Auditory function in normal-hearing, noise-exposed human ears

To determine whether suprathreshold measures of auditory function, such as distortion-product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs), are correlated with noise exposure history in normal-hearing human ears. Recent data from animal studies have revealed significant dea...

Full description

Saved in:
Bibliographic Details
Published inEar and hearing Vol. 36; no. 2; p. 172
Main Authors Stamper, Greta C, Johnson, Tiffany A
Format Journal Article
LanguageEnglish
Published United States 01.03.2015
Subjects
Online AccessGet more information
ISSN1538-4667
DOI10.1097/AUD.0000000000000107

Cover

Loading…
Abstract To determine whether suprathreshold measures of auditory function, such as distortion-product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs), are correlated with noise exposure history in normal-hearing human ears. Recent data from animal studies have revealed significant deafferentation of auditory nerve fibers after full recovery from temporary noise-induced hearing loss. Furthermore, these data report smaller ABR wave I amplitudes in noise-exposed animal ears when compared with non-noise-exposed control animals or prenoise exposure amplitudes in the same animal. It is unknown whether a similar phenomenon exists in the normal-hearing, noise-exposed human ear. Thirty normal-hearing human subjects with a range of noise exposure backgrounds (NEBs) participated in this study. NEB was quantified by the use of a noise exposure questionnaire that extensively queried loud sound exposure during the previous 12 months. DPOAEs were collected at three f2s (1, 2, and 4 kHz) over a range of L2s. DPOAE stimulus level began at 80 dB forward-pressure level and decreased in 10 dB steps. Two-channel ABRs were collected in response to click stimuli and 4 kHz tone bursts; one channel used an ipsilateral mastoid electrode and the other an ipsilateral tympanic membrane electrode. ABR stimulus level began at 90 dB nHL and was decreased in 10 dB steps. Amplitudes of waves I and V of the ABR were analyzed. A statistically significant relationship between ABR wave I amplitude and NEB was found for clicked-evoked ABRs recorded at a stimulus level of 90 dB nHL using a mastoid recording electrode. For this condition, ABR wave I amplitudes decreased as a function of NEB. Similar systematic trends were present for ABRs collected in response to clicks and 4 kHz tone bursts at additional suprathreshold stimulation levels (≥70 dB nHL). The relationship weakened and disappeared with decreases in stimulation level (≤60 dB nHL). Similar patterns were present for ABRs collected using a tympanic membrane electrode. However, these relationships were not statistically significant and were weaker and more variable than those collected using a mastoid electrode. In contrast to the findings for ABR wave I, wave V amplitude was not significantly related to NEB. Furthermore, there was no evidence of a systematic relationship between suprathreshold DPOAEs and NEB. A systematic trend of smaller ABR wave I amplitudes was found in normal-hearing human ears with greater amounts of voluntary NEB in response to suprathreshold clicks and 4 kHz tone bursts. These findings are consistent with the data from previous work completed in animals, where the reduction in suprathreshold responses was a result of deafferentation of high-threshold/low-spontaneous rate auditory nerve fibers. These data suggest that a similar mechanism might be operating in human ears after exposure to high sound levels. However, evidence of this damage is only apparent when examining suprathreshold wave I amplitude of the ABR. In contrast, suprathreshold DPOAE level was not significantly related to NEB. This was expected, given noise-induced auditory damage findings in animal ears did not extend to the outer hair cells, the generator for the DPOAE response.
AbstractList To determine whether suprathreshold measures of auditory function, such as distortion-product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs), are correlated with noise exposure history in normal-hearing human ears. Recent data from animal studies have revealed significant deafferentation of auditory nerve fibers after full recovery from temporary noise-induced hearing loss. Furthermore, these data report smaller ABR wave I amplitudes in noise-exposed animal ears when compared with non-noise-exposed control animals or prenoise exposure amplitudes in the same animal. It is unknown whether a similar phenomenon exists in the normal-hearing, noise-exposed human ear. Thirty normal-hearing human subjects with a range of noise exposure backgrounds (NEBs) participated in this study. NEB was quantified by the use of a noise exposure questionnaire that extensively queried loud sound exposure during the previous 12 months. DPOAEs were collected at three f2s (1, 2, and 4 kHz) over a range of L2s. DPOAE stimulus level began at 80 dB forward-pressure level and decreased in 10 dB steps. Two-channel ABRs were collected in response to click stimuli and 4 kHz tone bursts; one channel used an ipsilateral mastoid electrode and the other an ipsilateral tympanic membrane electrode. ABR stimulus level began at 90 dB nHL and was decreased in 10 dB steps. Amplitudes of waves I and V of the ABR were analyzed. A statistically significant relationship between ABR wave I amplitude and NEB was found for clicked-evoked ABRs recorded at a stimulus level of 90 dB nHL using a mastoid recording electrode. For this condition, ABR wave I amplitudes decreased as a function of NEB. Similar systematic trends were present for ABRs collected in response to clicks and 4 kHz tone bursts at additional suprathreshold stimulation levels (≥70 dB nHL). The relationship weakened and disappeared with decreases in stimulation level (≤60 dB nHL). Similar patterns were present for ABRs collected using a tympanic membrane electrode. However, these relationships were not statistically significant and were weaker and more variable than those collected using a mastoid electrode. In contrast to the findings for ABR wave I, wave V amplitude was not significantly related to NEB. Furthermore, there was no evidence of a systematic relationship between suprathreshold DPOAEs and NEB. A systematic trend of smaller ABR wave I amplitudes was found in normal-hearing human ears with greater amounts of voluntary NEB in response to suprathreshold clicks and 4 kHz tone bursts. These findings are consistent with the data from previous work completed in animals, where the reduction in suprathreshold responses was a result of deafferentation of high-threshold/low-spontaneous rate auditory nerve fibers. These data suggest that a similar mechanism might be operating in human ears after exposure to high sound levels. However, evidence of this damage is only apparent when examining suprathreshold wave I amplitude of the ABR. In contrast, suprathreshold DPOAE level was not significantly related to NEB. This was expected, given noise-induced auditory damage findings in animal ears did not extend to the outer hair cells, the generator for the DPOAE response.
Author Stamper, Greta C
Johnson, Tiffany A
Author_xml – sequence: 1
  givenname: Greta C
  surname: Stamper
  fullname: Stamper, Greta C
  organization: Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas, USA
– sequence: 2
  givenname: Tiffany A
  surname: Johnson
  fullname: Johnson, Tiffany A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25350405$$D View this record in MEDLINE/PubMed
BookMark eNpNT81KAzEYDKLYH30DkX0AU7P534OHpdVWKHix55JNvthIN7skXbBv74IKzmWYGRhmZugydhEQuivJoiSVeqx3qwX5j5KoCzQtBdOYS6kmaJbz52jTSvJrNKGCCcKJmKKnenDh1KVz4YdoT6GLRYhF7FJrjvgAJoX48TDqkAHDV99lcMVhaE0sxizfoCtvjhluf3mOdi_P78sN3r6tX5f1FltRMYWBeaFYRa0D5x14UmlujSYclG4YZZpJMLRxQpTcEtpYwxRzylmjlJbj6jm6_-nth6YFt-9TaE067_9-0G8es0rF
CitedBy_id crossref_primary_10_1044_2022_AJA_22_00015
crossref_primary_10_1121_10_0010317
crossref_primary_10_1016_j_heares_2019_107780
crossref_primary_10_1016_j_heares_2018_03_008
crossref_primary_10_1016_j_neuroimage_2019_116239
crossref_primary_10_3389_fnsyn_2021_680621
crossref_primary_10_1038_s41598_019_50773_1
crossref_primary_10_1177_2331216519839615
crossref_primary_10_1016_j_heares_2018_11_008
crossref_primary_10_1177_2331216520988406
crossref_primary_10_3766_jaaa_19030
crossref_primary_10_1186_s12906_025_04758_5
crossref_primary_10_1044_2022_JSLHR_22_00433
crossref_primary_10_1097_MAO_0000000000002615
crossref_primary_10_1097_AUD_0000000000000575
crossref_primary_10_1044_2019_AJA_19_00060
crossref_primary_10_3349_ymj_2021_62_7_615
crossref_primary_10_61186_johe_11_3_209
crossref_primary_10_1073_pnas_1914247117
crossref_primary_10_1097_AUD_0000000000000457
crossref_primary_10_1146_annurev_psych_122216_011635
crossref_primary_10_1016_j_cophys_2020_07_004
crossref_primary_10_1016_j_heares_2019_05_008
crossref_primary_10_2196_resprot_9095
crossref_primary_10_1016_j_heares_2018_01_008
crossref_primary_10_1172_JCI155094
crossref_primary_10_1016_j_neuroscience_2018_12_007
crossref_primary_10_1101_cshperspect_a035493
crossref_primary_10_1016_j_heares_2016_01_001
crossref_primary_10_1016_j_heares_2018_01_005
crossref_primary_10_1177_2331216517737417
crossref_primary_10_1055_s_0041_1740362
crossref_primary_10_4103_nah_nah_53_22
crossref_primary_10_1016_j_cmpb_2020_105595
crossref_primary_10_1121_10_0017002
crossref_primary_10_23736_S0392_6621_18_02201_4
crossref_primary_10_1016_j_joto_2017_01_001
crossref_primary_10_7599_hmr_2015_35_2_84
crossref_primary_10_1016_j_anl_2017_01_004
crossref_primary_10_3390_diagnostics13050934
crossref_primary_10_1016_j_heares_2016_10_028
crossref_primary_10_1097_AUD_0000000000001158
crossref_primary_10_1155_2016_6143164
crossref_primary_10_1044_2017_JSLHR_H_17_0080
crossref_primary_10_1016_j_cub_2020_09_046
crossref_primary_10_1080_14992027_2021_1928303
crossref_primary_10_1080_14992027_2018_1534010
crossref_primary_10_4103_nah_nah_17_21
crossref_primary_10_1016_j_heares_2017_01_016
crossref_primary_10_1007_s00405_021_06927_x
crossref_primary_10_1044_2021_JSLHR_21_00064
crossref_primary_10_1121_10_0007484
crossref_primary_10_1016_j_neuroimage_2015_07_065
crossref_primary_10_1121_10_0024614
crossref_primary_10_1016_j_heares_2016_10_015
crossref_primary_10_1055_s_0044_1790277
crossref_primary_10_1016_j_apacoust_2020_107731
crossref_primary_10_1016_j_heares_2019_02_016
crossref_primary_10_1097_MAO_0000000000001069
crossref_primary_10_3389_fnins_2017_00465
crossref_primary_10_1016_j_neuroscience_2019_12_049
crossref_primary_10_1097_AUD_0000000000000711
crossref_primary_10_1177_2331216516657466
crossref_primary_10_1097_AUD_0000000000001009
crossref_primary_10_1152_jn_00638_2017
crossref_primary_10_1016_j_heares_2020_108079
crossref_primary_10_1016_j_arr_2015_06_002
crossref_primary_10_1016_j_joad_2015_04_009
crossref_primary_10_51445_sja_auditio_vol8_2024_103
crossref_primary_10_1016_j_heares_2015_02_009
crossref_primary_10_3389_fnins_2022_915211
crossref_primary_10_3950_jibiinkotokeibu_125_10_1431
crossref_primary_10_4295_audiology_61_145
crossref_primary_10_1177_2331216520972860
crossref_primary_10_1097_AUD_0000000000001376
crossref_primary_10_1523_JNEUROSCI_4460_15_2016
crossref_primary_10_1016_j_heares_2021_108408
crossref_primary_10_1121_1_5132708
crossref_primary_10_5582_irdr_2019_01073
crossref_primary_10_1097_MAO_0000000000002688
crossref_primary_10_3390_ijms21082692
crossref_primary_10_1007_s10162_021_00827_x
crossref_primary_10_1523_ENEURO_0363_17_2017
crossref_primary_10_1002_lary_26540
crossref_primary_10_3389_fnins_2022_1005148
crossref_primary_10_1044_2019_AJA_19_0063
crossref_primary_10_1080_14992027_2016_1204565
crossref_primary_10_1044_2019_JSLHR_19_00293
crossref_primary_10_1080_14992027_2019_1658906
crossref_primary_10_1016_j_heares_2017_12_001
crossref_primary_10_1177_2331216516672186
crossref_primary_10_17430_jhs_190258
crossref_primary_10_1016_j_heares_2016_12_002
crossref_primary_10_1097_AUD_0000000000000370
crossref_primary_10_12659_MSM_897929
crossref_primary_10_1044_2020_AJA_19_00065
crossref_primary_10_1016_j_heares_2016_12_008
crossref_primary_10_1016_j_heares_2016_12_009
crossref_primary_10_1371_journal_pone_0125160
crossref_primary_10_3389_fncel_2022_851500
crossref_primary_10_1080_14992027_2019_1597286
crossref_primary_10_1016_j_heares_2024_109010
crossref_primary_10_1121_1_5132291
crossref_primary_10_1016_j_heares_2024_108967
crossref_primary_10_1371_journal_pone_0233224
crossref_primary_10_15171_ijoem_2017_913
crossref_primary_10_1016_j_clinph_2023_02_164
crossref_primary_10_1016_j_heares_2017_10_007
crossref_primary_10_1097_AUD_0000000000000388
crossref_primary_10_1186_s40463_017_0219_x
crossref_primary_10_1097_AUD_0000000000000543
crossref_primary_10_1097_AUD_0000000000000544
crossref_primary_10_1371_journal_pone_0184036
crossref_primary_10_1097_AUD_0000000000000228
crossref_primary_10_1097_AUD_0000000000000503
crossref_primary_10_1097_AUD_0000000000000745
crossref_primary_10_3389_fnagi_2022_877588
crossref_primary_10_1016_j_neurobiolaging_2018_08_023
crossref_primary_10_1097_AUD_0000000000000905
crossref_primary_10_3342_kjorl_hns_2019_00290
crossref_primary_10_1016_j_heares_2020_108027
crossref_primary_10_3342_kjorl_hns_2018_00843
crossref_primary_10_1515_revneuro_2020_0002
crossref_primary_10_1016_j_heares_2020_108021
crossref_primary_10_1097_AUD_0000000000001161
crossref_primary_10_1177_2331216519877301
crossref_primary_10_1016_j_heares_2019_01_017
crossref_primary_10_1097_AUD_0000000000000195
crossref_primary_10_3389_fnagi_2017_00237
crossref_primary_10_1016_j_heares_2019_01_018
crossref_primary_10_1097_AUD_0000000000000594
crossref_primary_10_1044_2022_AJA_21_00226
crossref_primary_10_1038_s41598_020_75058_w
crossref_primary_10_1097_AUD_0000000000000872
crossref_primary_10_1097_AUD_0000000000000238
crossref_primary_10_1177_2331216516686768
crossref_primary_10_3390_app11156857
crossref_primary_10_1007_s10162_020_00754_3
crossref_primary_10_1097_AUD_0000000000001609
crossref_primary_10_1016_j_heares_2020_107982
crossref_primary_10_1002_jnr_24647
crossref_primary_10_3389_fnins_2022_935371
crossref_primary_10_1016_j_heares_2018_10_006
crossref_primary_10_1016_j_neuroscience_2019_02_031
crossref_primary_10_1097_01_HJ_0000843256_16386_a6
crossref_primary_10_1097_AUD_0000000000000640
crossref_primary_10_1097_AUD_0000000000000520
crossref_primary_10_1021_acsami_2c11647
crossref_primary_10_1016_j_heares_2018_06_003
crossref_primary_10_1016_j_heares_2023_108928
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1097/AUD.0000000000000107
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1538-4667
ExternalDocumentID 25350405
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: R03 DC011367
GroupedDBID ---
--Z
.-D
.GJ
.Z2
01R
0R~
186
1J1
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
85S
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AASXQ
AAWTL
AAXQO
ABASU
ABBUW
ABDIG
ABDPE
ABJNI
ABVCZ
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACIJW
ACILI
ACLDA
ACOAL
ACWDW
ACWRI
ACXJB
ACXNZ
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AEETU
AENEX
AFDTB
AFFNX
AFUWQ
AGINI
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AWKKM
BOYCO
BQLVK
BS7
BYPQX
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
DUNZO
E.X
EBS
ECM
EEVPB
EIF
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
H0~
HLJTE
HZ~
H~9
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
JK8
K8S
KD2
KMI
KOO
L-C
N9A
NPM
N~7
N~B
N~M
O9-
OAG
OAH
OCUKA
ODA
OHT
OL1
OLB
OLG
OLH
OLU
OLV
OLW
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PKN
R58
RIG
RLZ
S4R
S4S
T8P
TEORI
TN5
TSPGW
TWZ
UCV
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YYQ
ZFV
ZGI
ZUP
ZZMQN
ID FETCH-LOGICAL-c5937-e3f57392cdedfdef0984ca804e78b323836ea2bd5514c02bca373d7dca7786012
IngestDate Wed Feb 19 02:04:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5937-e3f57392cdedfdef0984ca804e78b323836ea2bd5514c02bca373d7dca7786012
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4374361
PMID 25350405
ParticipantIDs pubmed_primary_25350405
PublicationCentury 2000
PublicationDate 2015-March/April
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-March/April
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Ear and hearing
PublicationTitleAlternate Ear Hear
PublicationYear 2015
References 26441036 - Ear Hear. 2015 Nov-Dec;36(6):738-40
References_xml – reference: 26441036 - Ear Hear. 2015 Nov-Dec;36(6):738-40
SSID ssj0012964
Score 2.4987073
Snippet To determine whether suprathreshold measures of auditory function, such as distortion-product otoacoustic emissions (DPOAEs) and auditory brainstem responses...
SourceID pubmed
SourceType Index Database
StartPage 172
SubjectTerms Adult
Audiometry, Pure-Tone
Auditory Threshold - physiology
Cochlea - physiology
Cochlea - physiopathology
Cochlear Nerve - physiology
Cochlear Nerve - physiopathology
Evoked Potentials, Auditory, Brain Stem - physiology
Female
Hearing - physiology
Humans
Male
Noise
Otoacoustic Emissions, Spontaneous - physiology
Young Adult
Title Auditory function in normal-hearing, noise-exposed human ears
URI https://www.ncbi.nlm.nih.gov/pubmed/25350405
Volume 36
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6sgngR32_Zg0e3pkk2mxyDD4qgpxZ6K_uEgqbF5iD-emezm6atFR85hLBLQpJvM_l2dmY-hK5Eolkio4BwHSsCg8IQnlJJ4FMKBIwgmsmq2udz0u3HjwM6aJQKq-ySUrTlx8q8kv-gCm2Aq82S_QOys4tCAxwDvrAHhGH_K4xzm1JhF8nt36mOWiwsC30hVqna65UU49FUE_0-GU-BXjpVPuidLnjluQum9KfNHC8lB1795rNZSt44Vb20lsPbGBs2kM-7EDq0iaFq68bsxYkTxqjtoitM4vEP54xcx4ntfDG-rqhv3r9zRSHrzcvazuExea0ACWlEwYbQn3uXSmLXXS3UgsmBVTu1Lhq_dGTXkescyYzdrLodWwHaX2JpNlGxit4O2vbTAZw7bHfRmi720OaTD3jYRzOIcQ0xHhV4EeJrvAAwrgDGFuAD1H-47912iVe8IJICTyQ6MpQBY5VKK6O0CbI0ljwNYs1SEQG7ihLNQ6EszZVBKCSPWKSYktyWAYRnP0TrxbjQxwgrFphABR1OBZDylGUmi7nuJJxSLbmRJ-jIPfhw4sqaDOtXcvptzxnaaobPOdow8B3pCyBlpbisQPgE8yszOA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auditory+function+in+normal-hearing%2C+noise-exposed+human+ears&rft.jtitle=Ear+and+hearing&rft.au=Stamper%2C+Greta+C&rft.au=Johnson%2C+Tiffany+A&rft.date=2015-03-01&rft.eissn=1538-4667&rft.volume=36&rft.issue=2&rft.spage=172&rft_id=info:doi/10.1097%2FAUD.0000000000000107&rft_id=info%3Apmid%2F25350405&rft_id=info%3Apmid%2F25350405&rft.externalDocID=25350405