An imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/temperature-responsive drug release

To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured nano-theranostic by conjugating photosensitive Au25(SR)18 – (SR refers to thiolate) clusters, pH/temperature-responsive polymer P(NIPAm-MAA), a...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 63; pp. 115 - 127
Main Authors Lv, Ruichan, Yang, Piaoping, He, Fei, Gai, Shili, Yang, Guixin, Dai, Yunlu, Hou, Zhiyao, Lin, Jun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured nano-theranostic by conjugating photosensitive Au25(SR)18 – (SR refers to thiolate) clusters, pH/temperature-responsive polymer P(NIPAm-MAA), and anti-cancer drug (doxorubicin, DOX) onto the surface of mesoporous silica coated core–shell up-conversion nanoparticles (UCNPs). It is found that the photodynamic therapy (PDT) derived from the generated reactive oxygen species and the photothermal therapy (PTT) arising from the photothermal effect can be simultaneously triggered by a single 980 nm near infrared (NIR) light. Furthermore, the thermal effect can also stimulate the pH/temperature sensitive polymer in the cancer sites, thus realizing the targeted and controllable DOX release. The combined PDT, PTT and pH/temperature responsive chemo-therapy can markedly improve the therapeutic efficacy, which has been confirmed by both in intro and in vivo assays. Moreover, the doped rare earths endow the platform with dual-modal up-conversion luminescent (UCL) and computer tomography (CT) imaging properties, thus achieving the target of imaging-guided synergistic therapy under by a single NIR light.
AbstractList To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured nano-theranostic by conjugating photosensitive Au25(SR)18 – (SR refers to thiolate) clusters, pH/temperature-responsive polymer P(NIPAm-MAA), and anti-cancer drug (doxorubicin, DOX) onto the surface of mesoporous silica coated core–shell up-conversion nanoparticles (UCNPs). It is found that the photodynamic therapy (PDT) derived from the generated reactive oxygen species and the photothermal therapy (PTT) arising from the photothermal effect can be simultaneously triggered by a single 980 nm near infrared (NIR) light. Furthermore, the thermal effect can also stimulate the pH/temperature sensitive polymer in the cancer sites, thus realizing the targeted and controllable DOX release. The combined PDT, PTT and pH/temperature responsive chemo-therapy can markedly improve the therapeutic efficacy, which has been confirmed by both in intro and in vivo assays. Moreover, the doped rare earths endow the platform with dual-modal up-conversion luminescent (UCL) and computer tomography (CT) imaging properties, thus achieving the target of imaging-guided synergistic therapy under by a single NIR light.
To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured nano-theranostic by conjugating photosensitive Au25(SR)18 – (SR refers to thiolate) clusters, pH/temperature-responsive polymer P(NIPAm-MAA), and anti-cancer drug (doxorubicin, DOX) onto the surface of mesoporous silica coated core–shell up-conversion nanoparticles (UCNPs). It is found that the photodynamic therapy (PDT) derived from the generated reactive oxygen species and the photothermal therapy (PTT) arising from the photothermal effect can be simultaneously triggered by a single 980 nm near infrared (NIR) light. Furthermore, the thermal effect can also stimulate the pH/temperature sensitive polymer in the cancer sites, thus realizing the targeted and controllable DOX release. The combined PDT, PTT and pH/temperature responsive chemo-therapy can markedly improve the therapeutic efficacy, which has been confirmed by both in intro and in vivo assays. Moreover, the doped rare earths endow the platform with dual-modal up-conversion luminescent (UCL) and computer tomography (CT) imaging properties, thus achieving the target of imaging-guided synergistic therapy under by a single NIR light.
Abstract To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured nano-theranostic by conjugating photosensitive Au 25SR 18 – (SR refers to thiolate) clusters, pH/temperature-responsive polymer P(NIPAm-MAA), and anti-cancer drug ( doxorubicin, DOX ) onto the surface of mesoporous silica coated core–shell up-conversion nanoparticles (UCNPs). It is found that the photodynamic therapy (PDT) derived from the generated reactive oxygen species and the photothermal therapy (PTT) arising from the photothermal effect can be simultaneously triggered by a single 980 nm near infrared (NIR) light. Furthermore, the thermal effect can also stimulate the pH/temperature sensitive polymer in the cancer sites, thus realizing the targeted and controllable DOX release. The combined PDT, PTT and pH/temperature responsive chemo-therapy can markedly improve the therapeutic efficacy, which has been confirmed by both in intro and in vivo assays. Moreover, the doped rare earths endow the platform with dual-modal up-conversion luminescent (UCL) and computer tomography (CT) imaging properties, thus achieving the target of imaging-guided synergistic therapy under by a single NIR light.
Author Yang, Guixin
Hou, Zhiyao
Lin, Jun
Yang, Piaoping
Gai, Shili
He, Fei
Lv, Ruichan
Dai, Yunlu
Author_xml – sequence: 1
  givenname: Ruichan
  surname: Lv
  fullname: Lv, Ruichan
  organization: Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
– sequence: 2
  givenname: Piaoping
  surname: Yang
  fullname: Yang, Piaoping
  email: yangpiaoping@hrbeu.edu.cn
  organization: Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
– sequence: 3
  givenname: Fei
  surname: He
  fullname: He, Fei
  organization: Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
– sequence: 4
  givenname: Shili
  surname: Gai
  fullname: Gai, Shili
  organization: Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
– sequence: 5
  givenname: Guixin
  surname: Yang
  fullname: Yang, Guixin
  organization: Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
– sequence: 6
  givenname: Yunlu
  surname: Dai
  fullname: Dai, Yunlu
  organization: Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
– sequence: 7
  givenname: Zhiyao
  surname: Hou
  fullname: Hou, Zhiyao
  organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
– sequence: 8
  givenname: Jun
  surname: Lin
  fullname: Lin, Jun
  email: jlin@ciac.ac.cn
  organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26093792$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQjVAR_YC_gCJOXLI7dhLH4YAo5aNIlTgAZ8uxJ7teEjvYTtFe-O04bCuhSoiVRrae9eZ5Zt6cZyfWWcyyFwRWBAhb71adcaOM6I0cwooCqVeQgrBH2RnhDS_qFuqT7AxIRYuWEXqanYewg4Shok-yU8qgLZuWnmW_Lm1uRrkxdlNsZqNR59MgY-_8mKcjD3uLfmNCNCqfti46vbdyNGr9B8Qt-lEOa7XF0RULktM-_2niNp-u1xHHKb3E2WPhMUzOBnOLufbzJvc4oAz4NHvcpx7w2d19kX378P7r1XVx8_njp6vLm0LVbRkL0tcVKmx52XStZACS8xYZ51xqYF1da16qSpdNT_uq7whCpcqqqTsGOrXclBfZy4Pu5N2PGUMUowkKh0FadHMQFAAq4Izw_1JJ03CgnJbVEdSKJTtYuxTw_I46dyNqMfk0db8X904kwpsDQXkXgsdeKBNlNM5GL80gCIjFfLETf5svFvMFpCAsSbx6IHH_y1HJ7w7JmGy4NehFUAatQm08qii0M8fJvH4gowZjjZLDd9xj2LnZ2yWHiEAFiC_Lii4bSupkAGPLTN_-W-DYKn4D9WIAhg
CitedBy_id crossref_primary_10_1039_C8NJ00439K
crossref_primary_10_1002_adfm_201903419
crossref_primary_10_1039_D1RA09067D
crossref_primary_10_1021_acs_chemmater_7b03461
crossref_primary_10_1039_D0NJ04461J
crossref_primary_10_1016_j_nantod_2018_02_010
crossref_primary_10_1002_adfm_201604206
crossref_primary_10_1002_cbic_201900550
crossref_primary_10_1016_j_biomaterials_2016_05_027
crossref_primary_10_3389_fbioe_2021_783354
crossref_primary_10_1002_ppsc_202300084
crossref_primary_10_1016_j_biomaterials_2018_05_033
crossref_primary_10_1002_adhm_201800351
crossref_primary_10_1016_j_jphotochem_2019_112053
crossref_primary_10_1039_C6NR09177F
crossref_primary_10_1039_C9NA00583H
crossref_primary_10_1002_smll_201702299
crossref_primary_10_1016_j_bios_2024_116094
crossref_primary_10_1021_acsami_9b12889
crossref_primary_10_1038_s41467_018_04571_4
crossref_primary_10_1016_j_mtla_2021_101195
crossref_primary_10_1002_cptc_201900196
crossref_primary_10_1039_C7NR02511D
crossref_primary_10_1039_C6TB03117J
crossref_primary_10_1007_s11426_017_9076_y
crossref_primary_10_1002_ejic_201700193
crossref_primary_10_1016_j_pdpdt_2018_08_003
crossref_primary_10_1021_acsbiomaterials_7b00558
crossref_primary_10_3390_biomedicines8100417
crossref_primary_10_1016_j_micromeso_2020_110049
crossref_primary_10_1016_j_dyepig_2019_107922
crossref_primary_10_1039_C7TB01648D
crossref_primary_10_1002_anie_201814098
crossref_primary_10_1016_j_actbio_2023_05_049
crossref_primary_10_1016_j_giant_2022_100130
crossref_primary_10_1016_j_dyepig_2020_108776
crossref_primary_10_1039_C8NR02307G
crossref_primary_10_1002_adhm_201600192
crossref_primary_10_1021_acsbiomaterials_6b00046
crossref_primary_10_3390_bioengineering4010003
crossref_primary_10_1002_asia_201801305
crossref_primary_10_1039_C9PY00575G
crossref_primary_10_1002_advs_201600029
crossref_primary_10_1016_j_micromeso_2023_112562
crossref_primary_10_1039_D1CP01644J
crossref_primary_10_1016_j_ccr_2017_09_006
crossref_primary_10_1039_C6RA18062K
crossref_primary_10_3390_molecules21081103
crossref_primary_10_1021_acsanm_1c00779
crossref_primary_10_1039_C8NJ05766D
crossref_primary_10_1016_j_pmatsci_2018_07_005
crossref_primary_10_1038_s41578_020_0230_0
crossref_primary_10_1002_adfm_201603381
crossref_primary_10_1016_j_ijpharm_2021_121173
crossref_primary_10_1021_acsmedchemlett_7b00394
crossref_primary_10_1016_j_biomaterials_2019_119327
crossref_primary_10_1016_j_cej_2021_134438
crossref_primary_10_1002_adma_202004481
crossref_primary_10_1016_j_biomaterials_2016_08_022
crossref_primary_10_1016_j_msec_2020_111099
crossref_primary_10_1021_acsabm_0c00524
crossref_primary_10_1002_cnma_201800212
crossref_primary_10_1016_j_colsurfb_2020_111005
crossref_primary_10_1039_C5TB00757G
crossref_primary_10_1002_adma_201604878
crossref_primary_10_1080_17425247_2021_1921732
crossref_primary_10_1002_adfm_202105989
crossref_primary_10_1039_C9NR00041K
crossref_primary_10_1016_j_nantod_2019_02_007
crossref_primary_10_1039_C7NJ00599G
crossref_primary_10_1039_C7NR01836C
crossref_primary_10_1089_ars_2017_7412
crossref_primary_10_1002_wnan_1573
crossref_primary_10_1016_j_ccr_2022_214427
crossref_primary_10_1039_C8DT04871A
crossref_primary_10_1016_j_ccr_2022_214423
crossref_primary_10_1039_C6TB01677D
crossref_primary_10_1002_adhm_201900406
crossref_primary_10_2217_nnm_2018_0179
crossref_primary_10_1016_j_biomaterials_2019_119738
crossref_primary_10_1039_D1PY01167G
crossref_primary_10_1002_adhm_201701272
crossref_primary_10_1021_acsami_7b00647
crossref_primary_10_3390_ma15051764
crossref_primary_10_3390_molecules23040826
crossref_primary_10_1016_j_cej_2019_122992
crossref_primary_10_1016_j_progpolymsci_2023_101765
crossref_primary_10_1039_C8MH00966J
crossref_primary_10_1039_D2BM00803C
crossref_primary_10_1021_acsbiomaterials_6b00462
crossref_primary_10_1039_C7PY01153A
crossref_primary_10_1002_adfm_201600722
crossref_primary_10_1016_j_matchemphys_2019_121994
crossref_primary_10_1016_j_molstruc_2019_127647
crossref_primary_10_1039_C8TB00733K
crossref_primary_10_1016_j_biomaterials_2017_09_007
crossref_primary_10_1021_acsami_6b11803
crossref_primary_10_1021_acs_chemmater_7b04751
crossref_primary_10_1002_adfm_201706310
crossref_primary_10_3389_fonc_2017_00003
crossref_primary_10_1039_C5PY01629K
crossref_primary_10_1021_acsami_6b01320
crossref_primary_10_1016_j_jlumin_2016_08_059
crossref_primary_10_1016_j_ccr_2018_03_007
crossref_primary_10_2147_IJN_S454762
crossref_primary_10_1002_ange_201814098
crossref_primary_10_1016_j_cej_2018_02_109
crossref_primary_10_1039_C5NR06840A
crossref_primary_10_1039_C8RA08538B
crossref_primary_10_1016_j_actbio_2016_02_005
crossref_primary_10_1021_acs_jpcc_8b02373
crossref_primary_10_1002_smll_201600635
crossref_primary_10_1021_acs_chemmater_0c04956
crossref_primary_10_1039_D3NR03012A
crossref_primary_10_1016_j_jconrel_2018_03_014
crossref_primary_10_1021_acsbiomaterials_9b00813
crossref_primary_10_1039_C6TB00709K
crossref_primary_10_1016_j_cej_2020_125294
crossref_primary_10_1016_j_biomaterials_2018_10_008
crossref_primary_10_1021_acs_chemrev_7b00258
crossref_primary_10_1016_j_cej_2020_124232
crossref_primary_10_1016_j_jinorgbio_2020_111216
crossref_primary_10_1021_acsbiomaterials_7b00231
crossref_primary_10_1002_advs_202000863
crossref_primary_10_1039_C5RA15016G
crossref_primary_10_1007_s00706_020_02644_z
crossref_primary_10_1016_j_biomaterials_2017_09_011
