Phytoplankton can actively diversify their migration strategy in response to turbulent cues

Here, marine phytoplankton are shown to diversify their migratory strategy in response to turbulent cues through a rapid change in shape, thus challenging a fundamental paradigm in oceanography that phytoplankton are passively at the mercy of ocean turbulence. Phytoplankton evade rough seas Until no...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 543; no. 7646; pp. 555 - 558
Main Authors Sengupta, Anupam, Carrara, Francesco, Stocker, Roman
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.03.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here, marine phytoplankton are shown to diversify their migratory strategy in response to turbulent cues through a rapid change in shape, thus challenging a fundamental paradigm in oceanography that phytoplankton are passively at the mercy of ocean turbulence. Phytoplankton evade rough seas Until now, phytoplankton have been considered as passive subjects to ocean turbulence, which can change as suddenly as nutrient and light availability in the dynamic underwater environment. Roman Stocker and colleagues now show that several species of phytoplankton actively respond to turbulent cues by altering their migration routes to avoid layers of strong turbulence. They report that phytoplankton split into two groups, one swimming upward and another downward. This migratory behaviour could affect which species will survive in a changing ocean and will contribute to understanding of how communities respond to a warming climate. Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and selection 1 , 2 . Many species of phytoplankton are motile and undertake diel vertical migrations to gain access to nutrient-rich deeper layers at night and well-lit surface waters during the day 3 , 4 . Disruption of this migratory strategy by turbulence is considered to be an important cause of the succession between motile and non-motile species when conditions turn turbulent 1 , 5 , 6 . However, this classical view neglects the possibility that motile species may actively respond to turbulent cues to avoid layers of strong turbulence 7 . Here we report that phytoplankton, including raphidophytes and dinoflagellates, can actively diversify their migratory strategy in response to hydrodynamic cues characteristic of overturning by Kolmogorov-scale eddies. Upon experiencing repeated overturning with timescales and statistics representative of ocean turbulence, an upward-swimming population rapidly (5–60 min) splits into two subpopulations, one swimming upward and one swimming downward. Quantitative morphological analysis of the harmful-algal-bloom-forming raphidophyte Heterosigma akashiwo together with a model of cell mechanics revealed that this behaviour was accompanied by a modulation of the cells’ fore–aft asymmetry. The minute magnitude of the required modulation, sufficient to invert the preferential swimming direction of the cells, highlights the advanced level of control that phytoplankton can exert on their migratory behaviour. Together with observations of enhanced cellular stress after overturning and the typically deleterious effects of strong turbulence on motile phytoplankton 5 , 8 , these results point to an active adaptation of H. akashiwo to increase the chance of evading turbulent layers by diversifying the direction of migration within the population, in a manner suggestive of evolutionary bet-hedging. This migratory behaviour relaxes the boundaries between the fluid dynamic niches of motile and non-motile phytoplankton, and highlights that rapid responses to hydrodynamic cues are important survival strategies for phytoplankton in the ocean.
AbstractList Here, marine phytoplankton are shown to diversify their migratory strategy in response to turbulent cues through a rapid change in shape, thus challenging a fundamental paradigm in oceanography that phytoplankton are passively at the mercy of ocean turbulence. Phytoplankton evade rough seas Until now, phytoplankton have been considered as passive subjects to ocean turbulence, which can change as suddenly as nutrient and light availability in the dynamic underwater environment. Roman Stocker and colleagues now show that several species of phytoplankton actively respond to turbulent cues by altering their migration routes to avoid layers of strong turbulence. They report that phytoplankton split into two groups, one swimming upward and another downward. This migratory behaviour could affect which species will survive in a changing ocean and will contribute to understanding of how communities respond to a warming climate. Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and selection 1 , 2 . Many species of phytoplankton are motile and undertake diel vertical migrations to gain access to nutrient-rich deeper layers at night and well-lit surface waters during the day 3 , 4 . Disruption of this migratory strategy by turbulence is considered to be an important cause of the succession between motile and non-motile species when conditions turn turbulent 1 , 5 , 6 . However, this classical view neglects the possibility that motile species may actively respond to turbulent cues to avoid layers of strong turbulence 7 . Here we report that phytoplankton, including raphidophytes and dinoflagellates, can actively diversify their migratory strategy in response to hydrodynamic cues characteristic of overturning by Kolmogorov-scale eddies. Upon experiencing repeated overturning with timescales and statistics representative of ocean turbulence, an upward-swimming population rapidly (5–60 min) splits into two subpopulations, one swimming upward and one swimming downward. Quantitative morphological analysis of the harmful-algal-bloom-forming raphidophyte Heterosigma akashiwo together with a model of cell mechanics revealed that this behaviour was accompanied by a modulation of the cells’ fore–aft asymmetry. The minute magnitude of the required modulation, sufficient to invert the preferential swimming direction of the cells, highlights the advanced level of control that phytoplankton can exert on their migratory behaviour. Together with observations of enhanced cellular stress after overturning and the typically deleterious effects of strong turbulence on motile phytoplankton 5 , 8 , these results point to an active adaptation of H. akashiwo to increase the chance of evading turbulent layers by diversifying the direction of migration within the population, in a manner suggestive of evolutionary bet-hedging. This migratory behaviour relaxes the boundaries between the fluid dynamic niches of motile and non-motile phytoplankton, and highlights that rapid responses to hydrodynamic cues are important survival strategies for phytoplankton in the ocean.
Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and selection. Many species of phytoplankton are motile and undertake diel vertical migrations to gain access to nutrient-rich deeper layers at night and well-lit surface waters during the day. Disruption of this migratory strategy by turbulence is considered to be an important cause of the succession between motile and non-motile species when conditions turn turbulent. However, this classical view neglects the possibility that motile species may actively respond to turbulent cues to avoid layers of strong turbulence. Here we report that phytoplankton, including raphidophytes and dinoflagellates, can actively diversify their migratory strategy in response to hydrodynamic cues characteristic of overturning by Kolmogorov-scale eddies. Upon experiencing repeated overturning with timescales and statistics representative of ocean turbulence, an upward-swimming population rapidly (5-60 min) splits into two subpopulations, one swimming upward and one swimming downward. Quantitative morphological analysis of the harmful-algal-bloom-forming raphidophyte Heterosigma akashiwo together with a model of cell mechanics revealed that this behaviour was accompanied by a modulation of the cells' fore-aft asymmetry. The minute magnitude of the required modulation, sufficient to invert the preferential swimming direction of the cells, highlights the advanced level of control that phytoplankton can exert on their migratory behaviour. Together with observations of enhanced cellular stress after overturning and the typically deleterious effects of strong turbulence on motile phytoplankton, these results point to an active adaptation of H. akashiwo to increase the chance of evading turbulent layers by diversifying the direction of migration within the population, in a manner suggestive of evolutionary bet-hedging. This migratory behaviour relaxes the boundaries between the fluid dynamic niches of motile and non-motile phytoplankton, and highlights that rapid responses to hydrodynamic cues are important survival strategies for phytoplankton in the ocean.
Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and selection. Many species of phytoplankton are motile and undertake diel vertical migrations to gain access to nutrient-rich deeper layers at night and well-lit surface waters during the day. Disruption of this migratory strategy by turbulence is considered to be an important cause of the succession between motile and non-motile species when conditions turn turbulent. However, this classical view neglects the possibility that motile species may actively respond to turbulent cues to avoid layers of strong turbulence. Here we report that phytoplankton, including raphidophytes and dinoflagellates, can actively diversify their migratory strategy in response to hydrodynamic cues characteristic of overturning by Kolmogorov-scale eddies. Upon experiencing repeated overturning with timescales and statistics representative of ocean turbulence, an upward-swimming population rapidly (5-60 min) splits into two subpopulations, one swimming upward and one swimming downward. Quantitative morphological analysis of the harmful-algal-bloom-forming raphidophyte Heterosigma akashiwo together with a model of cell mechanics revealed that this behaviour was accompanied by a modulation of the cells' fore-aft asymmetry. The minute magnitude of the required modulation, sufficient to invert the preferential swimming direction of the cells, highlights the advanced level of control that phytoplankton can exert on their migratory behaviour. Together with observations of enhanced cellular stress after overturning and the typically deleterious effects of strong turbulence on motile phytoplankton, these results point to an active adaptation of H. akashiwo to increase the chance of evading turbulent layers by diversifying the direction of migration within the population, in a manner suggestive of evolutionary bet-hedging. This migratory behaviour relaxes the boundaries between the fluid dynamic niches of motile and non-motile phytoplankton, and highlights that rapid responses to hydrodynamic cues are important survival strategies for phytoplankton in the ocean.Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and selection. Many species of phytoplankton are motile and undertake diel vertical migrations to gain access to nutrient-rich deeper layers at night and well-lit surface waters during the day. Disruption of this migratory strategy by turbulence is considered to be an important cause of the succession between motile and non-motile species when conditions turn turbulent. However, this classical view neglects the possibility that motile species may actively respond to turbulent cues to avoid layers of strong turbulence. Here we report that phytoplankton, including raphidophytes and dinoflagellates, can actively diversify their migratory strategy in response to hydrodynamic cues characteristic of overturning by Kolmogorov-scale eddies. Upon experiencing repeated overturning with timescales and statistics representative of ocean turbulence, an upward-swimming population rapidly (5-60 min) splits into two subpopulations, one swimming upward and one swimming downward. Quantitative morphological analysis of the harmful-algal-bloom-forming raphidophyte Heterosigma akashiwo together with a