 crossref_primary_10_1016_j_jhydrol_2020_125812 crossref_primary_10_1016_j_envres_2023_115805 crossref_primary_10_1007_s10409_022_22323_x crossref_primary_10_1017_jfm_2023_32 crossref_primary_10_1103_PhysRevE_101_052608 crossref_primary_10_3390_fractalfract5020049 crossref_primary_10_1126_sciadv_abn6005 crossref_primary_10_1007_s10811_018_1465_7 crossref_primary_10_1038_s42005_023_01242_9 crossref_primary_10_1038_s41467_024_49997_1 crossref_primary_10_1140_epje_i2020_11949_8 crossref_primary_10_1007_s10750_018_3505_3 crossref_primary_10_1073_pnas_2206738119 crossref_primary_10_1016_j_jhydrol_2023_129849 crossref_primary_10_1098_rspa_2023_0280 crossref_primary_10_7554_eLife_47551 crossref_primary_10_1038_s41558_022_01430_5 crossref_primary_10_1029_2024WR037586 crossref_primary_10_1038_s41467_019_08781_2 crossref_primary_10_1126_sciadv_aaw7879 crossref_primary_10_1016_j_scitotenv_2024_177000 crossref_primary_10_1002_2017GL074868 crossref_primary_10_1016_j_watres_2024_121836 crossref_primary_10_1063_5_0147231 crossref_primary_10_1515_nanoph_2022_0197 crossref_primary_10_1103_PhysRevLett_132_104005 crossref_primary_10_1038_s41526_022_00230_7 crossref_primary_10_1098_rsif_2017_0453 crossref_primary_10_1017_jfm_2022_832 crossref_primary_10_1017_jfm_2025_122 crossref_primary_10_1103_PhysRevE_111_035412 crossref_primary_10_1103_PhysRevResearch_7_013142 crossref_primary_10_1016_j_watres_2018_11_003 crossref_primary_10_3389_fphy_2020_00184 crossref_primary_10_1371_journal_pone_0212442 crossref_primary_10_1088_1873_7005_ada6fb crossref_primary_10_1140_epjp_s13360_023_04111_0 crossref_primary_10_1073_pnas_1808711115 crossref_primary_10_1073_pnas_2304590120 crossref_primary_10_1016_j_limno_2023_126097 crossref_primary_10_1038_s42256_020_0146_9 crossref_primary_10_1016_j_ecoinf_2020_101166 crossref_primary_10_1016_j_jtbi_2017_08_012 crossref_primary_10_1103_PhysRevResearch_7_013258 crossref_primary_10_1038_s42003_023_05183_5 crossref_primary_10_3390_w10101455 crossref_primary_10_1140_epje_s10189_022_00183_5 crossref_primary_10_1017_jfm_2024_421 crossref_primary_10_1007_s00343_021_0317_5 crossref_primary_10_7566_JPSJ_92_121002 crossref_primary_10_1016_j_jhydrol_2023_129375 crossref_primary_10_1017_jfm_2021_978 crossref_primary_10_1016_j_scitotenv_2019_03_328 crossref_primary_10_1073_pnas_2203191119 crossref_primary_10_1098_rsta_2019_0529 crossref_primary_10_1088_1367_2630_ab776f crossref_primary_10_1103_PhysRevLett_134_108301 crossref_primary_10_1017_jfm_2024_707 crossref_primary_10_1016_j_csbj_2024_02_028 crossref_primary_10_1098_rsta_2019_0523 crossref_primary_10_1103_Physics_15_88 crossref_primary_10_5194_os_16_65_2020 crossref_primary_10_1038_s41598_023_28473_8 crossref_primary_10_1016_j_jbiomech_2023_111706 crossref_primary_10_1038_s41598_021_90622_8 crossref_primary_10_1146_annurev_cellbio_100818_125119 crossref_primary_10_1016_j_scitotenv_2023_169712 crossref_primary_10_1140_epje_i2019_11792_0 crossref_primary_10_5194_os_15_1653_2019 crossref_primary_10_1017_jfm_2024_136 crossref_primary_10_1371_journal_pcbi_1010291 crossref_primary_10_1017_jfm_2023_508 crossref_primary_10_1115_1_4050054 crossref_primary_10_1103_RevModPhys_95_025004 crossref_primary_10_1103_PhysRevResearch_4_023094 crossref_primary_10_1103_PhysRevFluids_4_054602 crossref_primary_10_1007_s11356_020_07882_6 crossref_primary_10_1007_s10750_020_04216_y