crossref_primary_10_1021_acs_chemmater_8b00934
crossref_primary_10_3390_nano12121986
crossref_primary_10_1021_acs_bioconjchem_7b00515
crossref_primary_10_1016_j_biomaterials_2016_05_056
crossref_primary_10_1016_j_ccr_2022_214486
crossref_primary_10_1016_j_jconrel_2020_08_014
crossref_primary_10_1021_acsami_7b15952
crossref_primary_10_1039_C6DT01714B
crossref_primary_10_1002_smll_201603459
crossref_primary_10_1002_elsc_201800038
crossref_primary_10_1049_bsbt_2020_0020
crossref_primary_10_1515_nanoph_2019_0506
crossref_primary_10_1016_j_jcis_2017_09_011
crossref_primary_10_3390_molecules24112089
crossref_primary_10_1016_j_jconrel_2021_05_011
crossref_primary_10_1002_adma_201603864
crossref_primary_10_1007_s12274_017_1906_7
crossref_primary_10_1021_acsbiomaterials_8b00934
crossref_primary_10_1039_C6TC00336B
crossref_primary_10_1039_C7BM00414A
crossref_primary_10_1039_C9TB00317G
crossref_primary_10_1016_j_colsurfb_2019_05_005
crossref_primary_10_1039_C6CP05308D
crossref_primary_10_1016_j_nanoso_2024_101370
crossref_primary_10_1080_10717544_2017_1417512
crossref_primary_10_1021_acs_jpcb_7b09442
crossref_primary_10_1002_advs_202003033
crossref_primary_10_1016_j_nantod_2023_101964
crossref_primary_10_1039_C6NR09030C
crossref_primary_10_3390_ijms21176280
crossref_primary_10_1039_C7SC05414A
crossref_primary_10_1002_adma_201505678
crossref_primary_10_1007_s40005_016_0272_x
crossref_primary_10_1007_s40005_017_0356_2
crossref_primary_10_1016_j_cej_2018_09_076
crossref_primary_10_1007_s43630_022_00175_6
crossref_primary_10_1039_C8BM01243A
crossref_primary_10_1080_17425247_2016_1211637
crossref_primary_10_1021_acsami_1c14135
crossref_primary_10_1021_acsami_5b08914
crossref_primary_10_1039_D1BM00283J
crossref_primary_10_1021_acsnano_8b09276
crossref_primary_10_1039_C7NR05499H
crossref_primary_10_1007_s11426_018_9397_5
crossref_primary_10_1039_D0BM00706D
crossref_primary_10_3390_polym14020287
crossref_primary_10_1039_C9NR06450H
crossref_primary_10_1002_mog2_67
crossref_primary_10_1021_acs_inorgchem_4c05059
crossref_primary_10_1021_acs_molpharmaceut_7b01142
crossref_primary_10_1039_C9RA06835J
crossref_primary_10_1002_adtp_201900076
crossref_primary_10_1016_j_mtnano_2022_100258
Cites_doi 10.1016/j.biomaterials.2012.04.002
10.1016/j.biomaterials.2013.03.058
10.1016/0005-2736(94)00235-H
10.1002/anie.201400900
10.1021/nn201560b
10.1002/adma.201305319
10.1021/ma035658m
10.1021/nn402601d
10.1021/ja906971y
10.1002/adma.200803228
10.1021/ja200746p
10.1021/cm500260z
10.1002/smll.200901789
10.1021/nn405082y
10.1021/cm503647k
10.1021/nn300303q
10.1016/j.biomaterials.2012.11.004
10.1021/ja4075002
10.1016/j.biomaterials.2011.05.007
10.1016/j.biomaterials.2010.09.069
10.1039/C3TB21034K
10.1039/c3cp52837e
10.1021/cm3033498
10.1002/adfm.201101960
10.1016/j.biomaterials.2014.03.043
10.1002/smll.201200962
10.1016/j.biomaterials.2006.11.013
10.1002/smll.201201213
10.1016/j.biomaterials.2011.11.033
10.1002/adma.201004697
10.1039/C1CS15187H
10.1002/adma.201104741
10.1021/ja1022267
10.1039/C4TB00919C
10.1016/j.solidstatesciences.2014.05.003
10.1021/ar400218t
10.1039/B709883A
10.1016/j.biomaterials.2012.03.020
10.1039/C2NR32482B
10.1021/ja3111048
10.1021/cr4001594
10.1039/c0an00144a
10.1016/j.biomaterials.2013.03.029
10.1021/ja2102604
10.1002/adfm.201202992
10.1016/j.addr.2006.09.020
10.1016/j.biomaterials.2011.12.014
10.1021/am501106x
10.1016/j.biomaterials.2013.11.082
10.1002/adfm.201300136
10.1039/c3nr03515h
10.1002/anie.201208196
10.1002/anie.201308834
10.1016/j.biomaterials.2012.09.019
10.2174/1389201053642376
10.1039/c3cc43208d
10.1021/ja402680c
10.1002/anie.201306811
10.1021/ar300213z
10.1016/j.addr.2008.08.003
10.1002/anie.201005159
10.1021/ja5085699
10.1021/cm803151y
10.1021/ja504270d
10.1016/j.biomaterials.2011.10.039
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7S9
L.6
DOI 10.1016/j.biomaterials.2015.05.016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Engineering Research Database
MEDLINE
Materials Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 127
ExternalDocumentID 26093792
10_1016_j_biomaterials_2015_05_016
S0142961215004664
1_s2_0_S0142961215004664
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c593t-1f54ece9837b9a600a889e6888ad06b55d83c4d37f2f4fb1e04c3475b60d40473
IEDL.DBID .~1
ISSN 0142-9612
IngestDate Fri Jul 11 03:37:08 EDT 2025
Fri Jul 11 00:10:49 EDT 2025
Fri Jul 11 07:02:19 EDT 2025
Thu Apr 03 07:00:46 EDT 2025
Thu Apr 24 23:07:36 EDT 2025
Tue Jul 01 03:47:49 EDT 2025
Fri Feb 23 02:31:39 EST 2024
Sun Feb 23 10:19:01 EST 2025
Tue Aug 26 17:20:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Photodynamic
pH/temperature-responsive
Photothermal
Up-conversion
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c593t-1f54ece9837b9a600a889e6888ad06b55d83c4d37f2f4fb1e04c3475b60d40473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26093792
PQID 1746878697
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_2000408618
proquest_miscellaneous_1778028234
proquest_miscellaneous_1746878697
pubmed_primary_26093792
crossref_citationtrail_10_1016_j_biomaterials_2015_05_016
crossref_primary_10_1016_j_biomaterials_2015_05_016
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2015_05_016
elsevier_clinicalkeyesjournals_1_s2_0_S0142961215004664
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2015_05_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Oh, Lim, Kim, Suh, Nam (bib26) 2014; 136
Zhou, Liu, Li (bib10) 2012; 41
Abel, Boyer, van Veggel (bib48) 2009; 131
Li, Peng, Li (bib52) 2009; 21
Garcia, Yang, Shen, Yao, Li, Wang (bib7) 2012; 8
Ju, Tu, Liu, Li, Zhu, Chen (bib27) 2012; 134
Lim, Lee, Zhang, Chu (bib31) 2012; 33
Liu, Fu, Xu, Zou, Yang, Wang (bib32) 2014; 2
Naccache, Vetrone, Mahalingam, Cuccia, Capobianco (bib30) 2009; 21
Dai, Pa, Cheng, Kang, Zhang, Hou (bib44) 2012; 6
Schmaljohann (bib62) 2006; 58
Wang, Banerjee, Liu, Chen, Liu (bib12) 2010; 135
Zhang, Wu, Shen, Liu, Fan, Fan (bib23) 2012; 33
Wang, Cheng, Liu, Wang, Ma, Deng (bib45) 2013; 23
Tian, Wang, Zhang, Feng, Liu (bib4) 2011; 5
Chatterjee, Fong, Zhang (bib11) 2008; 60
Kawasaki, Kumar, Li, Zeng, Kauffman, Yoshimoto (bib24) 2014; 26
Dai, Zhang, Cheng, Pa, Li, Kang (bib56) 2012; 33
Kim, Piao, Hyeon (bib2) 2009; 38