model of cell mechanics revealed that this behaviour was accompanied by a modulation of the cells' fore-aft asymmetry. The minute magnitude of the required modulation, sufficient to invert the preferential swimming direction of the cells, highlights the advanced level of control that phytoplankton can exert on their migratory behaviour. Together with observations of enhanced cellular stress after overturning and the typically deleterious effects of strong turbulence on motile phytoplankton, these results point to an active adaptation of H. akashiwo to increase the chance of evading turbulent layers by diversifying the direction of migration within the population, in a manner suggestive of evolutionary bet-hedging. This migratory behaviour relaxes the boundaries between the fluid dynamic niches of motile and non-motile phytoplankton, and highlights that rapid responses to hydrodynamic cues are important survival strategies for phytoplankton in the ocean.
Audience Academic
Author Sengupta, Anupam
Carrara, Francesco
Stocker, Roman
Author_xml – sequence: 1
  givenname: Anupam
  surname: Sengupta
  fullname: Sengupta, Anupam
  organization: Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, Department of Civil and Environmental Engineering, Ralph M. Parsons Laboratory, Massachusetts Institute of Technology
– sequence: 2
  givenname: Francesco
  surname: Carrara
  fullname: Carrara, Francesco
  organization: Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, Department of Civil and Environmental Engineering, Ralph M. Parsons Laboratory, Massachusetts Institute of Technology
– sequence: 3
  givenname: Roman
  surname: Stocker
  fullname: Stocker, Roman
  email: romanstocker@ethz.ch
  organization: Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, Department of Civil and Environmental Engineering, Ralph M. Parsons Laboratory, Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28297706$$D View this record in MEDLINE/PubMed
BookMark eNp10t9vlTAUB_DGzLi76ZPvpnEvGmW2tNDyeHPjjyWLGp3xwQdSyoF1QmFtMfLf27np7l1YeCghn_Olpz0HaM8OFhB6SskxJUy-sSpMDlLKafYArSgXecJzKfbQipBUJkSyfB8deH9BCMmo4I_QfirTQgiSr9CPz-dzGMZO2Z9hsFgri5UO5hd0M67j4rxpZhzOwTjcm9apYCLzIb5AO2NjsQM_DtYDDgOOG6mmDmzAegL_GD1sVOfhyc16iL69e3u2-ZCcfnp_slmfJjorWEg4qRtCGdM6L6DWRGRVCoprVbGsgDQnikuRsQqkyklVkZrygja1VkVF64yl7BC9uM4d3XAZ_xvK3ngNXWwKhsmXVApJRcEkifToDr0YJmfj7qKSXEhRpPmtalUHpbHNEPvVV6HlmstcxGOkRVTJgmrBglNdvKLGxM87_vmC16O5LLfR8QKKTw290YupL3cKognwO7Rq8r48-fpl1766367Pvm8-7upnN2c1VT3U5ehMr9xc_hue2zjtBu8dNP8JJeXVaJZboxk1vaO1CX_HKXZountqXl_X-JhsW3Bb17XA_wA5lvMh
CODEN NATUAS
CitedBy_id crossref_primary_10_1073_pnas_2005944118
crossref_primary_10_1103_PhysRevLett_132_054005
crossref_primary_10_3390_ijms222111311
crossref_primary_10_7554_eLife_47732
crossref_primary_10_1002_lno_11465
crossref_primary_10_3389_fpls_2021_707541
crossref_primary_10_1016_j_jembe_2018_09_008
crossref_primary_10_1021_acs_langmuir_2c03088
crossref_primary_10_1103_PhysRevFluids_4_124304
crossref_primary_10_1002_lol2_10392
crossref_primary_10_1098_rsif_2019_0324
crossref_primary_10_1016_j_jhydrol_2020_125812
crossref_primary_10_1016_j_envres_2023_115805
crossref_primary_10_1007_s10409_022_22323_x
crossref_primary_10_1017_jfm_2023_32
crossref_primary_10_1103_PhysRevE_101_052608
crossref_primary_10_3390_fractalfract5020049
crossref_primary_10_1126_sciadv_abn6005
crossref_primary_10_1007_s10811_018_1465_7
crossref_primary_10_1038_s42005_023_01242_9
crossref_primary_10_1038_s41467_024_49997_1
crossref_primary_10_1140_epje_i2020_11949_8
crossref_primary_10_1007_s10750_018_3505_3
crossref_primary_10_1073_pnas_2206738119
crossref_primary_10_1016_j_jhydrol_2023_129849
crossref_primary_10_1098_rspa_2023_0280
crossref_primary_10_7554_eLife_47551
crossref_primary_10_1038_s41558_022_01430_5
crossref_primary_10_1029_2024WR037586
crossref_primary_10_1038_s41467_019_08781_2
crossref_primary_10_1126_sciadv_aaw7879
crossref_primary_10_1016_j_scitotenv_2024_177000
crossref_primary_10_1002_2017GL074868
crossref_primary_10_1016_j_watres_2024_121836
crossref_primary_10_1063_5_0147231
crossref_primary_10_1515_nanoph_2022_0197
crossref_primary_10_1103_PhysRevLett_132_104005
crossref_primary_10_1038_s41526_022_00230_7
crossref_primary_10_1098_rsif_2017_0453
crossref_primary_10_1017_jfm_2022_832
crossref_primary_10_1017_jfm_2025_122
crossref_primary_10_1103_PhysRevE_111_035412
crossref_primary_10_1103_PhysRevResearch_7_013142
crossref_primary_10_1016_j_watres_2018_11_003
crossref_primary_10_3389_fphy_2020_00184
crossref_primary_10_1371_journal_pone_0212442
crossref_primary_10_1088_1873_7005_ada6fb
crossref_primary_10_1140_epjp_s13360_023_04111_0
crossref_primary_10_1073_pnas_1808711115
crossref_primary_10_1073_pnas_2304590120
crossref_primary_10_1016_j_limno_2023_126097
crossref_primary_10_1038_s42256_020_0146_9
crossref_primary_10_1016_j_ecoinf_2020_101166
crossref_primary_10_1016_j_jtbi_2017_08_012
crossref_primary_10_1103_PhysRevResearch_7_013258
crossref_primary_10_1038_s42003_023_05183_5
crossref_primary_10_3390_w10101455
crossref_primary_10_1140_epje_s10189_022_00183_5
crossref_primary_10_1017_jfm_2024_421
crossref_primary_10_1007_s00343_021_0317_5
crossref_primary_10_7566_JPSJ_92_121002
crossref_primary_10_1016_j_jhydrol_2023_129375
crossref_primary_10_1017_jfm_2021_978
crossref_primary_10_1016_j_scitotenv_2019_03_328
crossref_primary_10_1073_pnas_2203191119
crossref_primary_10_1098_rsta_2019_0529
