Auditory function in normal-hearing, noise-exposed human ears
To determine whether suprathreshold measures of auditory function, such as distortion-product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs), are correlated with noise exposure history in normal-hearing human ears. Recent data from animal studies have revealed significant dea...
Saved in:
Published in | Ear and hearing Vol. 36; no. 2; p. 172 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2015
|
Subjects | |
Online Access | Get more information |
ISSN | 1538-4667 |
DOI | 10.1097/AUD.0000000000000107 |
Cover
Loading…
Abstract | To determine whether suprathreshold measures of auditory function, such as distortion-product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs), are correlated with noise exposure history in normal-hearing human ears. Recent data from animal studies have revealed significant deafferentation of auditory nerve fibers after full recovery from temporary noise-induced hearing loss. Furthermore, these data report smaller ABR wave I amplitudes in noise-exposed animal ears when compared with non-noise-exposed control animals or prenoise exposure amplitudes in the same animal. It is unknown whether a similar phenomenon exists in the normal-hearing, noise-exposed human ear.
Thirty normal-hearing human subjects with a range of noise exposure backgrounds (NEBs) participated in this study. NEB was quantified by the use of a noise exposure questionnaire that extensively queried loud sound exposure during the previous 12 months. DPOAEs were collected at three f2s (1, 2, and 4 kHz) over a range of L2s. DPOAE stimulus level began at 80 dB forward-pressure level and decreased in 10 dB steps. Two-channel ABRs were collected in response to click stimuli and 4 kHz tone bursts; one channel used an ipsilateral mastoid electrode and the other an ipsilateral tympanic membrane electrode. ABR stimulus level began at 90 dB nHL and was decreased in 10 dB steps. Amplitudes of waves I and V of the ABR were analyzed.
A statistically significant relationship between ABR wave I amplitude and NEB was found for clicked-evoked ABRs recorded at a stimulus level of 90 dB nHL using a mastoid recording electrode. For this condition, ABR wave I amplitudes decreased as a function of NEB. Similar systematic trends were present for ABRs collected in response to clicks and 4 kHz tone bursts at additional suprathreshold stimulation levels (≥70 dB nHL). The relationship weakened and disappeared with decreases in stimulation level (≤60 dB nHL). Similar patterns were present for ABRs collected using a tympanic membrane electrode. However, these relationships were not statistically significant and were weaker and more variable than those collected using a mastoid electrode. In contrast to the findings for ABR wave I, wave V amplitude was not significantly related to NEB. Furthermore, there was no evidence of a systematic relationship between suprathreshold DPOAEs and NEB.
A systematic trend of smaller ABR wave I amplitudes was found in normal-hearing human ears with greater amounts of voluntary NEB in response to suprathreshold clicks and 4 kHz tone bursts. These findings are consistent with the data from previous work completed in animals, where the reduction in suprathreshold responses was a result of deafferentation of high-threshold/low-spontaneous rate auditory nerve fibers. These data suggest that a similar mechanism might be operating in human ears after exposure to high sound levels. However, evidence of this damage is only apparent when examining suprathreshold wave I amplitude of the ABR. In contrast, suprathreshold DPOAE level was not significantly related to NEB. This was expected, given noise-induced auditory damage findings in animal ears did not extend to the outer hair cells, the generator for the DPOAE response. |
---|---|
AbstractList | To determine whether suprathreshold measures of auditory function, such as distortion-product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs), are correlated with noise exposure history in normal-hearing human ears. Recent data from animal studies have revealed significant deafferentation of auditory nerve fibers after full recovery from temporary noise-induced hearing loss. Furthermore, these data report smaller ABR wave I amplitudes in noise-exposed animal ears when compared with non-noise-exposed control animals or prenoise exposure amplitudes in the same animal. It is unknown whether a similar phenomenon exists in the normal-hearing, noise-exposed human ear.
Thirty normal-hearing human subjects with a range of noise exposure backgrounds (NEBs) participated in this study. NEB was quantified by the use of a noise exposure questionnaire that extensively queried loud sound exposure during the previous 12 months. DPOAEs were collected at three f2s (1, 2, and 4 kHz) over a range of L2s. DPOAE stimulus level began at 80 dB forward-pressure level and decreased in 10 dB steps. Two-channel ABRs were collected in response to click stimuli and 4 kHz tone bursts; one channel used an ipsilateral mastoid electrode and the other an ipsilateral tympanic membrane electrode. ABR stimulus level began at 90 dB nHL and was decreased in 10 dB steps. Amplitudes of waves I and V of the ABR were analyzed.
A statistically significant relationship between ABR wave I amplitude and NEB was found for clicked-evoked ABRs recorded at a stimulus level of 90 dB nHL using a mastoid recording electrode. For this condition, ABR wave I amplitudes decreased as a function of NEB. Similar systematic trends were present for ABRs collected in response to clicks and 4 kHz tone bursts at additional suprathreshold stimulation levels (≥70 dB nHL). The relationship weakened and disappeared with decreases in stimulation level (≤60 dB nHL). Similar patterns were present for ABRs collected using a tympanic membrane electrode. However, these relationships were not statistically significant and were weaker and more variable than those collected using a mastoid electrode. In contrast to the findings for ABR wave I, wave V amplitude was not significantly related to NEB. Furthermore, there was no evidence of a systematic relationship between suprathreshold DPOAEs and NEB.
A systematic trend of smaller ABR wave I amplitudes was found in normal-hearing human ears with greater amounts of voluntary NEB in response to suprathreshold clicks and 4 kHz tone bursts. These findings are consistent with the data from previous work completed in animals, where the reduction in suprathreshold responses was a result of deafferentation of high-threshold/low-spontaneous rate auditory nerve fibers. These data suggest that a similar mechanism might be operating in human ears after exposure to high sound levels. However, evidence of this damage is only apparent when examining suprathreshold wave I amplitude of the ABR. In contrast, suprathreshold DPOAE level was not significantly related to NEB. This was expected, given noise-induced auditory damage findings in animal ears did not extend to the outer hair cells, the generator for the DPOAE response. |
Author | Stamper, Greta C Johnson, Tiffany A |
Author_xml | – sequence: 1 givenname: Greta C surname: Stamper fullname: Stamper, Greta C organization: Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas, USA – sequence: 2 givenname: Tiffany A surname: Johnson fullname: Johnson, Tiffany A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25350405$$D View this record in MEDLINE/PubMed |
BookMark | eNpNT81KAzEYDKLYH30DkX0AU7P534OHpdVWKHix55JNvthIN7skXbBv74IKzmWYGRhmZugydhEQuivJoiSVeqx3qwX5j5KoCzQtBdOYS6kmaJbz52jTSvJrNKGCCcKJmKKnenDh1KVz4YdoT6GLRYhF7FJrjvgAJoX48TDqkAHDV99lcMVhaE0sxizfoCtvjhluf3mOdi_P78sN3r6tX5f1FltRMYWBeaFYRa0D5x14UmlujSYclG4YZZpJMLRxQpTcEtpYwxRzylmjlJbj6jm6_-nth6YFt-9TaE067_9-0G8es0rF |
CitedBy_id | crossref_primary_10_1044_2022_AJA_22_00015 crossref_primary_10_1121_10_0010317 crossref_primary_10_1016_j_heares_2019_107780 crossref_primary_10_1016_j_heares_2018_03_008 crossref_primary_10_1016_j_neuroimage_2019_116239 crossref_primary_10_3389_fnsyn_2021_680621 crossref_primary_10_1038_s41598_019_50773_1 crossref_primary_10_1177_2331216519839615 crossref_primary_10_1016_j_heares_2018_11_008 crossref_primary_10_1177_2331216520988406 crossref_primary_10_3766_jaaa_19030 crossref_primary_10_1186_s12906_025_04758_5 crossref_primary_10_1044_2022_JSLHR_22_00433 crossref_primary_10_1097_MAO_0000000000002615 crossref_primary_10_1097_AUD_0000000000000575 crossref_primary_10_1044_2019_AJA_19_00060 crossref_primary_10_3349_ymj_2021_62_7_615 crossref_primary_10_61186_johe_11_3_209 crossref_primary_10_1073_pnas_1914247117 crossref_primary_10_1097_AUD_0000000000000457 crossref_primary_10_1146_annurev_psych_122216_011635 crossref_primary_10_1016_j_cophys_2020_07_004 crossref_primary_10_1016_j_heares_2019_05_008 crossref_primary_10_2196_resprot_9095 crossref_primary_10_1016_j_heares_2018_01_008 crossref_primary_10_1172_JCI155094 crossref_primary_10_1016_j_neuroscience_2018_12_007 crossref_primary_10_1101_cshperspect_a035493 crossref_primary_10_1016_j_heares_2016_01_001 crossref_primary_10_1016_j_heares_2018_01_005 crossref_primary_10_1177_2331216517737417 crossref_primary_10_1055_s_0041_1740362 crossref_primary_10_4103_nah_nah_53_22 crossref_primary_10_1016_j_cmpb_2020_105595 crossref_primary_10_1121_10_0017002 crossref_primary_10_23736_S0392_6621_18_02201_4 crossref_primary_10_1016_j_joto_2017_01_001 crossref_primary_10_7599_hmr_2015_35_2_84 crossref_primary_10_1016_j_anl_2017_01_004 crossref_primary_10_3390_diagnostics13050934 crossref_primary_10_1016_j_heares_2016_10_028 crossref_primary_10_1097_AUD_0000000000001158 crossref_primary_10_1155_2016_6143164 crossref_primary_10_1044_2017_JSLHR_H_17_0080 crossref_primary_10_1016_j_cub_2020_09_046 crossref_primary_10_1080_14992027_2021_1928303 crossref_primary_10_1080_14992027_2018_1534010 crossref_primary_10_4103_nah_nah_17_21 crossref_primary_10_1016_j_heares_2017_01_016 crossref_primary_10_1007_s00405_021_06927_x crossref_primary_10_1044_2021_JSLHR_21_00064 crossref_primary_10_1121_10_0007484 crossref_primary_10_1016_j_neuroimage_2015_07_065 crossref_primary_10_1121_10_0024614 crossref_primary_10_1016_j_heares_2016_10_015 crossref_primary_10_1055_s_0044_1790277 crossref_primary_10_1016_j_apacoust_2020_107731 crossref_primary_10_1016_j_heares_2019_02_016 crossref_primary_10_1097_MAO_0000000000001069 crossref_primary_10_3389_fnins_2017_00465 crossref_primary_10_1016_j_neuroscience_2019_12_049 crossref_primary_10_1097_AUD_0000000000000711 crossref_primary_10_1177_2331216516657466 crossref_primary_10_1097_AUD_0000000000001009 crossref_primary_10_1152_jn_00638_2017 crossref_primary_10_1016_j_heares_2020_108079 crossref_primary_10_1016_j_arr_2015_06_002 crossref_primary_10_1016_j_joad_2015_04_009 crossref_primary_10_51445_sja_auditio_vol8_2024_103 crossref_primary_10_1016_j_heares_2015_02_009 crossref_primary_10_3389_fnins_2022_915211 crossref_primary_10_3950_jibiinkotokeibu_125_10_1431 crossref_primary_10_4295_audiology_61_145 crossref_primary_10_1177_2331216520972860 crossref_primary_10_1097_AUD_0000000000001376 crossref_primary_10_1523_JNEUROSCI_4460_15_2016 crossref_primary_10_1016_j_heares_2021_108408 crossref_primary_10_1121_1_5132708 crossref_primary_10_5582_irdr_2019_01073 crossref_primary_10_1097_MAO_0000000000002688 crossref_primary_10_3390_ijms21082692 crossref_primary_10_1007_s10162_021_00827_x crossref_primary_10_1523_ENEURO_0363_17_2017 crossref_primary_10_1002_lary_26540 crossref_primary_10_3389_fnins_2022_1005148 crossref_primary_10_1044_2019_AJA_19_0063 crossref_primary_10_1080_14992027_2016_1204565 crossref_primary_10_1044_2019_JSLHR_19_00293 crossref_primary_10_1080_14992027_2019_1658906 crossref_primary_10_1016_j_heares_2017_12_001 crossref_primary_10_1177_2331216516672186 crossref_primary_10_17430_jhs_190258 crossref_primary_10_1016_j_heares_2016_12_002 crossref_primary_10_1097_AUD_0000000000000370 crossref_primary_10_12659_MSM_897929 crossref_primary_10_1044_2020_AJA_19_00065 crossref_primary_10_1016_j_heares_2016_12_008 crossref_primary_10_1016_j_heares_2016_12_009 crossref_primary_10_1371_journal_pone_0125160 crossref_primary_10_3389_fncel_2022_851500 crossref_primary_10_1080_14992027_2019_1597286 crossref_primary_10_1016_j_heares_2024_109010 crossref_primary_10_1121_1_5132291 crossref_primary_10_1016_j_heares_2024_108967 crossref_primary_10_1371_journal_pone_0233224 crossref_primary_10_15171_ijoem_2017_913 crossref_primary_10_1016_j_clinph_2023_02_164 crossref_primary_10_1016_j_heares_2017_10_007 crossref_primary_10_1097_AUD_0000000000000388 crossref_primary_10_1186_s40463_017_0219_x crossref_primary_10_1097_AUD_0000000000000543 crossref_primary_10_1097_AUD_0000000000000544 crossref_primary_10_1371_journal_pone_0184036 crossref_primary_10_1097_AUD_0000000000000228 crossref_primary_10_1097_AUD_0000000000000503 crossref_primary_10_1097_AUD_0000000000000745 crossref_primary_10_3389_fnagi_2022_877588 crossref_primary_10_1016_j_neurobiolaging_2018_08_023 crossref_primary_10_1097_AUD_0000000000000905 crossref_primary_10_3342_kjorl_hns_2019_00290 crossref_primary_10_1016_j_heares_2020_108027 crossref_primary_10_3342_kjorl_hns_2018_00843 crossref_primary_10_1515_revneuro_2020_0002 crossref_primary_10_1016_j_heares_2020_108021 crossref_primary_10_1097_AUD_0000000000001161 crossref_primary_10_1177_2331216519877301 crossref_primary_10_1016_j_heares_2019_01_017 crossref_primary_10_1097_AUD_0000000000000195 crossref_primary_10_3389_fnagi_2017_00237 crossref_primary_10_1016_j_heares_2019_01_018 crossref_primary_10_1097_AUD_0000000000000594 crossref_primary_10_1044_2022_AJA_21_00226 crossref_primary_10_1038_s41598_020_75058_w crossref_primary_10_1097_AUD_0000000000000872 crossref_primary_10_1097_AUD_0000000000000238 crossref_primary_10_1177_2331216516686768 crossref_primary_10_3390_app11156857 crossref_primary_10_1007_s10162_020_00754_3 crossref_primary_10_1097_AUD_0000000000001609 crossref_primary_10_1016_j_heares_2020_107982 crossref_primary_10_1002_jnr_24647 crossref_primary_10_3389_fnins_2022_935371 crossref_primary_10_1016_j_heares_2018_10_006 crossref_primary_10_1016_j_neuroscience_2019_02_031 crossref_primary_10_1097_01_HJ_0000843256_16386_a6 crossref_primary_10_1097_AUD_0000000000000640 crossref_primary_10_1097_AUD_0000000000000520 crossref_primary_10_1021_acsami_2c11647 crossref_primary_10_1016_j_heares_2018_06_003 crossref_primary_10_1016_j_heares_2023_108928 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1097/AUD.0000000000000107 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-4667 |
ExternalDocumentID | 25350405 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: R03 DC011367 |
GroupedDBID | --- --Z .-D .GJ .Z2 01R 0R~ 186 1J1 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ 85S AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAWTL AAXQO ABASU ABBUW ABDIG ABDPE ABJNI ABVCZ ABXVJ ABZAD ACCJW ACDDN ACEWG ACGFO ACGFS ACIJW ACILI ACLDA ACOAL ACWDW ACWRI ACXJB ACXNZ ADFPA ADGGA ADHPY ADNKB AE3 AEETU AENEX AFDTB AFFNX AFUWQ AGINI AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AWKKM BOYCO BQLVK BS7 BYPQX C45 CGR CS3 CUY CVF DIWNM DU5 DUNZO E.X EBS ECM EEVPB EIF EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL H0~ HLJTE HZ~ H~9 IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 JK8 K8S KD2 KMI KOO L-C N9A NPM N~7 N~B N~M O9- OAG OAH OCUKA ODA OHT OL1 OLB OLG OLH OLU OLV OLW OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PKN R58 RIG RLZ S4R S4S T8P TEORI TN5 TSPGW TWZ UCV V2I VVN W3M WOQ WOW X3V X3W XXN XYM YFH YYQ ZFV ZGI ZUP ZZMQN |
ID | FETCH-LOGICAL-c5937-e3f57392cdedfdef0984ca804e78b323836ea2bd5514c02bca373d7dca7786012 |
IngestDate | Wed Feb 19 02:04:35 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5937-e3f57392cdedfdef0984ca804e78b323836ea2bd5514c02bca373d7dca7786012 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4374361 |
PMID | 25350405 |
ParticipantIDs | pubmed_primary_25350405 |
PublicationCentury | 2000 |
PublicationDate | 2015-March/April |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-March/April |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Ear and hearing |
PublicationTitleAlternate | Ear Hear |
PublicationYear | 2015 |
References | 26441036 - Ear Hear. 2015 Nov-Dec;36(6):738-40 |
References_xml | – reference: 26441036 - Ear Hear. 2015 Nov-Dec;36(6):738-40 |
SSID | ssj0012964 |
Score | 2.4987073 |
Snippet | To determine whether suprathreshold measures of auditory function, such as distortion-product otoacoustic emissions (DPOAEs) and auditory brainstem responses... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 172 |
SubjectTerms | Adult Audiometry, Pure-Tone Auditory Threshold - physiology Cochlea - physiology Cochlea - physiopathology Cochlear Nerve - physiology Cochlear Nerve - physiopathology Evoked Potentials, Auditory, Brain Stem - physiology Female Hearing - physiology Humans Male Noise Otoacoustic Emissions, Spontaneous - physiology Young Adult |
Title | Auditory function in normal-hearing, noise-exposed human ears |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25350405 |
Volume | 36 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6sgngR32_Zg0e3pkk2mxyDD4qgpxZ6K_uEgqbF5iD-emezm6atFR85hLBLQpJvM_l2dmY-hK5Eolkio4BwHSsCg8IQnlJJ4FMKBIwgmsmq2udz0u3HjwM6aJQKq-ySUrTlx8q8kv-gCm2Aq82S_QOys4tCAxwDvrAHhGH_K4xzm1JhF8nt36mOWiwsC30hVqna65UU49FUE_0-GU-BXjpVPuidLnjluQum9KfNHC8lB1795rNZSt44Vb20lsPbGBs2kM-7EDq0iaFq68bsxYkTxqjtoitM4vEP54xcx4ntfDG-rqhv3r9zRSHrzcvazuExea0ACWlEwYbQn3uXSmLXXS3UgsmBVTu1Lhq_dGTXkescyYzdrLodWwHaX2JpNlGxit4O2vbTAZw7bHfRmi720OaTD3jYRzOIcQ0xHhV4EeJrvAAwrgDGFuAD1H-47912iVe8IJICTyQ6MpQBY5VKK6O0CbI0ljwNYs1SEQG7ihLNQ6EszZVBKCSPWKSYktyWAYRnP0TrxbjQxwgrFphABR1OBZDylGUmi7nuJJxSLbmRJ-jIPfhw4sqaDOtXcvptzxnaaobPOdow8B3pCyBlpbisQPgE8yszOA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auditory+function+in+normal-hearing%2C+noise-exposed+human+ears&rft.jtitle=Ear+and+hearing&rft.au=Stamper%2C+Greta+C&rft.au=Johnson%2C+Tiffany+A&rft.date=2015-03-01&rft.eissn=1538-4667&rft.volume=36&rft.issue=2&rft.spage=172&rft_id=info:doi/10.1097%2FAUD.0000000000000107&rft_id=info%3Apmid%2F25350405&rft_id=info%3Apmid%2F25350405&rft.externalDocID=25350405 |