An imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/temperature-responsive drug release
To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured nano-theranostic by conjugating photosensitive Au25(SR)18 – (SR refers to thiolate) clusters, pH/temperature-responsive polymer P(NIPAm-MAA), a...
Saved in:
Published in | Biomaterials Vol. 63; pp. 115 - 127 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured nano-theranostic by conjugating photosensitive Au25(SR)18 – (SR refers to thiolate) clusters, pH/temperature-responsive polymer P(NIPAm-MAA), and anti-cancer drug (doxorubicin, DOX) onto the surface of mesoporous silica coated core–shell up-conversion nanoparticles (UCNPs). It is found that the photodynamic therapy (PDT) derived from the generated reactive oxygen species and the photothermal therapy (PTT) arising from the photothermal effect can be simultaneously triggered by a single 980 nm near infrared (NIR) light. Furthermore, the thermal effect can also stimulate the pH/temperature sensitive polymer in the cancer sites, thus realizing the targeted and controllable DOX release. The combined PDT, PTT and pH/temperature responsive chemo-therapy can markedly improve the therapeutic efficacy, which has been confirmed by both in intro and in vivo assays. Moreover, the doped rare earths endow the platform with dual-modal up-conversion luminescent (UCL) and computer tomography (CT) imaging properties, thus achieving the target of imaging-guided synergistic therapy under by a single NIR light. |
---|---|
AbstractList | To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured nano-theranostic by conjugating photosensitive Au25(SR)18 – (SR refers to thiolate) clusters, pH/temperature-responsive polymer P(NIPAm-MAA), and anti-cancer drug (doxorubicin, DOX) onto the surface of mesoporous silica coated core–shell up-conversion nanoparticles (UCNPs). It is found that the photodynamic therapy (PDT) derived from the generated reactive oxygen species and the photothermal therapy (PTT) arising from the photothermal effect can be simultaneously triggered by a single 980 nm near infrared (NIR) light. Furthermore, the thermal effect can also stimulate the pH/temperature sensitive polymer in the cancer sites, thus realizing the targeted and controllable DOX release. The combined PDT, PTT and pH/temperature responsive chemo-therapy can markedly improve the therapeutic efficacy, which has been confirmed by both in intro and in vivo assays. Moreover, the doped rare earths endow the platform with dual-modal up-conversion luminescent (UCL) and computer tomography (CT) imaging properties, thus achieving the target of imaging-guided synergistic therapy under by a single NIR light. To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured nano-theranostic by conjugating photosensitive Au25(SR)18 – (SR refers to thiolate) clusters, pH/temperature-responsive polymer P(NIPAm-MAA), and anti-cancer drug (doxorubicin, DOX) onto the surface of mesoporous silica coated core–shell up-conversion nanoparticles (UCNPs). It is found that the photodynamic therapy (PDT) derived from the generated reactive oxygen species and the photothermal therapy (PTT) arising from the photothermal effect can be simultaneously triggered by a single 980 nm near infrared (NIR) light. Furthermore, the thermal effect can also stimulate the pH/temperature sensitive polymer in the cancer sites, thus realizing the targeted and controllable DOX release. The combined PDT, PTT and pH/temperature responsive chemo-therapy can markedly improve the therapeutic efficacy, which has been confirmed by both in intro and in vivo assays. Moreover, the doped rare earths endow the platform with dual-modal up-conversion luminescent (UCL) and computer tomography (CT) imaging properties, thus achieving the target of imaging-guided synergistic therapy under by a single NIR light. Abstract To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured nano-theranostic by conjugating photosensitive Au 25SR 18 – (SR refers to thiolate) clusters, pH/temperature-responsive polymer P(NIPAm-MAA), and anti-cancer drug ( doxorubicin, DOX ) onto the surface of mesoporous silica coated core–shell up-conversion nanoparticles (UCNPs). It is found that the photodynamic therapy (PDT) derived from the generated reactive oxygen species and the photothermal therapy (PTT) arising from the photothermal effect can be simultaneously triggered by a single 980 nm near infrared (NIR) light. Furthermore, the thermal effect can also stimulate the pH/temperature sensitive polymer in the cancer sites, thus realizing the targeted and controllable DOX release. The combined PDT, PTT and pH/temperature responsive chemo-therapy can markedly improve the therapeutic efficacy, which has been confirmed by both in intro and in vivo assays. Moreover, the doped rare earths endow the platform with dual-modal up-conversion luminescent (UCL) and computer tomography (CT) imaging properties, thus achieving the target of imaging-guided synergistic therapy under by a single NIR light. |
Author | Yang, Guixin Hou, Zhiyao Lin, Jun Yang, Piaoping Gai, Shili He, Fei Lv, Ruichan Dai, Yunlu |
Author_xml | – sequence: 1 givenname: Ruichan surname: Lv fullname: Lv, Ruichan organization: Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China – sequence: 2 givenname: Piaoping surname: Yang fullname: Yang, Piaoping email: yangpiaoping@hrbeu.edu.cn organization: Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China – sequence: 3 givenname: Fei surname: He fullname: He, Fei organization: Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China – sequence: 4 givenname: Shili surname: Gai fullname: Gai, Shili organization: Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China – sequence: 5 givenname: Guixin surname: Yang fullname: Yang, Guixin organization: Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China – sequence: 6 givenname: Yunlu surname: Dai fullname: Dai, Yunlu organization: Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China – sequence: 7 givenname: Zhiyao surname: Hou fullname: Hou, Zhiyao organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China – sequence: 8 givenname: Jun surname: Lin fullname: Lin, Jun email: jlin@ciac.ac.cn organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26093792$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAQjVAR_YC_gCJOXLI7dhLH4YAo5aNIlTgAZ8uxJ7teEjvYTtFe-O04bCuhSoiVRrae9eZ5Zt6cZyfWWcyyFwRWBAhb71adcaOM6I0cwooCqVeQgrBH2RnhDS_qFuqT7AxIRYuWEXqanYewg4Shok-yU8qgLZuWnmW_Lm1uRrkxdlNsZqNR59MgY-_8mKcjD3uLfmNCNCqfti46vbdyNGr9B8Qt-lEOa7XF0RULktM-_2niNp-u1xHHKb3E2WPhMUzOBnOLufbzJvc4oAz4NHvcpx7w2d19kX378P7r1XVx8_njp6vLm0LVbRkL0tcVKmx52XStZACS8xYZ51xqYF1da16qSpdNT_uq7whCpcqqqTsGOrXclBfZy4Pu5N2PGUMUowkKh0FadHMQFAAq4Izw_1JJ03CgnJbVEdSKJTtYuxTw_I46dyNqMfk0db8X904kwpsDQXkXgsdeKBNlNM5GL80gCIjFfLETf5svFvMFpCAsSbx6IHH_y1HJ7w7JmGy4NehFUAatQm08qii0M8fJvH4gowZjjZLDd9xj2LnZ2yWHiEAFiC_Lii4bSupkAGPLTN_-W-DYKn4D9WIAhg |
CitedBy_id | crossref_primary_10_1039_C8NJ00439K crossref_primary_10_1002_adfm_201903419 crossref_primary_10_1039_D1RA09067D crossref_primary_10_1021_acs_chemmater_7b03461 crossref_primary_10_1039_D0NJ04461J crossref_primary_10_1016_j_nantod_2018_02_010 crossref_primary_10_1002_adfm_201604206 crossref_primary_10_1002_cbic_201900550 crossref_primary_10_1016_j_biomaterials_2016_05_027 crossref_primary_10_3389_fbioe_2021_783354 crossref_primary_10_1002_ppsc_202300084 crossref_primary_10_1016_j_biomaterials_2018_05_033 crossref_primary_10_1002_adhm_201800351 crossref_primary_10_1016_j_jphotochem_2019_112053 crossref_primary_10_1039_C6NR09177F crossref_primary_10_1039_C9NA00583H crossref_primary_10_1002_smll_201702299 crossref_primary_10_1016_j_bios_2024_116094 crossref_primary_10_1021_acsami_9b12889 crossref_primary_10_1038_s41467_018_04571_4 crossref_primary_10_1016_j_mtla_2021_101195 crossref_primary_10_1002_cptc_201900196 crossref_primary_10_1039_C7NR02511D crossref_primary_10_1039_C6TB03117J crossref_primary_10_1007_s11426_017_9076_y crossref_primary_10_1002_ejic_201700193 crossref_primary_10_1016_j_pdpdt_2018_08_003 crossref_primary_10_1021_acsbiomaterials_7b00558 crossref_primary_10_3390_biomedicines8100417 crossref_primary_10_1016_j_micromeso_2020_110049 crossref_primary_10_1016_j_dyepig_2019_107922 crossref_primary_10_1039_C7TB01648D crossref_primary_10_1002_anie_201814098 crossref_primary_10_1016_j_actbio_2023_05_049 crossref_primary_10_1016_j_giant_2022_100130 crossref_primary_10_1016_j_dyepig_2020_108776 crossref_primary_10_1039_C8NR02307G crossref_primary_10_1002_adhm_201600192 crossref_primary_10_1021_acsbiomaterials_6b00046 crossref_primary_10_3390_bioengineering4010003 crossref_primary_10_1002_asia_201801305 crossref_primary_10_1039_C9PY00575G crossref_primary_10_1002_advs_201600029 crossref_primary_10_1016_j_micromeso_2023_112562 crossref_primary_10_1039_D1CP01644J crossref_primary_10_1016_j_ccr_2017_09_006 crossref_primary_10_1039_C6RA18062K crossref_primary_10_3390_molecules21081103 crossref_primary_10_1021_acsanm_1c00779 crossref_primary_10_1039_C8NJ05766D crossref_primary_10_1016_j_pmatsci_2018_07_005 crossref_primary_10_1038_s41578_020_0230_0 crossref_primary_10_1002_adfm_201603381 crossref_primary_10_1016_j_ijpharm_2021_121173 crossref_primary_10_1021_acsmedchemlett_7b00394 crossref_primary_10_1016_j_biomaterials_2019_119327 crossref_primary_10_1016_j_cej_2021_134438 crossref_primary_10_1002_adma_202004481 crossref_primary_10_1016_j_biomaterials_2016_08_022 crossref_primary_10_1016_j_msec_2020_111099 crossref_primary_10_1021_acsabm_0c00524 crossref_primary_10_1002_cnma_201800212 crossref_primary_10_1016_j_colsurfb_2020_111005 crossref_primary_10_1039_C5TB00757G crossref_primary_10_1002_adma_201604878 crossref_primary_10_1080_17425247_2021_1921732 crossref_primary_10_1002_adfm_202105989 crossref_primary_10_1039_C9NR00041K crossref_primary_10_1016_j_nantod_2019_02_007 crossref_primary_10_1039_C7NJ00599G crossref_primary_10_1039_C7NR01836C crossref_primary_10_1089_ars_2017_7412 crossref_primary_10_1002_wnan_1573 crossref_primary_10_1016_j_ccr_2022_214427 crossref_primary_10_1039_C8DT04871A crossref_primary_10_1016_j_ccr_2022_214423 crossref_primary_10_1039_C6TB01677D crossref_primary_10_1002_adhm_201900406 crossref_primary_10_2217_nnm_2018_0179 crossref_primary_10_1016_j_biomaterials_2019_119738 crossref_primary_10_1039_D1PY01167G crossref_primary_10_1002_adhm_201701272 crossref_primary_10_1021_acsami_7b00647 crossref_primary_10_3390_ma15051764 crossref_primary_10_3390_molecules23040826 crossref_primary_10_1016_j_cej_2019_122992 crossref_primary_10_1016_j_progpolymsci_2023_101765 crossref_primary_10_1039_C8MH00966J crossref_primary_10_1039_D2BM00803C crossref_primary_10_1021_acsbiomaterials_6b00462 crossref_primary_10_1039_C7PY01153A crossref_primary_10_1002_adfm_201600722 crossref_primary_10_1016_j_matchemphys_2019_121994 crossref_primary_10_1016_j_molstruc_2019_127647 crossref_primary_10_1039_C8TB00733K crossref_primary_10_1016_j_biomaterials_2017_09_007 crossref_primary_10_1021_acsami_6b11803 crossref_primary_10_1021_acs_chemmater_7b04751 crossref_primary_10_1002_adfm_201706310 crossref_primary_10_3389_fonc_2017_00003 crossref_primary_10_1039_C5PY01629K crossref_primary_10_1021_acsami_6b01320 crossref_primary_10_1016_j_jlumin_2016_08_059 crossref_primary_10_1016_j_ccr_2018_03_007 crossref_primary_10_2147_IJN_S454762 crossref_primary_10_1002_ange_201814098 crossref_primary_10_1016_j_cej_2018_02_109 crossref_primary_10_1039_C5NR06840A crossref_primary_10_1039_C8RA08538B crossref_primary_10_1016_j_actbio_2016_02_005 crossref_primary_10_1021_acs_jpcc_8b02373 crossref_primary_10_1002_smll_201600635 crossref_primary_10_1021_acs_chemmater_0c04956 crossref_primary_10_1039_D3NR03012A crossref_primary_10_1016_j_jconrel_2018_03_014 crossref_primary_10_1021_acsbiomaterials_9b00813 crossref_primary_10_1039_C6TB00709K crossref_primary_10_1016_j_cej_2020_125294 crossref_primary_10_1016_j_biomaterials_2018_10_008 crossref_primary_10_1021_acs_chemrev_7b00258 crossref_primary_10_1016_j_cej_2020_124232 crossref_primary_10_1016_j_jinorgbio_2020_111216 crossref_primary_10_1021_acsbiomaterials_7b00231 crossref_primary_10_1002_advs_202000863 crossref_primary_10_1039_C5RA15016G crossref_primary_10_1007_s00706_020_02644_z crossref_primary_10_1016_j_biomaterials_2017_09_011 crossref_primary_10_1021_acs_chemmater_8b00934 crossref_primary_10_3390_nano12121986 crossref_primary_10_1021_acs_bioconjchem_7b00515 crossref_primary_10_1016_j_biomaterials_2016_05_056 crossref_primary_10_1016_j_ccr_2022_214486 crossref_primary_10_1016_j_jconrel_2020_08_014 crossref_primary_10_1021_acsami_7b15952 crossref_primary_10_1039_C6DT01714B crossref_primary_10_1002_smll_201603459 crossref_primary_10_1002_elsc_201800038 crossref_primary_10_1049_bsbt_2020_0020 crossref_primary_10_1515_nanoph_2019_0506 crossref_primary_10_1016_j_jcis_2017_09_011 crossref_primary_10_3390_molecules24112089 crossref_primary_10_1016_j_jconrel_2021_05_011 crossref_primary_10_1002_adma_201603864 crossref_primary_10_1007_s12274_017_1906_7 crossref_primary_10_1021_acsbiomaterials_8b00934 crossref_primary_10_1039_C6TC00336B crossref_primary_10_1039_C7BM00414A crossref_primary_10_1039_C9TB00317G crossref_primary_10_1016_j_colsurfb_2019_05_005 crossref_primary_10_1039_C6CP05308D crossref_primary_10_1016_j_nanoso_2024_101370 crossref_primary_10_1080_10717544_2017_1417512 crossref_primary_10_1021_acs_jpcb_7b09442 crossref_primary_10_1002_advs_202003033 crossref_primary_10_1016_j_nantod_2023_101964 crossref_primary_10_1039_C6NR09030C crossref_primary_10_3390_ijms21176280 crossref_primary_10_1039_C7SC05414A crossref_primary_10_1002_adma_201505678 crossref_primary_10_1007_s40005_016_0272_x crossref_primary_10_1007_s40005_017_0356_2 crossref_primary_10_1016_j_cej_2018_09_076 crossref_primary_10_1007_s43630_022_00175_6 crossref_primary_10_1039_C8BM01243A crossref_primary_10_1080_17425247_2016_1211637 crossref_primary_10_1021_acsami_1c14135 crossref_primary_10_1021_acsami_5b08914 crossref_primary_10_1039_D1BM00283J crossref_primary_10_1021_acsnano_8b09276 crossref_primary_10_1039_C7NR05499H crossref_primary_10_1007_s11426_018_9397_5 crossref_primary_10_1039_D0BM00706D crossref_primary_10_3390_polym14020287 crossref_primary_10_1039_C9NR06450H crossref_primary_10_1002_mog2_67 crossref_primary_10_1021_acs_inorgchem_4c05059 crossref_primary_10_1021_acs_molpharmaceut_7b01142 crossref_primary_10_1039_C9RA06835J crossref_primary_10_1002_adtp_201900076 crossref_primary_10_1016_j_mtnano_2022_100258 |
Cites_doi | 10.1016/j.biomaterials.2012.04.002 10.1016/j.biomaterials.2013.03.058 10.1016/0005-2736(94)00235-H 10.1002/anie.201400900 10.1021/nn201560b 10.1002/adma.201305319 10.1021/ma035658m 10.1021/nn402601d 10.1021/ja906971y 10.1002/adma.200803228 10.1021/ja200746p 10.1021/cm500260z 10.1002/smll.200901789 10.1021/nn405082y 10.1021/cm503647k 10.1021/nn300303q 10.1016/j.biomaterials.2012.11.004 10.1021/ja4075002 10.1016/j.biomaterials.2011.05.007 10.1016/j.biomaterials.2010.09.069 10.1039/C3TB21034K 10.1039/c3cp52837e 10.1021/cm3033498 10.1002/adfm.201101960 10.1016/j.biomaterials.2014.03.043 10.1002/smll.201200962 10.1016/j.biomaterials.2006.11.013 10.1002/smll.201201213 10.1016/j.biomaterials.2011.11.033 10.1002/adma.201004697 10.1039/C1CS15187H 10.1002/adma.201104741 10.1021/ja1022267 10.1039/C4TB00919C 10.1016/j.solidstatesciences.2014.05.003 10.1021/ar400218t 10.1039/B709883A 10.1016/j.biomaterials.2012.03.020 10.1039/C2NR32482B 10.1021/ja3111048 10.1021/cr4001594 10.1039/c0an00144a 10.1016/j.biomaterials.2013.03.029 10.1021/ja2102604 10.1002/adfm.201202992 10.1016/j.addr.2006.09.020 10.1016/j.biomaterials.2011.12.014 10.1021/am501106x 10.1016/j.biomaterials.2013.11.082 10.1002/adfm.201300136 10.1039/c3nr03515h 10.1002/anie.201208196 10.1002/anie.201308834 10.1016/j.biomaterials.2012.09.019 10.2174/1389201053642376 10.1039/c3cc43208d 10.1021/ja402680c 10.1002/anie.201306811 10.1021/ar300213z 10.1016/j.addr.2008.08.003 10.1002/anie.201005159 10.1021/ja5085699 10.1021/cm803151y 10.1021/ja504270d 10.1016/j.biomaterials.2011.10.039 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2015.05.016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Engineering Research Database MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 127 |
ExternalDocumentID | 26093792 10_1016_j_biomaterials_2015_05_016 S0142961215004664 1_s2_0_S0142961215004664 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c593t-1f54ece9837b9a600a889e6888ad06b55d83c4d37f2f4fb1e04c3475b60d40473 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 |
IngestDate | Fri Jul 11 03:37:08 EDT 2025 Fri Jul 11 00:10:49 EDT 2025 Fri Jul 11 07:02:19 EDT 2025 Thu Apr 03 07:00:46 EDT 2025 Thu Apr 24 23:07:36 EDT 2025 Tue Jul 01 03:47:49 EDT 2025 Fri Feb 23 02:31:39 EST 2024 Sun Feb 23 10:19:01 EST 2025 Tue Aug 26 17:20:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photodynamic pH/temperature-responsive Photothermal Up-conversion |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c593t-1f54ece9837b9a600a889e6888ad06b55d83c4d37f2f4fb1e04c3475b60d40473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26093792 |
PQID | 1746878697 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2000408618 proquest_miscellaneous_1778028234 proquest_miscellaneous_1746878697 pubmed_primary_26093792 crossref_citationtrail_10_1016_j_biomaterials_2015_05_016 crossref_primary_10_1016_j_biomaterials_2015_05_016 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2015_05_016 elsevier_clinicalkeyesjournals_1_s2_0_S0142961215004664 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2015_05_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Oh, Lim, Kim, Suh, Nam (bib26) 2014; 136 Zhou, Liu, Li (bib10) 2012; 41 Abel, Boyer, van Veggel (bib48) 2009; 131 Li, Peng, Li (bib52) 2009; 21 Garcia, Yang, Shen, Yao, Li, Wang (bib7) 2012; 8 Ju, Tu, Liu, Li, Zhu, Chen (bib27) 2012; 134 Lim, Lee, Zhang, Chu (bib31) 2012; 33 Liu, Fu, Xu, Zou, Yang, Wang (bib32) 2014; 2 Naccache, Vetrone, Mahalingam, Cuccia, Capobianco (bib30) 2009; 21 Dai, Pa, Cheng, Kang, Zhang, Hou (bib44) 2012; 6 Schmaljohann (bib62) 2006; 58 Wang, Banerjee, Liu, Chen, Liu (bib12) 2010; 135 Zhang, Wu, Shen, Liu, Fan, Fan (bib23) 2012; 33 Wang, Cheng, Liu, Wang, Ma, Deng (bib45) 2013; 23 Tian, Wang, Zhang, Feng, Liu (bib4) 2011; 5 Chatterjee, Fong, Zhang (bib11) 2008; 60 Kawasaki, Kumar, Li, Zeng, Kauffman, Yoshimoto (bib24) 2014; 26 Dai, Zhang, Cheng, Pa, Li, Kang (bib56) 2012; 33 Kim, Piao, Hyeon (bib2) 2009; 38 Wen, Zhu, Chen, Hung, Wang, Zhu (bib51) 2013; 52 Wang, Tao, Cheng, Liu (bib16) 2011; 32 Wang, Liu, Sun, Xiao, Zhou, Yan (bib49) 2013; 7 Zeng, Wang, Lu, Yi, Rao, Liu (bib14) 2014; 35 Lv, Yang, He, Gai, Yang, Lin (bib37) 2014; 27 Lee, Low (bib64) 1995; 1233 Gorris, Ali, Saleh, Wolfbeis (bib28) 2011; 23 Min, Li, Liu, Yeow, Xing (bib9) 2014; 53 Sun, Yang, Yuan, Tian, Wang, Guo (bib25) 2011; 133 Su, Han, Xie, Zhu, Chen, Chen (bib47) 2012; 134 Wang, Zhu, Ke, Gu, Yin, Zhang (bib19) 2013; 49 Liu, He, Liu, You, Zhang, Wang (bib34) 2013; 34 Yang, Song, Gao, Wang (bib55) 2014; 34 Gorris, Wolfbeis (bib8) 2013; 52 Xing, Bu, Zhang, Zheng, Li, Chen (bib57) 2012; 33 Fang, Tang, Liu, Fang, Gong, Zheng (bib18) 2012; 8 Vivero-Escoto, Slowing, Trewyn, Lin (bib35) 2010; 6 Jiang, Overbury, Dai (bib22) 2013; 135 Chan, Tsang, Li, Lan, Chadbourne, Chan (bib54) 2014; 2 Negishi, Kurashige, Niihori, Nobusada (bib20) 2013; 15 Yang, Kang, Pa, Dai, Hou, Cheng (bib53) 2013; 34 Kawasaki, Kumar, Li, Zeng, Kauffman, Yoshimoto (bib61) 2014; 26 Thomas, Ferris, Lee, Choi, Cho, Kim (bib40) 2010; 132 Wang, Cheng, Liu (bib5) 2011; 32 Liu, Wiradharma, Gao, Tong, Yang (bib66) 2007; 28 Lee, Seow, Zhang, Lim (bib63) 2013; 34 Jin, Zhou, Gu, Tian, Yan, Ren (bib60) 2013; 5 Hoare, Pelton (bib43) 2004; 37 Kumar, Kumar, Rhim, Kim, Nam (bib17) 2014; 136 Sun, Wang, Yan (bib3) 2014; 47 Liu, Bu, Bu, Zhang, Pan, Fan (bib33) 2014; 53 Tian, Gu, Zhou, Yin, Liu, Yan (bib38) 2012; 24 Sun, Zhu, Peng, Li (bib15) 2013; 7 Jiang, Yang, Ma, Wang, Chen, Dong (bib42) 2014; 6 Zeng, Tsang, Chan, Wong, Hao (bib58) 2012; 33 Zhao, Lu, Yin, McRae, Piper, Dawes (bib29) 2013; 5 Zhang, Chen, Li, Wang, Zheng, Xu (bib39) 2014; 35 Xie, Gao, Deng, Sun, Xu, Liu (bib50) 2013; 135 Li, Jin (bib21) 2013; 46 Li, Shen, Yang, Yao, Che, Zhang (bib46) 2013; 25 Gai, Li, Yang, Lin (bib1) 2013; 114 Xing, Bu, Ren, Zheng, Li, Zhang (bib59) 2012; 33 Zhang, Yang, Dai, Pa, Li, Cheng (bib41) 2013; 23 Fang, Yang, Gong, Zheng (bib36) 2012; 22 Li, Shi (bib6) 2014; 26 Haase, Schaefer (bib13) 2011; 50 Reddy, Allagadda, Leamon (bib65) 2005; 6 Zhou (10.1016/j.biomaterials.2015.05.016_bib10) 2012; 41 Zhao (10.1016/j.biomaterials.2015.05.016_bib29) 2013; 5 Thomas (10.1016/j.biomaterials.2015.05.016_bib40) 2010; 132 Wang (10.1016/j.biomaterials.2015.05.016_bib5) 2011; 32 Chan (10.1016/j.biomaterials.2015.05.016_bib54) 2014; 2 Lv (10.1016/j.biomaterials.2015.05.016_bib37) 2014; 27 Kawasaki (10.1016/j.biomaterials.2015.05.016_bib24) 2014; 26 Kawasaki (10.1016/j.biomaterials.2015.05.016_bib61) 2014; 26 Oh (10.1016/j.biomaterials.2015.05.016_bib26) 2014; 136 Gorris (10.1016/j.biomaterials.2015.05.016_bib28) 2011; 23 Jiang (10.1016/j.biomaterials.2015.05.016_bib22) 2013; 135 Zhang (10.1016/j.biomaterials.2015.05.016_bib39) 2014; 35 Xie (10.1016/j.biomaterials.2015.05.016_bib50) 2013; 135 Tian (10.1016/j.biomaterials.2015.05.016_bib4) 2011; 5 Kumar (10.1016/j.biomaterials.2015.05.016_bib17) 2014; 136 Wang (10.1016/j.biomaterials.2015.05.016_bib12) 2010; 135 Zeng (10.1016/j.biomaterials.2015.05.016_bib58) 2012; 33 Liu (10.1016/j.biomaterials.2015.05.016_bib34) 2013; 34 Xing (10.1016/j.biomaterials.2015.05.016_bib57) 2012; 33 Lee (10.1016/j.biomaterials.2015.05.016_bib64) 1995; 1233 Negishi (10.1016/j.biomaterials.2015.05.016_bib20) 2013; 15 Lim (10.1016/j.biomaterials.2015.05.016_bib31) 2012; 33 Yang (10.1016/j.biomaterials.2015.05.016_bib53) 2013; 34 Fang (10.1016/j.biomaterials.2015.05.016_bib36) 2012; 22 Garcia (10.1016/j.biomaterials.2015.05.016_bib7) 2012; 8 Wang (10.1016/j.biomaterials.2015.05.016_bib19) 2013; 49 Jin (10.1016/j.biomaterials.2015.05.016_bib60) 2013; 5 Dai (10.1016/j.biomaterials.2015.05.016_bib56) 2012; 33 Li (10.1016/j.biomaterials.2015.05.016_bib6) 2014; 26 Sun (10.1016/j.biomaterials.2015.05.016_bib3) 2014; 47 Li (10.1016/j.biomaterials.2015.05.016_bib46) 2013; 25 Haase (10.1016/j.biomaterials.2015.05.016_bib13) 2011; 50 Fang (10.1016/j.biomaterials.2015.05.016_bib18) 2012; 8 Sun (10.1016/j.biomaterials.2015.05.016_bib15) 2013; 7 Liu (10.1016/j.biomaterials.2015.05.016_bib33) 2014; 53 Wang (10.1016/j.biomaterials.2015.05.016_bib49) 2013; 7 Hoare (10.1016/j.biomaterials.2015.05.016_bib43) 2004; 37 Ju (10.1016/j.biomaterials.2015.05.016_bib27) 2012; 134 Wang (10.1016/j.biomaterials.2015.05.016_bib16) 2011; 32 Dai (10.1016/j.biomaterials.2015.05.016_bib44) 2012; 6 Gorris (10.1016/j.biomaterials.2015.05.016_bib8) 2013; 52 Zhang (10.1016/j.biomaterials.2015.05.016_bib41) 2013; 23 Li (10.1016/j.biomaterials.2015.05.016_bib52) 2009; 21 Schmaljohann (10.1016/j.biomaterials.2015.05.016_bib62) 2006; 58 Gai (10.1016/j.biomaterials.2015.05.016_bib1) 2013; 114 Wang (10.1016/j.biomaterials.2015.05.016_bib45) 2013; 23 Sun (10.1016/j.biomaterials.2015.05.016_bib25) 2011; 133 Jiang (10.1016/j.biomaterials.2015.05.016_bib42) 2014; 6 Lee (10.1016/j.biomaterials.2015.05.016_bib63) 2013; 34 Zhang (10.1016/j.biomaterials.2015.05.016_bib23) 2012; 33 Su (10.1016/j.biomaterials.2015.05.016_bib47) 2012; 134 Tian (10.1016/j.biomaterials.2015.05.016_bib38) 2012; 24 Xing (10.1016/j.biomaterials.2015.05.016_bib59) 2012; 33 Naccache (10.1016/j.biomaterials.2015.05.016_bib30) 2009; 21 Yang (10.1016/j.biomaterials.2015.05.016_bib55) 2014; 34 Wen (10.1016/j.biomaterials.2015.05.016_bib51) 2013; 52 Reddy (10.1016/j.biomaterials.2015.05.016_bib65) 2005; 6 Chatterjee (10.1016/j.biomaterials.2015.05.016_bib11) 2008; 60 Zeng (10.1016/j.biomaterials.2015.05.016_bib14) 2014; 35 Kim (10.1016/j.biomaterials.2015.05.016_bib2) 2009; 38 Liu (10.1016/j.biomaterials.2015.05.016_bib66) 2007; 28 Abel (10.1016/j.biomaterials.2015.05.016_bib48) 2009; 131 Li (10.1016/j.biomaterials.2015.05.016_bib21) 2013; 46 Min (10.1016/j.biomaterials.2015.05.016_bib9) 2014; 53 Vivero-Escoto (10.1016/j.biomaterials.2015.05.016_bib35) 2010; 6 Liu (10.1016/j.biomaterials.2015.05.016_bib32) 2014; 2 |
References_xml | – volume: 133 start-page: 8617 year: 2011 end-page: 8624 ident: bib25 article-title: Controlling assembly of paired gold clusters within apoferritin nanoreactor for publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 1749 year: 2013 end-page: 1758 ident: bib21 article-title: Atomically precise gold nanoclusters as new model catalysts publication-title: Acc. Chem. Res. – volume: 58 start-page: 1655 year: 2006 end-page: 1670 ident: bib62 article-title: Thermo- and pH-responsive polymers in drug delivery publication-title: Adv. Drug Deliv. Rev. – volume: 52 start-page: 13419 year: 2013 end-page: 13423 ident: bib51 article-title: Upconverting near-infrared light through energy management in core-shell-shell nanoparticles publication-title: Angew. Chem. Int. Ed. – volume: 136 start-page: 14052 year: 2014 end-page: 14059 ident: bib26 article-title: Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 6145 year: 2011 end-page: 6154 ident: bib16 article-title: Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles publication-title: Biomaterials – volume: 8 start-page: 3800 year: 2012 end-page: 3805 ident: bib7 article-title: Nir-triggered release of caged nitric oxide using upconverting nanostructured materials publication-title: Small – volume: 34 start-page: 5218 year: 2013 end-page: 5225 ident: bib34 article-title: Conjugation of NaGdF4 upconverting nanoparticles on silica nanospheres as contrast agents for multi-modality imaging publication-title: Biomaterials – volume: 21 start-page: 717 year: 2009 end-page: 723 ident: bib30 article-title: Controlled synthesis and water dispersibility of hexagonal phase NaGdF publication-title: Chem. Mater. – volume: 33 start-page: 1912 year: 2012 end-page: 1920 ident: bib31 article-title: Photodynamic inactivation of viruses using upconversion nanoparticles publication-title: Biomaterials – volume: 35 start-page: 2934 year: 2014 end-page: 2941 ident: bib14 article-title: Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF publication-title: Biomaterials – volume: 41 start-page: 1323 year: 2012 end-page: 1349 ident: bib10 article-title: Upconversion nanophosphors for small-animal imaging publication-title: Chem. Soc. Rev. – volume: 53 start-page: 1012 year: 2014 end-page: 1016 ident: bib9 article-title: Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 3584 year: 2013 end-page: 3600 ident: bib8 article-title: Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 4650 year: 2014 end-page: 4657 ident: bib42 article-title: Interfacing a tetraphenylethene derivative and a smart hydrogel for temperature-dependent photoluminescence with sensitive thermoresponse publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 3077 year: 2013 end-page: 3086 ident: bib45 article-title: Imaging-guided ph-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light publication-title: Adv. Funct. Mater. – volume: 34 start-page: 4860 year: 2013 end-page: 4871 ident: bib63 article-title: Targeting CCL21-folic acid-upconversion nanoparticles conjugates to folate receptor-alpha expressing tumor cells in an endothelial-tumor cell bilayer model publication-title: Biomaterials – volume: 50 start-page: 5808 year: 2011 end-page: 5829 ident: bib13 article-title: Upconverting nanoparticles publication-title: Angew. Chem. Int. Ed. – volume: 132 start-page: 10623 year: 2010 end-page: 10625 ident: bib40 article-title: Noninvasive remote-controlled release of drug molecules publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 4551 year: 2014 end-page: 4555 ident: bib33 article-title: Real-time publication-title: Angew. Chem. Int. Ed. – volume: 23 start-page: 4067 year: 2013 end-page: 4078 ident: bib41 article-title: Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/ph dual-responsive drug controlled release publication-title: Adv. Funct. Mater. – volume: 131 start-page: 14644 year: 2009 end-page: 14645 ident: bib48 article-title: Hard proof of the NaYF publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 372 year: 2009 end-page: 390 ident: bib2 article-title: Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy publication-title: Chem. Soc. Rev. – volume: 33 start-page: 4628 year: 2012 end-page: 4638 ident: bib23 article-title: renal clearance, biodistribution, toxicity of gold nanoclusters publication-title: Biomaterials – volume: 25 start-page: 106 year: 2013 end-page: 112 ident: bib46 article-title: Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties publication-title: Chem. Mater. – volume: 49 start-page: 7168 year: 2013 end-page: 7170 ident: bib19 article-title: Porous Pt–M (M=Cu, Zn, Ni) nanoparticles as robust nanocatalysts publication-title: Chem. Commun. – volume: 135 start-page: 1839 year: 2010 end-page: 1854 ident: bib12 article-title: Upconversion nanoparticles in biological labeling, imaging, and therapy publication-title: Analyst – volume: 136 start-page: 16317 year: 2014 end-page: 16325 ident: bib17 article-title: Oxidative nanopeeling chemistry-based synthesis and photodynamic and photothermal therapeutic applications of plasmonic core-petal nanostructures publication-title: J. Am. Chem. Soc. – volume: 1233 start-page: 134 year: 1995 end-page: 144 ident: bib64 article-title: Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin publication-title: Biochim. Biophys. Acta – volume: 134 start-page: 1323 year: 2012 end-page: 1330 ident: bib27 article-title: Amine-functionalized lanthanide-doped KGdF publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 1110 year: 2011 end-page: 1120 ident: bib5 article-title: Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy publication-title: Biomaterials – volume: 7 start-page: 11290 year: 2013 end-page: 11300 ident: bib15 article-title: Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging publication-title: ACS Nano – volume: 8 start-page: 3816 year: 2012 end-page: 3822 ident: bib18 article-title: Pd nanosheet-covered hollow mesoporous silica nanoparticles as a platform for the chemo-photothermal treatment of cancer cells publication-title: Small – volume: 33 start-page: 2583 year: 2012 end-page: 2592 ident: bib56 article-title: pH-responsive drug delivery system based on luminescent CaF publication-title: Biomaterials – volume: 26 start-page: 3176 year: 2014 end-page: 3205 ident: bib6 article-title: Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications publication-title: Adv. Mater. – volume: 34 start-page: 17 year: 2014 end-page: 23 ident: bib55 article-title: EuF publication-title: Solid State Sci. – volume: 47 start-page: 1001 year: 2014 end-page: 1009 ident: bib3 article-title: Paradigms and challenges for bioapplication of rare Earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra publication-title: Acc. Chem. Res. – volume: 5 start-page: 11910 year: 2013 end-page: 11918 ident: bib60 article-title: A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells publication-title: Nanoscale – volume: 22 start-page: 842 year: 2012 end-page: 848 ident: bib36 article-title: Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated pd@ag nanoparticles publication-title: Adv. Funct. Mater. – volume: 33 start-page: 9232 year: 2012 end-page: 9238 ident: bib58 article-title: PEG modified BaGdF publication-title: Biomaterials – volume: 5 start-page: 944 year: 2013 end-page: 952 ident: bib29 article-title: Upconversion luminescence with tunable lifetime in NaYF publication-title: Nanoscale – volume: 34 start-page: 1601 year: 2013 end-page: 1612 ident: bib53 article-title: Hollow structured upconversion luminescent NaYF publication-title: Biomaterials – volume: 5 start-page: 7000 year: 2011 end-page: 7009 ident: bib4 article-title: Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide publication-title: ACS Nano – volume: 24 start-page: 1226 year: 2012 end-page: 1231 ident: bib38 article-title: Mn publication-title: Adv. Mater. – volume: 27 start-page: 483 year: 2014 end-page: 496 ident: bib37 article-title: Hollow structured Y publication-title: Chem. Mater. – volume: 35 start-page: 5875 year: 2014 end-page: 5885 ident: bib39 article-title: A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery publication-title: Biomaterials – volume: 6 start-page: 3327 year: 2012 end-page: 3338 ident: bib44 article-title: Up-Conversion cell imaging and ph-induced thermally controlled drug release from NaYF4:Yb publication-title: ACS Nano – volume: 37 start-page: 2544 year: 2004 end-page: 2550 ident: bib43 article-title: Highly pH and temperature responsive microgels functionalized with vinylacetic acid publication-title: Macromolecules – volume: 33 start-page: 1079 year: 2012 end-page: 1089 ident: bib57 article-title: Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging publication-title: Biomaterials – volume: 135 start-page: 8786 year: 2013 end-page: 8789 ident: bib22 article-title: Structure of Au publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 131 year: 2005 end-page: 150 ident: bib65 article-title: Targeting therapeutic and imaging agents to folate receptor positive tumors publication-title: Curr. Pharm. Biotechnol. – volume: 28 start-page: 1423 year: 2007 end-page: 1433 ident: bib66 article-title: Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs publication-title: Biomaterials – volume: 135 start-page: 12608 year: 2013 end-page: 12611 ident: bib50 article-title: Mechanistic investigation of photon upconversion in Nd publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 1945 year: 2009 end-page: 1948 ident: bib52 article-title: Dual-Mode Luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals publication-title: Adv. Mater. – volume: 2 start-page: 5358 year: 2014 end-page: 5367 ident: bib32 article-title: Folic acid-conjugated hollow mesoporous silica/CuS nanocomposites as a difunctional nanoplatform for targeted chemo-photothermal therapy of cancer cells publication-title: J. Mater. Chem. B – volume: 6 start-page: 1952 year: 2010 end-page: 1967 ident: bib35 article-title: Mesoporous silica nanoparticles for intracellular controlled drug delivery publication-title: Small – volume: 26 start-page: 2777 year: 2014 end-page: 2788 ident: bib61 article-title: Generation of singlet oxygen by photoexcited Au publication-title: Chem. Mater. – volume: 23 start-page: 1652 year: 2011 end-page: 1655 ident: bib28 article-title: Tuning the dual emission of photon-upconverting nanoparticles for ratiometric multiplexed encoding publication-title: Adv. Mater. – volume: 26 start-page: 2777 year: 2014 end-page: 2788 ident: bib24 article-title: Generation of singlet oxygen by photoexcited Au publication-title: Chem. Mater. – volume: 134 start-page: 20849 year: 2012 end-page: 20857 ident: bib47 article-title: The Effect of surface coating on energy migration-mediated upconversion publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 2343 year: 2013 end-page: 2389 ident: bib1 article-title: Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications publication-title: Chem. Rev. – volume: 60 start-page: 1627 year: 2008 end-page: 1637 ident: bib11 article-title: Nanoparticles in photodynamic therapy: an emerging paradigm publication-title: Adv. Drug Deliv. Rev. – volume: 33 start-page: 5384 year: 2012 end-page: 5393 ident: bib59 article-title: A NaYbF publication-title: Biomaterials – volume: 2 start-page: 84 year: 2014 end-page: 91 ident: bib54 article-title: Bifunctional up-converting lanthanide nanoparticles for selective publication-title: J. Mater. Chem. B – volume: 7 start-page: 7200 year: 2013 end-page: 7206 ident: bib49 article-title: Nd publication-title: ACS Nano – volume: 15 start-page: 18736 year: 2013 end-page: 18751 ident: bib20 article-title: Toward the creation of stable, functionalized metal clusters publication-title: Phys. Chem. Chem. Phys. – volume: 33 start-page: 5384 year: 2012 ident: 10.1016/j.biomaterials.2015.05.016_bib59 article-title: A NaYbF4:Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.04.002 – volume: 34 start-page: 5218 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib34 article-title: Conjugation of NaGdF4 upconverting nanoparticles on silica nanospheres as contrast agents for multi-modality imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.03.058 – volume: 1233 start-page: 134 year: 1995 ident: 10.1016/j.biomaterials.2015.05.016_bib64 article-title: Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(94)00235-H – volume: 53 start-page: 4551 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib33 article-title: Real-time In Vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201400900 – volume: 5 start-page: 7000 year: 2011 ident: 10.1016/j.biomaterials.2015.05.016_bib4 article-title: Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide publication-title: ACS Nano doi: 10.1021/nn201560b – volume: 26 start-page: 3176 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib6 article-title: Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications publication-title: Adv. Mater. doi: 10.1002/adma.201305319 – volume: 37 start-page: 2544 year: 2004 ident: 10.1016/j.biomaterials.2015.05.016_bib43 article-title: Highly pH and temperature responsive microgels functionalized with vinylacetic acid publication-title: Macromolecules doi: 10.1021/ma035658m – volume: 7 start-page: 7200 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib49 article-title: Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect publication-title: ACS Nano doi: 10.1021/nn402601d – volume: 131 start-page: 14644 year: 2009 ident: 10.1016/j.biomaterials.2015.05.016_bib48 article-title: Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906971y – volume: 21 start-page: 1945 year: 2009 ident: 10.1016/j.biomaterials.2015.05.016_bib52 article-title: Dual-Mode Luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals publication-title: Adv. Mater. doi: 10.1002/adma.200803228 – volume: 133 start-page: 8617 year: 2011 ident: 10.1016/j.biomaterials.2015.05.016_bib25 article-title: Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200746p – volume: 26 start-page: 2777 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib24 article-title: Generation of singlet oxygen by photoexcited Au25(SR)18 clusters publication-title: Chem. Mater. doi: 10.1021/cm500260z – volume: 6 start-page: 1952 year: 2010 ident: 10.1016/j.biomaterials.2015.05.016_bib35 article-title: Mesoporous silica nanoparticles for intracellular controlled drug delivery publication-title: Small doi: 10.1002/smll.200901789 – volume: 7 start-page: 11290 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib15 article-title: Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging publication-title: ACS Nano doi: 10.1021/nn405082y – volume: 27 start-page: 483 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib37 article-title: Hollow structured Y2O3:Yb/Er–CuxS nanospheres with controllable size for simultaneous chemo/photothermal therapy and bioimaging publication-title: Chem. Mater. doi: 10.1021/cm503647k – volume: 6 start-page: 3327 year: 2012 ident: 10.1016/j.biomaterials.2015.05.016_bib44 article-title: Up-Conversion cell imaging and ph-induced thermally controlled drug release from NaYF4:Yb3+/Er3+@hydrogel core-shell hybrid microspheres publication-title: ACS Nano doi: 10.1021/nn300303q – volume: 34 start-page: 1601 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib53 article-title: Hollow structured upconversion luminescent NaYF4:Yb3+,Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.11.004 – volume: 135 start-page: 12608 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib50 article-title: Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4075002 – volume: 32 start-page: 6145 year: 2011 ident: 10.1016/j.biomaterials.2015.05.016_bib16 article-title: Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.05.007 – volume: 32 start-page: 1110 year: 2011 ident: 10.1016/j.biomaterials.2015.05.016_bib5 article-title: Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.09.069 – volume: 2 start-page: 84 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib54 article-title: Bifunctional up-converting lanthanide nanoparticles for selective in vitro imaging and inhibition of cyclin D as anti-cancer agents publication-title: J. Mater. Chem. B doi: 10.1039/C3TB21034K – volume: 15 start-page: 18736 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib20 article-title: Toward the creation of stable, functionalized metal clusters publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp52837e – volume: 25 start-page: 106 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib46 article-title: Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties publication-title: Chem. Mater. doi: 10.1021/cm3033498 – volume: 22 start-page: 842 year: 2012 ident: 10.1016/j.biomaterials.2015.05.016_bib36 article-title: Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated pd@ag nanoparticles publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101960 – volume: 35 start-page: 5875 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib39 article-title: A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.03.043 – volume: 8 start-page: 3816 year: 2012 ident: 10.1016/j.biomaterials.2015.05.016_bib18 article-title: Pd nanosheet-covered hollow mesoporous silica nanoparticles as a platform for the chemo-photothermal treatment of cancer cells publication-title: Small doi: 10.1002/smll.201200962 – volume: 28 start-page: 1423 year: 2007 ident: 10.1016/j.biomaterials.2015.05.016_bib66 article-title: Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.11.013 – volume: 8 start-page: 3800 year: 2012 ident: 10.1016/j.biomaterials.2015.05.016_bib7 article-title: Nir-triggered release of caged nitric oxide using upconverting nanostructured materials publication-title: Small doi: 10.1002/smll.201201213 – volume: 33 start-page: 1912 year: 2012 ident: 10.1016/j.biomaterials.2015.05.016_bib31 article-title: Photodynamic inactivation of viruses using upconversion nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.11.033 – volume: 23 start-page: 1652 year: 2011 ident: 10.1016/j.biomaterials.2015.05.016_bib28 article-title: Tuning the dual emission of photon-upconverting nanoparticles for ratiometric multiplexed encoding publication-title: Adv. Mater. doi: 10.1002/adma.201004697 – volume: 41 start-page: 1323 year: 2012 ident: 10.1016/j.biomaterials.2015.05.016_bib10 article-title: Upconversion nanophosphors for small-animal imaging publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15187H – volume: 24 start-page: 1226 year: 2012 ident: 10.1016/j.biomaterials.2015.05.016_bib38 article-title: Mn2+ Dopant-controlled synthesis of NaYF4:Yb,Er upconversion nanoparticles for in vivo imaging and drug delivery publication-title: Adv. Mater. doi: 10.1002/adma.201104741 – volume: 132 start-page: 10623 year: 2010 ident: 10.1016/j.biomaterials.2015.05.016_bib40 article-title: Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1022267 – volume: 2 start-page: 5358 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib32 article-title: Folic acid-conjugated hollow mesoporous silica/CuS nanocomposites as a difunctional nanoplatform for targeted chemo-photothermal therapy of cancer cells publication-title: J. Mater. Chem. B doi: 10.1039/C4TB00919C – volume: 34 start-page: 17 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib55 article-title: EuF3 nanotubes fabricated via Eu(NO3)3/cysteamine as precursor and their derived thermosensitive nanogels publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2014.05.003 – volume: 47 start-page: 1001 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib3 article-title: Paradigms and challenges for bioapplication of rare Earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra publication-title: Acc. Chem. Res. doi: 10.1021/ar400218t – volume: 38 start-page: 372 year: 2009 ident: 10.1016/j.biomaterials.2015.05.016_bib2 article-title: Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy publication-title: Chem. Soc. Rev. doi: 10.1039/B709883A – volume: 33 start-page: 4628 year: 2012 ident: 10.1016/j.biomaterials.2015.05.016_bib23 article-title: In vivo renal clearance, biodistribution, toxicity of gold nanoclusters publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.03.020 – volume: 5 start-page: 944 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib29 article-title: Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size publication-title: Nanoscale doi: 10.1039/C2NR32482B – volume: 134 start-page: 20849 year: 2012 ident: 10.1016/j.biomaterials.2015.05.016_bib47 article-title: The Effect of surface coating on energy migration-mediated upconversion publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3111048 – volume: 114 start-page: 2343 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib1 article-title: Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications publication-title: Chem. Rev. doi: 10.1021/cr4001594 – volume: 135 start-page: 1839 year: 2010 ident: 10.1016/j.biomaterials.2015.05.016_bib12 article-title: Upconversion nanoparticles in biological labeling, imaging, and therapy publication-title: Analyst doi: 10.1039/c0an00144a – volume: 26 start-page: 2777 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib61 article-title: Generation of singlet oxygen by photoexcited Au25(SR)18 clusters publication-title: Chem. Mater. doi: 10.1021/cm500260z – volume: 34 start-page: 4860 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib63 article-title: Targeting CCL21-folic acid-upconversion nanoparticles conjugates to folate receptor-alpha expressing tumor cells in an endothelial-tumor cell bilayer model publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.03.029 – volume: 134 start-page: 1323 year: 2012 ident: 10.1016/j.biomaterials.2015.05.016_bib27 article-title: Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2102604 – volume: 23 start-page: 3077 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib45 article-title: Imaging-guided ph-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202992 – volume: 58 start-page: 1655 year: 2006 ident: 10.1016/j.biomaterials.2015.05.016_bib62 article-title: Thermo- and pH-responsive polymers in drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2006.09.020 – volume: 33 start-page: 2583 year: 2012 ident: 10.1016/j.biomaterials.2015.05.016_bib56 article-title: pH-responsive drug delivery system based on luminescent CaF2:Ce3+/Tb3+-poly(acrylic acid) hybrid microspheres publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.12.014 – volume: 6 start-page: 4650 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib42 article-title: Interfacing a tetraphenylethene derivative and a smart hydrogel for temperature-dependent photoluminescence with sensitive thermoresponse publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501106x – volume: 35 start-page: 2934 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib14 article-title: Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb,Er nanorods for blood vessel visualization publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.11.082 – volume: 23 start-page: 4067 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib41 article-title: Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/ph dual-responsive drug controlled release publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300136 – volume: 5 start-page: 11910 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib60 article-title: A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells publication-title: Nanoscale doi: 10.1039/c3nr03515h – volume: 52 start-page: 3584 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib8 article-title: Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201208196 – volume: 53 start-page: 1012 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib9 article-title: Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201308834 – volume: 33 start-page: 9232 year: 2012 ident: 10.1016/j.biomaterials.2015.05.016_bib58 article-title: PEG modified BaGdF5:Yb,Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.09.019 – volume: 6 start-page: 131 year: 2005 ident: 10.1016/j.biomaterials.2015.05.016_bib65 article-title: Targeting therapeutic and imaging agents to folate receptor positive tumors publication-title: Curr. Pharm. Biotechnol. doi: 10.2174/1389201053642376 – volume: 49 start-page: 7168 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib19 article-title: Porous Pt–M (M=Cu, Zn, Ni) nanoparticles as robust nanocatalysts publication-title: Chem. Commun. doi: 10.1039/c3cc43208d – volume: 135 start-page: 8786 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib22 article-title: Structure of Au15(SR)13 and its implication for the origin of the nucleus in thiolated gold nanoclusters publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402680c – volume: 52 start-page: 13419 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib51 article-title: Upconverting near-infrared light through energy management in core-shell-shell nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201306811 – volume: 46 start-page: 1749 year: 2013 ident: 10.1016/j.biomaterials.2015.05.016_bib21 article-title: Atomically precise gold nanoclusters as new model catalysts publication-title: Acc. Chem. Res. doi: 10.1021/ar300213z – volume: 60 start-page: 1627 year: 2008 ident: 10.1016/j.biomaterials.2015.05.016_bib11 article-title: Nanoparticles in photodynamic therapy: an emerging paradigm publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2008.08.003 – volume: 50 start-page: 5808 year: 2011 ident: 10.1016/j.biomaterials.2015.05.016_bib13 article-title: Upconverting nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201005159 – volume: 136 start-page: 16317 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib17 article-title: Oxidative nanopeeling chemistry-based synthesis and photodynamic and photothermal therapeutic applications of plasmonic core-petal nanostructures publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5085699 – volume: 21 start-page: 717 year: 2009 ident: 10.1016/j.biomaterials.2015.05.016_bib30 article-title: Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles publication-title: Chem. Mater. doi: 10.1021/cm803151y – volume: 136 start-page: 14052 year: 2014 ident: 10.1016/j.biomaterials.2015.05.016_bib26 article-title: Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504270d – volume: 33 start-page: 1079 year: 2012 ident: 10.1016/j.biomaterials.2015.05.016_bib57 article-title: Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.10.039 |
SSID | ssj0014042 |
Score | 2.5617568 |
Snippet | To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell structured... Abstract To integrate biological imaging and multimodal therapies into one platform for enhanced anti-cancer efficacy, we have designed a novel core/shell... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 115 |
SubjectTerms | Acrylamides - chemistry Acrylamides - therapeutic use Advanced Basic Science Animals Antibiotics, Antineoplastic - administration & dosage Antibiotics, Antineoplastic - therapeutic use Cell Line, Tumor computed tomography Delayed-Action Preparations - chemistry Delayed-Action Preparations - therapeutic use Dentistry doxorubicin Doxorubicin - administration & dosage Doxorubicin - therapeutic use Drug Liberation Effectiveness Female Humans Hydrogen-Ion Concentration Hyperthermia, Induced - methods image analysis Imaging luminescence Luminescent Agents - chemistry Luminescent Agents - therapeutic use Mice Mice, Inbred BALB C Nanoconjugates - chemistry Nanoconjugates - therapeutic use Nanoconjugates - ultrastructure nanoparticles neoplasms Neoplasms - diagnosis Neoplasms - therapy Optical Imaging pH/temperature-responsive Photochemotherapy - methods Photodynamic photosensitivity Photothermal Platforms polymers Polymethacrylic Acids - chemistry Polymethacrylic Acids - therapeutic use porous media Rare earth metals reactive oxygen species silica Surgical implants Temperature Theranostic Nanomedicine - methods therapeutics Therapy Tomography, X-Ray Computed Up-conversion Upconversion |
Title | An imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/temperature-responsive drug release |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961215004664 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961215004664 https://dx.doi.org/10.1016/j.biomaterials.2015.05.016 https://www.ncbi.nlm.nih.gov/pubmed/26093792 https://www.proquest.com/docview/1746878697 https://www.proquest.com/docview/1778028234 https://www.proquest.com/docview/2000408618 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF-OE0QfRM-vnnqs4Ouar_1IEB_K4VEV78mDe1t2k81ZaZPQpsK93N9-M9lNOdFKQQiBlB3S7kzmo_nNbwh550ou6ry0TChjGVdKMRtXgglrE5dIC0FiQPmey9kF_3IpLg_I6dgLg7DK4Pu9Tx-8dfgkCrsZdfN5hLCktEACLIFFnkROUM4VWvn7my3MA9ljUg9jTBmuHolHB4wXtrib3qsaYV7Cs3jKXUFqVxI6BKOzx-RRyCLp1H_RJ-TANUfk4R1uwSNy_1t4a_6U3EwbOl8O44jY1WZeuYp2C9NjukrhRNfX2AA4MDbT7kfbt5UfUx8NF5ghLs0iAu0uW-b7ta4p_n9Lu1mE1FaBl5mtAt72l6PVanNFcR4LBMln5OLs0_fTGQtzF1gpiqxnSS24K10BtastDGREJs8LJ6FWNlUsrRBVnpW8ylSd1rwGnca8zLgSVsYVbLfKnpPDpm3cS0JrSCDTxKS1cJCqGWdjiyVSnJjYQDFaTkgxbrQuAyk5zsZY6BF99lPfVZJGJekYjkROSLaV7Tw1x15SH0Z96rH5FNylhgiyl7T6m7Rbhyd_rRO9TnWs_7DOCfm4lfzNwPe-89vR-DR4AHytYxrXbuCOistc5bJQ_1qjcqyuM757DTZtcahwk3xCXnjr3u4rVL2Qxxbp8X_-ilfkAV55kN5rctivNu4NZHW9PRke2xNyb_r56-z8FgeGUP4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBZdB1v3MLbu0uyqwV4133SxGXsoZSXb2j610Dch2XKXkTgmcQZ96W_fOZYcOraMwMAEnOhgR0c6F_s73yHkvSu5qPPSMqGMZVwpxWxcCSasTVwiLTiJHuV7JscX_OuluNwhR0MtDMIqg-33Nr231uGbKMxm1E4mEcKS0gIJsAQmeZLfIXc5bF9sY_DhZo3zQPqY1OMYU4bDB-bRHuSFNe6m87pGnJfwNJ5yk5faFIX23uj4EXkYwkh66O_0MdlxzT55cItccJ_cOw2vzZ-Qm8OGTmZ9PyJ2tZpUrqLt1HQYr1L4oMtrrADsKZtp-33ezSvfpz7qTzBEnJlpBOqdzZkv2Lqm-ACXtuMIua0CMTNbBMDtT0erxeqKYkMW8JJPycXx5_OjMQuNF1gpiqxjSS24K10ByastDIREJs8LJyFZNlUsrRBVnpW8ylSd1rwGpca8zLgSVsYVTLfKnpHdZt64A0JriCDTxKS1cBCrGWdjizlSnJjYQDZajkgxTLQuAys5NseY6gF-9kPfVpJGJekYjkSOSLaWbT03x1ZSHwd96qH6FOylBheylbT6m7Rbhq2_1IlepjrWfyzPEfm0lvxthW995XfD4tNgAvC9jmncfAVXVFzmKpeF-tcYlWN6nfHNY7Bqi0OKm-Qj8tyv7vW8QtoLgWyRvvjPf_GW3B-fn57oky9n316SPfzFI_Zekd1usXKvIcTr7Jt-C_8CQnpSjA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+imaging-guided+platform+for+synergistic+photodynamic%2Fphotothermal%2Fchemo-therapy+with+pH%2Ftemperature-responsive+drug+release&rft.jtitle=Biomaterials&rft.au=Lv%2C+Ruichan&rft.au=Yang%2C+Piaoping&rft.au=He%2C+Fei&rft.au=Gai%2C+Shili&rft.date=2015-09-01&rft.issn=0142-9612&rft.volume=63&rft.spage=115&rft.epage=127&rft_id=info:doi/10.1016%2Fj.biomaterials.2015.05.016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961215X00202%2Fcov150h.gif |