crossref_primary_10_1088_1367_2630_ab776f
crossref_primary_10_1103_PhysRevLett_134_108301
crossref_primary_10_1017_jfm_2024_707
crossref_primary_10_1016_j_csbj_2024_02_028
crossref_primary_10_1098_rsta_2019_0523
crossref_primary_10_1103_Physics_15_88
crossref_primary_10_5194_os_16_65_2020
crossref_primary_10_1038_s41598_023_28473_8
crossref_primary_10_1016_j_jbiomech_2023_111706
crossref_primary_10_1038_s41598_021_90622_8
crossref_primary_10_1146_annurev_cellbio_100818_125119
crossref_primary_10_1016_j_scitotenv_2023_169712
crossref_primary_10_1140_epje_i2019_11792_0
crossref_primary_10_5194_os_15_1653_2019
crossref_primary_10_1017_jfm_2024_136
crossref_primary_10_1371_journal_pcbi_1010291
crossref_primary_10_1017_jfm_2023_508
crossref_primary_10_1115_1_4050054
crossref_primary_10_1103_RevModPhys_95_025004
crossref_primary_10_1103_PhysRevResearch_4_023094
crossref_primary_10_1103_PhysRevFluids_4_054602
crossref_primary_10_1007_s11356_020_07882_6
crossref_primary_10_1007_s10750_020_04216_y
crossref_primary_10_1103_PhysRevFluids_7_014311
crossref_primary_10_3390_jmse10081053
crossref_primary_10_1017_jfm_2024_248
crossref_primary_10_1007_s40974_017_0071_x
crossref_primary_10_1038_s41377_022_00951_0
crossref_primary_10_1007_s10750_020_04487_5
crossref_primary_10_1016_j_envpol_2022_120074
crossref_primary_10_1016_j_algal_2019_101563
crossref_primary_10_7566_JPSJ_92_062001
crossref_primary_10_1103_PhysRevFluids_4_064605
crossref_primary_10_1073_pnas_1708888114
crossref_primary_10_1103_PhysRevFluids_7_013104
crossref_primary_10_1017_jfm_2023_155
crossref_primary_10_1007_s11433_019_1502_2
crossref_primary_10_1021_acsapm_2c00865
crossref_primary_10_1103_PhysRevLett_118_158004
crossref_primary_10_1007_s00343_024_3260_4
crossref_primary_10_1073_pnas_2413340122
crossref_primary_10_1016_j_watres_2025_123422
crossref_primary_10_1016_j_bpj_2020_10_006
crossref_primary_10_1038_s41396_022_01313_9
crossref_primary_10_1038_s41592_020_0939_0
crossref_primary_10_3389_fmars_2021_804960
crossref_primary_10_3390_w14101625
crossref_primary_10_3389_fmars_2024_1499002
crossref_primary_10_1029_2024JC021412
crossref_primary_10_1146_annurev_conmatphys_031119_050637
crossref_primary_10_1063_5_0051325
crossref_primary_10_1038_s41567_021_01247_7
crossref_primary_10_1016_j_rse_2025_114686
crossref_primary_10_1016_j_limno_2019_125746
crossref_primary_10_1017_jfm_2018_767
crossref_primary_10_1103_PhysRevFluids_8_033101
Cites_doi 10.1038/ncomms3148
10.1093/oxfordjournals.pcp.a076926
10.1146/annurev.ecolsys.39.110707.173549
10.1007/s00348-005-0068-7
10.1002/bip.1975.360141115
10.1016/j.pocean.2010.02.005
10.1093/plankt/23.5.447
10.1016/S0960-9822(00)00005-1
10.1016/S1568-9883(03)00039-8
10.1007/BF02488320
10.1017/S0022112001006772
10.1016/j.cub.2008.05.037
10.1002/2014JC010596
10.1007/s00248-002-1012-5
10.1126/science.1184961
10.1215/21573689-2647998
10.1007/s11538-010-9575-7
10.1093/pcp/pcn037
10.1046/j.1529-8817.2000.98088.x
10.1093/icesjms/18.3.287
10.1007/BF02179771
10.1038/nrmicro3491
10.1146/annurev-fluid-120710-101156
10.1086/284396
10.3389/fmicb.2015.01277
10.1093/plankt/fbq152
10.1038/ismej.2009.24
10.1002/lno.10074
10.1111/j.1529-8817.2007.00392.x
10.1126/science.1224836
10.1016/S0176-1617(99)80311-3
10.1126/science.1167334
10.1242/jeb.53.3.687
10.1007/978-94-009-8352-6_1
10.1017/CBO9780511801198
10.1128/MMBR.44.4.572-630.1980
10.1201/9780429258770
ContentType Journal Article
Copyright Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017
COPYRIGHT 2017 Nature Publishing Group
Copyright Nature Publishing Group Mar 23, 2017
Copyright_xml – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017
– notice: COPYRIGHT 2017 Nature Publishing Group
– notice: Copyright Nature Publishing Group Mar 23, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/nature21415
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
ProQuest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 558
ExternalDocumentID 4321495749
A486705119
28297706
10_1038_nature21415
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c593t-40df0133cc69edc075b2ea4cab359e260a48753be8a60bb0d1491fdca9b1d5323
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Mon Jul 21 11:54:22 EDT 2025
Fri Jul 25 08:49:32 EDT 2025
Tue Jun 17 21:10:25 EDT 2025
Thu Jun 12 23:52:47 EDT 2025
Tue Jun 10 15:35:26 EDT 2025
Tue Jun 10 20:50:11 EDT 2025
Fri Jun 27 05:00:21 EDT 2025
Fri Jun 27 04:58:06 EDT 2025
Wed Feb 19 02:01:29 EST 2025
Tue Jul 01 00:56:53 EDT 2025
Thu Apr 24 23:06:43 EDT 2025
Fri Feb 21 02:38:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7646
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c593t-40df0133cc69edc075b2ea4cab359e260a48753be8a60bb0d1491fdca9b1d5323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28297706
PQID 1884787926
PQPubID 40569
PageCount 4
ParticipantIDs proquest_miscellaneous_1878179380
proquest_journals_1884787926
gale_infotracmisc_A486705119
gale_infotracgeneralonefile_A486705119
gale_infotraccpiq_486705119
gale_infotracacademiconefile_A486705119
gale_incontextgauss_ISR_A486705119
gale_incontextgauss_ATWCN_A486705119
pubmed_primary_28297706
crossref_primary_10_1038_nature21415
crossref_citationtrail_10_1038_nature21415
springer_journals_10_1038_nature21415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-23
PublicationDateYYYYMMDD 2017-03-23
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-23
  day: 23
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Durham (CR20) 2013; 4
Villareal, Carpenter (CR14) 2003; 45
Bulmer (CR26) 1985; 126
Lozovatsky, Lee, Fernando, Kang, Jinadasa (CR7) 2015; 120
Schuech, Menden-Deuer (CR4) 2014; 4
Bouchard, Yamasaki (CR38) 2008; 49
Brun (CR12) 2015; 60
Durham, Kessler, Stocker (CR19) 2009; 323
Guasto, Rusconi, Stocker (CR15) 2012; 44
Roberts (CR18) 1970; 53
CR36
CR35
Margalef (CR1) 1978; 1
Harvey, Menden-Deuer, Rynearson (CR29) 2015; 6
Ouellette, Xu, Bodenschatz (CR31) 2006; 40
Gurarie, Grünbaum, Nishizaki (CR32) 2011; 73
Vardi (CR39) 2008; 18
Smayda, Reynolds (CR2) 2001; 23
Moxon, Rainey, Nowak, Lenski (CR27) 1994; 4
Roberts, Deacon (CR33) 2002; 452
Barton, Dutkiewicz, Flierl, Bragg, Follows (CR10) 2010; 327
Wada, Miyazaki, Fujii (CR34) 1985; 26
Sverdrup (CR9) 1953; 18
Zirbel, Veron, Latz (CR17) 2000; 58
Hemmersbach, Volkmann, Hader (CR25) 1999; 154
Franks (CR16) 2015; 72
Yamasaki (CR21) 2009; 3
Thomas, Gibson (CR8) 1990; 2
Smayda (CR24) 2010; 85
Litchman, Klausmeier (CR13) 2008; 39
Berdalet (CR6) 2007; 43
Thomas, Kremer, Klausmeier, Litchman (CR11) 2012; 338
CR22
Sullivan, Swift, Donaghay, Rines (CR5) 2003; 2
Koenig (CR37) 1975; 14
Hara, Chihara (CR23) 1987; 100
Foster, Smyth (CR30) 1980; 44
Bollens, Rollwagen-Bollens, Quenette, Bochdansky (CR3) 2011; 33
Ackermann (CR28) 2015; 13
E Litchman (BFnature21415_CR13) 2008; 39
TA Villareal (BFnature21415_CR14) 2003; 45
BFnature21415_CR22
MJ Zirbel (BFnature21415_CR17) 2000; 58
Y Yamasaki (BFnature21415_CR21) 2009; 3
MG Bulmer (BFnature21415_CR26) 1985; 126
JN Bouchard (BFnature21415_CR38) 2008; 49
WM Durham (BFnature21415_CR20) 2013; 4
EL Harvey (BFnature21415_CR29) 2015; 6
KW Foster (BFnature21415_CR30) 1980; 44
R Margalef (BFnature21415_CR1) 1978; 1
R Schuech (BFnature21415_CR4) 2014; 4
Y Hara (BFnature21415_CR23) 1987; 100
M Wada (BFnature21415_CR34) 1985; 26
M Ackermann (BFnature21415_CR28) 2015; 13
P Brun (BFnature21415_CR12) 2015; 60
TJ Smayda (BFnature21415_CR2) 2001; 23
PJS Franks (BFnature21415_CR16) 2015; 72
E Berdalet (BFnature21415_CR6) 2007; 43
SH Koenig (BFnature21415_CR37) 1975; 14
MK Thomas (BFnature21415_CR11) 2012; 338
BFnature21415_CR35
BFnature21415_CR36
I Lozovatsky (BFnature21415_CR7) 2015; 120
H Sverdrup (BFnature21415_CR9) 1953; 18
TJ Smayda (BFnature21415_CR24) 2010; 85
AM Roberts (BFnature21415_CR33) 2002; 452
JM Sullivan (BFnature21415_CR5) 2003; 2
AM Roberts (BFnature21415_CR18) 1970; 53
ER Moxon (BFnature21415_CR27) 1994; 4
NT Ouellette (BFnature21415_CR31) 2006; 40
A Vardi (BFnature21415_CR39) 2008; 18
R Hemmersbach (BFnature21415_CR25) 1999; 154
AD Barton (BFnature21415_CR10) 2010; 327
WH Thomas (BFnature21415_CR8) 1990; 2
JS Guasto (BFnature21415_CR15) 2012; 44
SM Bollens (BFnature21415_CR3) 2011; 33
WM Durham (BFnature21415_CR19) 2009; 323
E Gurarie (BFnature21415_CR32) 2011; 73
References_xml – ident: CR22
– volume: 4
  start-page: 2148
  year: 2013
  ident: CR20
  article-title: Turbulence drives microscale patches of motile phytoplankton
  publication-title: Nature Commun.
  doi: 10.1038/ncomms3148
– volume: 26
  start-page: 431
  year: 1985
  end-page: 436
  ident: CR34
  article-title: On the mechanisms of diurnal vertical migration behavior of (Raphidophyceae)
  publication-title: Plant Cell Physiol.
  doi: 10.1093/oxfordjournals.pcp.a076926
– volume: 39
  start-page: 615
  year: 2008
  end-page: 639
  ident: CR13
  article-title: Trait-based community ecology of phytoplankton
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev.ecolsys.39.110707.173549
– volume: 40
  start-page: 301
  year: 2006
  end-page: 313
  ident: CR31
  article-title: A quantitative study of three-dimensional Lagrangian particle tracking algorithms
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-005-0068-7
– volume: 72
  start-page: 1
  year: 2015
  end-page: 11
  ident: CR16
  article-title: Has Sverdrup’s critical depth hypothesis been tested? Mixed layers vs. turbulence layers
  publication-title: J. Mar. Sci.
– volume: 14
  start-page: 2421
  year: 1975
  end-page: 2423
  ident: CR37
  article-title: Brownian motion of an ellipsoid. A correction to Perrin’s results
  publication-title: Biopolymers
  doi: 10.1002/bip.1975.360141115
– volume: 85
  start-page: 71
  year: 2010
  end-page: 91
  ident: CR24
  article-title: Adaptations and selection of harmful and other dinoflagellate species in upwelling systems.1. Morphology and adaptive polymorphism
  publication-title: Prog. Oceanogr.
  doi: 10.1016/j.pocean.2010.02.005
– volume: 23
  start-page: 447
  year: 2001
  end-page: 461
  ident: CR2
  article-title: Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms
  publication-title: J. Plankton Res.
  doi: 10.1093/plankt/23.5.447
– volume: 4
  start-page: 24
  year: 1994
  end-page: 33
  ident: CR27
  article-title: Adaptive evolution of highly mutable loci in pathogenic bacteria
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00005-1
– volume: 2
  start-page: 183
  year: 2003
  end-page: 199
  ident: CR5
  article-title: Small-scale turbulence affects the division rate and morphology of two red-tide dinoflagellates
  publication-title: Harmful Algae
  doi: 10.1016/S1568-9883(03)00039-8
– ident: CR35
– volume: 100
  start-page: 151
  year: 1987
  end-page: 163
  ident: CR23
  article-title: Morphology, ultrastructure and taxonomy of the raphidophycean alga
  publication-title: Bot. Mag.
  doi: 10.1007/BF02488320
– volume: 452
  start-page: 405
  year: 2002
  end-page: 423
  ident: CR33
  article-title: Gravitaxis in motile micro-organisms: the role of fore–aft body asymmetry
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112001006772
– volume: 18
  start-page: 895
  year: 2008
  end-page: 899
  ident: CR39
  article-title: A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.05.037
– volume: 120
  start-page: 1856
  year: 2015
  end-page: 1871
  ident: CR7
  article-title: Turbulence in the East China Sea: the summertime stratification
  publication-title: J. Geophys. Res. Oceans.
  doi: 10.1002/2014JC010596
– volume: 45
  start-page: 1
  year: 2003
  end-page: 10
  ident: CR14
  article-title: Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-002-1012-5
– volume: 327
  start-page: 1509
  year: 2010
  end-page: 1511
  ident: CR10
  article-title: Patterns of diversity in marine phytoplankton
  publication-title: Science
  doi: 10.1126/science.1184961
– volume: 4
  start-page: 1
  year: 2014
  end-page: 16
  ident: CR4
  article-title: Going ballistic in the plankton: anisotropic swimming behavior of marine protists
  publication-title: Limnol. Oceanogr. Fluids Environ.
  doi: 10.1215/21573689-2647998
– volume: 73
  start-page: 1358
  year: 2011
  end-page: 1377
  ident: CR32
  article-title: Estimating 3D movements from 2D observations using a continuous model of helical swimming
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-010-9575-7
– volume: 49
  start-page: 641
  year: 2008
  end-page: 652
  ident: CR38
  article-title: Heat stress stimulates nitric oxide production in : a possible linkage between nitric oxide and the coral bleaching phenomenon
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcn037
– volume: 58
  start-page: 46
  year: 2000
  end-page: 58
  ident: CR17
  article-title: The reversible effect of flow on the morphology of
  publication-title: J. Phycol.
  doi: 10.1046/j.1529-8817.2000.98088.x
– volume: 18
  start-page: 287
  year: 1953
  end-page: 295
  ident: CR9
  article-title: On conditions for the vernal blooming of phytoplankton
  publication-title: J. Cons. Perm. Int. Explor. Mer
  doi: 10.1093/icesjms/18.3.287
– volume: 2
  start-page: 71
  year: 1990
  end-page: 77
  ident: CR8
  article-title: Effects of small-scale turbulence on microalgae
  publication-title: J. Appl. Phycol.
  doi: 10.1007/BF02179771
– volume: 13
  start-page: 497
  year: 2015
  end-page: 508
  ident: CR28
  article-title: A functional perspective on phenotypic heterogeneity in microorganisms
  publication-title: Nature Rev. Microbiol.
  doi: 10.1038/nrmicro3491
– volume: 1
  start-page: 493
  year: 1978
  end-page: 509
  ident: CR1
  article-title: Life-forms of phytoplankton as survival alternatives in an unstable environment
  publication-title: Oceanol. Acta
– volume: 44
  start-page: 373
  year: 2012
  end-page: 400
  ident: CR15
  article-title: Fluid mechanics of planktonic microorganisms
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-120710-101156
– volume: 126
  start-page: 63
  year: 1985
  end-page: 71
  ident: CR26
  article-title: Selection for iteroparity in a variable environment
  publication-title: Am. Nat.
  doi: 10.1086/284396
– volume: 6
  start-page: 1277
  year: 2015
  ident: CR29
  article-title: Persistent intra-specific variation in genetic and behavioral traits in the raphidophyte,
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.01277
– ident: CR36
– volume: 33
  start-page: 349
  year: 2011
  end-page: 355
  ident: CR3
  article-title: Cascading migrations and implications for vertical fluxes in pelagic ecosystems
  publication-title: J. Plankton Res.
  doi: 10.1093/plankt/fbq152
– volume: 3
  start-page: 808
  year: 2009
  end-page: 817
  ident: CR21
  article-title: Extracellular polysaccharide–protein complexes of a harmful alga mediate the allelopathic control it exerts within the phytoplankton community
  publication-title: ISME J.
  doi: 10.1038/ismej.2009.24
– volume: 44
  start-page: 572
  year: 1980
  end-page: 630
  ident: CR30
  article-title: Light Antennas in phototactic algae
  publication-title: Microbiol. Rev.
– volume: 60
  start-page: 1020
  year: 2015
  end-page: 1038
  ident: CR12
  article-title: Ecological niches of open ocean phytoplankton taxa
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10074
– volume: 43
  start-page: 965
  year: 2007
  end-page: 977
  ident: CR6
  article-title: Species-specific physiological response of dinoflagellates to quantified small-scale turbulence
  publication-title: J. Phycol.
  doi: 10.1111/j.1529-8817.2007.00392.x
– volume: 338
  start-page: 1085
  year: 2012
  end-page: 1088
  ident: CR11
  article-title: A global pattern of thermal adaptation in marine phytoplankton
  publication-title: Science
  doi: 10.1126/science.1224836
– volume: 154
  start-page: 1
  year: 1999
  end-page: 15
  ident: CR25
  article-title: Graviorientation in protists and plants
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(99)80311-3
– volume: 53
  start-page: 687
  year: 1970
  end-page: 699
  ident: CR18
  article-title: Geotaxis in motile micro-organisms
  publication-title: J. Exp. Biol.
– volume: 323
  start-page: 1067
  year: 2009
  end-page: 1070
  ident: CR19
  article-title: Disruption of vertical motility by shear triggers formation of thin phytoplankton layers
  publication-title: Science
  doi: 10.1126/science.1167334
– volume: 18
  start-page: 895
  year: 2008
  ident: BFnature21415_CR39
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.05.037
– volume: 60
  start-page: 1020
  year: 2015
  ident: BFnature21415_CR12
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10074
– volume: 58
  start-page: 46
  year: 2000
  ident: BFnature21415_CR17
  publication-title: J. Phycol.
  doi: 10.1046/j.1529-8817.2000.98088.x
– volume: 4
  start-page: 24
  year: 1994
  ident: BFnature21415_CR27
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00005-1
– volume: 40
  start-page: 301
  year: 2006
  ident: BFnature21415_CR31
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-005-0068-7
– volume: 2
  start-page: 183
  year: 2003
  ident: BFnature21415_CR5
  publication-title: Harmful Algae
  doi: 10.1016/S1568-9883(03)00039-8
– volume: 73
  start-page: 1358
  year: 2011
  ident: BFnature21415_CR32
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-010-9575-7
– volume: 53
  start-page: 687
  year: 1970
  ident: BFnature21415_CR18
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.53.3.687
– volume: 33
  start-page: 349
  year: 2011
  ident: BFnature21415_CR3
  publication-title: J. Plankton Res.
  doi: 10.1093/plankt/fbq152
– volume: 85
  start-page: 71
  year: 2010
  ident: BFnature21415_CR24
  publication-title: Prog. Oceanogr.
  doi: 10.1016/j.pocean.2010.02.005
– ident: BFnature21415_CR36
  doi: 10.1007/978-94-009-8352-6_1
– volume: 327
  start-page: 1509
  year: 2010
  ident: BFnature21415_CR10
  publication-title: Science
  doi: 10.1126/science.1184961
– volume: 338
  start-page: 1085
  year: 2012
  ident: BFnature21415_CR11
  publication-title: Science
  doi: 10.1126/science.1224836
– volume: 323
  start-page: 1067
  year: 2009
  ident: BFnature21415_CR19
  publication-title: Science
  doi: 10.1126/science.1167334
– volume: 1
  start-page: 493
  year: 1978
  ident: BFnature21415_CR1
  publication-title: Oceanol. Acta
– volume: 43
  start-page: 965
  year: 2007
  ident: BFnature21415_CR6
  publication-title: J. Phycol.
  doi: 10.1111/j.1529-8817.2007.00392.x
– volume: 4
  start-page: 2148
  year: 2013
  ident: BFnature21415_CR20
  publication-title: Nature Commun.
  doi: 10.1038/ncomms3148
– volume: 39
  start-page: 615
  year: 2008
  ident: BFnature21415_CR13
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev.ecolsys.39.110707.173549
– ident: BFnature21415_CR22
  doi: 10.1017/CBO9780511801198
– volume: 452
  start-page: 405
  year: 2002
  ident: BFnature21415_CR33
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112001006772
– volume: 44
  start-page: 373
  year: 2012
  ident: BFnature21415_CR15
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-120710-101156
– volume: 2
  start-page: 71
  year: 1990
  ident: BFnature21415_CR8
  publication-title: J. Appl. Phycol.
  doi: 10.1007/BF02179771
– volume: 45
  start-page: 1
  year: 2003
  ident: BFnature21415_CR14
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-002-1012-5
– volume: 126
  start-page: 63
  year: 1985
  ident: BFnature21415_CR26
  publication-title: Am. Nat.
  doi: 10.1086/284396
– volume: 44
  start-page: 572
  year: 1980
  ident: BFnature21415_CR30
  publication-title: Microbiol. Rev.
  doi: 10.1128/MMBR.44.4.572-630.1980
– volume: 18
  start-page: 287
  year: 1953
  ident: BFnature21415_CR9
  publication-title: J. Cons. Perm. Int. Explor. Mer
  doi: 10.1093/icesjms/18.3.287
– volume: 23
  start-page: 447
  year: 2001
  ident: BFnature21415_CR2
  publication-title: J. Plankton Res.
  doi: 10.1093/plankt/23.5.447
– volume: 6
  start-page: 1277
  year: 2015
  ident: BFnature21415_CR29
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.01277
– volume: 26
  start-page: 431
  year: 1985
  ident: BFnature21415_CR34
  publication-title: Plant Cell Physiol.
  doi: 10.1093/oxfordjournals.pcp.a076926
– volume: 14
  start-page: 2421
  year: 1975
  ident: BFnature21415_CR37
  publication-title: Biopolymers
  doi: 10.1002/bip.1975.360141115
– volume: 100
  start-page: 151
  year: 1987
  ident: BFnature21415_CR23
  publication-title: Bot. Mag.
  doi: 10.1007/BF02488320
– volume: 120
  start-page: 1856
  year: 2015
  ident: BFnature21415_CR7
  publication-title: J. Geophys. Res. Oceans.
  doi: 10.1002/2014JC010596
– volume: 72
  start-page: 1
  year: 2015
  ident: BFnature21415_CR16
  publication-title: J. Mar. Sci.
– volume: 4
  start-page: 1
  year: 2014
  ident: BFnature21415_CR4
  publication-title: Limnol. Oceanogr. Fluids Environ.
  doi: 10.1215/21573689-2647998
– volume: 13
  start-page: 497
  year: 2015
  ident: BFnature21415_CR28
  publication-title: Nature Rev. Microbiol.
  doi: 10.1038/nrmicro3491
– ident: BFnature21415_CR35
  doi: 10.1201/9780429258770
– volume: 49
  start-page: 641
  year: 2008
  ident: BFnature21415_CR38
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcn037
– volume: 3
  start-page: 808
  year: 2009
  ident: BFnature21415_CR21
  publication-title: ISME J.
  doi: 10.1038/ismej.2009.24
– volume: 154
  start-page: 1
  year: 1999
  ident: BFnature21415_CR25
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(99)80311-3
SSID ssj0005174
Score 2.568885
Snippet Here, marine phytoplankton are shown to diversify their migratory strategy in response to turbulent cues through a rapid change in shape, thus challenging a...
Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 555
SubjectTerms 631/158/856
631/57/343
639/301/923/916
639/766/189
704/829/826
Acclimatization
Avoidance Learning
Behavior
Cues
Ecosystem
Eddies
Environmental aspects
Gravitation
Humanities and Social Sciences
letter
Locomotion
Marine biology
Microbiological research
multidisciplinary
Nutrient availability
Oceanic turbulence
Oceans and Seas
Phytoplankton
Phytoplankton - physiology
Plankton
Science
Seawater
Stress, Physiological
Subpopulations
Surface water
Swimming
Turbulence
Turbulence (Fluid dynamics)
Water Movements
Title Phytoplankton can actively diversify their migration strategy in response to turbulent cues
URI https://link.springer.com/article/10.1038/nature21415
https://www.ncbi.nlm.nih.gov/pubmed/28297706
https://www.proquest.com/docview/1884787926
https://www.proquest.com/docview/1878179380
Volume 543
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKyQuiJaXaakWVJ6SVdvrx_qEQtRQOESotCISB2tfjiKCndbOIf-eGXuT2qFw8WXG1np2dnbW8_kbQo5Z5BsTGeNC8qrcMM-NCzEwcHXqmTDVQqSmQVuM47PL8OskmtgPbpWFVa5jYhOodanwG_mJzznyyKRB_HFx5WLXKKyu2hYad8kuUpchpCuZJDcQjy0WZvt_nsf4SUubGfgh9sPt7EjbcbmzMW1VSpsNaPSQPLCZIx20U71H7phin9xrEJyq2id7dpVW9J2lkn7_iPwEcV0u5qL4BTkeBTNS0QS4-YrqFpGRr2hTLKC_Z9PWG2jVMtau6Kyg1y2G1tC6pPAucom7FFUw6MfkcnR6MTxzbTsFV0Upq-GkqHNI-JhScWq0glxBBkaESkgWpQbONaI5vEjDRexJ6Wk4PPm5ViKVvo5YwJ6QnaIszDNCueQKQixyC8Yhzw0kOZFSOs2lZzRTwiEf1ibNlOUax5YX86ypeTOedezvkOON8qKl2PiHGs5NhqQVBaJipmJZVdng4sdwnA2QONDDmqhDXt2m9uX7eU_prVXKSxiXEvZfBHg7pMPqaR70NNVidpV1pG960mk7v7c95rCnCGtY9cVrh8tsDKmyG493yMuNGO9EXFxhyiXqJBxDLPcc8rR11I0NsUaeJB7c_XrtuZ2H_23g5_8fxAG5H2BK4zE3YIdkp75emheQkNXyqFl1cOVDH6-jz0dk99Pp-Nv5H0AkOEY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXRMsrtIBBLS8pqvN2DgitCtUuLXuArboSh-DYzmrFkmybrND-KX4jM3lsk6Vw63kmkWOPvxlnxt8Qsud4ltae1iYEr9J0k0SbgIG2qUKm3VAJEeqy2mLo90_dT2NvvEF-N3dhsKyywcQSqFUm8R_5gcU58siEtv9-fm5i1yjMrjYtNCqzONbLX3Bky98NPsD67tv20cfRYd-suwqY0gudAg5MKoG4x5HSD7WS4DJjWwtXitjxQg3hvShj-Fhz4bM4ZgrOEFaipAhjS3kOEh0A5N8Ax8twRwXj4LKkZI31ub4PyBx-UNF02paL_XdbHnDdD7Qc4VpmtnR4R3fJnTpSpb3KtLbIhk63yc2yYlTm22SrRoWcvq6pq9_cI99AXGTzmUh_QExJYdmoKAF1tqSqqgBJlrRMTtCf00llfTSvGHKXdJrSi6pmV9Mio_At8QK9IpUw6Pvk9Fom-gHZTLNUPyKUx1wCpCOXoe_yRENQ5UmpwiRmWjlSGORtM6WRrLnNscXGLCpz7A6PWvNvkL2V8ryi9PiHGq5NhCQZKVbhTMQiz6Pe6OxwGPWQqJBhDtYgL65SG3z90lF6VSslGYxLivruA3wd0m91NHc6mnI-PY9a0pcd6aRa36tes9tRBMyQXXFjcFGNWXl0ucMM8nwlxiexDi_V2QJ1Ao6QzplBHlaGuppDzMkHAYOn9xvLbb387wl-_P9BPCO3-qPPJ9HJYHi8Q27bGE4xx7SdXbJZXCz0EwgGi_hpuQMp-X7dW_4POAJygg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5VRSBeEC2XaYEFtVySFd9ePyAUtUQNRRGCVo3Eg9nLUUSw09oRyl_j1zHjI7VD4a3PM17tzs61ntlvCdlzfVtrX2sTkldpekmiTfCBjqkiS3uR4jzSZbfFKDg69T6O_fEG-d3chcG2ysYnlo5aZRL_kfdsxhBHJnKCXlK3RXw-HLyfn5v4ghRWWpvnNCoVOdbLX3B8y98ND2Gv9x1n8OHk4MisXxgwpR-5BRyeVAI5kCtlEGklIXwKR3NPcuH6kYZUn5f5vNCMB5YQloLzhJ0oySNhK99F0ANw_zdCWDHaWDgOL9tL1hCg67uBlst6FWSnY3v4Fm8rGq7HhFZQXKvSlsFvcJfcqbNW2q_UbIts6HSb3Cy7R2W-TbZqD5HT1zWM9Zt75BuQi2w-4-kPyC8pbCHlpXOdLamqukGSJS0LFfTndFJpIs0rtNwlnab0ourf1bTIKKxFLDBCUgmTvk9Or0XQD8hmmqX6EaFMMAnuHXENA48lGhIsX0oVJcLSypXcIG8bkcayxjnH5zZmcVlvd1nckr9B9lbM8wre4x9suDcxAmakqHoTvsjzuH9ydjCK-whaaGE91iAvrmIbfv3SYXpVMyUZzEvy-h4ErA6huDqcOx1OOZ-exy3qyw51Uu3vVcPsdhjBf8guuVG4uPZfeXxpbQZ5viLjl9iTl-psgTwhQ_fOLIM8rBR1JUOsz4ehBV_vN5rbGvxvAT_-_ySekVtg7PGn4eh4h9x2MLOyXNNxd8lmcbHQTyAvLMTT0gAp-X7dFv8Hh9V2uA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phytoplankton+can+actively+diversify+their+migration+strategy+in+response+to+turbulent+cues&rft.jtitle=Nature+%28London%29&rft.au=Sengupta%2C+Anupam&rft.au=Carrara%2C+Francesco&rft.au=Stocker%2C+Roman&rft.date=2017-03-23&rft.eissn=1476-4687&rft.volume=543&rft.issue=7646&rft.spage=555&rft_id=info:doi/10.1038%2Fnature21415&rft_id=info%3Apmid%2F28297706&rft.externalDocID=28297706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon