Comparison of micro- vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: Bone morphogenetic protein-2 and alkaline phosphatase
Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By va...
Saved in:
Published in | Biomaterials Vol. 33; no. 33; pp. 8695 - 8703 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.11.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By varying the physicochemical properties of different particle populations, the suitability of colloidal gels for programmed delivery of multiple therapeutic proteins is superior over conventional monolithic gels that lack this strong capacity for controlled drug release. Colloidal gels made of biodegradable polymer micro- or nanospheres have been widely investigated over the past few years, but a direct comparison between micro- vs. nanostructured colloidal gels has not been made yet. Therefore, the current study has compared the viscoelastic properties and capacity for drug release of colloidal gels made of oppositely charged gelatin microspheres vs. nanospheres. Viscoelastic properties of the colloidal gelatin gels were characterized by rheology and simple injectability tests, and in vitro release of two selected osteogenic proteins (i.e. bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP)) from the colloidal gelatin gels was evaluated using radiolabeled BMP-2 and ALP. Nanostructured colloidal gelatin gels displayed superior viscoelastic properties over microsphere-based gels in terms of elasticity, injectability, structural integrity, and self-healing behavior upon severe network destruction. In contrast, microstructured colloidal gelatin gels exhibited poor gel strength and integrity, unfavorable injectability, and did not recover after shearing, resulting from the poor gel cohesion due to insufficiently strong interparticle forces. Regarding the capacity for drug delivery, sustained growth factor (BMP-2) release was obtained for both micro- and nanosphere-based gels, the kinetics of which were mainly depending on the particle size of gelatin spheres with the same crosslinking density. Therefore, the optimal gelatin carrier for drug delivery in terms of particle size and crosslinking density still needs to be established for specific clinical indications that require either short-term or long-term release. It can be concluded that nanostructured colloidal gelatin gels show great potential for sustained delivery of therapeutic proteins, whereas microstructured colloidal gelatin gels are not sufficiently cohesive as injectables for biomedical applications. |
---|---|
AbstractList | Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By varying the physicochemical properties of different particle populations, the suitability of colloidal gels for programmed delivery of multiple therapeutic proteins is superior over conventional monolithic gels that lack this strong capacity for controlled drug release. Colloidal gels made of biodegradable polymer micro- or nanospheres have been widely investigated over the past few years, but a direct comparison between micro- vs. nanostructured colloidal gels has not been made yet. Therefore, the current study has compared the viscoelastic properties and capacity for drug release of colloidal gels made of oppositely charged gelatin microspheres vs. nanospheres. Viscoelastic properties of the colloidal gelatin gels were characterized by rheology and simple injectability tests, and in vitro release of two selected osteogenic proteins (i.e. bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP)) from the colloidal gelatin gels was evaluated using radiolabeled BMP-2 and ALP. Nanostructured colloidal gelatin gels displayed superior viscoelastic properties over microsphere-based gels in terms of elasticity, injectability, structural integrity, and self-healing behavior upon severe network destruction. In contrast, microstructured colloidal gelatin gels exhibited poor gel strength and integrity, unfavorable injectability, and did not recover after shearing, resulting from the poor gel cohesion due to insufficiently strong interparticle forces. Regarding the capacity for drug delivery, sustained growth factor (BMP-2) release was obtained for both micro- and nanosphere-based gels, the kinetics of which were mainly depending on the particle size of gelatin spheres with the same crosslinking density. Therefore, the optimal gelatin carrier for drug delivery in terms of particle size and crosslinking density still needs to be established for specific clinical indications that require either short-term or long-term release. It can be concluded that nanostructured colloidal gelatin gels show great potential for sustained delivery of therapeutic proteins, whereas microstructured colloidal gelatin gels are not sufficiently cohesive as injectables for biomedical applications.Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By varying the physicochemical properties of different particle populations, the suitability of colloidal gels for programmed delivery of multiple therapeutic proteins is superior over conventional monolithic gels that lack this strong capacity for controlled drug release. Colloidal gels made of biodegradable polymer micro- or nanospheres have been widely investigated over the past few years, but a direct comparison between micro- vs. nanostructured colloidal gels has not been made yet. Therefore, the current study has compared the viscoelastic properties and capacity for drug release of colloidal gels made of oppositely charged gelatin microspheres vs. nanospheres. Viscoelastic properties of the colloidal gelatin gels were characterized by rheology and simple injectability tests, and in vitro release of two selected osteogenic proteins (i.e. bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP)) from the colloidal gelatin gels was evaluated using radiolabeled BMP-2 and ALP. Nanostructured colloidal gelatin gels displayed superior viscoelastic properties over microsphere-based gels in terms of elasticity, injectability, structural integrity, and self-healing behavior upon severe network destruction. In contrast, microstructured colloidal gelatin gels exhibited poor gel strength and integrity, unfavorable injectability, and did not recover after shearing, resulting from the poor gel cohesion due to insufficiently strong interparticle forces. Regarding the capacity for drug delivery, sustained growth factor (BMP-2) release was obtained for both micro- and nanosphere-based gels, the kinetics of which were mainly depending on the particle size of gelatin spheres with the same crosslinking density. Therefore, the optimal gelatin carrier for drug delivery in terms of particle size and crosslinking density still needs to be established for specific clinical indications that require either short-term or long-term release. It can be concluded that nanostructured colloidal gelatin gels show great potential for sustained delivery of therapeutic proteins, whereas microstructured colloidal gelatin gels are not sufficiently cohesive as injectables for biomedical applications. Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By varying the physicochemical properties of different particle populations, the suitability of colloidal gels for programmed delivery of multiple therapeutic proteins is superior over conventional monolithic gels that lack this strong capacity for controlled drug release. Colloidal gels made of biodegradable polymer micro- or nanospheres have been widely investigated over the past few years, but a direct comparison between micro- vs. nanostructured colloidal gels has not been made yet. Therefore, the current study has compared the viscoelastic properties and capacity for drug release of colloidal gels made of oppositely charged gelatin microspheres vs. nanospheres. Viscoelastic properties of the colloidal gelatin gels were characterized by rheology and simple injectability tests, and in vitro release of two selected osteogenic proteins (i.e. bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP)) from the colloidal gelatin gels was evaluated using radiolabeled BMP-2 and ALP. Nanostructured colloidal gelatin gels displayed superior viscoelastic properties over microsphere-based gels in terms of elasticity, injectability, structural integrity, and self-healing behavior upon severe network destruction. In contrast, microstructured colloidal gelatin gels exhibited poor gel strength and integrity, unfavorable injectability, and did not recover after shearing, resulting from the poor gel cohesion due to insufficiently strong interparticle forces. Regarding the capacity for drug delivery, sustained growth factor (BMP-2) release was obtained for both micro- and nanosphere-based gels, the kinetics of which were mainly depending on the particle size of gelatin spheres with the same crosslinking density. Therefore, the optimal gelatin carrier for drug delivery in terms of particle size and crosslinking density still needs to be established for specific clinical indications that require either short-term or long-term release. It can be concluded that nanostructured colloidal gelatin gels show great potential for sustained delivery of therapeutic proteins, whereas microstructured colloidal gelatin gels are not sufficiently cohesive as injectables for biomedical applications. Abstract Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By varying the physicochemical properties of different particle populations, the suitability of colloidal gels for programmed delivery of multiple therapeutic proteins is superior over conventional monolithic gels that lack this strong capacity for controlled drug release. Colloidal gels made of biodegradable polymer micro- or nanospheres have been widely investigated over the past few years, but a direct comparison between micro- vs. nanostructured colloidal gels has not been made yet. Therefore, the current study has compared the viscoelastic properties and capacity for drug release of colloidal gels made of oppositely charged gelatin microspheres vs. nanospheres. Viscoelastic properties of the colloidal gelatin gels were characterized by rheology and simple injectability tests, and in vitro release of two selected osteogenic proteins (i.e. bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP)) from the colloidal gelatin gels was evaluated using radiolabeled BMP-2 and ALP. Nanostructured colloidal gelatin gels displayed superior viscoelastic properties over microsphere-based gels in terms of elasticity, injectability, structural integrity, and self-healing behavior upon severe network destruction. In contrast, microstructured colloidal gelatin gels exhibited poor gel strength and integrity, unfavorable injectability, and did not recover after shearing, resulting from the poor gel cohesion due to insufficiently strong interparticle forces. Regarding the capacity for drug delivery, sustained growth factor (BMP-2) release was obtained for both micro- and nanosphere-based gels, the kinetics of which were mainly depending on the particle size of gelatin spheres with the same crosslinking density. Therefore, the optimal gelatin carrier for drug delivery in terms of particle size and crosslinking density still needs to be established for specific clinical indications that require either short-term or long-term release. It can be concluded that nanostructured colloidal gelatin gels show great potential for sustained delivery of therapeutic proteins, whereas microstructured colloidal gelatin gels are not sufficiently cohesive as injectables for biomedical applications. Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to assemble into integral scaffolds. To this end, physically crosslinked particulate networks are formed that are injectable yet cohesive. By varying the physicochemical properties of different particle populations, the suitability of colloidal gels for programmed delivery of multiple therapeutic proteins is superior over conventional monolithic gels that lack this strong capacity for controlled drug release. Colloidal gels made of biodegradable polymer micro- or nanospheres have been widely investigated over the past few years, but a direct comparison between micro- vs. nanostructured colloidal gels has not been made yet. Therefore, the current study has compared the viscoelastic properties and capacity for drug release of colloidal gels made of oppositely charged gelatin microspheres vs. nanospheres. Viscoelastic properties of the colloidal gelatin gels were characterized by rheology and simple injectability tests, and in vitro release of two selected osteogenic proteins (i.e. bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP)) from the colloidal gelatin gels was evaluated using radiolabeled BMP-2 and ALP. Nanostructured colloidal gelatin gels displayed superior viscoelastic properties over microsphere-based gels in terms of elasticity, injectability, structural integrity, and self-healing behavior upon severe network destruction. In contrast, microstructured colloidal gelatin gels exhibited poor gel strength and integrity, unfavorable injectability, and did not recover after shearing, resulting from the poor gel cohesion due to insufficiently strong interparticle forces. Regarding the capacity for drug delivery, sustained growth factor (BMP-2) release was obtained for both micro- and nanosphere-based gels, the kinetics of which were mainly depending on the particle size of gelatin spheres with the same crosslinking density. Therefore, the optimal gelatin carrier for drug delivery in terms of particle size and crosslinking density still needs to be established for specific clinical indications that require either short-term or long-term release. It can be concluded that nanostructured colloidal gelatin gels show great potential for sustained delivery of therapeutic proteins, whereas microstructured colloidal gelatin gels are not sufficiently cohesive as injectables for biomedical applications. |
Author | Boerman, Otto C. Wang, Huanan Leeuwenburgh, Sander C.G. Jansen, John A. Sariibrahimoglu, Kemal Li, Yubao |
Author_xml | – sequence: 1 givenname: Huanan surname: Wang fullname: Wang, Huanan organization: Department of Biomaterials, Radboud University Nijmegen Medical Centre, 6525 EX Nijmegen, The Netherlands – sequence: 2 givenname: Otto C. surname: Boerman fullname: Boerman, Otto C. organization: Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands – sequence: 3 givenname: Kemal surname: Sariibrahimoglu fullname: Sariibrahimoglu, Kemal organization: Department of Biomaterials, Radboud University Nijmegen Medical Centre, 6525 EX Nijmegen, The Netherlands – sequence: 4 givenname: Yubao surname: Li fullname: Li, Yubao organization: Research Center for Nano-Biomaterials, Sichuan University, 610064 Chengdu, PR China – sequence: 5 givenname: John A. surname: Jansen fullname: Jansen, John A. organization: Department of Biomaterials, Radboud University Nijmegen Medical Centre, 6525 EX Nijmegen, The Netherlands – sequence: 6 givenname: Sander C.G. surname: Leeuwenburgh fullname: Leeuwenburgh, Sander C.G. email: s.leeuwenburgh@dent.umcn.nl organization: Department of Biomaterials, Radboud University Nijmegen Medical Centre, 6525 EX Nijmegen, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22922022$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS1URKeFV0AWKzYJthPnpwtEO_xKlVjQveXYN60Hxx5sZ6R5Hl4Uh2kFqoSYlWX5nM_33nPP0InzDhB6RUlJCW3ebMrB-EkmCEbaWDJCWUm6krD6CVrRru0K3hN-glaE1qzoG8pO0VmMG5LvpGbP0CljPWOEsRX6ufbTVgYTvcN-xJNRwRd4F0vspPMxhVmlOYDGylvrjZYW34KVybjljHj0Acc5JmlcFmmwZgdhv6CyGfwtOKPwNvgExsULfJU7wZMP27vlCdKfx4Jh6TSW9ru0mYWzIm7vZJIRnqOnY24UXtyf5-jm44eb9efi-uunL-vL60LxvkoFJdASLodR07HXCiQ0kkMle63pAO3Qda3W1VjzqhoI57rjhMm2UQpUPVJZnaPXB2yu6McMMYnJRAXWSgd-joK2lDBaNxX9v5TUpO_ruuVZ-vJeOg8TaLENZpJhLx4iyIJ3B0GefIwBRqFMygP2LgVpbGaJJXWxEX-nLpbUBelETj0jLh4hHn45yvz-YM5xws5AEFEZcAq0CaCS0N4ch3n7CKNyjkblQGEPcePn4BYPFTF7xLdlN5fVpIyQnv6e6dW_AcdW8QvZlADO |
CitedBy_id | crossref_primary_10_1002_admi_201800118 crossref_primary_10_1002_pol_20200138 crossref_primary_10_1016_j_matpr_2021_10_140 crossref_primary_10_1080_00405000_2022_2114283 crossref_primary_10_1002_mabi_201500005 crossref_primary_10_1088_1748_605X_ab0a55 crossref_primary_10_1007_s10856_015_5639_4 crossref_primary_10_1016_j_msec_2016_07_008 crossref_primary_10_1039_D2BM00692H crossref_primary_10_1016_j_jconrel_2014_04_014 crossref_primary_10_4155_tde_14_42 crossref_primary_10_1177_0885328218807358 crossref_primary_10_1021_la4041985 crossref_primary_10_2217_nnm_2019_0180 crossref_primary_10_1016_j_bprint_2024_e00345 crossref_primary_10_3390_molecules25204613 crossref_primary_10_1016_j_jconrel_2012_12_015 crossref_primary_10_1371_journal_pone_0228247 crossref_primary_10_1002_mabi_201600535 crossref_primary_10_1002_jbm_a_35522 crossref_primary_10_1039_C5RA14829D crossref_primary_10_1016_j_eurpolymj_2015_05_014 crossref_primary_10_1002_jbm_a_36077 crossref_primary_10_1016_j_tibtech_2019_12_005 crossref_primary_10_1088_1742_6596_2468_1_012072 crossref_primary_10_1039_C4TB01106F crossref_primary_10_1007_s13770_013_1102_0 crossref_primary_10_1016_j_bioactmat_2022_02_035 crossref_primary_10_1016_j_nano_2017_03_007 crossref_primary_10_1002_mabi_201400094 crossref_primary_10_1186_s12951_022_01559_7 crossref_primary_10_3390_polym16010165 crossref_primary_10_3389_fphar_2024_1398939 crossref_primary_10_1016_j_ijbiomac_2020_01_252 crossref_primary_10_1016_S1672_6529_16_60334_7 crossref_primary_10_1016_j_msec_2015_02_015 crossref_primary_10_1021_acs_chemmater_1c04153 crossref_primary_10_1016_j_colsurfb_2019_110407 crossref_primary_10_1021_acs_iecr_0c05958 crossref_primary_10_1016_j_nano_2015_02_013 crossref_primary_10_1021_acs_chemrev_2c00179 crossref_primary_10_5897_AJMR2014_6926 crossref_primary_10_1179_1743280414Y_0000000045 crossref_primary_10_4012_dmj_2015_227 crossref_primary_10_1002_adhm_201901469 crossref_primary_10_3390_pharmaceutics11070314 crossref_primary_10_1016_j_ijpharm_2018_11_001 crossref_primary_10_3390_membranes11080561 crossref_primary_10_1039_C7BM00975E crossref_primary_10_1039_C9MH00020H crossref_primary_10_1016_j_jddst_2020_101669 crossref_primary_10_2174_1389450124666230605150303 crossref_primary_10_1007_s10529_015_1907_0 crossref_primary_10_1002_adhm_201700612 crossref_primary_10_3389_fvets_2023_1162407 crossref_primary_10_1007_s42242_023_00233_7 crossref_primary_10_1111_bju_13985 crossref_primary_10_1016_j_ijbiomac_2015_02_038 crossref_primary_10_1016_j_actbio_2014_04_021 crossref_primary_10_1016_j_ijbiomac_2015_08_006 crossref_primary_10_1122_1_4880676 crossref_primary_10_12677_acm_2025_151122 crossref_primary_10_3109_03008207_2014_930140 crossref_primary_10_1016_j_biotechadv_2014_04_014 crossref_primary_10_1021_acsbiomaterials_8b01371 crossref_primary_10_1007_s10853_016_9932_5 crossref_primary_10_1049_iet_nbt_2019_0002 crossref_primary_10_1002_adfm_202313155 crossref_primary_10_1016_j_bprint_2023_e00317 crossref_primary_10_1016_j_colsurfa_2018_03_021 crossref_primary_10_1016_j_supflu_2023_105979 crossref_primary_10_1016_j_biomaterials_2017_09_005 crossref_primary_10_1002_adfm_202403118 crossref_primary_10_1002_jbm_b_34056 crossref_primary_10_3390_pharmaceutics15051502 crossref_primary_10_1002_adma_202108430 crossref_primary_10_1002_mabi_202300122 crossref_primary_10_1016_j_actbio_2013_08_036 crossref_primary_10_3390_ma16041364 crossref_primary_10_1177_25158414211058249 crossref_primary_10_3390_cancers13164229 crossref_primary_10_1002_jbm_a_35207 crossref_primary_10_1016_j_colsurfb_2018_05_029 crossref_primary_10_1021_acsami_4c12721 crossref_primary_10_1021_acsnano_4c04969 crossref_primary_10_1002_jbm_b_33599 crossref_primary_10_1002_adfm_201703438 crossref_primary_10_1021_am4038432 crossref_primary_10_1016_j_jconrel_2023_07_034 crossref_primary_10_1021_acs_molpharmaceut_1c00121 crossref_primary_10_1038_s41598_018_37788_w crossref_primary_10_1016_j_jcis_2015_07_062 crossref_primary_10_1002_INMD_20240015 crossref_primary_10_1007_s12551_021_00907_5 crossref_primary_10_3390_biom13020205 crossref_primary_10_1016_j_bioadv_2024_214071 crossref_primary_10_1016_j_biomaterials_2021_120871 crossref_primary_10_1002_adhm_202000895 crossref_primary_10_1016_j_jconrel_2013_09_019 crossref_primary_10_1016_j_actbio_2019_07_057 crossref_primary_10_1002_wnan_1882 crossref_primary_10_1002_smll_202310604 crossref_primary_10_1016_j_msec_2012_12_002 crossref_primary_10_1016_j_drudis_2013_11_007 crossref_primary_10_3390_polym14183849 crossref_primary_10_1016_j_jmbbm_2017_01_032 crossref_primary_10_1088_1758_5090_acab36 crossref_primary_10_1002_biot_202300469 crossref_primary_10_1016_j_amjms_2018_03_010 crossref_primary_10_1177_0883911517690757 crossref_primary_10_1088_2632_959X_abf58e crossref_primary_10_1039_C8NJ01316K crossref_primary_10_3390_nano12193423 crossref_primary_10_1016_j_msec_2021_112343 crossref_primary_10_1021_acsami_6b03454 crossref_primary_10_1177_08839115221149725 crossref_primary_10_1016_j_actbio_2020_04_049 crossref_primary_10_1021_acsami_8b06648 crossref_primary_10_1016_j_jmbbm_2018_11_003 crossref_primary_10_1016_j_actbio_2021_10_053 crossref_primary_10_1021_acs_langmuir_6b03529 crossref_primary_10_1021_acssuschemeng_9b00161 crossref_primary_10_3390_ma10080929 crossref_primary_10_1016_j_electacta_2019_03_145 crossref_primary_10_1016_j_jconrel_2021_08_055 crossref_primary_10_3390_pharmaceutics15051499 crossref_primary_10_1016_j_colsurfb_2018_12_005 crossref_primary_10_1021_acsami_9b01227 crossref_primary_10_1021_acs_biomac_3c00177 crossref_primary_10_1021_acsomega_3c05067 crossref_primary_10_1039_C6RA19915A crossref_primary_10_1016_j_msec_2018_06_038 crossref_primary_10_1016_j_actbio_2019_01_060 crossref_primary_10_1016_j_ijbiomac_2024_133590 crossref_primary_10_1016_j_jmst_2022_07_008 crossref_primary_10_3390_nano10102019 crossref_primary_10_1016_j_ijbiomac_2017_05_054 crossref_primary_10_1021_acsbiomaterials_3c00672 |
Cites_doi | 10.1016/j.biomaterials.2010.04.053 10.1016/j.jconrel.2004.08.010 10.1016/j.spinee.2011.04.023 10.1016/j.ejpb.2008.05.013 10.1016/j.jconrel.2004.11.016 10.3390/polym3031036 10.1016/j.jconrel.2005.09.005 10.1007/s11095-008-9685-1 10.1002/jbm.a.34009 10.1039/c0sm00642d 10.1016/j.addr.2007.08.038 10.1002/adma.200802009 10.1039/c0jm00338g 10.1016/j.addr.2006.09.004 10.1016/j.addr.2012.03.003 10.1039/b814285h 10.1016/j.ijpharm.2004.03.024 10.1021/bm700931q 10.1021/nn100869j 10.1016/j.biomaterials.2004.05.035 10.1021/bm7013203 10.1089/ten.teb.2011.0184 10.1016/j.actbio.2008.04.002 10.1016/0006-291X(78)91322-0 10.1016/j.biomaterials.2010.02.052 10.1016/j.jconrel.2005.09.023 10.1016/j.biomaterials.2010.05.016 10.1021/bm1006344 10.1002/adma.200802106 10.1016/S0168-3659(03)00258-X 10.1039/b819321p 10.1126/science.1067404 10.1089/ten.tea.2007.0346 10.1007/s10529-009-0099-x 10.1002/adma.200702099 10.1002/smll.200900358 10.1016/j.biomaterials.2007.07.021 10.1002/adma.200390047 10.1002/(SICI)1097-4636(200007)51:1<136::AID-JBM18>3.0.CO;2-W 10.1016/j.biomaterials.2004.10.005 10.1073/pnas.0701980104 10.1016/j.addr.2007.03.013 10.3109/02652040309178087 10.22203/eCM.v020a01 10.1016/S0169-409X(97)00125-7 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd Elsevier Ltd Copyright © 2012 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2012 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biomaterials.2012.08.024 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 8703 |
ExternalDocumentID | 22922022 10_1016_j_biomaterials_2012_08_024 S0142961212009131 1_s2_0_S0142961212009131 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c593t-10e705abfd1f9dceae6a5e3a9dd1be7b887dd3f4533b055d8502a76ccec4f1a3 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Sun Aug 24 04:00:59 EDT 2025 Thu Jul 10 18:23:40 EDT 2025 Mon Jul 21 06:04:44 EDT 2025 Tue Jul 01 03:47:35 EDT 2025 Thu Apr 24 22:56:39 EDT 2025 Fri Feb 23 02:23:09 EST 2024 Sun Feb 23 10:19:01 EST 2025 Tue Aug 26 17:18:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | Controlled delivery Nanosphere Self-healing Microsphere Gelatin Colloidal gels |
Language | English |
License | Copyright © 2012 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c593t-10e705abfd1f9dceae6a5e3a9dd1be7b887dd3f4533b055d8502a76ccec4f1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22922022 |
PQID | 1040994475 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1710214631 proquest_miscellaneous_1040994475 pubmed_primary_22922022 crossref_citationtrail_10_1016_j_biomaterials_2012_08_024 crossref_primary_10_1016_j_biomaterials_2012_08_024 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2012_08_024 elsevier_clinicalkeyesjournals_1_s2_0_S0142961212009131 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2012_08_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-01 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gan, Guan, Zhang (bib15) 2010; 20 Haines-Butterick, Rajagopal, Branco, Salick, Rughani, Pilarz (bib37) 2007; 104 Fan, Zhang, Li, Bi, Qin, Wu (bib30) 2008; 9 DeVolder, Kong (bib14) 2010; 31 Haidar, Hamdy, Tabrizian (bib45) 2009; 31 Wang, Wang, Detamore, Berkland (bib11) 2008; 20 Van Tomme, De Geest, Braeckmans, De Smedt, Siepmann, Siepmann (bib13) 2005; 110 Hench, Polak (bib1) 2002; 295 Patel, Ueda, Yamamoto, Tabata, Mikos (bib27) 2008; 25 Khademhosseini, Langer (bib2) 2007; 28 Kuijpers, van Wachem, van Luyn, Plantinga, Engbers, Krijgsveld (bib23) 2000; 51 Leeuwenburgh, Jo, Wang, Yamamoto, Jansen, Tabata (bib25) 2010; 11 Van Tomme, Van Steenbergen, De Smedt, van Nostrum, Hennink (bib31) 2005; 26 Holland, Tabata, Mikos (bib35) 2003; 91 Kretlow, Young, Klouda, Wong, Mikos (bib4) 2009; 21 Bohner (bib40) 2010; 20 Sariibrahimoglu, Leeuwenburgh, Wolke, Yubao, Jansen (bib38) 2012; 100A Carragee, Hurwitz, Weiner (bib6) 2011; 11 Van Tomme, van Nostrum, Dijkstra, De Smedt, Hennink (bib32) 2008; 70 Agnihotri, Mallikarjuna, Aminabhavi (bib17) 2004; 100 Mwangi, Ofner Iii (bib36) 2004; 278 Nichol, Khademhosseini (bib8) 2009; 5 Chen, Zhang, Wu (bib44) 2010; 31 Yan, Altunbas, Yucel, Nagarkar, Schneider, Pochan (bib12) 2010; 6 Tabata, Ikada (bib21) 1998; 31 Young, Wong, Tabata, Mikos (bib26) 2005; 109 Grzelczak, Vermant, Furst, Liz-Marzan (bib9) 2010; 4 Slaughter, Khurshid, Fisher, Khademhosseini, Peppas (bib5) 2009; 21 Xia, Hu, Marquez (bib46) 2005; 103 Bishop, Wilmer, Soh, Grzybowski (bib33) 2009; 5 Ji, Wang, van den Beucken, Yang, Walboomers, Leeuwenburgh (bib47) 2012; 64 Balakrishnan, Jayakrishnan (bib22) 2005; 26 Wang, Hansen, Löwik, van Hest, Li, Jansen (bib10) 2011; 23 Wang, Wang, Lu, Detamore, Berkland (bib19) 2010; 31 Schrieber, Gareis (bib24) 2007 Bradley, Lazim, Eastoe (bib7) 2011; 3 Grzybowski, Wilmer, Kim, Browne, Bishop (bib41) 2009; 5 Lin, Metters (bib43) 2006; 58 Wang, Leeuwenburgh, Li, Jansen (bib20) 2012; 18 Biondi, Ungaro, Quaglia, Netti (bib18) 2008; 60 Iwanaga, Yabuta, Kakemi, Morimoto, Tabata, Ikada (bib34) 2003; 20 Kretlow, Klouda, Mikos (bib3) 2007; 59 Patel, Yamamoto, Ueda, Tabata, Mikos (bib28) 2008; 4 Salem, Rose, Oreffo, Yang, Davies, Mitchell (bib16) 2003; 15 Van Tomme, Mens, van Nostrum, Hennink (bib42) 2007; 9 Zhu, Tabata, Wang, Tong (bib29) 2008; 14 Fraker, Speck (bib39) 1978; 80 Yan (10.1016/j.biomaterials.2012.08.024_bib12) 2010; 6 Van Tomme (10.1016/j.biomaterials.2012.08.024_bib13) 2005; 110 Van Tomme (10.1016/j.biomaterials.2012.08.024_bib42) 2007; 9 Gan (10.1016/j.biomaterials.2012.08.024_bib15) 2010; 20 Lin (10.1016/j.biomaterials.2012.08.024_bib43) 2006; 58 Nichol (10.1016/j.biomaterials.2012.08.024_bib8) 2009; 5 Grzelczak (10.1016/j.biomaterials.2012.08.024_bib9) 2010; 4 Young (10.1016/j.biomaterials.2012.08.024_bib26) 2005; 109 Schrieber (10.1016/j.biomaterials.2012.08.024_bib24) 2007 Chen (10.1016/j.biomaterials.2012.08.024_bib44) 2010; 31 Holland (10.1016/j.biomaterials.2012.08.024_bib35) 2003; 91 Wang (10.1016/j.biomaterials.2012.08.024_bib20) 2012; 18 Salem (10.1016/j.biomaterials.2012.08.024_bib16) 2003; 15 Patel (10.1016/j.biomaterials.2012.08.024_bib27) 2008; 25 Tabata (10.1016/j.biomaterials.2012.08.024_bib21) 1998; 31 Fan (10.1016/j.biomaterials.2012.08.024_bib30) 2008; 9 Van Tomme (10.1016/j.biomaterials.2012.08.024_bib31) 2005; 26 Khademhosseini (10.1016/j.biomaterials.2012.08.024_bib2) 2007; 28 Biondi (10.1016/j.biomaterials.2012.08.024_bib18) 2008; 60 Leeuwenburgh (10.1016/j.biomaterials.2012.08.024_bib25) 2010; 11 Kretlow (10.1016/j.biomaterials.2012.08.024_bib3) 2007; 59 Sariibrahimoglu (10.1016/j.biomaterials.2012.08.024_bib38) 2012; 100A Wang (10.1016/j.biomaterials.2012.08.024_bib10) 2011; 23 Bradley (10.1016/j.biomaterials.2012.08.024_bib7) 2011; 3 Kuijpers (10.1016/j.biomaterials.2012.08.024_bib23) 2000; 51 Fraker (10.1016/j.biomaterials.2012.08.024_bib39) 1978; 80 Mwangi (10.1016/j.biomaterials.2012.08.024_bib36) 2004; 278 Slaughter (10.1016/j.biomaterials.2012.08.024_bib5) 2009; 21 Bishop (10.1016/j.biomaterials.2012.08.024_bib33) 2009; 5 Wang (10.1016/j.biomaterials.2012.08.024_bib11) 2008; 20 Agnihotri (10.1016/j.biomaterials.2012.08.024_bib17) 2004; 100 Haines-Butterick (10.1016/j.biomaterials.2012.08.024_bib37) 2007; 104 Balakrishnan (10.1016/j.biomaterials.2012.08.024_bib22) 2005; 26 Grzybowski (10.1016/j.biomaterials.2012.08.024_bib41) 2009; 5 Hench (10.1016/j.biomaterials.2012.08.024_bib1) 2002; 295 Ji (10.1016/j.biomaterials.2012.08.024_bib47) 2012; 64 Patel (10.1016/j.biomaterials.2012.08.024_bib28) 2008; 4 Kretlow (10.1016/j.biomaterials.2012.08.024_bib4) 2009; 21 Carragee (10.1016/j.biomaterials.2012.08.024_bib6) 2011; 11 DeVolder (10.1016/j.biomaterials.2012.08.024_bib14) 2010; 31 Wang (10.1016/j.biomaterials.2012.08.024_bib19) 2010; 31 Zhu (10.1016/j.biomaterials.2012.08.024_bib29) 2008; 14 Bohner (10.1016/j.biomaterials.2012.08.024_bib40) 2010; 20 Xia (10.1016/j.biomaterials.2012.08.024_bib46) 2005; 103 Van Tomme (10.1016/j.biomaterials.2012.08.024_bib32) 2008; 70 Iwanaga (10.1016/j.biomaterials.2012.08.024_bib34) 2003; 20 Haidar (10.1016/j.biomaterials.2012.08.024_bib45) 2009; 31 |
References_xml | – volume: 31 start-page: 287 year: 1998 end-page: 301 ident: bib21 article-title: Protein release from gelatin matrices publication-title: Adv Drug Deliv Rev – volume: 104 start-page: 7791 year: 2007 end-page: 7796 ident: bib37 article-title: Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells publication-title: Proc Natl Acad Sci USA – year: 2007 ident: bib24 article-title: Gelatine handbook: theory and industrial practice – volume: 64 start-page: 1152 year: 2012 end-page: 1164 ident: bib47 article-title: Local delivery of small and large biomolecules in craniomaxillofacial bone publication-title: Adv Drug Deliv Rev – volume: 6 start-page: 5143 year: 2010 end-page: 5156 ident: bib12 article-title: Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable beta-hairpin peptide hydrogels publication-title: Soft Matter – volume: 31 start-page: 6494 year: 2010 end-page: 6501 ident: bib14 article-title: Three dimensionally flocculated proangiogenic microgels for neovascularization publication-title: Biomaterials – volume: 109 start-page: 256 year: 2005 end-page: 274 ident: bib26 article-title: Gelatin as a delivery vehicle for the controlled release of bioactive molecules publication-title: J Control Release – volume: 20 start-page: 767 year: 2003 end-page: 776 ident: bib34 article-title: Usefulness of microspheres composed of gelatin with various cross-linking density publication-title: J Microencapsulation – volume: 5 start-page: 1110 year: 2009 end-page: 1128 ident: bib41 article-title: Self-assembly: from crystals to cells publication-title: Soft Matter – volume: 20 start-page: 1 year: 2010 end-page: 12 ident: bib40 article-title: Design of ceramic-based cements and putties for bone graft substitution publication-title: Eur Cells Mater – volume: 9 start-page: 927 year: 2008 end-page: 934 ident: bib30 article-title: Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture publication-title: Biomacromolecules – volume: 4 start-page: 1126 year: 2008 end-page: 1138 ident: bib28 article-title: Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2 publication-title: Acta Biomater – volume: 9 start-page: 158 year: 2007 end-page: 165 ident: bib42 article-title: Macroscopic hydrogels by self-assembly of oligolactate-grafted dextran microspheres publication-title: Biomacromolecules – volume: 58 start-page: 1379 year: 2006 end-page: 1408 ident: bib43 article-title: Hydrogels in controlled release formulations: network design and mathematical modeling publication-title: Adv Drug Deliv Rev – volume: 59 start-page: 263 year: 2007 end-page: 273 ident: bib3 article-title: Injectable matrices and scaffolds for drug delivery in tissue engineering publication-title: Adv Drug Deliv Rev – volume: 26 start-page: 2129 year: 2005 end-page: 2135 ident: bib31 article-title: Self-gelling hydrogels based on oppositely charged dextran microspheres publication-title: Biomaterials – volume: 25 start-page: 2370 year: 2008 end-page: 2378 ident: bib27 article-title: In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds publication-title: Pharm Res – volume: 5 start-page: 1600 year: 2009 end-page: 1630 ident: bib33 article-title: Nanoscale forces and their uses in self-assembly publication-title: Small – volume: 31 start-page: 4980 year: 2010 end-page: 4986 ident: bib19 article-title: Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects publication-title: Biomaterials – volume: 295 start-page: 1014 year: 2002 end-page: 1017 ident: bib1 article-title: Third-generation biomedical materials publication-title: Science – volume: 100 start-page: 5 year: 2004 end-page: 28 ident: bib17 article-title: Recent advances on chitosan-based micro- and nanoparticles in drug delivery publication-title: J Control Release – volume: 100A start-page: 712 year: 2012 end-page: 719 ident: bib38 article-title: Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements publication-title: J Biomed Mater Res Part A – volume: 70 start-page: 522 year: 2008 end-page: 530 ident: bib32 article-title: Effect of particle size and charge on the network properties of microsphere-based hydrogels publication-title: Eur J Pharm Biopharm – volume: 60 start-page: 229 year: 2008 end-page: 242 ident: bib18 article-title: Controlled drug delivery in tissue engineering publication-title: Adv Drug Deliv Rev – volume: 20 start-page: 5937 year: 2010 end-page: 5944 ident: bib15 article-title: Thermogelable PNIPAM microgel dispersion as 3D cell scaffold: effect of syneresis publication-title: J Mater Chem – volume: 31 start-page: 1817 year: 2009 end-page: 1824 ident: bib45 article-title: Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: current challenges in BMP delivery publication-title: Biotechnol Lett – volume: 20 start-page: 236 year: 2008 end-page: 239 ident: bib11 article-title: Biodegradable colloidal gels as moldable tissue engineering scaffolds publication-title: Adv Mater – volume: 11 start-page: 2653 year: 2010 end-page: 2659 ident: bib25 article-title: Mineralization, biodegradation, and drug release behavior of gelatin/apatite composite microspheres for bone regeneration publication-title: Biomacromolecules – volume: 31 start-page: 6279 year: 2010 end-page: 6308 ident: bib44 article-title: Toward delivery of multiple growth factors in tissue engineering publication-title: Biomaterials – volume: 18 start-page: 24 year: 2012 end-page: 39 ident: bib20 article-title: The use of micro- and nanospheres as functional components for bone tissue regeneration publication-title: Tissue Eng Part B – volume: 4 start-page: 3591 year: 2010 end-page: 3605 ident: bib9 article-title: Directed self-assembly of nanoparticles publication-title: ACS Nano – volume: 51 start-page: 136 year: 2000 end-page: 145 ident: bib23 article-title: In vivo compatibility and degradation of crosslinked gelatin gels incorporated in knitted Dacron publication-title: J Biomed Mater Res – volume: 26 start-page: 3941 year: 2005 end-page: 3951 ident: bib22 article-title: Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds publication-title: Biomaterials – volume: 103 start-page: 21 year: 2005 end-page: 30 ident: bib46 article-title: Physically bonded nanoparticle networks: a novel drug delivery system publication-title: J Control Release – volume: 14 start-page: 1939 year: 2008 end-page: 1947 ident: bib29 article-title: Delivery of basic fibroblast growth factor from gelatin microsphere scaffold for the growth of human umbilical vein endothelial cells publication-title: Tissue Eng Part A – volume: 278 start-page: 319 year: 2004 end-page: 327 ident: bib36 article-title: Crosslinked gelatin matrices: release of a random coil macromolecular solute publication-title: Int J Pharmaceut – volume: 11 start-page: 471 year: 2011 end-page: 491 ident: bib6 article-title: A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned publication-title: Spine – volume: 110 start-page: 67 year: 2005 end-page: 78 ident: bib13 article-title: Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching publication-title: J Control Release – volume: 80 start-page: 849 year: 1978 end-page: 857 ident: bib39 article-title: Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril publication-title: Biochem Biophys Res Commun – volume: 3 start-page: 1036 year: 2011 end-page: 1050 ident: bib7 article-title: Stimulus-responsive heteroaggregation of colloidal dispersions: reversible systems and composite materials publication-title: Polymer – volume: 15 start-page: 210 year: 2003 end-page: 213 ident: bib16 article-title: Porous polymer and cell composites that self-assemble in situ publication-title: Adv Mater – volume: 21 start-page: 3307 year: 2009 end-page: 3329 ident: bib5 article-title: Hydrogels in regenerative medicine publication-title: Adv Mater – volume: 5 start-page: 1312 year: 2009 end-page: 1313 ident: bib8 article-title: Modular tissue engineering: engineering biological tissues from the bottom up publication-title: Soft Matter – volume: 23 start-page: H119 year: 2011 end-page: H124 ident: bib10 article-title: Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels publication-title: Adv Mater – volume: 28 start-page: 5087 year: 2007 end-page: 5092 ident: bib2 article-title: Microengineered hydrogels for tissue engineering publication-title: Biomaterials – volume: 91 start-page: 299 year: 2003 end-page: 313 ident: bib35 article-title: In vitro release of transforming growth factor-β1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels publication-title: J Control Release – volume: 21 start-page: 3368 year: 2009 end-page: 3393 ident: bib4 article-title: Injectable biomaterials for regenerating complex craniofacial tissues publication-title: Adv Mater – volume: 31 start-page: 6279 year: 2010 ident: 10.1016/j.biomaterials.2012.08.024_bib44 article-title: Toward delivery of multiple growth factors in tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.04.053 – volume: 100 start-page: 5 year: 2004 ident: 10.1016/j.biomaterials.2012.08.024_bib17 article-title: Recent advances on chitosan-based micro- and nanoparticles in drug delivery publication-title: J Control Release doi: 10.1016/j.jconrel.2004.08.010 – volume: 11 start-page: 471 year: 2011 ident: 10.1016/j.biomaterials.2012.08.024_bib6 article-title: A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned publication-title: Spine doi: 10.1016/j.spinee.2011.04.023 – volume: 70 start-page: 522 year: 2008 ident: 10.1016/j.biomaterials.2012.08.024_bib32 article-title: Effect of particle size and charge on the network properties of microsphere-based hydrogels publication-title: Eur J Pharm Biopharm doi: 10.1016/j.ejpb.2008.05.013 – volume: 103 start-page: 21 year: 2005 ident: 10.1016/j.biomaterials.2012.08.024_bib46 article-title: Physically bonded nanoparticle networks: a novel drug delivery system publication-title: J Control Release doi: 10.1016/j.jconrel.2004.11.016 – volume: 3 start-page: 1036 year: 2011 ident: 10.1016/j.biomaterials.2012.08.024_bib7 article-title: Stimulus-responsive heteroaggregation of colloidal dispersions: reversible systems and composite materials publication-title: Polymer doi: 10.3390/polym3031036 – volume: 23 start-page: H119 year: 2011 ident: 10.1016/j.biomaterials.2012.08.024_bib10 article-title: Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels publication-title: Adv Mater – volume: 110 start-page: 67 year: 2005 ident: 10.1016/j.biomaterials.2012.08.024_bib13 article-title: Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching publication-title: J Control Release doi: 10.1016/j.jconrel.2005.09.005 – volume: 25 start-page: 2370 year: 2008 ident: 10.1016/j.biomaterials.2012.08.024_bib27 article-title: In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds publication-title: Pharm Res doi: 10.1007/s11095-008-9685-1 – volume: 100A start-page: 712 year: 2012 ident: 10.1016/j.biomaterials.2012.08.024_bib38 article-title: Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements publication-title: J Biomed Mater Res Part A doi: 10.1002/jbm.a.34009 – volume: 6 start-page: 5143 year: 2010 ident: 10.1016/j.biomaterials.2012.08.024_bib12 article-title: Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable beta-hairpin peptide hydrogels publication-title: Soft Matter doi: 10.1039/c0sm00642d – volume: 60 start-page: 229 year: 2008 ident: 10.1016/j.biomaterials.2012.08.024_bib18 article-title: Controlled drug delivery in tissue engineering publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2007.08.038 – volume: 21 start-page: 3368 year: 2009 ident: 10.1016/j.biomaterials.2012.08.024_bib4 article-title: Injectable biomaterials for regenerating complex craniofacial tissues publication-title: Adv Mater doi: 10.1002/adma.200802009 – volume: 20 start-page: 5937 year: 2010 ident: 10.1016/j.biomaterials.2012.08.024_bib15 article-title: Thermogelable PNIPAM microgel dispersion as 3D cell scaffold: effect of syneresis publication-title: J Mater Chem doi: 10.1039/c0jm00338g – volume: 58 start-page: 1379 year: 2006 ident: 10.1016/j.biomaterials.2012.08.024_bib43 article-title: Hydrogels in controlled release formulations: network design and mathematical modeling publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2006.09.004 – volume: 64 start-page: 1152 year: 2012 ident: 10.1016/j.biomaterials.2012.08.024_bib47 article-title: Local delivery of small and large biomolecules in craniomaxillofacial bone publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2012.03.003 – volume: 5 start-page: 1312 year: 2009 ident: 10.1016/j.biomaterials.2012.08.024_bib8 article-title: Modular tissue engineering: engineering biological tissues from the bottom up publication-title: Soft Matter doi: 10.1039/b814285h – volume: 278 start-page: 319 year: 2004 ident: 10.1016/j.biomaterials.2012.08.024_bib36 article-title: Crosslinked gelatin matrices: release of a random coil macromolecular solute publication-title: Int J Pharmaceut doi: 10.1016/j.ijpharm.2004.03.024 – volume: 9 start-page: 158 year: 2007 ident: 10.1016/j.biomaterials.2012.08.024_bib42 article-title: Macroscopic hydrogels by self-assembly of oligolactate-grafted dextran microspheres publication-title: Biomacromolecules doi: 10.1021/bm700931q – volume: 4 start-page: 3591 year: 2010 ident: 10.1016/j.biomaterials.2012.08.024_bib9 article-title: Directed self-assembly of nanoparticles publication-title: ACS Nano doi: 10.1021/nn100869j – volume: 26 start-page: 2129 year: 2005 ident: 10.1016/j.biomaterials.2012.08.024_bib31 article-title: Self-gelling hydrogels based on oppositely charged dextran microspheres publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.05.035 – volume: 9 start-page: 927 year: 2008 ident: 10.1016/j.biomaterials.2012.08.024_bib30 article-title: Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture publication-title: Biomacromolecules doi: 10.1021/bm7013203 – volume: 18 start-page: 24 year: 2012 ident: 10.1016/j.biomaterials.2012.08.024_bib20 article-title: The use of micro- and nanospheres as functional components for bone tissue regeneration publication-title: Tissue Eng Part B doi: 10.1089/ten.teb.2011.0184 – volume: 4 start-page: 1126 year: 2008 ident: 10.1016/j.biomaterials.2012.08.024_bib28 article-title: Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2 publication-title: Acta Biomater doi: 10.1016/j.actbio.2008.04.002 – volume: 80 start-page: 849 year: 1978 ident: 10.1016/j.biomaterials.2012.08.024_bib39 article-title: Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril publication-title: Biochem Biophys Res Commun doi: 10.1016/0006-291X(78)91322-0 – volume: 31 start-page: 4980 year: 2010 ident: 10.1016/j.biomaterials.2012.08.024_bib19 article-title: Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.02.052 – volume: 109 start-page: 256 year: 2005 ident: 10.1016/j.biomaterials.2012.08.024_bib26 article-title: Gelatin as a delivery vehicle for the controlled release of bioactive molecules publication-title: J Control Release doi: 10.1016/j.jconrel.2005.09.023 – volume: 31 start-page: 6494 year: 2010 ident: 10.1016/j.biomaterials.2012.08.024_bib14 article-title: Three dimensionally flocculated proangiogenic microgels for neovascularization publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.05.016 – volume: 11 start-page: 2653 year: 2010 ident: 10.1016/j.biomaterials.2012.08.024_bib25 article-title: Mineralization, biodegradation, and drug release behavior of gelatin/apatite composite microspheres for bone regeneration publication-title: Biomacromolecules doi: 10.1021/bm1006344 – volume: 21 start-page: 3307 year: 2009 ident: 10.1016/j.biomaterials.2012.08.024_bib5 article-title: Hydrogels in regenerative medicine publication-title: Adv Mater doi: 10.1002/adma.200802106 – volume: 91 start-page: 299 year: 2003 ident: 10.1016/j.biomaterials.2012.08.024_bib35 article-title: In vitro release of transforming growth factor-β1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels publication-title: J Control Release doi: 10.1016/S0168-3659(03)00258-X – volume: 5 start-page: 1110 year: 2009 ident: 10.1016/j.biomaterials.2012.08.024_bib41 article-title: Self-assembly: from crystals to cells publication-title: Soft Matter doi: 10.1039/b819321p – volume: 295 start-page: 1014 year: 2002 ident: 10.1016/j.biomaterials.2012.08.024_bib1 article-title: Third-generation biomedical materials publication-title: Science doi: 10.1126/science.1067404 – volume: 14 start-page: 1939 year: 2008 ident: 10.1016/j.biomaterials.2012.08.024_bib29 article-title: Delivery of basic fibroblast growth factor from gelatin microsphere scaffold for the growth of human umbilical vein endothelial cells publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2007.0346 – volume: 31 start-page: 1817 year: 2009 ident: 10.1016/j.biomaterials.2012.08.024_bib45 article-title: Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: current challenges in BMP delivery publication-title: Biotechnol Lett doi: 10.1007/s10529-009-0099-x – volume: 20 start-page: 236 year: 2008 ident: 10.1016/j.biomaterials.2012.08.024_bib11 article-title: Biodegradable colloidal gels as moldable tissue engineering scaffolds publication-title: Adv Mater doi: 10.1002/adma.200702099 – volume: 5 start-page: 1600 year: 2009 ident: 10.1016/j.biomaterials.2012.08.024_bib33 article-title: Nanoscale forces and their uses in self-assembly publication-title: Small doi: 10.1002/smll.200900358 – volume: 28 start-page: 5087 year: 2007 ident: 10.1016/j.biomaterials.2012.08.024_bib2 article-title: Microengineered hydrogels for tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.07.021 – volume: 15 start-page: 210 year: 2003 ident: 10.1016/j.biomaterials.2012.08.024_bib16 article-title: Porous polymer and cell composites that self-assemble in situ publication-title: Adv Mater doi: 10.1002/adma.200390047 – volume: 51 start-page: 136 year: 2000 ident: 10.1016/j.biomaterials.2012.08.024_bib23 article-title: In vivo compatibility and degradation of crosslinked gelatin gels incorporated in knitted Dacron publication-title: J Biomed Mater Res doi: 10.1002/(SICI)1097-4636(200007)51:1<136::AID-JBM18>3.0.CO;2-W – year: 2007 ident: 10.1016/j.biomaterials.2012.08.024_bib24 – volume: 26 start-page: 3941 year: 2005 ident: 10.1016/j.biomaterials.2012.08.024_bib22 article-title: Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.10.005 – volume: 104 start-page: 7791 year: 2007 ident: 10.1016/j.biomaterials.2012.08.024_bib37 article-title: Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0701980104 – volume: 59 start-page: 263 year: 2007 ident: 10.1016/j.biomaterials.2012.08.024_bib3 article-title: Injectable matrices and scaffolds for drug delivery in tissue engineering publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2007.03.013 – volume: 20 start-page: 767 year: 2003 ident: 10.1016/j.biomaterials.2012.08.024_bib34 article-title: Usefulness of microspheres composed of gelatin with various cross-linking density publication-title: J Microencapsulation doi: 10.3109/02652040309178087 – volume: 20 start-page: 1 year: 2010 ident: 10.1016/j.biomaterials.2012.08.024_bib40 article-title: Design of ceramic-based cements and putties for bone graft substitution publication-title: Eur Cells Mater doi: 10.22203/eCM.v020a01 – volume: 31 start-page: 287 year: 1998 ident: 10.1016/j.biomaterials.2012.08.024_bib21 article-title: Protein release from gelatin matrices publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(97)00125-7 |
SSID | ssj0014042 |
Score | 2.473423 |
Snippet | Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building blocks to... Abstract Colloidal gels have recently emerged as a promising new class of materials for regenerative medicine by employing micro- and nanospheres as building... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8695 |
SubjectTerms | Advanced Basic Science alkaline phosphatase Alkaline Phosphatase - administration & dosage Alkaline Phosphatase - chemistry biodegradability biopharmaceuticals Bone Morphogenetic Protein 2 - administration & dosage Bone Morphogenetic Protein 2 - chemistry cohesion Colloidal gels colloidal properties Controlled delivery crosslinking Dentistry drug carriers gel strength Gelatin Gelatin - chemistry medicine Microsphere Microspheres Nanosphere Nanospheres Nanostructures - chemistry particle size polymers radiolabeling rheology Self-healing viscoelasticity |
Title | Comparison of micro- vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: Bone morphogenetic protein-2 and alkaline phosphatase |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961212009131 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961212009131 https://dx.doi.org/10.1016/j.biomaterials.2012.08.024 https://www.ncbi.nlm.nih.gov/pubmed/22922022 https://www.proquest.com/docview/1040994475 https://www.proquest.com/docview/1710214631 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF9KC6IPUutHr2pZwdf0ks1u0lV8qIflVNqnCn1b9isae90c5lrwxX_Gf9SZbBIqWjnwKSSZSYbMZGaS_c0MIS8rn1qZFzaB4MYTruFzRxpxmJQGvnBNhcuE-EP_5LSYf-IfzsX5BpkNtTAIq-x9f_Tpnbfuj0z7pzld1vUUYUlMYgMs_MGfdbXUnJdo5Qc_RpgHdo9hEcYIUgD10Hi0w3hhibteRVUjzIt17TwZvy1I3ZaEdsHoeJvc77NIehQFfUA2fNgh9270Ftwhd076VfOH5OdsHDZIm4peIgYvodftAQ06NLGD7NU37ygaRVM7uPLnDiMXcNtSyGtpGwutgMj5BWI5vuOlsEKkAROsLe0aPtShfUXfNsHTywYUiKewSHI4mTCqg6N6caExu6VA0S6_6BVE0kfk7Pjd2Wye9MMZEitkvgL37ctUaFO5rJLOeu0LLXyupXOZ8aUB5-VcXnFIJ00qhDsUKdNlYa23vMp0_phsBhBnl1ApcieZk05bD-ljanhR6KLEYndZWFdOiByUoWzfuBznZyzUgFD7qm4qUqEiFQ7XZHxC8pF3Gdt3rMX1etC5GgpUwaUqiDJrcZd_4_Zt7x1alakWiNUfFjwhb0bO316Cte_8YjBQBV4Cl3508M0V3BF8tZTY3PEfNGUc845yPInWPT4zxiRjkO7t_aeET8ld3IvFnM_IJli4fw5Z3crsd6_tPtk6ev9xfvoL_ihSSw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VVgJ6QKVQWH6NBMd0E-dvDeoBCtWWdntapN4sx3YgsE1WZFvUCy_DG_CEzMRJVARFK6GeVlp7HMcznhnH38wAPM-tr0WYaA-NW-RFCo87IotHXprhCTfL6ZqQPuhPjpLxh-j9cXy8Aj-7WBiCVba63-n0Rlu3_wzb1RzOi2JIsCQuKAEWfeAPwqBFVh7Y8294bqt39t8ik19wvvduujv22tICno5FuEDlY1M_VlluglwYbZVNVGxDJYwJMptmuPWMCfMInaHMj2Mzin2u0kRrq6M8UCEOew3WsHlEVRO2v_ewEspWwx1sEt8aZ9clOm0wZRRSrxZOtAhWxpv0oTy6zChe5vQ2xm9vA261Xit77RbmNqzYchPWL-Qy3ITrk_aW_g782O2LG7IqZyeE-fPYWb3NSlVWLmPt6VdrGAlhVRgc-WODySvpt2boR7PaBXZhJ2NnhB05p6EoIqVCkS80axJMFGX9kr2pSstOKhQYaqKgzK7R40yVhqnZF0XeNMMe9fyTWqDlvgvTq-DYFqyWOJ37wEQcGsGNMEpbdFf9LEoSlaQUXC8SbdIBiI4ZUreJ0qlex0x2iLjP8iIjJTFSUjFPHg0g7GnnLl3IUlSvOp7LLiAWVbhEq7YUdfo3alu32qiWgayxs_xjxwxgp6f8bdMt_eRnnYBK1Ep01aRKW53iE9E2CEHJJP_RJ3Vl5Wke95x092vGueAc3csH_znDp3BjPJ0cysP9o4OHcJNaXCDpI1hFabeP0aNcZE-aLcxAXrHK-AU_jI_b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+micro-+vs.+nanostructured+colloidal+gelatin+gels+for+sustained+delivery+of+osteogenic+proteins%3A+Bone+morphogenetic+protein-2+and+alkaline+phosphatase&rft.jtitle=Biomaterials&rft.au=Wang%2C+Huanan&rft.au=Boerman%2C+Otto+C&rft.au=Sariibrahimoglu%2C+Kemal&rft.au=Li%2C+Yubao&rft.date=2012-11-01&rft.issn=0142-9612&rft.volume=33&rft.issue=33+p.8695-8703&rft.spage=8695&rft.epage=8703&rft_id=info:doi/10.1016%2Fj.biomaterials.2012.08.024&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961212X00279%2Fcov150h.gif |