crossref_primary_10_1103_PhysRevFluids_7_014311 crossref_primary_10_3390_jmse10081053 crossref_primary_10_1017_jfm_2024_248 crossref_primary_10_1007_s40974_017_0071_x crossref_primary_10_1038_s41377_022_00951_0 crossref_primary_10_1007_s10750_020_04487_5 crossref_primary_10_1016_j_envpol_2022_120074 crossref_primary_10_1016_j_algal_2019_101563 crossref_primary_10_7566_JPSJ_92_062001 crossref_primary_10_1103_PhysRevFluids_4_064605 crossref_primary_10_1073_pnas_1708888114 crossref_primary_10_1103_PhysRevFluids_7_013104 crossref_primary_10_1017_jfm_2023_155 crossref_primary_10_1007_s11433_019_1502_2 crossref_primary_10_1021_acsapm_2c00865 crossref_primary_10_1103_PhysRevLett_118_158004 crossref_primary_10_1007_s00343_024_3260_4 crossref_primary_10_1073_pnas_2413340122 crossref_primary_10_1016_j_watres_2025_123422 crossref_primary_10_1016_j_bpj_2020_10_006 crossref_primary_10_1038_s41396_022_01313_9 crossref_primary_10_1038_s41592_020_0939_0 crossref_primary_10_3389_fmars_2021_804960 crossref_primary_10_3390_w14101625 crossref_primary_10_3389_fmars_2024_1499002 crossref_primary_10_1029_2024JC021412 crossref_primary_10_1146_annurev_conmatphys_031119_050637 crossref_primary_10_1063_5_0051325 crossref_primary_10_1038_s41567_021_01247_7 crossref_primary_10_1016_j_rse_2025_114686 crossref_primary_10_1016_j_limno_2019_125746 crossref_primary_10_1017_jfm_2018_767 crossref_primary_10_1103_PhysRevFluids_8_033101 |
Cites_doi | 10.1038/ncomms3148 10.1093/oxfordjournals.pcp.a076926 10.1146/annurev.ecolsys.39.110707.173549 10.1007/s00348-005-0068-7 10.1002/bip.1975.360141115 10.1016/j.pocean.2010.02.005 10.1093/plankt/23.5.447 10.1016/S0960-9822(00)00005-1 10.1016/S1568-9883(03)00039-8 10.1007/BF02488320 10.1017/S0022112001006772 10.1016/j.cub.2008.05.037 10.1002/2014JC010596 10.1007/s00248-002-1012-5 10.1126/science.1184961 10.1215/21573689-2647998 10.1007/s11538-010-9575-7 10.1093/pcp/pcn037 10.1046/j.1529-8817.2000.98088.x 10.1093/icesjms/18.3.287 10.1007/BF02179771 10.1038/nrmicro3491 10.1146/annurev-fluid-120710-101156 10.1086/284396 10.3389/fmicb.2015.01277 10.1093/plankt/fbq152 10.1038/ismej.2009.24 10.1002/lno.10074 10.1111/j.1529-8817.2007.00392.x 10.1126/science.1224836 10.1016/S0176-1617(99)80311-3 10.1126/science.1167334 10.1242/jeb.53.3.687 10.1007/978-94-009-8352-6_1 10.1017/CBO9780511801198 10.1128/MMBR.44.4.572-630.1980 10.1201/9780429258770 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017 COPYRIGHT 2017 Nature Publishing Group Copyright Nature Publishing Group Mar 23, 2017 |
Copyright_xml | – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017 – notice: COPYRIGHT 2017 Nature Publishing Group – notice: Copyright Nature Publishing Group Mar 23, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/nature21415 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database ProQuest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 558 |
ExternalDocumentID | 4321495749 A486705119 28297706 10_1038_nature21415 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c593t-40df0133cc69edc075b2ea4cab359e260a48753be8a60bb0d1491fdca9b1d5323 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Mon Jul 21 11:54:22 EDT 2025 Fri Jul 25 08:49:32 EDT 2025 Tue Jun 17 21:10:25 EDT 2025 Thu Jun 12 23:52:47 EDT 2025 Tue Jun 10 15:35:26 EDT 2025 Tue Jun 10 20:50:11 EDT 2025 Fri Jun 27 05:00:21 EDT 2025 Fri Jun 27 04:58:06 EDT 2025 Wed Feb 19 02:01:29 EST 2025 Tue Jul 01 00:56:53 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 Fri Feb 21 02:38:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7646 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c593t-40df0133cc69edc075b2ea4cab359e260a48753be8a60bb0d1491fdca9b1d5323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28297706 |
PQID | 1884787926 |
PQPubID | 40569 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1878179380 proquest_journals_1884787926 gale_infotracmisc_A486705119 gale_infotracgeneralonefile_A486705119 gale_infotraccpiq_486705119 gale_infotracacademiconefile_A486705119 gale_incontextgauss_ISR_A486705119 gale_incontextgauss_ATWCN_A486705119 pubmed_primary_28297706 crossref_primary_10_1038_nature21415 crossref_citationtrail_10_1038_nature21415 springer_journals_10_1038_nature21415 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-23 |
PublicationDateYYYYMMDD | 2017-03-23 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Durham (CR20) 2013; 4 Villareal, Carpenter (CR14) 2003; 45 Bulmer (CR26) 1985; 126 Lozovatsky, Lee, Fernando, Kang, Jinadasa (CR7) 2015; 120 Schuech, Menden-Deuer (CR4) 2014; 4 Bouchard, Yamasaki (CR38) 2008; 49 Brun (CR12) 2015; 60 Durham, Kessler, Stocker (CR19) 2009; 323 Guasto, Rusconi, Stocker (CR15) 2012; 44 Roberts (CR18) 1970; 53 CR36 CR35 Margalef (CR1) 1978; 1 Harvey, Menden-Deuer, Rynearson (CR29) 2015; 6 Ouellette, Xu, Bodenschatz (CR31) 2006; 40 Gurarie, Grünbaum, Nishizaki (CR32) 2011; 73 Vardi (CR39) 2008; 18 Smayda, Reynolds (CR2) 2001; 23 Moxon, Rainey, Nowak, Lenski (CR27) 1994; 4 Roberts, Deacon (CR33) 2002; 452 Barton, Dutkiewicz, Flierl, Bragg, Follows (CR10) 2010; 327 Wada, Miyazaki, Fujii (CR34) 1985; 26 Sverdrup (CR9) 1953; 18 Zirbel, Veron, Latz (CR17) 2000; 58 Hemmersbach, Volkmann, Hader (CR25) 1999; 154 Franks (CR16) 2015; 72 Yamasaki (CR21) 2009; 3 Thomas, Gibson (CR8) 1990; 2 Smayda (CR24) 2010; 85 Litchman, Klausmeier (CR13) 2008; 39 Berdalet (CR6) 2007; 43 Thomas, Kremer, Klausmeier, Litchman (CR11) 2012; 338 CR22 Sullivan, Swift, Donaghay, Rines (CR5) 2003; 2 Koenig (CR37) 1975; 14 Hara, Chihara (CR23) 1987; 100 Foster, Smyth (CR30) 1980; 44 Bollens, Rollwagen-Bollens, Quenette, Bochdansky (CR3) 2011; 33 Ackermann (CR28) 2015; 13 E Litchman (BFnature21415_CR13) 2008; 39 TA Villareal (BFnature21415_CR14) 2003; 45 BFnature21415_CR22 MJ Zirbel (BFnature21415_CR17) 2000; 58 Y Yamasaki (BFnature21415_CR21) 2009; 3 MG Bulmer (BFnature21415_CR26) 1985; 126 JN Bouchard (BFnature21415_CR38) 2008; 49 WM Durham (BFnature21415_CR20) 2013; 4 EL Harvey (BFnature21415_CR29) 2015; 6 KW Foster (BFnature21415_CR30) 1980; 44 R Margalef (BFnature21415_CR1) 1978; 1 R Schuech (BFnature21415_CR4) 2014; 4 Y Hara (BFnature21415_CR23) 1987; 100 M Wada (BFnature21415_CR34) 1985; 26 M Ackermann (BFnature21415_CR28) 2015; 13 P Brun (BFnature21415_CR12) 2015; 60 TJ Smayda (BFnature21415_CR2) 2001; 23 PJS Franks (BFnature21415_CR16) 2015; 72 E Berdalet (BFnature21415_CR6) 2007; 43 SH Koenig (BFnature21415_CR37) 1975; 14 MK Thomas (BFnature21415_CR11) 2012; 338 BFnature21415_CR35 BFnature21415_CR36 I Lozovatsky (BFnature21415_CR7) 2015; 120 H Sverdrup (BFnature21415_CR9) 1953; 18 TJ Smayda (BFnature21415_CR24) 2010; 85 AM Roberts (BFnature21415_CR33) 2002; 452 JM Sullivan (BFnature21415_CR5) 2003; 2 AM Roberts (BFnature21415_CR18) 1970; 53 ER Moxon (BFnature21415_CR27) 1994; 4 NT Ouellette (BFnature21415_CR31) 2006; 40 A Vardi (BFnature21415_CR39) 2008; 18 R Hemmersbach (BFnature21415_CR25) 1999; 154 AD Barton (BFnature21415_CR10) 2010; 327 WH Thomas (BFnature21415_CR8) 1990; 2 JS Guasto (BFnature21415_CR15) 2012; 44 SM Bollens (BFnature21415_CR3) 2011; 33 WM Durham (BFnature21415_CR19) 2009; 323 E Gurarie (BFnature21415_CR32) 2011; 73 |
References_xml | – ident: CR22 – volume: 4 start-page: 2148 year: 2013 ident: CR20 article-title: Turbulence drives microscale patches of motile phytoplankton publication-title: Nature Commun. doi: 10.1038/ncomms3148 – volume: 26 start-page: 431 year: 1985 end-page: 436 ident: CR34 article-title: On the mechanisms of diurnal vertical migration behavior of (Raphidophyceae) publication-title: Plant Cell Physiol. doi: 10.1093/oxfordjournals.pcp.a076926 – volume: 39 start-page: 615 year: 2008 end-page: 639 ident: CR13 article-title: Trait-based community ecology of phytoplankton publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.ecolsys.39.110707.173549 – volume: 40 start-page: 301 year: 2006 end-page: 313 ident: CR31 article-title: A quantitative study of three-dimensional Lagrangian particle tracking algorithms publication-title: Exp. Fluids doi: 10.1007/s00348-005-0068-7 – volume: 72 start-page: 1 year: 2015 end-page: 11 ident: CR16 article-title: Has Sverdrup’s critical depth hypothesis been tested? Mixed layers vs. turbulence layers publication-title: J. Mar. Sci. – volume: 14 start-page: 2421 year: 1975 end-page: 2423 ident: CR37 article-title: Brownian motion of an ellipsoid. A correction to Perrin’s results publication-title: Biopolymers doi: 10.1002/bip.1975.360141115 – volume: 85 start-page: 71 year: 2010 end-page: 91 ident: CR24 article-title: Adaptations and selection of harmful and other dinoflagellate species in upwelling systems.1. Morphology and adaptive polymorphism publication-title: Prog. Oceanogr. doi: 10.1016/j.pocean.2010.02.005 – volume: 23 start-page: 447 year: 2001 end-page: 461 ident: CR2 article-title: Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms publication-title: J. Plankton Res. doi: 10.1093/plankt/23.5.447 – volume: 4 start-page: 24 year: 1994 end-page: 33 ident: CR27 article-title: Adaptive evolution of highly mutable loci in pathogenic bacteria publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00005-1 – volume: 2 start-page: 183 year: 2003 end-page: 199 ident: CR5 article-title: Small-scale turbulence affects the division rate and morphology of two red-tide dinoflagellates publication-title: Harmful Algae doi: 10.1016/S1568-9883(03)00039-8 – ident: CR35 – volume: 100 start-page: 151 year: 1987 end-page: 163 ident: CR23 article-title: Morphology, ultrastructure and taxonomy of the raphidophycean alga publication-title: Bot. Mag. doi: 10.1007/BF02488320 – volume: 452 start-page: 405 year: 2002 end-page: 423 ident: CR33 article-title: Gravitaxis in motile micro-organisms: the role of fore–aft body asymmetry publication-title: J. Fluid Mech. doi: 10.1017/S0022112001006772 – volume: 18 start-page: 895 year: 2008 end-page: 899 ident: CR39 article-title: A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.05.037 – volume: 120 start-page: 1856 year: 2015 end-page: 1871 ident: CR7 article-title: Turbulence in the East China Sea: the summertime stratification publication-title: J. Geophys. Res. Oceans. doi: 10.1002/2014JC010596 – volume: 45 start-page: 1 year: 2003 end-page: 10 ident: CR14 article-title: Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium publication-title: Microb. Ecol. doi: 10.1007/s00248-002-1012-5 – volume: 327 start-page: 1509 year: 2010 end-page: 1511 ident: CR10 article-title: Patterns of diversity in marine phytoplankton publication-title: Science doi: 10.1126/science.1184961 – volume: 4 start-page: 1 year: 2014 end-page: 16 ident: CR4 article-title: Going ballistic in the plankton: anisotropic swimming behavior of marine protists publication-title: Limnol. Oceanogr. Fluids Environ. doi: 10.1215/21573689-2647998 – volume: 73 start-page: 1358 year: 2011 end-page: 1377 ident: CR32 article-title: Estimating 3D movements from 2D observations using a continuous model of helical swimming publication-title: Bull. Math. Biol. doi: 10.1007/s11538-010-9575-7 – volume: 49 start-page: 641 year: 2008 end-page: 652 ident: CR38 article-title: Heat stress stimulates nitric oxide production in : a possible linkage between nitric oxide and the coral bleaching phenomenon publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcn037 – volume: 58 start-page: 46 year: 2000 end-page: 58 ident: CR17 article-title: The reversible effect of flow on the morphology of publication-title: J. Phycol. doi: 10.1046/j.1529-8817.2000.98088.x – volume: 18 start-page: 287 year: 1953 end-page: 295 ident: CR9 article-title: On conditions for the vernal blooming of phytoplankton publication-title: J. Cons. Perm. Int. Explor. Mer doi: 10.1093/icesjms/18.3.287 – volume: 2 start-page: 71 year: 1990 end-page: 77 ident: CR8 article-title: Effects of small-scale turbulence on microalgae publication-title: J. Appl. Phycol. doi: 10.1007/BF02179771 – volume: 13 start-page: 497 year: 2015 end-page: 508 ident: CR28 article-title: A functional perspective on phenotypic heterogeneity in microorganisms publication-title: Nature Rev. Microbiol. doi: 10.1038/nrmicro3491 – volume: 1 start-page: 493 year: 1978 end-page: 509 ident: CR1 article-title: Life-forms of phytoplankton as survival alternatives in an unstable environment publication-title: Oceanol. Acta – volume: 44 start-page: 373 year: 2012 end-page: 400 ident: CR15 article-title: Fluid mechanics of planktonic microorganisms publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-120710-101156 – volume: 126 start-page: 63 year: 1985 end-page: 71 ident: CR26 article-title: Selection for iteroparity in a variable environment publication-title: Am. Nat. doi: 10.1086/284396 – volume: 6 start-page: 1277 year: 2015 ident: CR29 article-title: Persistent intra-specific variation in genetic and behavioral traits in the raphidophyte, publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.01277 – ident: CR36 – volume: 33 start-page: 349 year: 2011 end-page: 355 ident: CR3 article-title: Cascading migrations and implications for vertical fluxes in pelagic ecosystems publication-title: J. Plankton Res. doi: 10.1093/plankt/fbq152 – volume: 3 start-page: 808 year: 2009 end-page: 817 ident: CR21 article-title: Extracellular polysaccharide–protein complexes of a harmful alga mediate the allelopathic control it exerts within the phytoplankton community publication-title: ISME J. doi: 10.1038/ismej.2009.24 – volume: 44 start-page: 572 year: 1980 end-page: 630 ident: CR30 article-title: Light Antennas in phototactic algae publication-title: Microbiol. Rev. – volume: 60 start-page: 1020 year: 2015 end-page: 1038 ident: CR12 article-title: Ecological niches of open ocean phytoplankton taxa publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10074 – volume: 43 start-page: 965 year: 2007 end-page: 977 ident: CR6 article-title: Species-specific physiological response of dinoflagellates to quantified small-scale turbulence publication-title: J. Phycol. doi: 10.1111/j.1529-8817.2007.00392.x – volume: 338 start-page: 1085 year: 2012 end-page: 1088 ident: CR11 article-title: A global pattern of thermal adaptation in marine phytoplankton publication-title: Science doi: 10.1126/science.1224836 – volume: 154 start-page: 1 year: 1999 end-page: 15 ident: CR25 article-title: Graviorientation in protists and plants publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(99)80311-3 – volume: 53 start-page: 687 year: 1970 end-page: 699 ident: CR18 article-title: Geotaxis in motile micro-organisms publication-title: J. Exp. Biol. – volume: 323 start-page: 1067 year: 2009 end-page: 1070 ident: CR19 article-title: Disruption of vertical motility by shear triggers formation of thin phytoplankton layers publication-title: Science doi: 10.1126/science.1167334 – volume: 18 start-page: 895 year: 2008 ident: BFnature21415_CR39 publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.05.037 – volume: 60 start-page: 1020 year: 2015 ident: BFnature21415_CR12 publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10074 – volume: 58 start-page: 46 year: 2000 ident: BFnature21415_CR17 publication-title: J. Phycol. doi: 10.1046/j.1529-8817.2000.98088.x – volume: 4 start-page: 24 year: 1994 ident: BFnature21415_CR27 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00005-1 – volume: 40 start-page: 301 year: 2006 ident: BFnature21415_CR31 publication-title: Exp. Fluids doi: 10.1007/s00348-005-0068-7 – volume: 2 start-page: 183 year: 2003 ident: BFnature21415_CR5 publication-title: Harmful Algae doi: 10.1016/S1568-9883(03)00039-8 – volume: 73 start-page: 1358 year: 2011 ident: BFnature21415_CR32 publication-title: Bull. Math. Biol. doi: 10.1007/s11538-010-9575-7 – volume: 53 start-page: 687 year: 1970 ident: BFnature21415_CR18 publication-title: J. Exp. Biol. doi: 10.1242/jeb.53.3.687 – volume: 33 start-page: 349 year: 2011 ident: BFnature21415_CR3 publication-title: J. Plankton Res. doi: 10.1093/plankt/fbq152 – volume: 85 start-page: 71 year: 2010 ident: BFnature21415_CR24 publication-title: Prog. Oceanogr. doi: 10.1016/j.pocean.2010.02.005 – ident: BFnature21415_CR36 doi: 10.1007/978-94-009-8352-6_1 – volume: 327 start-page: 1509 year: 2010 ident: BFnature21415_CR10 publication-title: Science doi: 10.1126/science.1184961 – volume: 338 start-page: 1085 year: 2012 ident: BFnature21415_CR11 publication-title: Science doi: 10.1126/science.1224836 – volume: 323 start-page: 1067 year: 2009 ident: BFnature21415_CR19 publication-title: Science doi: 10.1126/science.1167334 – volume: 1 start-page: 493 year: 1978 ident: BFnature21415_CR1 publication-title: Oceanol. Acta – volume: 43 start-page: 965 year: 2007 ident: BFnature21415_CR6 publication-title: J. Phycol. doi: 10.1111/j.1529-8817.2007.00392.x – volume: 4 start-page: 2148 year: 2013 ident: BFnature21415_CR20 publication-title: Nature Commun. doi: 10.1038/ncomms3148 – volume: 39 start-page: 615 year: 2008 ident: BFnature21415_CR13 publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.ecolsys.39.110707.173549 – ident: BFnature21415_CR22 doi: 10.1017/CBO9780511801198 – volume: 452 start-page: 405 year: 2002 ident: BFnature21415_CR33 publication-title: J. Fluid Mech. doi: 10.1017/S0022112001006772 – volume: 44 start-page: 373 year: 2012 ident: BFnature21415_CR15 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-120710-101156 – volume: 2 start-page: 71 year: 1990 ident: BFnature21415_CR8 publication-title: J. Appl. Phycol. doi: 10.1007/BF02179771 – volume: 45 start-page: 1 year: 2003 ident: BFnature21415_CR14 publication-title: Microb. Ecol. doi: 10.1007/s00248-002-1012-5 – volume: 126 start-page: 63 year: 1985 ident: BFnature21415_CR26 publication-title: Am. Nat. doi: 10.1086/284396 – volume: 44 start-page: 572 year: 1980 ident: BFnature21415_CR30 publication-title: Microbiol. Rev. doi: 10.1128/MMBR.44.4.572-630.1980 – volume: 18 start-page: 287 year: 1953 ident: BFnature21415_CR9 publication-title: J. Cons. Perm. Int. Explor. Mer doi: 10.1093/icesjms/18.3.287 – volume: 23 start-page: 447 year: 2001 ident: BFnature21415_CR2 publication-title: J. Plankton Res. doi: 10.1093/plankt/23.5.447 – volume: 6 start-page: 1277 year: 2015 ident: BFnature21415_CR29 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.01277 – volume: 26 start-page: 431 year: 1985 ident: BFnature21415_CR34 publication-title: Plant Cell Physiol. doi: 10.1093/oxfordjournals.pcp.a076926 – volume: 14 start-page: 2421 year: 1975 ident: BFnature21415_CR37 publication-title: Biopolymers doi: 10.1002/bip.1975.360141115 – volume: 100 start-page: 151 year: 1987 ident: BFnature21415_CR23 publication-title: Bot. Mag. doi: 10.1007/BF02488320 – volume: 120 start-page: 1856 year: 2015 ident: BFnature21415_CR7 publication-title: J. Geophys. Res. Oceans. doi: 10.1002/2014JC010596 – volume: 72 start-page: 1 year: 2015 ident: BFnature21415_CR16 publication-title: J. Mar. Sci. – volume: 4 start-page: 1 year: 2014 ident: BFnature21415_CR4 publication-title: Limnol. Oceanogr. Fluids Environ. doi: 10.1215/21573689-2647998 – volume: 13 start-page: 497 year: 2015 ident: BFnature21415_CR28 publication-title: Nature Rev. Microbiol. doi: 10.1038/nrmicro3491 – ident: BFnature21415_CR35 doi: 10.1201/9780429258770 – volume: 49 start-page: 641 year: 2008 ident: BFnature21415_CR38 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcn037 – volume: 3 start-page: 808 year: 2009 ident: BFnature21415_CR21 publication-title: ISME J. doi: 10.1038/ismej.2009.24 – volume: 154 start-page: 1 year: 1999 ident: BFnature21415_CR25 publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(99)80311-3 |
SSID | ssj0005174 |
Score | 2.568885 |
Snippet | Here, marine phytoplankton are shown to diversify their migratory strategy in response to turbulent cues through a rapid change in shape, thus challenging a... Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 555 |
SubjectTerms | 631/158/856 631/57/343 639/301/923/916 639/766/189 704/829/826 Acclimatization Avoidance Learning Behavior Cues Ecosystem Eddies Environmental aspects Gravitation Humanities and Social Sciences letter Locomotion Marine biology Microbiological research multidisciplinary Nutrient availability Oceanic turbulence Oceans and Seas Phytoplankton Phytoplankton - physiology Plankton Science Seawater Stress, Physiological Subpopulations Surface water Swimming Turbulence Turbulence (Fluid dynamics) Water Movements |
Title | Phytoplankton can actively diversify their migration strategy in response to turbulent cues |
URI | https://link.springer.com/article/10.1038/nature21415 https://www.ncbi.nlm.nih.gov/pubmed/28297706 https://www.proquest.com/docview/1884787926 https://www.proquest.com/docview/1878179380 |
Volume | 543 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKyQuiJaXaakWVJ6SVdvrx_qEQtRQOESotCISB2tfjiKCndbOIf-eGXuT2qFw8WXG1np2dnbW8_kbQo5Z5BsTGeNC8qrcMM-NCzEwcHXqmTDVQqSmQVuM47PL8OskmtgPbpWFVa5jYhOodanwG_mJzznyyKRB_HFx5WLXKKyu2hYad8kuUpchpCuZJDcQjy0WZvt_nsf4SUubGfgh9sPt7EjbcbmzMW1VSpsNaPSQPLCZIx20U71H7phin9xrEJyq2id7dpVW9J2lkn7_iPwEcV0u5qL4BTkeBTNS0QS4-YrqFpGRr2hTLKC_Z9PWG2jVMtau6Kyg1y2G1tC6pPAucom7FFUw6MfkcnR6MTxzbTsFV0Upq-GkqHNI-JhScWq0glxBBkaESkgWpQbONaI5vEjDRexJ6Wk4PPm5ViKVvo5YwJ6QnaIszDNCueQKQixyC8Yhzw0kOZFSOs2lZzRTwiEf1ibNlOUax5YX86ypeTOedezvkOON8qKl2PiHGs5NhqQVBaJipmJZVdng4sdwnA2QONDDmqhDXt2m9uX7eU_prVXKSxiXEvZfBHg7pMPqaR70NNVidpV1pG960mk7v7c95rCnCGtY9cVrh8tsDKmyG493yMuNGO9EXFxhyiXqJBxDLPcc8rR11I0NsUaeJB7c_XrtuZ2H_23g5_8fxAG5H2BK4zE3YIdkp75emheQkNXyqFl1cOVDH6-jz0dk99Pp-Nv5H0AkOEY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXRMsrtIBBLS8pqvN2DgitCtUuLXuArboSh-DYzmrFkmybrND-KX4jM3lsk6Vw63kmkWOPvxlnxt8Qsud4ltae1iYEr9J0k0SbgIG2qUKm3VAJEeqy2mLo90_dT2NvvEF-N3dhsKyywcQSqFUm8R_5gcU58siEtv9-fm5i1yjMrjYtNCqzONbLX3Bky98NPsD67tv20cfRYd-suwqY0gudAg5MKoG4x5HSD7WS4DJjWwtXitjxQg3hvShj-Fhz4bM4ZgrOEFaipAhjS3kOEh0A5N8Ax8twRwXj4LKkZI31ub4PyBx-UNF02paL_XdbHnDdD7Qc4VpmtnR4R3fJnTpSpb3KtLbIhk63yc2yYlTm22SrRoWcvq6pq9_cI99AXGTzmUh_QExJYdmoKAF1tqSqqgBJlrRMTtCf00llfTSvGHKXdJrSi6pmV9Mio_At8QK9IpUw6Pvk9Fom-gHZTLNUPyKUx1wCpCOXoe_yRENQ5UmpwiRmWjlSGORtM6WRrLnNscXGLCpz7A6PWvNvkL2V8ryi9PiHGq5NhCQZKVbhTMQiz6Pe6OxwGPWQqJBhDtYgL65SG3z90lF6VSslGYxLivruA3wd0m91NHc6mnI-PY9a0pcd6aRa36tes9tRBMyQXXFjcFGNWXl0ucMM8nwlxiexDi_V2QJ1Ao6QzplBHlaGuppDzMkHAYOn9xvLbb387wl-_P9BPCO3-qPPJ9HJYHi8Q27bGE4xx7SdXbJZXCz0EwgGi_hpuQMp-X7dW_4POAJygg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5VRSBeEC2XaYEFtVySFd9ePyAUtUQNRRGCVo3Eg9nLUUSw09oRyl_j1zHjI7VD4a3PM17tzs61ntlvCdlzfVtrX2sTkldpekmiTfCBjqkiS3uR4jzSZbfFKDg69T6O_fEG-d3chcG2ysYnlo5aZRL_kfdsxhBHJnKCXlK3RXw-HLyfn5v4ghRWWpvnNCoVOdbLX3B8y98ND2Gv9x1n8OHk4MisXxgwpR-5BRyeVAI5kCtlEGklIXwKR3NPcuH6kYZUn5f5vNCMB5YQloLzhJ0oySNhK99F0ANw_zdCWDHaWDgOL9tL1hCg67uBlst6FWSnY3v4Fm8rGq7HhFZQXKvSlsFvcJfcqbNW2q_UbIts6HSb3Cy7R2W-TbZqD5HT1zWM9Zt75BuQi2w-4-kPyC8pbCHlpXOdLamqukGSJS0LFfTndFJpIs0rtNwlnab0ourf1bTIKKxFLDBCUgmTvk9Or0XQD8hmmqX6EaFMMAnuHXENA48lGhIsX0oVJcLSypXcIG8bkcayxjnH5zZmcVlvd1nckr9B9lbM8wre4x9suDcxAmakqHoTvsjzuH9ydjCK-whaaGE91iAvrmIbfv3SYXpVMyUZzEvy-h4ErA6huDqcOx1OOZ-exy3qyw51Uu3vVcPsdhjBf8guuVG4uPZfeXxpbQZ5viLjl9iTl-psgTwhQ_fOLIM8rBR1JUOsz4ehBV_vN5rbGvxvAT_-_ySekVtg7PGn4eh4h9x2MLOyXNNxd8lmcbHQTyAvLMTT0gAp-X7dFv8Hh9V2uA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phytoplankton+can+actively+diversify+their+migration+strategy+in+response+to+turbulent+cues&rft.jtitle=Nature+%28London%29&rft.au=Sengupta%2C+Anupam&rft.au=Carrara%2C+Francesco&rft.au=Stocker%2C+Roman&rft.date=2017-03-23&rft.eissn=1476-4687&rft.volume=543&rft.issue=7646&rft.spage=555&rft_id=info:doi/10.1038%2Fnature21415&rft_id=info%3Apmid%2F28297706&rft.externalDocID=28297706 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |