Comparison of micro- vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: Bone morphogenetic protein-2 and alkaline phosphatase

Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By va...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 33; no. 33; pp. 8695 - 8703
Main Authors Wang, Huanan, Boerman, Otto C., Sariibrahimoglu, Kemal, Li, Yubao, Jansen, John A., Leeuwenburgh, Sander C.G.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.11.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By varying the physicochemical properties of different particle populations, the suitability of colloidal gels for programmed delivery of multiple therapeutic proteins is superior over conventional monolithic gels that lack this strong capacity for controlled drug release. Colloidal gels made of biodegradable polymer micro- or nanospheres have been widely investigated over the past few years, but a direct comparison between micro- vs. nanostructured colloidal gels has not been made yet. Therefore, the current study has compared the viscoelastic properties and capacity for drug release of colloidal gels made of oppositely charged gelatin microspheres vs. nanospheres. Viscoelastic properties of the colloidal gelatin gels were characterized by rheology and simple injectability tests, and in vitro release of two selected osteogenic proteins (i.e. bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP)) from the colloidal gelatin gels was evaluated using radiolabeled BMP-2 and ALP. Nanostructured colloidal gelatin gels displayed superior viscoelastic properties over microsphere-based gels in terms of elasticity, injectability, structural integrity, and self-healing behavior upon severe network destruction. In contrast, microstructured colloidal gelatin gels exhibited poor gel strength and integrity, unfavorable injectability, and did not recover after shearing, resulting from the poor gel cohesion due to insufficiently strong interparticle forces. Regarding the capacity for drug delivery, sustained growth factor (BMP-2) release was obtained for both micro- and nanosphere-based gels, the kinetics of which were mainly depending on the particle size of gelatin spheres with the same crosslinking density. Therefore, the optimal gelatin carrier for drug delivery in terms of particle size and crosslinking density still needs to be established for specific clinical indications that require either short-term or long-term release. It can be concluded that nanostructured colloidal gelatin gels show great potential for sustained delivery of therapeutic proteins, whereas microstructured colloidal gelatin gels are not sufficiently cohesive as injectables for biomedical applications.
AbstractList Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By varying the physicochemical properties of different particle populations, the suitability of colloidal gels for programmed delivery of multiple therapeutic proteins is superior over conventional monolithic gels that lack this strong capacity for controlled drug release. Colloidal gels made of biodegradable polymer micro- or nanospheres have been widely investigated over the past few years, but a direct comparison between micro- vs. nanostructured colloidal gels has not been made yet. Therefore, the current study has compared the viscoelastic properties and capacity for drug release of colloidal gels made of oppositely charged gelatin microspheres vs. nanospheres. Viscoelastic properties of the colloidal gelatin gels were characterized by rheology and simple injectability tests, and in vitro release of two selected osteogenic proteins (i.e. bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP)) from the colloidal gelatin gels was evaluated using radiolabeled BMP-2 and ALP. Nanostructured colloidal gelatin gels displayed superior viscoelastic properties over microsphere-based gels in terms of elasticity, injectability, structural integrity, and self-healing behavior upon severe network destruction. In contrast, microstructured colloidal gelatin gels exhibited poor gel strength and integrity, unfavorable injectability, and did not recover after shearing, resulting from the poor gel cohesion due to insufficiently strong interparticle forces. Regarding the capacity for drug delivery, sustained growth factor (BMP-2) release was obtained for both micro- and nanosphere-based gels, the kinetics of which were mainly depending on the particle size of gelatin spheres with the same crosslinking density. Therefore, the optimal gelatin carrier for drug delivery in terms of particle size and crosslinking density still needs to be established for specific clinical indications that require either short-term or long-term release. It can be concluded that nanostructured colloidal gelatin gels show great potential for sustained delivery of therapeutic proteins, whereas microstructured colloidal gelatin gels are not sufficiently cohesive as injectables for biomedical applications.Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By varying the physicochemical properties of different particle populations, the suitability of colloidal gels for programmed delivery of multiple therapeutic proteins is superior over conventional monolithic gels that lack this strong capacity for controlled drug release. Colloidal gels made of biodegradable polymer micro- or nanospheres have been widely investigated over the past few years, but a direct comparison between micro- vs. nanostructured colloidal gels has not been made yet. Therefore, the current study has compared the viscoelastic properties and capacity for drug release of colloidal gels made of oppositely charged gelatin microspheres vs. nanospheres. Viscoelastic properties of the colloidal gelatin gels were characterized by rheology and simple injectability tests, and in vitro release of two selected osteogenic proteins (i.e. bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP)) from the colloidal gelatin gels was evaluated using radiolabeled BMP-2 and ALP. Nanostructured colloidal gelatin gels displayed superior viscoelastic properties over microsphere-based gels in terms of elasticity, injectability, structural integrity, and self-healing behavior upon severe network destruction. In contrast, microstructured colloidal gelatin gels exhibited poor gel strength and integrity, unfavorable injectability, and did not recover after shearing, resulting from the poor gel cohesion due to insufficiently strong interparticle forces. Regarding the capacity for drug delivery, sustained growth factor (BMP-2) release was obtained for both micro- and nanosphere-based gels, the kinetics of which were mainly depending on the particle size of gelatin spheres with the same crosslinking density. Therefore, the optimal gelatin carrier for drug delivery in terms of particle size and crosslinking density still needs to be established for specific clinical indications that require either short-term or long-term release. It can be concluded that nanostructured colloidal gelatin gels show great potential for sustained delivery of therapeutic proteins, whereas microstructured colloidal gelatin gels are not sufficiently cohesive as injectables for biomedical applications.
Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By varying the physicochemical properties of different particle populations, the suitability of colloidal gels for programmed delivery of multiple therapeutic proteins is superior over conventional monolithic gels that lack this strong capacity for controlled drug release. Colloidal gels made of biodegradable polymer micro- or nanospheres have been widely investigated over the past few years, but a direct comparison between micro- vs. nanostructured colloidal gels has not been made yet. Therefore, the current study has compared the viscoelastic properties and capacity for drug release of colloidal gels made of oppositely charged gelatin microspheres vs. nanospheres. Viscoelastic properties of the colloidal gelatin gels were characterized by rheology and simple injectability tests, and in vitro release of two selected osteogenic proteins (i.e. bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP)) from the colloidal gelatin gels was evaluated using radiolabeled BMP-2 and ALP. Nanostructured colloidal gelatin gels displayed superior viscoelastic properties over microsphere-based gels in terms of elasticity, injectability, structural integrity, and self-healing behavior upon severe network destruction. In contrast, microstructured colloidal gelatin gels exhibited poor gel strength and integrity, unfavorable injectability, and did not recover after shearing, resulting from the poor gel cohesion due to insufficiently strong interparticle forces. Regarding the capacity for drug delivery, sustained growth factor (BMP-2) release was obtained for both micro- and nanosphere-based gels, the kinetics of which were mainly depending on the particle size of gelatin spheres with the same crosslinking density. Therefore, the optimal gelatin carrier for drug delivery in terms of particle size and crosslinking density still needs to be established for specific clinical indications that require either short-term or long-term release. It can be concluded that nanostructured colloidal gelatin gels show great potential for sustained delivery of therapeutic proteins, whereas microstructured colloidal gelatin gels are not sufficiently cohesive as injectables for biomedical applications.
Abstract Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By varying the physicochemical properties of different particle populations, the suitability of colloidal gels for programmed delivery of multiple therapeutic proteins is superior over conventional monolithic gels that lack this strong capacity for controlled drug release. Colloidal gels made of biodegradable polymer micro- or nanospheres have been widely investigated over the past few years, but a direct comparison between micro- vs. nanostructured colloidal gels has not been made yet. Therefore, the current study has compared the viscoelastic properties and capacity for drug release of colloidal gels made of oppositely charged gelatin microspheres vs. nanospheres. Viscoelastic properties of the colloidal gelatin gels were characterized by rheology and simple injectability tests, and in vitro release of two selected osteogenic proteins (i.e. bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP)) from the colloidal gelatin gels was evaluated using radiolabeled BMP-2 and ALP. Nanostructured colloidal gelatin gels displayed superior viscoelastic properties over microsphere-based gels in terms of elasticity, injectability, structural integrity, and self-healing behavior upon severe network destruction. In contrast, microstructured colloidal gelatin gels exhibited poor gel strength and integrity, unfavorable injectability, and did not recover after shearing, resulting from the poor gel cohesion due to insufficiently strong interparticle forces. Regarding the capacity for drug delivery, sustained growth factor (BMP-2) release was obtained for both micro- and nanosphere-based gels, the kinetics of which were mainly depending on the particle size of gelatin spheres with the same crosslinking density. Therefore, the optimal gelatin carrier for drug delivery in terms of particle size and crosslinking density still needs to be established for specific clinical indications that require either short-term or long-term release. It can be concluded that nanostructured colloidal gelatin gels show great potential for sustained delivery of therapeutic proteins, whereas microstructured colloidal gelatin gels are not sufficiently cohesive as injectables for biomedical applications.
Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By varying the physicochemical properties of different particle populations, the suitability of colloidal gels for programmed delivery of multiple therapeutic proteins is superior over conventional monolithic gels that lack this strong capacity for controlled drug release. Colloidal gels made of biodegradable polymer micro- or nanospheres have been widely investigated over the past few years, but a direct comparison between micro- vs. nanostructured colloidal gels has not been made yet. Therefore, the current study has compared the viscoelastic properties and capacity for drug release of colloidal gels made of oppositely charged gelatin microspheres vs. nanospheres. Viscoelastic properties of the colloidal gelatin gels were characterized by rheology and simple injectability tests, and in vitro release of two selected osteogenic proteins (i.e. bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP)) from the colloidal gelatin gels was evaluated using radiolabeled BMP-2 and ALP. Nanostructured colloidal gelatin gels displayed superior viscoelastic properties over microsphere-based gels in terms of elasticity, injectability, structural integrity, and self-healing behavior upon severe network destruction. In contrast, microstructured colloidal gelatin gels exhibited poor gel strength and integrity, unfavorable injectability, and did not recover after shearing, resulting from the poor gel cohesion due to insufficiently strong interparticle forces. Regarding the capacity for drug delivery, sustained growth factor (BMP-2) release was obtained for both micro- and nanosphere-based gels, the kinetics of which were mainly depending on the particle size of gelatin spheres with the same crosslinking density. Therefore, the optimal gelatin carrier for drug delivery in terms of particle size and crosslinking density still needs to be established for specific clinical indications that require either short-term or long-term release. It can be concluded that nanostructured colloidal gelatin gels show great potential for sustained delivery of therapeutic proteins, whereas microstructured colloidal gelatin gels are not sufficiently cohesive as injectables for biomedical applications.
Author Boerman, Otto C.
Wang, Huanan
Leeuwenburgh, Sander C.G.
Jansen, John A.
Sariibrahimoglu, Kemal
Li, Yubao
Author_xml – sequence: 1
  givenname: Huanan
  surname: Wang
  fullname: Wang, Huanan
  organization: Department of Biomaterials, Radboud University Nijmegen Medical Centre, 6525 EX Nijmegen, The Netherlands
– sequence: 2
  givenname: Otto C.
  surname: Boerman
  fullname: Boerman, Otto C.
  organization: Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
– sequence: 3
  givenname: Kemal
  surname: Sariibrahimoglu
  fullname: Sariibrahimoglu, Kemal
  organization: Department of Biomaterials, Radboud University Nijmegen Medical Centre, 6525 EX Nijmegen, The Netherlands
– sequence: 4
  givenname: Yubao
  surname: Li
  fullname: Li, Yubao
  organization: Research Center for Nano-Biomaterials, Sichuan University, 610064 Chengdu, PR China
– sequence: 5
  givenname: John A.
  surname: Jansen
  fullname: Jansen, John A.
  organization: Department of Biomaterials, Radboud University Nijmegen Medical Centre, 6525 EX Nijmegen, The Netherlands
– sequence: 6
  givenname: Sander C.G.
  surname: Leeuwenburgh
  fullname: Leeuwenburgh, Sander C.G.
  email: s.leeuwenburgh@dent.umcn.nl
  organization: Department of Biomaterials, Radboud University Nijmegen Medical Centre, 6525 EX Nijmegen, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22922022$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URKeFV0AWKzYJthPnpwtEO_xKlVjQveXYN60Hxx5sZ6R5Hl4Uh2kFqoSYlWX5nM_33nPP0InzDhB6RUlJCW3ebMrB-EkmCEbaWDJCWUm6krD6CVrRru0K3hN-glaE1qzoG8pO0VmMG5LvpGbP0CljPWOEsRX6ufbTVgYTvcN-xJNRwRd4F0vspPMxhVmlOYDGylvrjZYW34KVybjljHj0Acc5JmlcFmmwZgdhv6CyGfwtOKPwNvgExsULfJU7wZMP27vlCdKfx4Jh6TSW9ru0mYWzIm7vZJIRnqOnY24UXtyf5-jm44eb9efi-uunL-vL60LxvkoFJdASLodR07HXCiQ0kkMle63pAO3Qda3W1VjzqhoI57rjhMm2UQpUPVJZnaPXB2yu6McMMYnJRAXWSgd-joK2lDBaNxX9v5TUpO_ruuVZ-vJeOg8TaLENZpJhLx4iyIJ3B0GefIwBRqFMygP2LgVpbGaJJXWxEX-nLpbUBelETj0jLh4hHn45yvz-YM5xws5AEFEZcAq0CaCS0N4ch3n7CKNyjkblQGEPcePn4BYPFTF7xLdlN5fVpIyQnv6e6dW_AcdW8QvZlADO
CitedBy_id crossref_primary_10_1002_admi_201800118
crossref_primary_10_1002_pol_20200138
crossref_primary_10_1016_j_matpr_2021_10_140
crossref_primary_10_1080_00405000_2022_2114283
crossref_primary_10_1002_mabi_201500005
crossref_primary_10_1088_1748_605X_ab0a55
crossref_primary_10_1007_s10856_015_5639_4
crossref_primary_10_1016_j_msec_2016_07_008
crossref_primary_10_1039_D2BM00692H
crossref_primary_10_1016_j_jconrel_2014_04_014
crossref_primary_10_4155_tde_14_42
crossref_primary_10_1177_0885328218807358
crossref_primary_10_1021_la4041985
crossref_primary_10_2217_nnm_2019_0180
crossref_primary_10_1016_j_bprint_2024_e00345
crossref_primary_10_3390_molecules25204613
crossref_primary_10_1016_j_jconrel_2012_12_015
crossref_primary_10_1371_journal_pone_0228247
crossref_primary_10_1002_mabi_201600535
crossref_primary_10_1002_jbm_a_35522
crossref_primary_10_1039_C5RA14829D
crossref_primary_10_1016_j_eurpolymj_2015_05_014
crossref_primary_10_1002_jbm_a_36077
crossref_primary_10_1016_j_tibtech_2019_12_005
crossref_primary_10_1088_1742_6596_2468_1_012072
crossref_primary_10_1039_C4TB01106F
crossref_primary_10_1007_s13770_013_1102_0
crossref_primary_10_1016_j_bioactmat_2022_02_035
crossref_primary_10_1016_j_nano_2017_03_007
crossref_primary_10_1002_mabi_201400094
crossref_primary_10_1186_s12951_022_01559_7
crossref_primary_10_3390_polym16010165
crossref_primary_10_3389_fphar_2024_1398939
crossref_primary_10_1016_j_ijbiomac_2020_01_252
crossref_primary_10_1016_S1672_6529_16_60334_7
crossref_primary_10_1016_j_msec_2015_02_015
crossref_primary_10_1021_acs_chemmater_1c04153
crossref_primary_10_1016_j_colsurfb_2019_110407
crossref_primary_10_1021_acs_iecr_0c05958
crossref_primary_10_1016_j_nano_2015_02_013
crossref_primary_10_1021_acs_chemrev_2c00179
crossref_primary_10_5897_AJMR2014_6926
crossref_primary_10_1179_1743280414Y_0000000045
crossref_primary_10_4012_dmj_2015_227
crossref_primary_10_1002_adhm_201901469
crossref_primary_10_3390_pharmaceutics11070314
crossref_primary_10_1016_j_ijpharm_2018_11_001
crossref_primary_10_3390_membranes11080561
crossref_primary_10_1039_C7BM00975E
crossref_primary_10_1039_C9MH00020H
crossref_primary_10_1016_j_jddst_2020_101669
crossref_primary_10_2174_1389450124666230605150303
crossref_primary_10_1007_s10529_015_1907_0
crossref_primary_10_1002_adhm_201700612
crossref_primary_10_3389_fvets_2023_1162407
crossref_primary_10_1007_s42242_023_00233_7
crossref_primary_10_1111_bju_13985
crossref_primary_10_1016_j_ijbiomac_2015_02_038
crossref_primary_10_1016_j_actbio_2014_04_021
crossref_primary_10_1016_j_ijbiomac_2015_08_006
crossref_primary_10_1122_1_4880676
crossref_primary_10_12677_acm_2025_151122
crossref_primary_10_3109_03008207_2014_930140
crossref_primary_10_1016_j_biotechadv_2014_04_014
crossref_primary_10_1021_acsbiomaterials_8b01371
crossref_primary_10_1007_s10853_016_9932_5
crossref_primary_10_1049_iet_nbt_2019_0002
crossref_primary_10_1002_adfm_202313155
crossref_primary_10_1016_j_bprint_2023_e00317
crossref_primary_10_1016_j_colsurfa_2018_03_021
crossref_primary_10_1016_j_supflu_2023_105979
crossref_primary_10_1016_j_biomaterials_2017_09_005
crossref_primary_10_1002_adfm_202403118
crossref_primary_10_1002_jbm_b_34056
crossref_primary_10_3390_pharmaceutics15051502
crossref_primary_10_1002_adma_202108430
crossref_primary_10_1002_mabi_202300122
crossref_primary_10_1016_j_actbio_2013_08_036
crossref_primary_10_3390_ma16041364
crossref_primary_10_1177_25158414211058249
crossref_primary_10_3390_cancers13164229
crossref_primary_10_1002_jbm_a_35207
crossref_primary_10_1016_j_colsurfb_2018_05_029
crossref_primary_10_1021_acsami_4c12721
crossref_primary_10_1021_acsnano_4c04969
crossref_primary_10_1002_jbm_b_33599
crossref_primary_10_1002_adfm_201703438
crossref_primary_10_1021_am4038432
crossref_primary_10_1016_j_jconrel_2023_07_034
crossref_primary_10_1021_acs_molpharmaceut_1c00121
crossref_primary_10_1038_s41598_018_37788_w
crossref_primary_10_1016_j_jcis_2015_07_062
crossref_primary_10_1002_INMD_20240015
crossref_primary_10_1007_s12551_021_00907_5
crossref_primary_10_3390_biom13020205
crossref_primary_10_1016_j_bioadv_2024_214071
crossref_primary_10_1016_j_biomaterials_2021_120871
crossref_primary_10_1002_adhm_202000895
crossref_primary_10_1016_j_jconrel_2013_09_019
crossref_primary_10_1016_j_actbio_2019_07_057
crossref_primary_10_1002_wnan_1882
crossref_primary_10_1002_smll_202310604
crossref_primary_10_1016_j_msec_2012_12_002
crossref_primary_10_1016_j_drudis_2013_11_007
crossref_primary_10_3390_polym14183849
crossref_primary_10_1016_j_jmbbm_2017_01_032
crossref_primary_10_1088_1758_5090_acab36
crossref_primary_10_1002_biot_202300469
crossref_primary_10_1016_j_amjms_2018_03_010
crossref_primary_10_1177_0883911517690757
crossref_primary_10_1088_2632_959X_abf58e
crossref_primary_10_1039_C8NJ01316K
crossref_primary_10_3390_nano12193423
crossref_primary_10_1016_j_msec_2021_112343
crossref_primary_10_1021_acsami_6b03454
crossref_primary_10_1177_08839115221149725
crossref_primary_10_1016_j_actbio_2020_04_049
crossref_primary_10_1021_acsami_8b06648
crossref_primary_10_1016_j_jmbbm_2018_11_003
crossref_primary_10_1016_j_actbio_2021_10_053
crossref_primary_10_1021_acs_langmuir_6b03529
crossref_primary_10_1021_acssuschemeng_9b00161
crossref_primary_10_3390_ma10080929
crossref_primary_10_1016_j_electacta_2019_03_145
crossref_primary_10_1016_j_jconrel_2021_08_055
crossref_primary_10_3390_pharmaceutics15051499
crossref_primary_10_1016_j_colsurfb_2018_12_005
crossref_primary_10_1021_acsami_9b01227
crossref_primary_10_1021_acs_biomac_3c00177
crossref_primary_10_1021_acsomega_3c05067
crossref_primary_10_1039_C6RA19915A
crossref_primary_10_1016_j_msec_2018_06_038
crossref_primary_10_1016_j_actbio_2019_01_060
crossref_primary_10_1016_j_ijbiomac_2024_133590
crossref_primary_10_1016_j_jmst_2022_07_008
crossref_primary_10_3390_nano10102019
crossref_primary_10_1016_j_ijbiomac_2017_05_054
crossref_primary_10_1021_acsbiomaterials_3c00672
Cites_doi 10.1016/j.biomaterials.2010.04.053
10.1016/j.jconrel.2004.08.010
10.1016/j.spinee.2011.04.023
10.1016/j.ejpb.2008.05.013
10.1016/j.jconrel.2004.11.016
10.3390/polym3031036
10.1016/j.jconrel.2005.09.005
10.1007/s11095-008-9685-1
10.1002/jbm.a.34009
10.1039/c0sm00642d
10.1016/j.addr.2007.08.038
10.1002/adma.200802009
10.1039/c0jm00338g
10.1016/j.addr.2006.09.004
10.1016/j.addr.2012.03.003
10.1039/b814285h
10.1016/j.ijpharm.2004.03.024
10.1021/bm700931q
10.1021/nn100869j
10.1016/j.biomaterials.2004.05.035
10.1021/bm7013203
10.1089/ten.teb.2011.0184
10.1016/j.actbio.2008.04.002
10.1016/0006-291X(78)91322-0
10.1016/j.biomaterials.2010.02.052
10.1016/j.jconrel.2005.09.023
10.1016/j.biomaterials.2010.05.016
10.1021/bm1006344
10.1002/adma.200802106
10.1016/S0168-3659(03)00258-X
10.1039/b819321p
10.1126/science.1067404
10.1089/ten.tea.2007.0346
10.1007/s10529-009-0099-x
10.1002/adma.200702099
10.1002/smll.200900358
10.1016/j.biomaterials.2007.07.021
10.1002/adma.200390047
10.1002/(SICI)1097-4636(200007)51:1<136::AID-JBM18>3.0.CO;2-W
10.1016/j.biomaterials.2004.10.005
10.1073/pnas.0701980104
10.1016/j.addr.2007.03.013
10.3109/02652040309178087
10.22203/eCM.v020a01
10.1016/S0169-409X(97)00125-7
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Elsevier Ltd
Copyright © 2012 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2012 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2012.08.024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 8703
ExternalDocumentID 22922022
10_1016_j_biomaterials_2012_08_024
S0142961212009131
1_s2_0_S0142961212009131
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c593t-10e705abfd1f9dceae6a5e3a9dd1be7b887dd3f4533b055d8502a76ccec4f1a3
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Sun Aug 24 04:00:59 EDT 2025
Thu Jul 10 18:23:40 EDT 2025
Mon Jul 21 06:04:44 EDT 2025
Tue Jul 01 03:47:35 EDT 2025
Thu Apr 24 22:56:39 EDT 2025
Fri Feb 23 02:23:09 EST 2024
Sun Feb 23 10:19:01 EST 2025
Tue Aug 26 17:18:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords Controlled delivery
Nanosphere
Self-healing
Microsphere
Gelatin
Colloidal gels
Language English
License Copyright © 2012 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c593t-10e705abfd1f9dceae6a5e3a9dd1be7b887dd3f4533b055d8502a76ccec4f1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22922022
PQID 1040994475
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1710214631
proquest_miscellaneous_1040994475
pubmed_primary_22922022
crossref_citationtrail_10_1016_j_biomaterials_2012_08_024
crossref_primary_10_1016_j_biomaterials_2012_08_024
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2012_08_024
elsevier_clinicalkeyesjournals_1_s2_0_S0142961212009131
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2012_08_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gan, Guan, Zhang (bib15) 2010; 20
Haines-Butterick, Rajagopal, Branco, Salick, Rughani, Pilarz (bib37) 2007; 104
Fan, Zhang, Li, Bi, Qin, Wu (bib30) 2008; 9
DeVolder, Kong (bib14) 2010; 31
Haidar, Hamdy, Tabrizian (bib45) 2009; 31
Wang, Wang, Detamore, Berkland (bib11) 2008; 20
Van Tomme, De Geest, Braeckmans, De Smedt, Siepmann, Siepmann (bib13) 2005; 110
Hench, Polak (bib1) 2002; 295
Patel, Ueda, Yamamoto, Tabata, Mikos (bib27) 2008; 25
Khademhosseini, Langer (bib2) 2007; 28
Kuijpers, van Wachem, van Luyn, Plantinga, Engbers, Krijgsveld (bib23) 2000; 51
Leeuwenburgh, Jo, Wang, Yamamoto, Jansen, Tabata (bib25) 2010; 11
Van Tomme, Van Steenbergen, De Smedt, van Nostrum, Hennink (bib31) 2005; 26
Holland, Tabata, Mikos (bib35) 2003; 91
Kretlow, Young, Klouda, Wong, Mikos (bib4) 2009; 21
Bohner (bib40) 2010; 20
Sariibrahimoglu, Leeuwenburgh, Wolke, Yubao, Jansen (bib38) 2012; 100A
Carragee, Hurwitz, Weiner (bib6) 2011; 11
Van Tomme, van Nostrum, Dijkstra, De Smedt, Hennink (bib32) 2008; 70
Agnihotri, Mallikarjuna, Aminabhavi (bib17) 2004; 100
Mwangi, Ofner Iii (bib36) 2004; 278
Nichol, Khademhosseini (bib8) 2009; 5
Chen, Zhang, Wu (bib44) 2010; 31
Yan, Altunbas, Yucel, Nagarkar, Schneider, Pochan (bib12) 2010; 6
Tabata, Ikada (bib21) 1998; 31
Young, Wong, Tabata, Mikos (bib26) 2005; 109
Grzelczak, Vermant, Furst, Liz-Marzan (bib9) 2010; 4
Slaughter, Khurshid, Fisher, Khademhosseini, Peppas (bib5) 2009; 21
Xia, Hu, Marquez (bib46) 2005; 103
Bishop, Wilmer, Soh, Grzybowski (bib33) 2009; 5
Ji, Wang, van den Beucken, Yang, Walboomers, Leeuwenburgh (bib47) 2012; 64
Balakrishnan, Jayakrishnan (bib22) 2005; 26
Wang, Hansen, Löwik, van Hest, Li, Jansen (bib10) 2011; 23
Wang, Wang, Lu, Detamore, Berkland (bib19) 2010; 31
Schrieber, Gareis (bib24) 2007
Bradley, Lazim, Eastoe (bib7) 2011; 3
Grzybowski, Wilmer, Kim, Browne, Bishop (bib41) 2009; 5
Lin, Metters (bib43) 2006; 58
Wang, Leeuwenburgh, Li, Jansen (bib20) 2012; 18
Biondi, Ungaro, Quaglia, Netti (bib18) 2008; 60
Iwanaga, Yabuta, Kakemi, Morimoto, Tabata, Ikada (bib34) 2003; 20
Kretlow, Klouda, Mikos (bib3) 2007; 59
Patel, Yamamoto, Ueda, Tabata, Mikos (bib28) 2008; 4
Salem, Rose, Oreffo, Yang, Davies, Mitchell (bib16) 2003; 15
Van Tomme, Mens, van Nostrum, Hennink (bib42) 2007; 9
Zhu, Tabata, Wang, Tong (bib29) 2008; 14
Fraker, Speck (bib39) 1978; 80
Yan (10.1016/j.biomaterials.2012.08.024_bib12) 2010; 6
Van Tomme (10.1016/j.biomaterials.2012.08.024_bib13) 2005; 110
Van Tomme (10.1016/j.biomaterials.2012.08.024_bib42) 2007; 9
Gan (10.1016/j.biomaterials.2012.08.024_bib15) 2010; 20
Lin (10.1016/j.biomaterials.2012.08.024_bib43) 2006; 58
Nichol (10.1016/j.biomaterials.2012.08.024_bib8) 2009; 5
Grzelczak (10.1016/j.biomaterials.2012.08.024_bib9) 2010; 4
Young (10.1016/j.biomaterials.2012.08.024_bib26) 2005; 109
Schrieber (10.1016/j.biomaterials.2012.08.024_bib24) 2007
Chen (10.1016/j.biomaterials.2012.08.024_bib44) 2010; 31
Holland (10.1016/j.biomaterials.2012.08.024_bib35) 2003; 91
Wang (10.1016/j.biomaterials.2012.08.024_bib20) 2012; 18
Salem (10.1016/j.biomaterials.2012.08.024_bib16) 2003; 15
Patel (10.1016/j.biomaterials.2012.08.024_bib27) 2008; 25
Tabata (10.1016/j.biomaterials.2012.08.024_bib21) 1998; 31
Fan (10.1016/j.biomaterials.2012.08.024_bib30) 2008; 9
Van Tomme (10.1016/j.biomaterials.2012.08.024_bib31) 2005; 26
Khademhosseini (10.1016/j.biomaterials.2012.08.024_bib2) 2007; 28
Biondi (10.1016/j.biomaterials.2012.08.024_bib18) 2008; 60
Leeuwenburgh (10.1016/j.biomaterials.2012.08.024_bib25) 2010; 11
Kretlow (10.1016/j.biomaterials.2012.08.024_bib3) 2007; 59
Sariibrahimoglu (10.1016/j.biomaterials.2012.08.024_bib38) 2012; 100A
Wang (10.1016/j.biomaterials.2012.08.024_bib10) 2011; 23
Bradley (10.1016/j.biomaterials.2012.08.024_bib7) 2011; 3
Kuijpers (10.1016/j.biomaterials.2012.08.024_bib23) 2000; 51
Fraker (10.1016/j.biomaterials.2012.08.024_bib39) 1978; 80
Mwangi (10.1016/j.biomaterials.2012.08.024_bib36) 2004; 278
Slaughter (10.1016/j.biomaterials.2012.08.024_bib5) 2009; 21
Bishop (10.1016/j.biomaterials.2012.08.024_bib33) 2009; 5
Wang (10.1016/j.biomaterials.2012.08.024_bib11) 2008; 20
Agnihotri (10.1016/j.biomaterials.2012.08.024_bib17) 2004; 100
Haines-Butterick (10.1016/j.biomaterials.2012.08.024_bib37) 2007; 104
Balakrishnan (10.1016/j.biomaterials.2012.08.024_bib22) 2005; 26
Grzybowski (10.1016/j.biomaterials.2012.08.024_bib41) 2009; 5
Hench (10.1016/j.biomaterials.2012.08.024_bib1) 2002; 295
Ji (10.1016/j.biomaterials.2012.08.024_bib47) 2012; 64
Patel (10.1016/j.biomaterials.2012.08.024_bib28) 2008; 4
Kretlow (10.1016/j.biomaterials.2012.08.024_bib4) 2009; 21
Carragee (10.1016/j.biomaterials.2012.08.024_bib6) 2011; 11
DeVolder (10.1016/j.biomaterials.2012.08.024_bib14) 2010; 31
Wang (10.1016/j.biomaterials.2012.08.024_bib19) 2010; 31
Zhu (10.1016/j.biomaterials.2012.08.024_bib29) 2008; 14
Bohner (10.1016/j.biomaterials.2012.08.024_bib40) 2010; 20
Xia (10.1016/j.biomaterials.2012.08.024_bib46) 2005; 103
Van Tomme (10.1016/j.biomaterials.2012.08.024_bib32) 2008; 70
Iwanaga (10.1016/j.biomaterials.2012.08.024_bib34) 2003; 20
Haidar (10.1016/j.biomaterials.2012.08.024_bib45) 2009; 31
References_xml – volume: 31
  start-page: 287
  year: 1998
  end-page: 301
  ident: bib21
  article-title: Protein release from gelatin matrices
  publication-title: Adv Drug Deliv Rev
– volume: 104
  start-page: 7791
  year: 2007
  end-page: 7796
  ident: bib37
  article-title: Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells
  publication-title: Proc Natl Acad Sci USA
– year: 2007
  ident: bib24
  article-title: Gelatine handbook: theory and industrial practice
– volume: 64
  start-page: 1152
  year: 2012
  end-page: 1164
  ident: bib47
  article-title: Local delivery of small and large biomolecules in craniomaxillofacial bone
  publication-title: Adv Drug Deliv Rev
– volume: 6
  start-page: 5143
  year: 2010
  end-page: 5156
  ident: bib12
  article-title: Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable beta-hairpin peptide hydrogels
  publication-title: Soft Matter
– volume: 31
  start-page: 6494
  year: 2010
  end-page: 6501
  ident: bib14
  article-title: Three dimensionally flocculated proangiogenic microgels for neovascularization
  publication-title: Biomaterials
– volume: 109
  start-page: 256
  year: 2005
  end-page: 274
  ident: bib26
  article-title: Gelatin as a delivery vehicle for the controlled release of bioactive molecules
  publication-title: J Control Release
– volume: 20
  start-page: 767
  year: 2003
  end-page: 776
  ident: bib34
  article-title: Usefulness of microspheres composed of gelatin with various cross-linking density
  publication-title: J Microencapsulation
– volume: 5
  start-page: 1110
  year: 2009
  end-page: 1128
  ident: bib41
  article-title: Self-assembly: from crystals to cells
  publication-title: Soft Matter
– volume: 20
  start-page: 1
  year: 2010
  end-page: 12
  ident: bib40
  article-title: Design of ceramic-based cements and putties for bone graft substitution
  publication-title: Eur Cells Mater
– volume: 9
  start-page: 927
  year: 2008
  end-page: 934
  ident: bib30
  article-title: Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture
  publication-title: Biomacromolecules
– volume: 4
  start-page: 1126
  year: 2008
  end-page: 1138
  ident: bib28
  article-title: Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2
  publication-title: Acta Biomater
– volume: 9
  start-page: 158
  year: 2007
  end-page: 165
  ident: bib42
  article-title: Macroscopic hydrogels by self-assembly of oligolactate-grafted dextran microspheres
  publication-title: Biomacromolecules
– volume: 58
  start-page: 1379
  year: 2006
  end-page: 1408
  ident: bib43
  article-title: Hydrogels in controlled release formulations: network design and mathematical modeling
  publication-title: Adv Drug Deliv Rev
– volume: 59
  start-page: 263
  year: 2007
  end-page: 273
  ident: bib3
  article-title: Injectable matrices and scaffolds for drug delivery in tissue engineering
  publication-title: Adv Drug Deliv Rev
– volume: 26
  start-page: 2129
  year: 2005
  end-page: 2135
  ident: bib31
  article-title: Self-gelling hydrogels based on oppositely charged dextran microspheres
  publication-title: Biomaterials
– volume: 25
  start-page: 2370
  year: 2008
  end-page: 2378
  ident: bib27
  article-title: In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds
  publication-title: Pharm Res
– volume: 5
  start-page: 1600
  year: 2009
  end-page: 1630
  ident: bib33
  article-title: Nanoscale forces and their uses in self-assembly
  publication-title: Small
– volume: 31
  start-page: 4980
  year: 2010
  end-page: 4986
  ident: bib19
  article-title: Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects
  publication-title: Biomaterials
– volume: 295
  start-page: 1014
  year: 2002
  end-page: 1017
  ident: bib1
  article-title: Third-generation biomedical materials
  publication-title: Science
– volume: 100
  start-page: 5
  year: 2004
  end-page: 28
  ident: bib17
  article-title: Recent advances on chitosan-based micro- and nanoparticles in drug delivery
  publication-title: J Control Release
– volume: 100A
  start-page: 712
  year: 2012
  end-page: 719
  ident: bib38
  article-title: Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements
  publication-title: J Biomed Mater Res Part A
– volume: 70
  start-page: 522
  year: 2008
  end-page: 530
  ident: bib32
  article-title: Effect of particle size and charge on the network properties of microsphere-based hydrogels
  publication-title: Eur J Pharm Biopharm
– volume: 60
  start-page: 229
  year: 2008
  end-page: 242
  ident: bib18
  article-title: Controlled drug delivery in tissue engineering
  publication-title: Adv Drug Deliv Rev
– volume: 20
  start-page: 5937
  year: 2010
  end-page: 5944
  ident: bib15
  article-title: Thermogelable PNIPAM microgel dispersion as 3D cell scaffold: effect of syneresis
  publication-title: J Mater Chem
– volume: 31
  start-page: 1817
  year: 2009
  end-page: 1824
  ident: bib45
  article-title: Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: current challenges in BMP delivery
  publication-title: Biotechnol Lett
– volume: 20
  start-page: 236
  year: 2008
  end-page: 239
  ident: bib11
  article-title: Biodegradable colloidal gels as moldable tissue engineering scaffolds
  publication-title: Adv Mater
– volume: 11
  start-page: 2653
  year: 2010
  end-page: 2659
  ident: bib25
  article-title: Mineralization, biodegradation, and drug release behavior of gelatin/apatite composite microspheres for bone regeneration
  publication-title: Biomacromolecules
– volume: 31
  start-page: 6279
  year: 2010
  end-page: 6308
  ident: bib44
  article-title: Toward delivery of multiple growth factors in tissue engineering
  publication-title: Biomaterials
– volume: 18
  start-page: 24
  year: 2012
  end-page: 39
  ident: bib20
  article-title: The use of micro- and nanospheres as functional components for bone tissue regeneration
  publication-title: Tissue Eng Part B
– volume: 4
  start-page: 3591
  year: 2010
  end-page: 3605
  ident: bib9
  article-title: Directed self-assembly of nanoparticles
  publication-title: ACS Nano
– volume: 51
  start-page: 136
  year: 2000
  end-page: 145
  ident: bib23
  article-title: In vivo compatibility and degradation of crosslinked gelatin gels incorporated in knitted Dacron
  publication-title: J Biomed Mater Res
– volume: 26
  start-page: 3941
  year: 2005
  end-page: 3951
  ident: bib22
  article-title: Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds
  publication-title: Biomaterials
– volume: 103
  start-page: 21
  year: 2005
  end-page: 30
  ident: bib46
  article-title: Physically bonded nanoparticle networks: a novel drug delivery system
  publication-title: J Control Release
– volume: 14
  start-page: 1939
  year: 2008
  end-page: 1947
  ident: bib29
  article-title: Delivery of basic fibroblast growth factor from gelatin microsphere scaffold for the growth of human umbilical vein endothelial cells
  publication-title: Tissue Eng Part A
– volume: 278
  start-page: 319
  year: 2004
  end-page: 327
  ident: bib36
  article-title: Crosslinked gelatin matrices: release of a random coil macromolecular solute
  publication-title: Int J Pharmaceut
– volume: 11
  start-page: 471
  year: 2011
  end-page: 491
  ident: bib6
  article-title: A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned
  publication-title: Spine
– volume: 110
  start-page: 67
  year: 2005
  end-page: 78
  ident: bib13
  article-title: Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching
  publication-title: J Control Release
– volume: 80
  start-page: 849
  year: 1978
  end-page: 857
  ident: bib39
  article-title: Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril
  publication-title: Biochem Biophys Res Commun
– volume: 3
  start-page: 1036
  year: 2011
  end-page: 1050
  ident: bib7
  article-title: Stimulus-responsive heteroaggregation of colloidal dispersions: reversible systems and composite materials
  publication-title: Polymer
– volume: 15
  start-page: 210
  year: 2003
  end-page: 213
  ident: bib16
  article-title: Porous polymer and cell composites that self-assemble in situ
  publication-title: Adv Mater
– volume: 21
  start-page: 3307
  year: 2009
  end-page: 3329
  ident: bib5
  article-title: Hydrogels in regenerative medicine
  publication-title: Adv Mater
– volume: 5
  start-page: 1312
  year: 2009
  end-page: 1313
  ident: bib8
  article-title: Modular tissue engineering: engineering biological tissues from the bottom up
  publication-title: Soft Matter
– volume: 23
  start-page: H119
  year: 2011
  end-page: H124
  ident: bib10
  article-title: Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels
  publication-title: Adv Mater
– volume: 28
  start-page: 5087
  year: 2007
  end-page: 5092
  ident: bib2
  article-title: Microengineered hydrogels for tissue engineering
  publication-title: Biomaterials
– volume: 91
  start-page: 299
  year: 2003
  end-page: 313
  ident: bib35
  article-title: In vitro release of transforming growth factor-β1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels
  publication-title: J Control Release
– volume: 21
  start-page: 3368
  year: 2009
  end-page: 3393
  ident: bib4
  article-title: Injectable biomaterials for regenerating complex craniofacial tissues
  publication-title: Adv Mater
– volume: 31
  start-page: 6279
  year: 2010
  ident: 10.1016/j.biomaterials.2012.08.024_bib44
  article-title: Toward delivery of multiple growth factors in tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.04.053
– volume: 100
  start-page: 5
  year: 2004
  ident: 10.1016/j.biomaterials.2012.08.024_bib17
  article-title: Recent advances on chitosan-based micro- and nanoparticles in drug delivery
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2004.08.010
– volume: 11
  start-page: 471
  year: 2011
  ident: 10.1016/j.biomaterials.2012.08.024_bib6
  article-title: A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned
  publication-title: Spine
  doi: 10.1016/j.spinee.2011.04.023
– volume: 70
  start-page: 522
  year: 2008
  ident: 10.1016/j.biomaterials.2012.08.024_bib32
  article-title: Effect of particle size and charge on the network properties of microsphere-based hydrogels
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/j.ejpb.2008.05.013
– volume: 103
  start-page: 21
  year: 2005
  ident: 10.1016/j.biomaterials.2012.08.024_bib46
  article-title: Physically bonded nanoparticle networks: a novel drug delivery system
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2004.11.016
– volume: 3
  start-page: 1036
  year: 2011
  ident: 10.1016/j.biomaterials.2012.08.024_bib7
  article-title: Stimulus-responsive heteroaggregation of colloidal dispersions: reversible systems and composite materials
  publication-title: Polymer
  doi: 10.3390/polym3031036
– volume: 23
  start-page: H119
  year: 2011
  ident: 10.1016/j.biomaterials.2012.08.024_bib10
  article-title: Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels
  publication-title: Adv Mater
– volume: 110
  start-page: 67
  year: 2005
  ident: 10.1016/j.biomaterials.2012.08.024_bib13
  article-title: Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2005.09.005
– volume: 25
  start-page: 2370
  year: 2008
  ident: 10.1016/j.biomaterials.2012.08.024_bib27
  article-title: In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds
  publication-title: Pharm Res
  doi: 10.1007/s11095-008-9685-1
– volume: 100A
  start-page: 712
  year: 2012
  ident: 10.1016/j.biomaterials.2012.08.024_bib38
  article-title: Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements
  publication-title: J Biomed Mater Res Part A
  doi: 10.1002/jbm.a.34009
– volume: 6
  start-page: 5143
  year: 2010
  ident: 10.1016/j.biomaterials.2012.08.024_bib12
  article-title: Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable beta-hairpin peptide hydrogels
  publication-title: Soft Matter
  doi: 10.1039/c0sm00642d
– volume: 60
  start-page: 229
  year: 2008
  ident: 10.1016/j.biomaterials.2012.08.024_bib18
  article-title: Controlled drug delivery in tissue engineering
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2007.08.038
– volume: 21
  start-page: 3368
  year: 2009
  ident: 10.1016/j.biomaterials.2012.08.024_bib4
  article-title: Injectable biomaterials for regenerating complex craniofacial tissues
  publication-title: Adv Mater
  doi: 10.1002/adma.200802009
– volume: 20
  start-page: 5937
  year: 2010
  ident: 10.1016/j.biomaterials.2012.08.024_bib15
  article-title: Thermogelable PNIPAM microgel dispersion as 3D cell scaffold: effect of syneresis
  publication-title: J Mater Chem
  doi: 10.1039/c0jm00338g
– volume: 58
  start-page: 1379
  year: 2006
  ident: 10.1016/j.biomaterials.2012.08.024_bib43
  article-title: Hydrogels in controlled release formulations: network design and mathematical modeling
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2006.09.004
– volume: 64
  start-page: 1152
  year: 2012
  ident: 10.1016/j.biomaterials.2012.08.024_bib47
  article-title: Local delivery of small and large biomolecules in craniomaxillofacial bone
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2012.03.003
– volume: 5
  start-page: 1312
  year: 2009
  ident: 10.1016/j.biomaterials.2012.08.024_bib8
  article-title: Modular tissue engineering: engineering biological tissues from the bottom up
  publication-title: Soft Matter
  doi: 10.1039/b814285h
– volume: 278
  start-page: 319
  year: 2004
  ident: 10.1016/j.biomaterials.2012.08.024_bib36
  article-title: Crosslinked gelatin matrices: release of a random coil macromolecular solute
  publication-title: Int J Pharmaceut
  doi: 10.1016/j.ijpharm.2004.03.024
– volume: 9
  start-page: 158
  year: 2007
  ident: 10.1016/j.biomaterials.2012.08.024_bib42
  article-title: Macroscopic hydrogels by self-assembly of oligolactate-grafted dextran microspheres
  publication-title: Biomacromolecules
  doi: 10.1021/bm700931q
– volume: 4
  start-page: 3591
  year: 2010
  ident: 10.1016/j.biomaterials.2012.08.024_bib9
  article-title: Directed self-assembly of nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/nn100869j
– volume: 26
  start-page: 2129
  year: 2005
  ident: 10.1016/j.biomaterials.2012.08.024_bib31
  article-title: Self-gelling hydrogels based on oppositely charged dextran microspheres
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.05.035
– volume: 9
  start-page: 927
  year: 2008
  ident: 10.1016/j.biomaterials.2012.08.024_bib30
  article-title: Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture
  publication-title: Biomacromolecules
  doi: 10.1021/bm7013203
– volume: 18
  start-page: 24
  year: 2012
  ident: 10.1016/j.biomaterials.2012.08.024_bib20
  article-title: The use of micro- and nanospheres as functional components for bone tissue regeneration
  publication-title: Tissue Eng Part B
  doi: 10.1089/ten.teb.2011.0184
– volume: 4
  start-page: 1126
  year: 2008
  ident: 10.1016/j.biomaterials.2012.08.024_bib28
  article-title: Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2008.04.002
– volume: 80
  start-page: 849
  year: 1978
  ident: 10.1016/j.biomaterials.2012.08.024_bib39
  article-title: Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/0006-291X(78)91322-0
– volume: 31
  start-page: 4980
  year: 2010
  ident: 10.1016/j.biomaterials.2012.08.024_bib19
  article-title: Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.02.052
– volume: 109
  start-page: 256
  year: 2005
  ident: 10.1016/j.biomaterials.2012.08.024_bib26
  article-title: Gelatin as a delivery vehicle for the controlled release of bioactive molecules
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2005.09.023
– volume: 31
  start-page: 6494
  year: 2010
  ident: 10.1016/j.biomaterials.2012.08.024_bib14
  article-title: Three dimensionally flocculated proangiogenic microgels for neovascularization
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.05.016
– volume: 11
  start-page: 2653
  year: 2010
  ident: 10.1016/j.biomaterials.2012.08.024_bib25
  article-title: Mineralization, biodegradation, and drug release behavior of gelatin/apatite composite microspheres for bone regeneration
  publication-title: Biomacromolecules
  doi: 10.1021/bm1006344
– volume: 21
  start-page: 3307
  year: 2009
  ident: 10.1016/j.biomaterials.2012.08.024_bib5
  article-title: Hydrogels in regenerative medicine
  publication-title: Adv Mater
  doi: 10.1002/adma.200802106
– volume: 91
  start-page: 299
  year: 2003
  ident: 10.1016/j.biomaterials.2012.08.024_bib35
  article-title: In vitro release of transforming growth factor-β1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels
  publication-title: J Control Release
  doi: 10.1016/S0168-3659(03)00258-X
– volume: 5
  start-page: 1110
  year: 2009
  ident: 10.1016/j.biomaterials.2012.08.024_bib41
  article-title: Self-assembly: from crystals to cells
  publication-title: Soft Matter
  doi: 10.1039/b819321p
– volume: 295
  start-page: 1014
  year: 2002
  ident: 10.1016/j.biomaterials.2012.08.024_bib1
  article-title: Third-generation biomedical materials
  publication-title: Science
  doi: 10.1126/science.1067404
– volume: 14
  start-page: 1939
  year: 2008
  ident: 10.1016/j.biomaterials.2012.08.024_bib29
  article-title: Delivery of basic fibroblast growth factor from gelatin microsphere scaffold for the growth of human umbilical vein endothelial cells
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2007.0346
– volume: 31
  start-page: 1817
  year: 2009
  ident: 10.1016/j.biomaterials.2012.08.024_bib45
  article-title: Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: current challenges in BMP delivery
  publication-title: Biotechnol Lett
  doi: 10.1007/s10529-009-0099-x
– volume: 20
  start-page: 236
  year: 2008
  ident: 10.1016/j.biomaterials.2012.08.024_bib11
  article-title: Biodegradable colloidal gels as moldable tissue engineering scaffolds
  publication-title: Adv Mater
  doi: 10.1002/adma.200702099
– volume: 5
  start-page: 1600
  year: 2009
  ident: 10.1016/j.biomaterials.2012.08.024_bib33
  article-title: Nanoscale forces and their uses in self-assembly
  publication-title: Small
  doi: 10.1002/smll.200900358
– volume: 28
  start-page: 5087
  year: 2007
  ident: 10.1016/j.biomaterials.2012.08.024_bib2
  article-title: Microengineered hydrogels for tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.07.021
– volume: 15
  start-page: 210
  year: 2003
  ident: 10.1016/j.biomaterials.2012.08.024_bib16
  article-title: Porous polymer and cell composites that self-assemble in situ
  publication-title: Adv Mater
  doi: 10.1002/adma.200390047
– volume: 51
  start-page: 136
  year: 2000
  ident: 10.1016/j.biomaterials.2012.08.024_bib23
  article-title: In vivo compatibility and degradation of crosslinked gelatin gels incorporated in knitted Dacron
  publication-title: J Biomed Mater Res
  doi: 10.1002/(SICI)1097-4636(200007)51:1<136::AID-JBM18>3.0.CO;2-W
– year: 2007
  ident: 10.1016/j.biomaterials.2012.08.024_bib24
– volume: 26
  start-page: 3941
  year: 2005
  ident: 10.1016/j.biomaterials.2012.08.024_bib22
  article-title: Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.10.005
– volume: 104
  start-page: 7791
  year: 2007
  ident: 10.1016/j.biomaterials.2012.08.024_bib37
  article-title: Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0701980104
– volume: 59
  start-page: 263
  year: 2007
  ident: 10.1016/j.biomaterials.2012.08.024_bib3
  article-title: Injectable matrices and scaffolds for drug delivery in tissue engineering
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2007.03.013
– volume: 20
  start-page: 767
  year: 2003
  ident: 10.1016/j.biomaterials.2012.08.024_bib34
  article-title: Usefulness of microspheres composed of gelatin with various cross-linking density
  publication-title: J Microencapsulation
  doi: 10.3109/02652040309178087
– volume: 20
  start-page: 1
  year: 2010
  ident: 10.1016/j.biomaterials.2012.08.024_bib40
  article-title: Design of ceramic-based cements and putties for bone graft substitution
  publication-title: Eur Cells Mater
  doi: 10.22203/eCM.v020a01
– volume: 31
  start-page: 287
  year: 1998
  ident: 10.1016/j.biomaterials.2012.08.024_bib21
  article-title: Protein release from gelatin matrices
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(97)00125-7
SSID ssj0014042
Score 2.473423
Snippet Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to...
Abstract Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8695
SubjectTerms Advanced Basic Science
alkaline phosphatase
Alkaline Phosphatase - administration & dosage
Alkaline Phosphatase - chemistry
biodegradability
biopharmaceuticals
Bone Morphogenetic Protein 2 - administration & dosage
Bone Morphogenetic Protein 2 - chemistry
cohesion
Colloidal gels
colloidal properties
Controlled delivery
crosslinking
Dentistry
drug carriers
gel strength
Gelatin
Gelatin - chemistry
medicine
Microsphere
Microspheres
Nanosphere
Nanospheres
Nanostructures - chemistry
particle size
polymers
radiolabeling
rheology
Self-healing
viscoelasticity
Title Comparison of micro- vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: Bone morphogenetic protein-2 and alkaline phosphatase
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961212009131
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961212009131
https://dx.doi.org/10.1016/j.biomaterials.2012.08.024
https://www.ncbi.nlm.nih.gov/pubmed/22922022
https://www.proquest.com/docview/1040994475
https://www.proquest.com/docview/1710214631
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF9KC6IPUutHr2pZwdf0ks1u0lV8qIflVNqnCn1b9isae90c5lrwxX_Gf9SZbBIqWjnwKSSZSYbMZGaS_c0MIS8rn1qZFzaB4MYTruFzRxpxmJQGvnBNhcuE-EP_5LSYf-IfzsX5BpkNtTAIq-x9f_Tpnbfuj0z7pzld1vUUYUlMYgMs_MGfdbXUnJdo5Qc_RpgHdo9hEcYIUgD10Hi0w3hhibteRVUjzIt17TwZvy1I3ZaEdsHoeJvc77NIehQFfUA2fNgh9270Ftwhd076VfOH5OdsHDZIm4peIgYvodftAQ06NLGD7NU37ygaRVM7uPLnDiMXcNtSyGtpGwutgMj5BWI5vuOlsEKkAROsLe0aPtShfUXfNsHTywYUiKewSHI4mTCqg6N6caExu6VA0S6_6BVE0kfk7Pjd2Wye9MMZEitkvgL37ctUaFO5rJLOeu0LLXyupXOZ8aUB5-VcXnFIJ00qhDsUKdNlYa23vMp0_phsBhBnl1ApcieZk05bD-ljanhR6KLEYndZWFdOiByUoWzfuBznZyzUgFD7qm4qUqEiFQ7XZHxC8pF3Gdt3rMX1etC5GgpUwaUqiDJrcZd_4_Zt7x1alakWiNUfFjwhb0bO316Cte_8YjBQBV4Cl3508M0V3BF8tZTY3PEfNGUc845yPInWPT4zxiRjkO7t_aeET8ld3IvFnM_IJli4fw5Z3crsd6_tPtk6ev9xfvoL_ihSSw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VVgJ6QKVQWH6NBMd0E-dvDeoBCtWWdntapN4sx3YgsE1WZFvUCy_DG_CEzMRJVARFK6GeVlp7HMcznhnH38wAPM-tr0WYaA-NW-RFCo87IotHXprhCTfL6ZqQPuhPjpLxh-j9cXy8Aj-7WBiCVba63-n0Rlu3_wzb1RzOi2JIsCQuKAEWfeAPwqBFVh7Y8294bqt39t8ik19wvvduujv22tICno5FuEDlY1M_VlluglwYbZVNVGxDJYwJMptmuPWMCfMInaHMj2Mzin2u0kRrq6M8UCEOew3WsHlEVRO2v_ewEspWwx1sEt8aZ9clOm0wZRRSrxZOtAhWxpv0oTy6zChe5vQ2xm9vA261Xit77RbmNqzYchPWL-Qy3ITrk_aW_g782O2LG7IqZyeE-fPYWb3NSlVWLmPt6VdrGAlhVRgc-WODySvpt2boR7PaBXZhJ2NnhB05p6EoIqVCkS80axJMFGX9kr2pSstOKhQYaqKgzK7R40yVhqnZF0XeNMMe9fyTWqDlvgvTq-DYFqyWOJ37wEQcGsGNMEpbdFf9LEoSlaQUXC8SbdIBiI4ZUreJ0qlex0x2iLjP8iIjJTFSUjFPHg0g7GnnLl3IUlSvOp7LLiAWVbhEq7YUdfo3alu32qiWgayxs_xjxwxgp6f8bdMt_eRnnYBK1Ep01aRKW53iE9E2CEHJJP_RJ3Vl5Wke95x092vGueAc3csH_znDp3BjPJ0cysP9o4OHcJNaXCDpI1hFabeP0aNcZE-aLcxAXrHK-AU_jI_b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+micro-+vs.+nanostructured+colloidal+gelatin+gels+for+sustained+delivery+of+osteogenic+proteins%3A+Bone+morphogenetic+protein-2+and+alkaline+phosphatase&rft.jtitle=Biomaterials&rft.au=Wang%2C+Huanan&rft.au=Boerman%2C+Otto+C&rft.au=Sariibrahimoglu%2C+Kemal&rft.au=Li%2C+Yubao&rft.date=2012-11-01&rft.issn=0142-9612&rft.volume=33&rft.issue=33+p.8695-8703&rft.spage=8695&rft.epage=8703&rft_id=info:doi/10.1016%2Fj.biomaterials.2012.08.024&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961212X00279%2Fcov150h.gif