Wen, Zhu, Chen, Hung, Wang, Zhu (bib51) 2013; 52
Wang, Tao, Cheng, Liu (bib16) 2011; 32
Wang, Liu, Sun, Xiao, Zhou, Yan (bib49) 2013; 7
Zeng, Wang, Lu, Yi, Rao, Liu (bib14) 2014; 35
Lv, Yang, He, Gai, Yang, Lin (bib37) 2014; 27
Lee, Low (bib64) 1995; 1233
Gorris, Ali, Saleh, Wolfbeis (bib28) 2011; 23
Min, Li, Liu, Yeow, Xing (bib9) 2014; 53
Sun, Yang, Yuan, Tian, Wang, Guo (bib25) 2011; 133
Su, Han, Xie, Zhu, Chen, Chen (bib47) 2012; 134
Wang, Zhu, Ke, Gu, Yin, Zhang (bib19) 2013; 49
Liu, He, Liu, You, Zhang, Wang (bib34) 2013; 34
Yang, Song, Gao, Wang (bib55) 2014; 34
Gorris, Wolfbeis (bib8) 2013; 52
Xing, Bu, Zhang, Zheng, Li, Chen (bib57) 2012; 33
Fang, Tang, Liu, Fang, Gong, Zheng (bib18) 2012; 8
Vivero-Escoto, Slowing, Trewyn, Lin (bib35) 2010; 6
Jiang, Overbury, Dai (bib22) 2013; 135
Chan, Tsang, Li, Lan, Chadbourne, Chan (bib54) 2014; 2
Negishi, Kurashige, Niihori, Nobusada (bib20) 2013; 15
Yang, Kang, Pa, Dai, Hou, Cheng (bib53) 2013; 34
Kawasaki, Kumar, Li, Zeng, Kauffman, Yoshimoto (bib61) 2014; 26
Thomas, Ferris, Lee, Choi, Cho, Kim (bib40) 2010; 132
Wang, Cheng, Liu (bib5) 2011; 32
Liu, Wiradharma, Gao, Tong, Yang (bib66) 2007; 28
Lee, Seow, Zhang, Lim (bib63) 2013; 34
Jin, Zhou, Gu, Tian, Yan, Ren (bib60) 2013; 5
Hoare, Pelton (bib43) 2004; 37
Kumar, Kumar, Rhim, Kim, Nam (bib17) 2014; 136
Sun, Wang, Yan (bib3) 2014; 47
Liu, Bu, Bu, Zhang, Pan, Fan (bib33) 2014; 53
Tian, Gu, Zhou, Yin, Liu, Yan (bib38) 2012; 24
Sun, Zhu, Peng, Li (bib15) 2013; 7
Jiang, Yang, Ma, Wang, Chen, Dong (bib42) 2014; 6
Zeng, Tsang, Chan, Wong, Hao (bib58) 2012; 33
Zhao, Lu, Yin, McRae, Piper, Dawes (bib29) 2013; 5
Zhang, Chen, Li, Wang, Zheng, Xu (bib39) 2014; 35
Xie, Gao, Deng, Sun, Xu, Liu (bib50) 2013; 135
Li, Jin (bib21) 2013; 46
Li, Shen, Yang, Yao, Che, Zhang (bib46) 2013; 25
Gai, Li, Yang, Lin (bib1) 2013; 114
Xing, Bu, Ren, Zheng, Li, Zhang (bib59) 2012; 33
Zhang, Yang, Dai, Pa, Li, Cheng (bib41) 2013; 23
Fang, Yang, Gong, Zheng (bib36) 2012; 22
Li, Shi (bib6) 2014; 26
Haase, Schaefer (bib13) 2011; 50
Reddy, Allagadda, Leamon (bib65) 2005; 6
Zhou (10.1016/j.biomaterials.2015.05.016_bib10) 2012; 41
Zhao (10.1016/j.biomaterials.2015.05.016_bib29) 2013; 5
Thomas (10.1016/j.biomaterials.2015.05.016_bib40) 2010; 132
Wang (10.1016/j.biomaterials.2015.05.016_bib5) 2011; 32
Chan (10.1016/j.biomaterials.2015.05.016_bib54) 2014; 2
Lv (10.1016/j.biomaterials.2015.05.016_bib37) 2014; 27
Kawasaki (10.1016/j.biomaterials.2015.05.016_bib24) 2014; 26
Kawasaki (10.1016/j.biomaterials.2015.05.016_bib61) 2014; 26
Oh (10.1016/j.biomaterials.2015.05.016_bib26) 2014; 136
Gorris (10.1016/j.biomaterials.2015.05.016_bib28) 2011; 23
Jiang (10.1016/j.biomaterials.2015.05.016_bib22) 2013; 135
Zhang (10.1016/j.biomaterials.2015.05.016_bib39) 2014; 35
Xie (10.1016/j.biomaterials.2015.05.016_bib50) 2013; 135
Tian (10.1016/j.biomaterials.2015.05.016_bib4) 2011; 5
Kumar (10.1016/j.biomaterials.2015.05.016_bib17) 2014; 136
Wang (10.1016/j.biomaterials.2015.05.016_bib12) 2010; 135
Zeng (10.1016/j.biomaterials.2015.05.016_bib58) 2012; 33
Liu (10.1016/j.biomaterials.2015.05.016_bib34) 2013; 34
Xing (10.1016/j.biomaterials.2015.05.016_bib57) 2012; 33
Lee (10.1016/j.biomaterials.2015.05.016_bib64) 1995; 1233
Negishi (10.1016/j.biomaterials.2015.05.016_bib20) 2013; 15
Lim (10.1016/j.biomaterials.2015.05.016_bib31) 2012; 33
Yang (10.1016/j.biomaterials.2015.05.016_bib53) 2013; 34
Fang (10.1016/j.biomaterials.2015.05.016_bib36) 2012; 22
Garcia (10.1016/j.biomaterials.2015.05.016_bib7) 2012; 8
Wang (10.1016/j.biomaterials.2015.05.016_bib19) 2013; 49
Jin (10.1016/j.biomaterials.2015.05.016_bib60) 2013; 5
Dai (10.1016/j.biomaterials.2015.05.016_bib56) 2012; 33
Li (10.1016/j.biomaterials.2015.05.016_bib6) 2014; 26
Sun (10.1016/j.biomaterials.2015.05.016_bib3) 2014; 47
Li (10.1016/j.biomaterials.2015.05.016_bib46) 2013; 25
Haase (10.1016/j.biomaterials.2015.05.016_bib13) 2011; 50
Fang (10.1016/j.biomaterials.2015.05.016_bib18) 2012; 8
Sun (10.1016/j.biomaterials.2015.05.016_bib15) 2013; 7
Liu (10.1016/j.biomaterials.2015.05.016_bib33) 2014; 53
Wang (10.1016/j.biomaterials.2015.05.016_bib49) 2013; 7
Hoare (10.1016/j.biomaterials.2015.05.016_bib43) 2004; 37
Ju (10.1016/j.biomaterials.2015.05.016_bib27) 2012; 134
Wang (10.1016/j.biomaterials.2015.05.016_bib16) 2011; 32
Dai (10.1016/j.biomaterials.2015.05.016_bib44) 2012; 6
Gorris (10.1016/j.biomaterials.2015.05.016_bib8) 2013; 52
Zhang (10.1016/j.biomaterials.2015.05.016_bib41) 2013; 23
Li (10.1016/j.biomaterials.2015.05.016_bib52) 2009; 21
Schmaljohann (10.1016/j.biomaterials.2015.05.016_bib62) 2006; 58
Gai (10.1016/j.biomaterials.2015.05.016_bib1) 2013; 114
Wang (10.1016/j.biomaterials.2015.05.016_bib45) 2013; 23
Sun (10.1016/j.biomaterials.2015.05.016_bib25) 2011; 133
Jiang (10.1016/j.biomaterials.2015.05.016_bib42) 2014; 6
Lee (10.1016/j.biomaterials.2015.05.016_bib63) 2013; 34
Zhang (10.1016/j.biomaterials.2015.05.016_bib23) 2012; 33
Su (10.1016/j.biomaterials.2015.05.016_bib47) 2012; 134
Tian (10.1016/j.biomaterials.2015.05.016_bib38) 2012; 24
Xing (10.1016/j.biomaterials.2015.05.016_bib59) 2012; 33
Naccache (10.1016/j.biomaterials.2015.05.016_bib30) 2009; 21
Yang (10.1016/j.biomaterials.2015.05.016_bib55) 2014; 34
Wen (10.1016/j.biomaterials.2015.05.016_bib51) 2013; 52
Reddy (10.1016/j.biomaterials.2015.05.016_bib65) 2005; 6
Chatterjee (10.1016/j.biomaterials.2015.05.016_bib11) 2008; 60
Zeng (10.1016/j.biomaterials.2015.05.016_bib14) 2014; 35
Kim (10.1016/j.biomaterials.2015.05.016_bib2) 2009; 38
Liu (10.1016/j.biomaterials.2015.05.016_bib66) 2007; 28
Abel (10.1016/j.biomaterials.2015.05.016_bib48) 2009; 131
Li (10.1016/j.biomaterials.2015.05.016_bib21) 2013; 46
Min (10.1016/j.biomaterials.2015.05.016_bib9) 2014; 53
Vivero-Escoto (10.1016/j.biomaterials.2015.05.016_bib35) 2010; 6
Liu (10.1016/j.biomaterials.2015.05.016_bib32) 2014; 2
References_xml – volume: 133
  start-page: 8617
  year: 2011
  end-page: 8624
  ident: bib25
  article-title: Controlling assembly of paired gold clusters within apoferritin nanoreactor for
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 1749
  year: 2013
  end-page: 1758
  ident: bib21
  article-title: Atomically precise gold nanoclusters as new model catalysts
  publication-title: Acc. Chem. Res.
– volume: 58
  start-page: 1655
  year: 2006
  end-page: 1670
  ident: bib62
  article-title: Thermo- and pH-responsive polymers in drug delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 52
  start-page: 13419
  year: 2013
  end-page: 13423
  ident: bib51
  article-title: Upconverting near-infrared light through energy management in core-shell-shell nanoparticles
  publication-title: Angew. Chem. Int. Ed.
– volume: 136
  start-page: 14052
  year: 2014
  end-page: 14059
  ident: bib26
  article-title: Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 6145
  year: 2011
  end-page: 6154
  ident: bib16
  article-title: Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles
  publication-title: Biomaterials
– volume: 8
  start-page: 3800
  year: 2012
  end-page: 3805
  ident: bib7
  article-title: Nir-triggered release of caged nitric oxide using upconverting nanostructured materials
  publication-title: Small
– volume: 34
  start-page: 5218
  year: 2013
  end-page: 5225
  ident: bib34
  article-title: Conjugation of NaGdF4 upconverting nanoparticles on silica nanospheres as contrast agents for multi-modality imaging
  publication-title: Biomaterials
– volume: 21
  start-page: 717
  year: 2009
  end-page: 723
  ident: bib30
  article-title: Controlled synthesis and water dispersibility of hexagonal phase NaGdF
  publication-title: Chem. Mater.
– volume: 33
  start-page: 1912
  year: 2012
  end-page: 1920
  ident: bib31
  article-title: Photodynamic inactivation of viruses using upconversion nanoparticles
  publication-title: Biomaterials
– volume: 35
  start-page: 2934
  year: 2014
  end-page: 2941
  ident: bib14
  article-title: Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF
  publication-title: Biomaterials
– volume: 41
  start-page: 1323
  year: 2012
  end-page: 1349
  ident: bib10
  article-title: Upconversion nanophosphors for small-animal imaging
  publication-title: Chem. Soc. Rev.
– volume: 53
  start-page: 1012
  year: 2014
  end-page: 1016
  ident: bib9
  article-title: Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 3584
  year: 2013
  end-page: 3600
  ident: bib8
  article-title: Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 4650
  year: 2014
  end-page: 4657
  ident: bib42
  article-title: Interfacing a tetraphenylethene derivative and a smart hydrogel for temperature-dependent photoluminescence with sensitive thermoresponse
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 3077
  year: 2013
  end-page: 3086
  ident: bib45
  article-title: Imaging-guided ph-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light
  publication-title: Adv. Funct. Mater.
– volume: 34
  start-page: 4860
  year: 2013
  end-page: 4871
  ident: bib63
  article-title: Targeting CCL21-folic acid-upconversion nanoparticles conjugates to folate receptor-alpha expressing tumor cells in an endothelial-tumor cell bilayer model
  publication-title: Biomaterials
– volume: 50
  start-page: 5808
  year: 2011
  end-page: 5829
  ident: bib13
  article-title: Upconverting nanoparticles
  publication-title: Angew. Chem. Int. Ed.
– volume: 132
  start-page: 10623
  year: 2010
  end-page: 10625
  ident: bib40
  article-title: Noninvasive remote-controlled release of drug molecules
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 4551
  year: 2014
  end-page: 4555
  ident: bib33
  article-title: Real-time
  publication-title: Angew. Chem. Int. Ed.
– volume: 23
  start-page: 4067
  year: 2013
  end-page: 4078
  ident: bib41
  article-title: Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/ph dual-responsive drug controlled release
  publication-title: Adv. Funct. Mater.
– volume: 131
  start-page: 14644
  year: 2009
  end-page: 14645
  ident: bib48
  article-title: Hard proof of the NaYF
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 372
  year: 2009
  end-page: 390
  ident: bib2
  article-title: Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy
  publication-title: Chem. Soc. Rev.
– volume: 33
  start-page: 4628
  year: 2012
  end-page: 4638
  ident: bib23
  article-title: renal clearance, biodistribution, toxicity of gold nanoclusters
  publication-title: Biomaterials
– volume: 25
  start-page: 106
  year: 2013
  end-page: 112
  ident: bib46
  article-title: Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties
  publication-title: Chem. Mater.
– volume: 49
  start-page: 7168
  year: 2013
  end-page: 7170
  ident: bib19
  article-title: Porous Pt–M (M=Cu, Zn, Ni) nanoparticles as robust nanocatalysts
  publication-title: Chem. Commun.
– volume: 135
  start-page: 1839
  year: 2010
  end-page: 1854
  ident: bib12
  article-title: Upconversion nanoparticles in biological labeling, imaging, and therapy
  publication-title: Analyst
– volume: 136
  start-page: 16317
  year: 2014
  end-page: 16325
  ident: bib17
  article-title: Oxidative nanopeeling chemistry-based synthesis and photodynamic and photothermal therapeutic applications of plasmonic core-petal nanostructures
  publication-title: J. Am. Chem. Soc.
– volume: 1233
  start-page: 134
  year: 1995
  end-page: 144
  ident: bib64
  article-title: Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin
  publication-title: Biochim. Biophys. Acta
– volume: 134
  start-page: 1323
  year: 2012
  end-page: 1330
  ident: bib27
  article-title: Amine-functionalized lanthanide-doped KGdF
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 1110
  year: 2011
  end-page: 1120
  ident: bib5
  article-title: Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy
  publication-title: Biomaterials
– volume: 7
  start-page: 11290
  year: 2013
  end-page: 11300
  ident: bib15
  article-title: Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging
  publication-title: ACS Nano
– volume: 8
  start-page: 3816
  year: 2012
  end-page: 3822
  ident: bib18
  article-title: Pd nanosheet-covered hollow mesoporous silica nanoparticles as a platform for the chemo-photothermal treatment of cancer cells
  publication-title: Small
– volume: 33
  start-page: 2583
  year: 2012
  end-page: 2592
  ident: bib56
  article-title: pH-responsive drug delivery system based on luminescent CaF
  publication-title: Biomaterials
– volume: 26
  start-page: 3176
  year: 2014
  end-page: 3205
  ident: bib6
  article-title: Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications
  publication-title: Adv. Mater.
– volume: 34
  start-page: 17
  year: 2014
  end-page: 23
  ident: bib55
  article-title: EuF
  publication-title: Solid State Sci.
– volume: 47
  start-page: 1001
  year: 2014
  end-page: 1009
  ident: bib3
  article-title: Paradigms and challenges for bioapplication of rare Earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 11910
  year: 2013
  end-page: 11918
  ident: bib60
  article-title: A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells
  publication-title: Nanoscale
– volume: 22
  start-page: 842
  year: 2012
  end-page: 848
  ident: bib36
  article-title: Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated pd@ag nanoparticles
  publication-title: Adv. Funct. Mater.
– volume: 33
  start-page: 9232
  year: 2012
  end-page: 9238
  ident: bib58
  article-title: PEG modified BaGdF
  publication-title: Biomaterials
– volume: 5
  start-page: 944
  year: 2013
  end-page: 952
  ident: bib29
  article-title: Upconversion luminescence with tunable lifetime in NaYF
  publication-title: Nanoscale
– volume: 34
  start-page: 1601
  year: 2013
  end-page: 1612
  ident: bib53
  article-title: Hollow structured upconversion luminescent NaYF
  publication-title: Biomaterials
– volume: 5
  start-page: 7000
  year: 2011
  end-page: 7009
  ident: bib4
  article-title: Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide
  publication-title: ACS Nano
– volume: 24
  start-page: 1226
  year: 2012
  end-page: 1231
  ident: bib38
  article-title: Mn
  publication-title: Adv. Mater.
– volume: 27
  start-page: 483
  year: 2014
  end-page: 496
  ident: bib37
  article-title: Hollow structured Y
  publication-title: Chem. Mater.
– volume: 35
  start-page: 5875
  year: 2014
  end-page: 5885
  ident: bib39
  article-title: A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery
  publication-title: Biomaterials
– volume: 6
  start-page: 3327
  year: 2012
  end-page: 3338
  ident: bib44
  article-title: Up-Conversion cell imaging and ph-induced thermally controlled drug release from NaYF4:Yb
  publication-title: ACS Nano
– volume: 37
  start-page: 2544
  year: 2004
  end-page: 2550
  ident: bib43
  article-title: Highly pH and temperature responsive microgels functionalized with vinylacetic acid
  publication-title: Macromolecules
– volume: 33
  start-page: 1079
  year: 2012
  end-page: 1089
  ident: bib57
  article-title: Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging
  publication-title: Biomaterials
– volume: 135
  start-page: 8786
  year: 2013
  end-page: 8789
  ident: bib22
  article-title: Structure of Au
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 131
  year: 2005
  end-page: 150
  ident: bib65
  article-title: Targeting therapeutic and imaging agents to folate receptor positive tumors
  publication-title: Curr. Pharm. Biotechnol.
– volume: 28
  start-page: 1423
  year: 2007
  end-page: 1433
  ident: bib66
  article-title: Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs
  publication-title: Biomaterials
– volume: 135
  start-page: 12608
  year: 2013
  end-page: 12611
  ident: bib50
  article-title: Mechanistic investigation of photon upconversion in Nd
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 1945
  year: 2009
  end-page: 1948
  ident: bib52
  article-title: Dual-Mode Luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals
  publication-title: Adv. Mater.
– volume: 2
  start-page: 5358
  year: 2014
  end-page: 5367
  ident: bib32
  article-title: Folic acid-conjugated hollow mesoporous silica/CuS nanocomposites as a difunctional nanoplatform for targeted chemo-photothermal therapy of cancer cells
  publication-title: J. Mater. Chem. B
– volume: 6
  start-page: 1952
  year: 2010
  end-page: 1967
  ident: bib35
  article-title: Mesoporous silica nanoparticles for intracellular controlled drug delivery
  publication-title: Small
– volume: 26
  start-page: 2777
  year: 2014
  end-page: 2788
  ident: bib61
  article-title: Generation of singlet oxygen by photoexcited Au
  publication-title: Chem. Mater.
– volume: 23
  start-page: 1652
  year: 2011
  end-page: 1655
  ident: bib28
  article-title: Tuning the dual emission of photon-upconverting nanoparticles for ratiometric multiplexed encoding
  publication-title: Adv. Mater.
– volume: 26
  start-page: 2777
  year: 2014
  end-page: 2788
  ident: bib24
  article-title: Generation of singlet oxygen by photoexcited Au
  publication-title: Chem. Mater.
– volume: 134
  start-page: 20849
  year: 2012
  end-page: 20857
  ident: bib47
  article-title: The Effect of surface coating on energy migration-mediated upconversion
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 2343
  year: 2013
  end-page: 2389
  ident: bib1
  article-title: Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications
  publication-title: Chem. Rev.
– volume: 60
  start-page: 1627
  year: 2008
  end-page: 1637
  ident: bib11
  article-title: Nanoparticles in photodynamic therapy: an emerging paradigm
  publication-title: Adv. Drug Deliv. Rev.
– volume: 33
  start-page: 5384
  year: 2012
  end-page: 5393
  ident: bib59
  article-title: A NaYbF
  publication-title: Biomaterials
– volume: 2
  start-page: 84
  year: 2014
  end-page: 91
  ident: bib54
  article-title: Bifunctional up-converting lanthanide nanoparticles for selective
  publication-title: J. Mater. Chem. B
– volume: 7
  start-page: 7200
  year: 2013
  end-page: 7206
  ident: bib49
  article-title: Nd
  publication-title: ACS Nano
– volume: 15
  start-page: 18736
  year: 2013
  end-page: 18751
  ident: bib20
  article-title: Toward the creation of stable, functionalized metal clusters
  publication-title: Phys. Chem. Chem. Phys.
– volume: 33
  start-page: 5384
  year: 2012
  ident: 10.1016/j.biomaterials.2015.05.016_bib59
  article-title: A NaYbF4:Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.04.002
– volume: 34
  start-page: 5218
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib34
  article-title: Conjugation of NaGdF4 upconverting nanoparticles on silica nanospheres as contrast agents for multi-modality imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.03.058
– volume: 1233
  start-page: 134
  year: 1995
  ident: 10.1016/j.biomaterials.2015.05.016_bib64
  article-title: Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(94)00235-H
– volume: 53
  start-page: 4551
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib33
  article-title: Real-time In Vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201400900
– volume: 5
  start-page: 7000
  year: 2011
  ident: 10.1016/j.biomaterials.2015.05.016_bib4
  article-title: Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide
  publication-title: ACS Nano
  doi: 10.1021/nn201560b
– volume: 26
  start-page: 3176
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib6
  article-title: Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305319
– volume: 37
  start-page: 2544
  year: 2004
  ident: 10.1016/j.biomaterials.2015.05.016_bib43
  article-title: Highly pH and temperature responsive microgels functionalized with vinylacetic acid
  publication-title: Macromolecules
  doi: 10.1021/ma035658m
– volume: 7
  start-page: 7200
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib49
  article-title: Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect
  publication-title: ACS Nano
  doi: 10.1021/nn402601d
– volume: 131
  start-page: 14644
  year: 2009
  ident: 10.1016/j.biomaterials.2015.05.016_bib48
  article-title: Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja906971y
– volume: 21
  start-page: 1945
  year: 2009
  ident: 10.1016/j.biomaterials.2015.05.016_bib52
  article-title: Dual-Mode Luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803228
– volume: 133
  start-page: 8617
  year: 2011
  ident: 10.1016/j.biomaterials.2015.05.016_bib25
  article-title: Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200746p
– volume: 26
  start-page: 2777
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib24
  article-title: Generation of singlet oxygen by photoexcited Au25(SR)18 clusters
  publication-title: Chem. Mater.
  doi: 10.1021/cm500260z
– volume: 6
  start-page: 1952
  year: 2010
  ident: 10.1016/j.biomaterials.2015.05.016_bib35
  article-title: Mesoporous silica nanoparticles for intracellular controlled drug delivery
  publication-title: Small
  doi: 10.1002/smll.200901789
– volume: 7
  start-page: 11290
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib15
  article-title: Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging
  publication-title: ACS Nano
  doi: 10.1021/nn405082y
– volume: 27
  start-page: 483
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib37
  article-title: Hollow structured Y2O3:Yb/Er–CuxS nanospheres with controllable size for simultaneous chemo/photothermal therapy and bioimaging
  publication-title: Chem. Mater.
  doi: 10.1021/cm503647k
– volume: 6
  start-page: 3327
  year: 2012
  ident: 10.1016/j.biomaterials.2015.05.016_bib44
  article-title: Up-Conversion cell imaging and ph-induced thermally controlled drug release from NaYF4:Yb3+/Er3+@hydrogel core-shell hybrid microspheres
  publication-title: ACS Nano
  doi: 10.1021/nn300303q
– volume: 34
  start-page: 1601
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib53
  article-title: Hollow structured upconversion luminescent NaYF4:Yb3+,Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.11.004
– volume: 135
  start-page: 12608
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib50
  article-title: Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4075002
– volume: 32
  start-page: 6145
  year: 2011
  ident: 10.1016/j.biomaterials.2015.05.016_bib16
  article-title: Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.05.007
– volume: 32
  start-page: 1110
  year: 2011
  ident: 10.1016/j.biomaterials.2015.05.016_bib5
  article-title: Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.09.069
– volume: 2
  start-page: 84
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib54
  article-title: Bifunctional up-converting lanthanide nanoparticles for selective in vitro imaging and inhibition of cyclin D as anti-cancer agents
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C3TB21034K
– volume: 15
  start-page: 18736
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib20
  article-title: Toward the creation of stable, functionalized metal clusters
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52837e
– volume: 25
  start-page: 106
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib46
  article-title: Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties
  publication-title: Chem. Mater.
  doi: 10.1021/cm3033498
– volume: 22
  start-page: 842
  year: 2012
  ident: 10.1016/j.biomaterials.2015.05.016_bib36
  article-title: Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated pd@ag nanoparticles
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101960
– volume: 35
  start-page: 5875
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib39
  article-title: A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.03.043
– volume: 8
  start-page: 3816
  year: 2012
  ident: 10.1016/j.biomaterials.2015.05.016_bib18
  article-title: Pd nanosheet-covered hollow mesoporous silica nanoparticles as a platform for the chemo-photothermal treatment of cancer cells
  publication-title: Small
  doi: 10.1002/smll.201200962
– volume: 28
  start-page: 1423
  year: 2007
  ident: 10.1016/j.biomaterials.2015.05.016_bib66
  article-title: Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.11.013
– volume: 8
  start-page: 3800
  year: 2012
  ident: 10.1016/j.biomaterials.2015.05.016_bib7
  article-title: Nir-triggered release of caged nitric oxide using upconverting nanostructured materials
  publication-title: Small
  doi: 10.1002/smll.201201213
– volume: 33
  start-page: 1912
  year: 2012
  ident: 10.1016/j.biomaterials.2015.05.016_bib31
  article-title: Photodynamic inactivation of viruses using upconversion nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.11.033
– volume: 23
  start-page: 1652
  year: 2011
  ident: 10.1016/j.biomaterials.2015.05.016_bib28
  article-title: Tuning the dual emission of photon-upconverting nanoparticles for ratiometric multiplexed encoding
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004697
– volume: 41
  start-page: 1323
  year: 2012
  ident: 10.1016/j.biomaterials.2015.05.016_bib10
  article-title: Upconversion nanophosphors for small-animal imaging
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15187H
– volume: 24
  start-page: 1226
  year: 2012
  ident: 10.1016/j.biomaterials.2015.05.016_bib38
  article-title: Mn2+ Dopant-controlled synthesis of NaYF4:Yb,Er upconversion nanoparticles for in vivo imaging and drug delivery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104741
– volume: 132
  start-page: 10623
  year: 2010
  ident: 10.1016/j.biomaterials.2015.05.016_bib40
  article-title: Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1022267
– volume: 2
  start-page: 5358
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib32
  article-title: Folic acid-conjugated hollow mesoporous silica/CuS nanocomposites as a difunctional nanoplatform for targeted chemo-photothermal therapy of cancer cells
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB00919C
– volume: 34
  start-page: 17
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib55
  article-title: EuF3 nanotubes fabricated via Eu(NO3)3/cysteamine as precursor and their derived thermosensitive nanogels
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2014.05.003
– volume: 47
  start-page: 1001
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib3
  article-title: Paradigms and challenges for bioapplication of rare Earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400218t
– volume: 38
  start-page: 372
  year: 2009
  ident: 10.1016/j.biomaterials.2015.05.016_bib2
  article-title: Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B709883A
– volume: 33
  start-page: 4628
  year: 2012
  ident: 10.1016/j.biomaterials.2015.05.016_bib23
  article-title: In vivo renal clearance, biodistribution, toxicity of gold nanoclusters
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.03.020
– volume: 5
  start-page: 944
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib29
  article-title: Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size
  publication-title: Nanoscale
  doi: 10.1039/C2NR32482B
– volume: 134
  start-page: 20849
  year: 2012
  ident: 10.1016/j.biomaterials.2015.05.016_bib47
  article-title: The Effect of surface coating on energy migration-mediated upconversion
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3111048
– volume: 114
  start-page: 2343
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib1
  article-title: Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr4001594
– volume: 135
  start-page: 1839
  year: 2010
  ident: 10.1016/j.biomaterials.2015.05.016_bib12
  article-title: Upconversion nanoparticles in biological labeling, imaging, and therapy
  publication-title: Analyst
  doi: 10.1039/c0an00144a
– volume: 26
  start-page: 2777
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib61
  article-title: Generation of singlet oxygen by photoexcited Au25(SR)18 clusters
  publication-title: Chem. Mater.
  doi: 10.1021/cm500260z
– volume: 34
  start-page: 4860
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib63
  article-title: Targeting CCL21-folic acid-upconversion nanoparticles conjugates to folate receptor-alpha expressing tumor cells in an endothelial-tumor cell bilayer model
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.03.029
– volume: 134
  start-page: 1323
  year: 2012
  ident: 10.1016/j.biomaterials.2015.05.016_bib27
  article-title: Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2102604
– volume: 23
  start-page: 3077
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib45
  article-title: Imaging-guided ph-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202992
– volume: 58
  start-page: 1655
  year: 2006
  ident: 10.1016/j.biomaterials.2015.05.016_bib62
  article-title: Thermo- and pH-responsive polymers in drug delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2006.09.020
– volume: 33
  start-page: 2583
  year: 2012
  ident: 10.1016/j.biomaterials.2015.05.016_bib56
  article-title: pH-responsive drug delivery system based on luminescent CaF2:Ce3+/Tb3+-poly(acrylic acid) hybrid microspheres
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.12.014
– volume: 6
  start-page: 4650
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib42
  article-title: Interfacing a tetraphenylethene derivative and a smart hydrogel for temperature-dependent photoluminescence with sensitive thermoresponse
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501106x
– volume: 35
  start-page: 2934
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib14
  article-title: Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb,Er nanorods for blood vessel visualization
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.11.082
– volume: 23
  start-page: 4067
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib41
  article-title: Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/ph dual-responsive drug controlled release
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300136
– volume: 5
  start-page: 11910
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib60
  article-title: A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells
  publication-title: Nanoscale
  doi: 10.1039/c3nr03515h
– volume: 52
  start-page: 3584
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib8
  article-title: Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201208196
– volume: 53
  start-page: 1012
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib9
  article-title: Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201308834
– volume: 33
  start-page: 9232
  year: 2012
  ident: 10.1016/j.biomaterials.2015.05.016_bib58
  article-title: PEG modified BaGdF5:Yb,Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.09.019
– volume: 6
  start-page: 131
  year: 2005
  ident: 10.1016/j.biomaterials.2015.05.016_bib65
  article-title: Targeting therapeutic and imaging agents to folate receptor positive tumors
  publication-title: Curr. Pharm. Biotechnol.
  doi: 10.2174/1389201053642376
– volume: 49
  start-page: 7168
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib19
  article-title: Porous Pt–M (M=Cu, Zn, Ni) nanoparticles as robust nanocatalysts
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43208d
– volume: 135
  start-page: 8786
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib22
  article-title: Structure of Au15(SR)13 and its implication for the origin of the nucleus in thiolated gold nanoclusters
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402680c
– volume: 52
  start-page: 13419
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib51
  article-title: Upconverting near-infrared light through energy management in core-shell-shell nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201306811
– volume: 46
  start-page: 1749
  year: 2013
  ident: 10.1016/j.biomaterials.2015.05.016_bib21
  article-title: Atomically precise gold nanoclusters as new model catalysts
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300213z
– volume: 60
  start-page: 1627
  year: 2008
  ident: 10.1016/j.biomaterials.2015.05.016_bib11
  article-title: Nanoparticles in photodynamic therapy: an emerging paradigm
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2008.08.003
– volume: 50
  start-page: 5808
  year: 2011
  ident: 10.1016/j.biomaterials.2015.05.016_bib13
  article-title: Upconverting nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201005159
– volume: 136
  start-page: 16317
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib17
  article-title: Oxidative nanopeeling chemistry-based synthesis and photodynamic and photothermal therapeutic applications of plasmonic core-petal nanostructures
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5085699
– volume: 21
  start-page: 717
  year: 2009
  ident: 10.1016/j.biomaterials.2015.05.016_bib30
  article-title: Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles
  publication-title: Chem. Mater.
  doi: 10.1021/cm803151y
– volume: 136
  start-page: 14052
  year: 2014
  ident: 10.1016/j.biomaterials.2015.05.016_bib26
  article-title: Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504270d
– volume: 33
  start-page: 1079
  year: 2012
  ident: 10.1016/j.biomaterials.2015.05.016_bib57
  article-title: Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.10.039
SSID ssj0014042
Score 2.5617568
Snippet To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured...
Abstract To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 115
SubjectTerms Acrylamides - chemistry
Acrylamides - therapeutic use
Advanced Basic Science
Animals
Antibiotics, Antineoplastic - administration & dosage
Antibiotics, Antineoplastic - therapeutic use
Cell Line, Tumor
computed tomography
Delayed-Action Preparations - chemistry
Delayed-Action Preparations - therapeutic use
Dentistry
doxorubicin
Doxorubicin - administration & dosage
Doxorubicin - therapeutic use
Drug Liberation
Effectiveness
Female
Humans
Hydrogen-Ion Concentration
Hyperthermia, Induced - methods
image analysis
Imaging
luminescence
Luminescent Agents - chemistry
Luminescent Agents - therapeutic use
Mice
Mice, Inbred BALB C
Nanoconjugates - chemistry
Nanoconjugates - therapeutic use
Nanoconjugates - ultrastructure
nanoparticles
neoplasms
Neoplasms - diagnosis
Neoplasms - therapy
Optical Imaging
pH/temperature-responsive
Photochemotherapy - methods
Photodynamic
photosensitivity
Photothermal
Platforms
polymers
Polymethacrylic Acids - chemistry
Polymethacrylic Acids - therapeutic use
porous media
Rare earth metals
reactive oxygen species
silica
Surgical implants
Temperature
Theranostic Nanomedicine - methods
therapeutics
Therapy
Tomography, X-Ray Computed
Up-conversion
Upconversion
Title An imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/temperature-responsive drug release
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961215004664
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961215004664
https://dx.doi.org/10.1016/j.biomaterials.2015.05.016
https://www.ncbi.nlm.nih.gov/pubmed/26093792
https://www.proquest.com/docview/1746878697
https://www.proquest.com/docview/1778028234
https://www.proquest.com/docview/2000408618
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF-OE0QfRM-vnnqs4Ouar_1IEB_K4VEV78mDe1t2k81ZaZPQpsK93N9-M9lNOdFKQQiBlB3S7kzmo_nNbwh550ou6ry0TChjGVdKMRtXgglrE5dIC0FiQPmey9kF_3IpLg_I6dgLg7DK4Pu9Tx-8dfgkCrsZdfN5hLCktEACLIFFnkROUM4VWvn7my3MA9ljUg9jTBmuHolHB4wXtrib3qsaYV7Cs3jKXUFqVxI6BKOzx-RRyCLp1H_RJ-TANUfk4R1uwSNy_1t4a_6U3EwbOl8O44jY1WZeuYp2C9NjukrhRNfX2AA4MDbT7kfbt5UfUx8NF5ghLs0iAu0uW-b7ta4p_n9Lu1mE1FaBl5mtAt72l6PVanNFcR4LBMln5OLs0_fTGQtzF1gpiqxnSS24K10BtastDGREJs8LJ6FWNlUsrRBVnpW8ylSd1rwGnca8zLgSVsYVbLfKnpPDpm3cS0JrSCDTxKS1cJCqGWdjiyVSnJjYQDFaTkgxbrQuAyk5zsZY6BF99lPfVZJGJekYjkROSLaV7Tw1x15SH0Z96rH5FNylhgiyl7T6m7Rbhyd_rRO9TnWs_7DOCfm4lfzNwPe-89vR-DR4AHytYxrXbuCOistc5bJQ_1qjcqyuM757DTZtcahwk3xCXnjr3u4rVL2Qxxbp8X_-ilfkAV55kN5rctivNu4NZHW9PRke2xNyb_r56-z8FgeGUP4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBZdB1v3MLbu0uyqwV4133SxGXsoZSXb2j610Dch2XKXkTgmcQZ96W_fOZYcOraMwMAEnOhgR0c6F_s73yHkvSu5qPPSMqGMZVwpxWxcCSasTVwiLTiJHuV7JscX_OuluNwhR0MtDMIqg-33Nr231uGbKMxm1E4mEcKS0gIJsAQmeZLfIXc5bF9sY_DhZo3zQPqY1OMYU4bDB-bRHuSFNe6m87pGnJfwNJ5yk5faFIX23uj4EXkYwkh66O_0MdlxzT55cItccJ_cOw2vzZ-Qm8OGTmZ9PyJ2tZpUrqLt1HQYr1L4oMtrrADsKZtp-33ezSvfpz7qTzBEnJlpBOqdzZkv2Lqm-ACXtuMIua0CMTNbBMDtT0erxeqKYkMW8JJPycXx5_OjMQuNF1gpiqxjSS24K10ByastDIREJs8LJyFZNlUsrRBVnpW8ylSd1rwGpca8zLgSVsYVTLfKnpHdZt64A0JriCDTxKS1cBCrGWdjizlSnJjYQDZajkgxTLQuAys5NseY6gF-9kPfVpJGJekYjkSOSLaWbT03x1ZSHwd96qH6FOylBheylbT6m7Rbhq2_1IlepjrWfyzPEfm0lvxthW995XfD4tNgAvC9jmncfAVXVFzmKpeF-tcYlWN6nfHNY7Bqi0OKm-Qj8tyv7vW8QtoLgWyRvvjPf_GW3B-fn57oky9n316SPfzFI_Zekd1usXKvIcTr7Jt-C_8CQnpSjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+imaging-guided+platform+for+synergistic+photodynamic%2Fphotothermal%2Fchemo-therapy+with+pH%2Ftemperature-responsive+drug+release&rft.jtitle=Biomaterials&rft.au=Lv%2C+Ruichan&rft.au=Yang%2C+Piaoping&rft.au=He%2C+Fei&rft.au=Gai%2C+Shili&rft.date=2015-09-01&rft.issn=0142-9612&rft.volume=63&rft.spage=115&rft.epage=127&rft_id=info:doi/10.1016%2Fj.biomaterials.2015.05.016&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961215X00202%2Fcov150h.gif