Impacts of climate change on rice production in Africa and causes of simulated yield changes

This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature su...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 24; no. 3; pp. 1029 - 1045
Main Authors van Oort, Pepijn A. J., Zwart, Sander J.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.03.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (−24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by −21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by −45% with adaptation they would decrease significantly less (−15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates. In the Sahel zone in West Africa, temperature rise will lead to large rice yield declines. However, more investigation to understand the response of rice plants to extreme temperatures and adaptation options is needed. In East Africa temperature rise leads to new opportunities for rice the colder highlands
AbstractList This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (−24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by −21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by −45% with adaptation they would decrease significantly less (−15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates.
This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (−24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by −21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by −45% with adaptation they would decrease significantly less (−15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates. In the Sahel zone in West Africa, temperature rise will lead to large rice yield declines. However, more investigation to understand the response of rice plants to extreme temperatures and adaptation options is needed. In East Africa temperature rise leads to new opportunities for rice the colder highlands
This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (−24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO 2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by −21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by −45% with adaptation they would decrease significantly less (−15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO 2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates.
This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (-24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by -21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by -45% with adaptation they would decrease significantly less (-15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates.
This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (-24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by -21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by -45% with adaptation they would decrease significantly less (-15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates.This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (-24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by -21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by -45% with adaptation they would decrease significantly less (-15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates.
Author Zwart, Sander J.
van Oort, Pepijn A. J.
AuthorAffiliation 1 Africa Rice Center Bouaké Côte d'Ivoire
2 Centre for Crop Systems Analysis Wageningen Universiteit Wageningen The Netherlands
3 Faculteit Geo‐Informatie Wetenschappen en Aardobservatie Universiteit Twente Enschede The Netherlands
AuthorAffiliation_xml – name: 2 Centre for Crop Systems Analysis Wageningen Universiteit Wageningen The Netherlands
– name: 3 Faculteit Geo‐Informatie Wetenschappen en Aardobservatie Universiteit Twente Enschede The Netherlands
– name: 1 Africa Rice Center Bouaké Côte d'Ivoire
Author_xml – sequence: 1
  givenname: Pepijn A. J.
  orcidid: 0000-0001-7617-5382
  surname: van Oort
  fullname: van Oort, Pepijn A. J.
  email: p.vanoort@cgiar.org, pepijn.vanoort@wur.nl
  organization: Wageningen Universiteit
– sequence: 2
  givenname: Sander J.
  orcidid: 0000-0002-5091-1801
  surname: Zwart
  fullname: Zwart, Sander J.
  organization: Universiteit Twente
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29230904$$D View this record in MEDLINE/PubMed
BookMark eNqFks9vFCEUx4mpse3qwX_AkHjRw7T8GJjBQ5O60dqkiRe9mZA3DLOlYWGFGTf738t010abqFwePD7fLw94p-goxGAReknJGS3jfGW6M8qVbJ6gE8qlqFjdyqN5LuqKEsqP0WnOd4QQzoh8ho6ZYpwoUp-gb9frDZgx4zhg490aRovNLYSVxTHg5IzFmxT7yYyurF3Al0NJAobQYwNTtvfK7NaTL9Ie75z1_cEhP0dPB_DZvjjEBfr68cOX5afq5vPV9fLypjJC8aZSlCozcNY0jSANqVtjej6QmluQylBL644VpAMGQwdc8bptoSO9FCC5rVu-QO_2vltY2eDK0UEHSMZlHcFp77oEaae3U9LBz2EzdVkLzjlpivhiLy7Jte2NDWMCrzepPEYRzQZ_7gR3q1fxhxYtl62cDd4cDFL8Ptk86rXLxnoPwcYpa0YEV4RTSf6LUtUIpVpRFAv0-hF6F6cUyjMWQ8JqxgpbqFe_F_9Q9a8PLsDbPWBSzDnZ4QGhRM_No0vz6PvmKez5I9a4EeaPL_d2_l-KrfN293drfbV8v1f8BMg_1as
CitedBy_id crossref_primary_10_1007_s42106_025_00327_5
crossref_primary_10_1016_j_eja_2022_126655
crossref_primary_10_1016_j_fcr_2020_107978
crossref_primary_10_1002_ppp3_10231
crossref_primary_10_1007_s40572_020_00292_3
crossref_primary_10_1016_j_heliyon_2023_e15480
crossref_primary_10_3724_j_1006_8775_2024_044
crossref_primary_10_1016_j_agrformet_2021_108443
crossref_primary_10_1016_j_uclim_2023_101432
crossref_primary_10_1111_pce_14702
crossref_primary_10_1016_j_apgeog_2018_05_003
crossref_primary_10_1016_j_compag_2019_105031
crossref_primary_10_1111_jac_12421
crossref_primary_10_3390_plants8100376
crossref_primary_10_1007_s00484_023_02462_y
crossref_primary_10_1016_j_envc_2021_100439
crossref_primary_10_1016_j_plantsci_2019_110207
crossref_primary_10_1016_j_fcr_2018_01_016
crossref_primary_10_1016_j_rhisph_2018_08_003
crossref_primary_10_1016_j_rsci_2023_03_010
crossref_primary_10_1016_j_jclepro_2022_135760
crossref_primary_10_1007_s11356_021_14163_3
crossref_primary_10_3390_agronomy14030468
crossref_primary_10_1016_j_tplants_2023_01_005
crossref_primary_10_2139_ssrn_4014260
crossref_primary_10_1111_wej_12523
crossref_primary_10_1016_j_agwat_2021_106758
crossref_primary_10_1017_S0021859620000350
crossref_primary_10_1016_j_cj_2020_11_010
crossref_primary_10_6090_jarq_55_473
crossref_primary_10_1029_2020EF001878
crossref_primary_10_1016_j_fcr_2021_108263
crossref_primary_10_1080_23311932_2024_2327666
crossref_primary_10_1016_j_jenvman_2022_114722
crossref_primary_10_3389_fpls_2018_01768
crossref_primary_10_1111_jac_12416
crossref_primary_10_1016_j_fcr_2021_108149
crossref_primary_10_1186_s12284_023_00677_6
crossref_primary_10_3390_agronomy8120291
crossref_primary_10_1007_s00122_021_04001_y
crossref_primary_10_1038_s43016_023_00770_5
crossref_primary_10_3390_environments8110117
crossref_primary_10_1111_jac_12414
crossref_primary_10_1007_s12571_023_01351_x
crossref_primary_10_1038_s41467_024_44950_8
crossref_primary_10_1088_2515_7620_ad61c3
crossref_primary_10_52711_2231_3915_2021_00001
crossref_primary_10_1016_j_geoderma_2023_116732
crossref_primary_10_1079_cabireviews_2025_0006
crossref_primary_10_1002_joc_7947
crossref_primary_10_1016_j_rsci_2022_06_002
crossref_primary_10_1016_j_agrformet_2023_109355
crossref_primary_10_3390_agronomy10081135
crossref_primary_10_3390_agronomy12112625
crossref_primary_10_1016_j_jafr_2022_100315
crossref_primary_10_1007_s00704_021_03880_x
crossref_primary_10_1016_j_atech_2023_100283
crossref_primary_10_3389_fclim_2024_1297225
crossref_primary_10_1111_pce_14256
crossref_primary_10_1007_s10668_022_02714_8
crossref_primary_10_3389_fsufs_2023_1206754
crossref_primary_10_1016_j_cliser_2024_100507
crossref_primary_10_1088_1748_9326_aca5a2
crossref_primary_10_2478_eko_2022_0029
crossref_primary_10_1007_s10113_022_02010_1
crossref_primary_10_1007_s10668_023_03766_0
crossref_primary_10_1088_1748_9326_aad66c
crossref_primary_10_1016_j_agwat_2020_106242
crossref_primary_10_1016_j_fcr_2021_108256
crossref_primary_10_1002_csc2_21420
crossref_primary_10_1016_j_fcr_2020_107806
crossref_primary_10_1175_WAF_D_19_0122_1
crossref_primary_10_1007_s00704_022_04033_4
crossref_primary_10_1007_s40710_019_00360_3
crossref_primary_10_1080_17565529_2020_1844611
crossref_primary_10_1007_s11356_022_21656_2
crossref_primary_10_3390_agronomy13051252
crossref_primary_10_3389_fsufs_2023_1284383
crossref_primary_10_3390_app112210701
crossref_primary_10_3390_su14052881
crossref_primary_10_3389_fpls_2022_837152
crossref_primary_10_3390_plants13030432
crossref_primary_10_1088_1755_1315_1397_1_012032
crossref_primary_10_1080_14735903_2024_2423595
crossref_primary_10_1016_S2095_3119_20_63304_4
crossref_primary_10_1016_j_atech_2023_100392
crossref_primary_10_1007_s41748_021_00210_z
crossref_primary_10_3390_cli11110227
crossref_primary_10_1002_csc2_20048
crossref_primary_10_3390_agriculture12101554
crossref_primary_10_5194_essd_15_791_2023
crossref_primary_10_1080_1343943X_2019_1617638
crossref_primary_10_1007_s12571_021_01149_9
crossref_primary_10_2480_agrmet_D_24_00005
crossref_primary_10_1007_s11356_021_16751_9
crossref_primary_10_1016_j_techsoc_2021_101607
crossref_primary_10_1016_j_scitotenv_2020_143206
crossref_primary_10_1080_23311886_2023_2282210
crossref_primary_10_1016_j_jenvman_2021_112458
crossref_primary_10_1016_j_fcr_2021_108074
crossref_primary_10_1016_j_jafr_2023_100576
crossref_primary_10_3390_ijerph19073804
crossref_primary_10_1007_s00704_020_03256_7
crossref_primary_10_1016_j_gfs_2022_100649
crossref_primary_10_1088_2752_5295_ad9f94
crossref_primary_10_1515_opag_2022_0185
crossref_primary_10_1108_IJOEM_06_2022_1019
crossref_primary_10_1038_s43016_023_00783_0
crossref_primary_10_1002_met_2146
crossref_primary_10_1007_s10584_021_03204_y
crossref_primary_10_1186_s12284_022_00559_3
crossref_primary_10_1002_agj2_21412
crossref_primary_10_1002_joc_6767
crossref_primary_10_1057_s41599_024_02847_3
crossref_primary_10_1007_s10668_023_03615_0
crossref_primary_10_1007_s11356_021_17579_z
crossref_primary_10_1080_1343943X_2020_1727752
crossref_primary_10_1080_14735903_2023_2193439
crossref_primary_10_3389_frevc_2024_1360513
crossref_primary_10_59267_ekoPolj2302377Y
crossref_primary_10_3390_ijms21093187
crossref_primary_10_1007_s40003_019_00424_8
crossref_primary_10_1093_icesjms_fsz061
crossref_primary_10_1016_j_agsy_2022_103429
crossref_primary_10_1016_j_ecolind_2023_110543
crossref_primary_10_1371_journal_pone_0243779
crossref_primary_10_1002_jsfa_13237
crossref_primary_10_1093_jxb_erac156
crossref_primary_10_1016_j_fcr_2021_108209
crossref_primary_10_1016_j_agrformet_2022_108860
crossref_primary_10_1038_s41598_022_22331_9
crossref_primary_10_1108_CAER_07_2023_0179
crossref_primary_10_1002_sae2_70026
crossref_primary_10_3390_ijms241914802
crossref_primary_10_1007_s10018_024_00398_0
crossref_primary_10_1186_s12284_022_00578_0
crossref_primary_10_1016_j_agrformet_2025_110461
crossref_primary_10_1080_10095020_2021_1936656
crossref_primary_10_1080_03650340_2020_1826041
crossref_primary_10_1088_1748_9326_ac61c8
crossref_primary_10_5194_gmd_16_7253_2023
crossref_primary_10_1111_ijpo_13004
crossref_primary_10_1007_s10705_025_10397_6
crossref_primary_10_3390_plants10050839
crossref_primary_10_1007_s11356_019_07080_z
crossref_primary_10_1007_s13593_021_00710_2
crossref_primary_10_1093_jxb_eraa002
crossref_primary_10_1007_s43832_025_00196_z
crossref_primary_10_1093_advances_nmab104
crossref_primary_10_3390_su11226271
crossref_primary_10_1080_19376812_2024_2359997
crossref_primary_10_1007_s11027_025_10199_9
crossref_primary_10_2139_ssrn_3277844
crossref_primary_10_3390_agronomy13020587
crossref_primary_10_3390_cimb47030177
crossref_primary_10_1016_j_ecoinf_2023_102038
crossref_primary_10_1016_j_fcr_2024_109519
crossref_primary_10_1080_23322039_2024_2421894
crossref_primary_10_3390_agronomy12051234
crossref_primary_10_3390_ijerph17249241
crossref_primary_10_1016_j_agsy_2021_103149
crossref_primary_10_1007_s00382_023_06956_8
Cites_doi 10.1016/j.agrformet.2014.09.016
10.1098/rstb.2013.0089
10.1016/j.fcr.2015.03.004
10.1016/j.eja.2013.03.006
10.1146/annurev.energy.25.1.441
10.1016/j.fcr.2014.11.018
10.1111/gcb.12758
10.1016/j.agrformet.2007.09.012
10.1073/pnas.1610359113
10.1016/j.agrformet.2016.07.021
10.1016/S0168-1923(98)00061-6
10.1016/j.geoderma.2014.07.019
10.1016/j.eja.2012.06.007
10.1046/j.1365-2486.2003.00628.x
10.1016/j.fcr.2014.04.002
10.1016/j.gloplacha.2008.09.007
10.1126/science.1152339
10.1016/j.fcr.2013.11.007
10.1371/journal.pone.0118114
10.1016/0308-521X(94)00027-I
10.1007/978-3-642-85193-3_29
10.1016/j.fcr.2017.02.014
10.1080/14735903.2014.945317
10.1016/j.fcr.2015.07.024
10.1016/j.fcr.2015.03.005
10.1016/j.agrformet.2011.06.012
10.1038/nclimate1357
10.1088/1748-9326/8/2/024041
10.1016/j.agwat.2015.01.014
10.1016/0308-521X(94)00028-J
10.3389/fpls.2016.01262
10.1029/2008GB003435
10.1016/j.agrformet.2015.08.262
10.1038/nclimate2947
10.1016/S0308-521X(95)00060-I
10.1016/j.fcr.2011.07.001
10.1007/s10584-008-9396-y
10.1088/1748-9326/3/3/034007
10.1111/j.1365-3040.1995.tb00370.x
10.1016/j.eja.2015.05.003
10.1023/A:1013714506779
10.1175/2008JCLI2274.1
10.1016/j.envsoft.2015.12.003
10.1016/j.eja.2016.12.010
10.1016/j.scitotenv.2016.04.021
10.1016/j.fcr.2017.07.004
10.1007/BF00386231
10.1016/j.eja.2012.01.003
10.1016/j.eja.2014.10.003
10.1016/j.fcr.2016.12.015
10.1038/sdata.2017.74
10.3354/cr032229
10.1016/j.agrformet.2004.08.005
10.1016/j.agwat.2016.07.003
10.1016/j.gfs.2014.05.002
10.1016/j.gfs.2015.01.002
10.1016/j.eja.2016.06.012
10.1016/j.fcr.2012.11.023
10.1626/pps.10.57
10.1038/s41598-016-0001-8
10.1016/j.agrformet.2017.02.025
10.1016/j.agrformet.2008.04.007
10.1016/0308-521X(92)90018-J
10.1111/gcb.12389
10.3920/978-90-8686-539-0
10.1016/j.agsy.2014.01.002
10.1007/s13593-011-0049-6
10.1016/j.ecolmodel.2010.09.001
10.1007/s10584-011-0148-z
10.1038/nature01092
ContentType Journal Article
Copyright 2017 The Authors. Published by John Wiley & Sons Ltd.
2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Copyright © 2018 John Wiley & Sons Ltd
Wageningen University & Research
Copyright_xml – notice: 2017 The Authors. Published by John Wiley & Sons Ltd.
– notice: 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
– notice: Copyright © 2018 John Wiley & Sons Ltd
– notice: Wageningen University & Research
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
5PM
QVL
DOI 10.1111/gcb.13967
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef

MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
DocumentTitleAlternate van OORT and ZWART
EISSN 1365-2486
EndPage 1045
ExternalDocumentID oai_library_wur_nl_wurpubs_533307
PMC5836867
29230904
10_1111_gcb_13967
GCB13967
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations West Africa
East Africa
Africa
Western Africa
Eastern Africa
GeographicLocations_xml – name: East Africa
– name: Africa
– name: West Africa
– name: Western Africa
– name: Eastern Africa
GrantInformation_xml – fundername: The CGIAR Fund Council, Australia (ACIAR)
– fundername: CGIAR Research Program on Rice (RICE)
– fundername: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH
– fundername: “Improving rice farmers’ decision making in lowland rice‐based systems in East Africa (East Africa ‘RiceAdvice’)”
  funderid: 14.1432.5‐001.00, 81180340
– fundername: Federal Ministry of Economic Cooperation and Development (BMZ)
– fundername: USAID and Thailand for funding to the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)
– fundername: Irish Aid, European Union, International Fund for Agricultural Development (IFAD), Netherlands, New Zealand, Switzerland, UK,
– fundername: “Improving rice farmers’ decision making in lowland rice‐based systems in East Africa (East Africa ‘RiceAdvice’)”
  grantid: 14.1432.5‐001.00, 81180340
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
5PM
02
0R
1AW
31
3N
AAPBV
ABHUG
ABPTK
ACXME
ADAWD
ADDAD
AGJLS
DZ
GA
HZ
IA
KM
NF
P4A
PQEST
QVL
RIG
UNR
WT
Y3
ID FETCH-LOGICAL-c5937-9119cf32777507048ccd3f043ea69c1e14b2119ba2afba393488ab0d65a63e483
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Feb 05 18:08:18 EST 2021
Thu Aug 21 18:20:31 EDT 2025
Fri Jul 11 18:28:48 EDT 2025
Fri Jul 11 16:50:09 EDT 2025
Fri Jul 25 10:46:00 EDT 2025
Mon Jul 21 05:55:19 EDT 2025
Tue Jul 01 03:52:59 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Wed Jan 22 16:35:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords photosynthesis
heat induced sterility
rainfed
Africa
cold induced sterility
rice
irrigated
climate change
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5937-9119cf32777507048ccd3f043ea69c1e14b2119ba2afba393488ab0d65a63e483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7617-5382
0000-0002-5091-1801
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13967
PMID 29230904
PQID 2002422975
PQPubID 30327
PageCount 17
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_533307
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5836867
proquest_miscellaneous_2053903160
proquest_miscellaneous_1975998505
proquest_journals_2002422975
pubmed_primary_29230904
crossref_primary_10_1111_gcb_13967
crossref_citationtrail_10_1111_gcb_13967
wiley_primary_10_1111_gcb_13967_GCB13967
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2018
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2015; 183
2017; 85
2017; 4
2002; 52
2006; 32
2017; 237–238
2014; 235–236
2008; 148
2008; 3
2017; 232
2013; 8
2011; 151
2014; 20
2016; 77
2015; 173
2017; 207
1980; 149
2014; 369
2014; 127
2011; 124
2014; 3
2010; 24
2001
1997; 54
2015; 177
2008; 319
2003; 9
2016; 113
1985
2008; 21
1998; 91
2008; 64
2016; 80
2014; 163
2017; 204
1992; 40
2015; 13
2015; 5
2013; 49
2000; 25
2012
2015; 200
2015; 10
2008
2016; 562
2007
1995
2005
2002; 419
2012; 39
1993
2013; 143
1995; 18
2007; 10
2017; 211
2012; 32
2008; 90
2014; 156
2015; 152
2016; 6
2015; 214–215
2015; 69
2016; 7
2012; 2
2011; 109
1995; 48
2015; 64
2015; 21
2005; 128
2016; 177
2016
2013
2011; 222
2012; 43
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Bouman B. A. M. (e_1_2_6_9_1) 2001
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Ramirez J. (e_1_2_6_49_1) 2008
Windmeijer P. N. (e_1_2_6_73_1) 1993
e_1_2_6_5_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
Prather M. (e_1_2_6_47_1) 2013
e_1_2_6_26_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
Vergara B. S. (e_1_2_6_68_1) 1985
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
Balasubramanian V. (e_1_2_6_7_1) 2007
References_xml – volume: 64
  start-page: 222
  year: 2008
  end-page: 235
  article-title: A spatially explicit assessment of current and future hotspots of hunger in Sub‐Saharan Africa in the context of global change
  publication-title: Global and Planetary Change
– year: 1985
– volume: 143
  start-page: 44
  year: 2013
  end-page: 55
  article-title: Use of agro‐climatic zones to upscale simulated crop yield potential
  publication-title: Field Crops Research
– volume: 128
  start-page: 93
  year: 2005
  end-page: 110
  article-title: Agricultural impacts of large‐scale variability of the West African monsoon
  publication-title: Agricultural and Forest Meteorology
– volume: 43
  start-page: 166
  year: 2012
  end-page: 174
  article-title: Variation in time of day of anthesis in rice in different climatic environments
  publication-title: European Journal of Agronomy
– volume: 85
  start-page: 1
  year: 2017
  end-page: 11
  article-title: On‐farm rice yield and its association with biophysical factors in sub‐Saharan Africa
  publication-title: European Journal of Agronomy
– volume: 9
  start-page: 697
  year: 2003
  end-page: 717
  article-title: MuSICA, a CO2, water and energy multilayer, multileaf pine forest model: Evaluation from hourly to yearly time scales and sensitivity analysis
  publication-title: Global Change Biology
– volume: 80
  start-page: 168
  year: 2016
  end-page: 181
  article-title: Intensification of an irrigated rice system in Senegal: Crop rotations, climate risks, sowing dates and varietal adaptation options
  publication-title: European Journal of Agronomy
– year: 2005
– year: 2001
– volume: 163
  start-page: 64
  year: 2014
  end-page: 73
  article-title: Canopy microclimate and gas‐exchange in response to irrigationsystem in lowland rice in the Sahel
  publication-title: Field Crops Research
– volume: 211
  start-page: 172
  year: 2017
  end-page: 172
  article-title: Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions
  publication-title: Field Crops Research
– volume: 173
  start-page: 68
  year: 2015
  end-page: 80
  article-title: Options for increasing the productivity of the rice‐wheat system of north‐west India while reducing groundwater depletion. Part 1. Rice variety duration, sowing date and inclusion of mungbean
  publication-title: Field Crops Research
– volume: 77
  start-page: 143
  year: 2016
  end-page: 155
  article-title: Simulating canopy temperature for modelling heat stress in cereals
  publication-title: Environmental Modelling and Software
– volume: 48
  start-page: 411
  year: 1995
  end-page: 433
  article-title: Climatic determinants of irrigated rice performance in the Sahel. 2. Validation of photothermal constants and characterization of genotypes
  publication-title: Agricultural Systems
– volume: 369
  start-page: 20130089
  year: 2014
  article-title: Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar
  publication-title: Philosophical Transactions of the Royal Society B‐Biological Sciences
– volume: 8
  start-page: 024041
  year: 2013
  article-title: Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections
  publication-title: Environmental Research Letters
– volume: 32
  start-page: 229
  year: 2006
  end-page: 245
  article-title: Food crop production in Nigeria. II. Potential effects of climate change
  publication-title: Climate Research
– volume: 40
  start-page: 125
  year: 1992
  end-page: 151
  article-title: Resource use efficiency in agriculture
  publication-title: Agricultural Systems
– volume: 204
  start-page: 52
  year: 2017
  end-page: 75
  article-title: Evaluation of the APSIM model in cropping systems of Asia
  publication-title: Field Crops Research
– volume: 7
  start-page: 1
  year: 2016
  end-page: 20
  article-title: Agriculture in West Africa in the twenty‐first century: Climate change and impacts scenarios, and potential for adaptation
  publication-title: Frontiers in Plant Science
– volume: 69
  start-page: 21
  year: 2015
  end-page: 31
  article-title: PRACT (Prototyping Rotation and Association with Cover crop and no Till) ‐ a tool for designing conservation agriculture systems
  publication-title: European Journal of Agronomy
– volume: 6
  start-page: 605
  year: 2016
  end-page: 609
  article-title: Timescales of transformational climate change adaptation in sub‐Saharan African agriculture
  publication-title: Nature Climate Change
– volume: 54
  start-page: 399
  year: 1997
  end-page: 425
  article-title: Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation
  publication-title: Agricultural Systems
– volume: 148
  start-page: 1412
  year: 2008
  end-page: 1418
  article-title: Non‐stationary thermal time accumulation reduces the predictability of climate change effects on agriculture
  publication-title: Agricultural and Forest Meteorology
– volume: 151
  start-page: 1545
  year: 2011
  end-page: 1555
  article-title: Correlation between temperature and phenology prediction error in rice ( L.)
  publication-title: Agricultural and Forest Meteorology
– volume: 156
  start-page: 303
  year: 2014
  end-page: 312
  article-title: A simple model for simulating heat induced sterility in rice as a function of flowering time and transpirational cooling
  publication-title: Field Crops Research
– year: 2008
– volume: 10
  start-page: E0118114
  year: 2015
  article-title: Improved climate risk simulations for rice in arid environments
  publication-title: PLoS One
– volume: 177
  start-page: 98
  year: 2015
  end-page: 108
  article-title: From field to atlas: Upscaling of location‐specific yield gap estimates
  publication-title: Field Crops Research
– volume: 419
  start-page: 224
  year: 2002
  end-page: 232
  article-title: Constraints on future changes in climate and the hydrologic cycle
  publication-title: Nature
– volume: 109
  start-page: 5
  year: 2011
  end-page: 31
  article-title: The representative concentration pathways: An overview
  publication-title: Climatic Change
– volume: 124
  start-page: 357
  year: 2011
  end-page: 368
  article-title: Methodologies for simulating impacts of climate change on crop production
  publication-title: Field Crops Research
– volume: 3
  start-page: 034007
  year: 2008
  article-title: Why are agricultural impacts of climate change so uncertain? the importance of temperature relative to precipitation
  publication-title: Environmental Research Letters
– start-page: 1217
  year: 2013
  end-page: 1308
– year: 1993
– start-page: 55
  year: 2007
  end-page: 133
– volume: 13
  start-page: 87
  year: 2015
  end-page: 103
  article-title: Climate change impacts on rain‐fed and irrigated rice yield in Malawi
  publication-title: International Journal of Agricultural Sustainability
– volume: 64
  start-page: 98
  year: 2015
  end-page: 113
  article-title: Heat stress in cereals: Mechanisms and modelling
  publication-title: European Journal of Agronomy
– volume: 32
  start-page: 619
  year: 2012
  end-page: 627
  article-title: Positive effects of climate change on rice in Madagascar
  publication-title: Agronomy for Sustainable Development
– volume: 49
  start-page: 50
  year: 2013
  end-page: 60
  article-title: Predicting temperature induced sterility of rice spikelets requires simulation of crop‐generated microclimate
  publication-title: European Journal of Agronomy
– volume: 3
  start-page: 72
  year: 2014
  end-page: 76
  article-title: Climate change adaptation in crop production: Beware of illusions
  publication-title: Global Food Security‐Agriculture Policy Economics and Environment
– volume: 235–236
  start-page: 250
  year: 2014
  end-page: 259
  article-title: Soil quality and constraints in global rice production
  publication-title: Geoderma
– volume: 319
  start-page: 607
  year: 2008
  end-page: 610
  article-title: Prioritizing climate change adaptation needs for food security in 2030
  publication-title: Science
– volume: 21
  start-page: 1328
  year: 2015
  end-page: 1341
  article-title: Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions
  publication-title: Global Change Biology
– volume: 21
  start-page: 5364
  year: 2008
  end-page: 5383
  article-title: Recent changes in surface humidity: Development of the HadCRUH dataset
  publication-title: Journal of Climate
– volume: 90
  start-page: 359
  year: 2008
  end-page: 383
  article-title: A global perspective on African climate
  publication-title: Climatic Change
– volume: 25
  start-page: 441
  year: 2000
  end-page: 475
  article-title: Water vapor feedback and global warming
  publication-title: Annual Review of Energy and the Environment
– volume: 2
  start-page: 205
  year: 2012
  end-page: 209
  article-title: The impact of climate change on global tropical cyclone damage
  publication-title: Nature Climate Change
– volume: 91
  start-page: 89
  year: 1998
  end-page: 111
  article-title: A two‐leaf model for canopy conductance, photosynthesis and partitioning of available energy I: Model description and comparison with a multi‐layered model
  publication-title: Agricultural and Forest Meteorology
– volume: 232
  start-page: 291
  year: 2017
  end-page: 305
  article-title: Assessing climate adaptation options and uncertainties for cereal systems in West Africa
  publication-title: Agricultural and Forest Meteorology
– volume: 183
  start-page: 282
  year: 2015
  end-page: 293
  article-title: Field phenomics for response of a rice diversity panel to ten environments in Senegal and Madagascar. 2. Chilling‐induced spikelet sterility
  publication-title: Field Crops Research
– volume: 4
  start-page: 170074
  year: 2017
  article-title: RiceAtlas, a spatial database of global rice calendars and production
  publication-title: Nature: Scientific Data
– volume: 113
  start-page: 14964
  year: 2016
  end-page: 14969
  article-title: Can sub‐Saharan Africa feed itself?
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 222
  start-page: 131
  year: 2011
  end-page: 143
  article-title: Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions
  publication-title: Ecological Modelling
– volume: 18
  start-page: 339
  year: 1995
  end-page: 355
  article-title: A critical‐appraisal of a combined stomatal‐photosynthesis model for C‐3 Plants
  publication-title: Plant Cell and Environment
– volume: 177
  start-page: 49
  year: 2015
  end-page: 63
  article-title: How good is good enough? Data requirements for reliable crop yield simulations and yield‐gap analysis
  publication-title: Field Crops Research
– volume: 200
  start-page: 233
  year: 2015
  end-page: 248
  article-title: Climate forcing datasets for agricultural modeling: Merged products for gap‐filling and historical climate series estimation
  publication-title: Agricultural and Forest Meteorology
– volume: 127
  start-page: 53
  year: 2014
  end-page: 60
  article-title: Generating global crop distribution maps: From census to grid
  publication-title: Agricultural Systems
– year: 2016
– volume: 5
  start-page: 39
  year: 2015
  end-page: 49
  article-title: Assessment of rice self‐sufficiency in 2025 in eight African countries
  publication-title: Global Food Security
– volume: 39
  start-page: 9
  year: 2012
  end-page: 24
  article-title: Rice in cropping systems‐modelling transitions between flooded and non‐flooded soil environments
  publication-title: European Journal of Agronomy
– volume: 10
  start-page: 57
  year: 2007
  end-page: 63
  article-title: Stability of rice pollination in the field under hot and dry conditions in the Riverina region of New South Wales, Australia
  publication-title: Plant Production Science
– volume: 24
  start-page: 1
  year: 2010
  end-page: 24
  article-title: IRCA2000‐Global monthly irrigated and rainfed crop areas around the year 2000: A new high‐resolution data set for agricultural and hydrological modeling
  publication-title: Global Biogeochemical Cycles
– year: 2012
– volume: 148
  start-page: 94
  year: 2008
  end-page: 110
  article-title: Global warming, rice production, and water use in China: Developing a probabilistic assessment
  publication-title: Agricultural and Forest Meteorology
– volume: 562
  start-page: 666
  year: 2016
  end-page: 677
  article-title: Flood projections within the Niger River Basin under future land use and climate change
  publication-title: Science of the Total Environment
– volume: 6
  start-page: 1
  year: 2016
  end-page: 9
  article-title: Model biases in rice phenology under warmer climates
  publication-title: Scientific Reports
– volume: 52
  start-page: 331
  year: 2002
  end-page: 343
  article-title: Climate change and rice yields in diverse agro‐environments of India. II. Effect of uncertainties in scenarios and crop models on impact assessment
  publication-title: Climatic Change
– volume: 207
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Variability and determinants of yields in rice production systems of West Africa
  publication-title: Field Crops Research
– volume: 177
  start-page: 95
  year: 2016
  end-page: 106
  article-title: A spatially explicit approach to assess the suitability for rice cultivation in an inland valley in central Benin
  publication-title: Agricultural Water Management
– volume: 149
  start-page: 78
  year: 1980
  end-page: 90
  article-title: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species
  publication-title: Planta
– volume: 48
  start-page: 385
  year: 1995
  end-page: 410
  article-title: Climatic determinants of irrigated rice performance in the Sahel. 1. Photothermal and micro‐climatic responses of flowering
  publication-title: Agricultural Systems
– year: 1995
– volume: 214–215
  start-page: 208
  year: 2015
  end-page: 218
  article-title: Sowing rules for estimating rainfed yield potential of sorghum and maize in Burkina Faso
  publication-title: Agricultural and Forest Meteorology
– volume: 237–238
  start-page: 246
  year: 2017
  end-page: 256
  article-title: From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen‐deficient environments
  publication-title: Agricultural and Forest Meteorology
– volume: 152
  start-page: 286
  year: 2015
  end-page: 298
  article-title: Contributions of lateral flow and groundwater to the spatio‐temporal variation of irrigated rice yields and water productivity in a West‐African inland valley
  publication-title: Agricultural Water Management
– volume: 20
  start-page: 408
  year: 2014
  end-page: 417
  article-title: Temperatures and the growth and development of maize and rice: A review
  publication-title: Global Change Biology
– ident: e_1_2_6_51_1
  doi: 10.1016/j.agrformet.2014.09.016
– ident: e_1_2_6_26_1
  doi: 10.1098/rstb.2013.0089
– ident: e_1_2_6_23_1
  doi: 10.1016/j.fcr.2015.03.004
– ident: e_1_2_6_30_1
  doi: 10.1016/j.eja.2013.03.006
– start-page: 1217
  volume-title: Climate Change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change
  year: 2013
  ident: e_1_2_6_47_1
– ident: e_1_2_6_27_1
  doi: 10.1146/annurev.energy.25.1.441
– ident: e_1_2_6_8_1
  doi: 10.1016/j.fcr.2014.11.018
– ident: e_1_2_6_34_1
  doi: 10.1111/gcb.12758
– volume-title: ORYZA2000: Modeling lowland rice
  year: 2001
  ident: e_1_2_6_9_1
– ident: e_1_2_6_28_1
– ident: e_1_2_6_58_1
  doi: 10.1016/j.agrformet.2007.09.012
– ident: e_1_2_6_60_1
  doi: 10.1073/pnas.1610359113
– ident: e_1_2_6_24_1
  doi: 10.1016/j.agrformet.2016.07.021
– ident: e_1_2_6_69_1
  doi: 10.1016/S0168-1923(98)00061-6
– volume-title: The flowering response of the rice plant to photoperiod: A Review of Literature
  year: 1985
  ident: e_1_2_6_68_1
– ident: e_1_2_6_25_1
  doi: 10.1016/j.geoderma.2014.07.019
– ident: e_1_2_6_29_1
  doi: 10.1016/j.eja.2012.06.007
– ident: e_1_2_6_45_1
  doi: 10.1046/j.1365-2486.2003.00628.x
– ident: e_1_2_6_54_1
  doi: 10.1016/j.fcr.2014.04.002
– ident: e_1_2_6_35_1
  doi: 10.1016/j.gloplacha.2008.09.007
– ident: e_1_2_6_38_1
  doi: 10.1126/science.1152339
– ident: e_1_2_6_64_1
  doi: 10.1016/j.fcr.2013.11.007
– ident: e_1_2_6_62_1
  doi: 10.1371/journal.pone.0118114
– ident: e_1_2_6_15_1
  doi: 10.1016/0308-521X(94)00027-I
– ident: e_1_2_6_40_1
  doi: 10.1007/978-3-642-85193-3_29
– ident: e_1_2_6_44_1
  doi: 10.1016/j.fcr.2017.02.014
– volume-title: High resolution statistically downscaled future climate surfaces
  year: 2008
  ident: e_1_2_6_49_1
– ident: e_1_2_6_10_1
  doi: 10.1080/14735903.2014.945317
– ident: e_1_2_6_14_1
  doi: 10.1016/j.fcr.2015.07.024
– ident: e_1_2_6_59_1
  doi: 10.1016/j.fcr.2015.03.005
– ident: e_1_2_6_65_1
  doi: 10.1016/j.agrformet.2011.06.012
– ident: e_1_2_6_42_1
  doi: 10.1038/nclimate1357
– ident: e_1_2_6_22_1
  doi: 10.1088/1748-9326/8/2/024041
– ident: e_1_2_6_53_1
  doi: 10.1016/j.agwat.2015.01.014
– ident: e_1_2_6_13_1
  doi: 10.1016/0308-521X(94)00028-J
– ident: e_1_2_6_56_1
  doi: 10.3389/fpls.2016.01262
– ident: e_1_2_6_46_1
  doi: 10.1029/2008GB003435
– ident: e_1_2_6_74_1
  doi: 10.1016/j.agrformet.2015.08.262
– ident: e_1_2_6_50_1
  doi: 10.1038/nclimate2947
– ident: e_1_2_6_41_1
  doi: 10.1016/S0308-521X(95)00060-I
– ident: e_1_2_6_71_1
  doi: 10.1016/j.fcr.2011.07.001
– ident: e_1_2_6_79_1
– ident: e_1_2_6_21_1
  doi: 10.1007/s10584-008-9396-y
– ident: e_1_2_6_37_1
  doi: 10.1088/1748-9326/3/3/034007
– volume-title: Inland valleys in West Africa: An agro‐ecological characterization of rice growing environments
  year: 1993
  ident: e_1_2_6_73_1
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1365-3040.1995.tb00370.x
– ident: e_1_2_6_43_1
  doi: 10.1016/j.eja.2015.05.003
– ident: e_1_2_6_4_1
  doi: 10.1023/A:1013714506779
– ident: e_1_2_6_72_1
  doi: 10.1175/2008JCLI2274.1
– ident: e_1_2_6_70_1
  doi: 10.1016/j.envsoft.2015.12.003
– ident: e_1_2_6_57_1
  doi: 10.1016/j.eja.2016.12.010
– ident: e_1_2_6_5_1
  doi: 10.1016/j.scitotenv.2016.04.021
– ident: e_1_2_6_48_1
  doi: 10.1016/j.fcr.2017.07.004
– ident: e_1_2_6_17_1
  doi: 10.1007/BF00386231
– ident: e_1_2_6_19_1
  doi: 10.1016/j.eja.2012.01.003
– ident: e_1_2_6_16_1
  doi: 10.1016/j.eja.2014.10.003
– ident: e_1_2_6_18_1
  doi: 10.1016/j.fcr.2016.12.015
– ident: e_1_2_6_31_1
  doi: 10.1038/sdata.2017.74
– ident: e_1_2_6_3_1
  doi: 10.3354/cr032229
– start-page: 55
  volume-title: Advances in agronomy
  year: 2007
  ident: e_1_2_6_7_1
– ident: e_1_2_6_55_1
  doi: 10.1016/j.agrformet.2004.08.005
– ident: e_1_2_6_11_1
  doi: 10.1016/j.agwat.2016.07.003
– ident: e_1_2_6_36_1
  doi: 10.1016/j.gfs.2014.05.002
– ident: e_1_2_6_63_1
  doi: 10.1016/j.gfs.2015.01.002
– ident: e_1_2_6_61_1
  doi: 10.1016/j.eja.2016.06.012
– ident: e_1_2_6_67_1
  doi: 10.1016/j.fcr.2012.11.023
– ident: e_1_2_6_39_1
  doi: 10.1626/pps.10.57
– ident: e_1_2_6_77_1
  doi: 10.1038/s41598-016-0001-8
– ident: e_1_2_6_33_1
  doi: 10.1016/j.agrformet.2017.02.025
– ident: e_1_2_6_78_1
  doi: 10.1016/j.agrformet.2008.04.007
– ident: e_1_2_6_12_1
  doi: 10.1016/0308-521X(92)90018-J
– ident: e_1_2_6_52_1
  doi: 10.1111/gcb.12389
– ident: e_1_2_6_75_1
  doi: 10.3920/978-90-8686-539-0
– ident: e_1_2_6_76_1
  doi: 10.1016/j.agsy.2014.01.002
– ident: e_1_2_6_20_1
  doi: 10.1007/s13593-011-0049-6
– ident: e_1_2_6_2_1
  doi: 10.1016/j.ecolmodel.2010.09.001
– ident: e_1_2_6_66_1
  doi: 10.1007/s10584-011-0148-z
– ident: e_1_2_6_6_1
  doi: 10.1038/nature01092
SSID ssj0003206
Score 2.6232624
Snippet This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated...
SourceID wageningen
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1029
SubjectTerms Acclimatization
Adaptation
Africa
Biological fertilization
Carbon dioxide
Climate Change
Climate effects
cold induced sterility
Crop and Weed Ecology
Crop production
Crop yield
Dry season
Eastern Africa
Environmental impact
Fertilization
Food Supply
grain yield
heat
heat induced sterility
heat sums
High temperature
highlands
irrigated
irrigation
Irrigation systems
Mineral nutrients
nutrient management
Oryza
Oryza - growth & development
Photosynthesis
Primary
Primary s
rainfed
Rainfed farming
Rainy season
Rice
Seasons
Simulation
sowing date
Sterility
Temperature
Water
Water availability
Western Africa
Wet season
Title Impacts of climate change on rice production in Africa and causes of simulated yield changes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13967
https://www.ncbi.nlm.nih.gov/pubmed/29230904
https://www.proquest.com/docview/2002422975
https://www.proquest.com/docview/1975998505
https://www.proquest.com/docview/2053903160
https://pubmed.ncbi.nlm.nih.gov/PMC5836867
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F533307
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5qQeiLP06r0VpWEfElR5JNcht80qO1ChURC30ohN29TT08N-VyodS_3pndJOdZC-JTEnZ2STYzs98mM98AvBRcqiRSRVgJLXGDUohQxlERqjwxoioQgShKTj7-lB-dpB9Ps9MteNPnwnh-iOGDG1mG89dk4FI1vxn5uVZjhC85ZZJTrBYBoi9r6iieuLqaMc9SdDUx71iFKIpn6Lm5Fl0DmNfjJHcu0city3raBLNuNTq8C2f9c_gglO_jdqXG-ucfFI__-aD34E6HUtlbr1b3YcvYEdz2dSuvRrB7sE6PQ7HOPzQjCI4Rg9dLJ8ZeselijoDYXT2Asw8uIbNhdcW0azDMpx2z2jLiNmIXnn4WVYXNLfMljJi0M6Zl2xjXs5n_oIJjZsauKPauG6F5CCeHB1-nR2FX2yHUGSIi8rGFrngymSBkmaAb0XrGqyjlRuaFjk2cKuKeUzKRlZK84OhopIpmeSZzblLBd2Hb1tY8BpZo1DahMxHnUWqqSlBybJXOcqVx7EQF8Lp_y6XuiM-p_sai7DdAOMOlm-EAXgyiF57t429Ce72qlJ3BN1TNE8EOpSkH8HxoRlOl_y_SmrptyhhbcXeLmPNmmQSdYoGONo8CeOS1b7iTBMF4VERpAJMNvRwEiCp8s8XOvznK8EzwXNCt87UGl5aqVTWuV6eH5WW7LO2CDjhOU-JeANcAnECnnzdPSfl--s6dPPl30aewg-BT-Hi-PdheLVvzDAHeSu3DrST9vO_s-RfAOk9j
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIcRe-FEYBAYYhBAvqZI4SR2JFygbHax7QJu0BybLdh2oKO7UtJrGX8-dk6aUMQnxlEQ-W4lzd_6c3H0H8FJwpZNIF2EpjMINSiFCFUdFqPPEirJABKIpOXl4mA-O048n2ckGvFnmwtT8EO0HN7IM76_JwOmD9G9W_tXoLuKXvHcNrlNFb2LOf_95RR7FE19ZM-ZZis4m5g2vEMXxtF3XV6NLEPNypOTWOZq583lP63DWr0d7t-F0-SR1GMr37mKuu-bnHySP__uod-BWA1TZ21qz7sKGdR24UZeuvOjA9u4qQw7FGhdRdSAYIgyfzrwYe8X6kzFiYn91D77s-5zMik1LZnyDZXXmMZs6RvRG7KxmoEVtYWPH6ipGTLkRM2pRWd-zGv-gmmN2xC4o_K4ZoboPx3u7R_1B2JR3CE2GoIjcbGFKnvR6iFp66EmMGfEySrlVeWFiG6ea6Oe0SlSpFS84-hqlo1GeqZzbVPBt2HRTZx8CSwwqnDCZiPMotWUpKD-2TEe5Njh2ogN4vXzN0jTc51SCYyKXeyCcYelnOIAXrehZTfjxN6Gdpa7IxuYrKuiJeIcylQN43jajtdIvGOXsdFHJGFtxg4uw82qZBP1igb42jwJ4UKtfeycJ4vGoiNIAemuK2QoQW_h6ixt_86zhmeC5oFvnKxWWjgpWVb5Xo4jyfDGTbkIHHKeSuB3AZQAn0Cvo1VMiP_Tf-ZNH_y76DG4OjoYH8mD_8NNj2EIsKurwvh3YnM8W9gnivbl-6s36F5jaUqg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIlAvCBYKKQUMQohLqsTOwxEnWLq0QKseqNQDkmU7Nqy0dVabrqr-e8ZONmVVKnFKIo-tKDPf5HMyD4C3nElFE1XFlmuJG5SKxzJNqlgV1HBbIQNRPjn56Lg4OM2-nuVnG_BhlQvT1YcYPrh5ZAR_7QE-r-1fIP-l1R7Sl6K8A3f9zz4fz0Wzk8ENMxoaa6Ysz9DXpKwvK-TDeIap6y-jGwzzZqDk1iWi3IW0p3U2G15Hk4fwoOeR5GOn-EewYdwI7nWdJa9GsL1_ncCGYj2C2xFER8iSm0UQI-_IeDZFyhquHsPPw5Ay2ZLGEh0GDOkSg0njiK8-ROZdgVhUJpk60jUZItLVRMtla8LMdnruW4KZmlz56Lh-hfYJnE72f4wP4r77Qqxz5CzeC1baMlqWSCpKBLrWNbNJxowsKp2aNFO-OpySVFolWcXQFUiV1EUuC2YyzrZh0zXOPANCNdoD1zlPiyQz1nKfvmqzulAa16YqgvcrNQjdlyb3HTJmYrVFQY2JoLEI3gyi864ex7-Edle6FD0kW99vE-mITySO4PUwjGDyf0ikM82yFSmO4v4TWeHtMhTdVoWusEgieNqZx3AnFOlyUiVZBOWa4QwCvpj3-oib_g5FvXPOCu5vnV2bmHC-n1QbZvWQEJfLhXAzf8B1WoFsHb00PsBgi7c_EvFl_Cmc7Py_6Cu4f_J5Ir4fHn97DlvIFHkXfLcLmxeLpXmBbOxCvQyo-wOfVTEv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impacts+of+climate+change+on+rice+production+in+Africa+and+causes+of+simulated+yield+changes&rft.jtitle=Global+change+biology&rft.au=Pepijn+A+J+van+Oort&rft.au=Zwart%2C+Sander+J&rft.date=2018-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=24&rft.issue=3&rft.spage=1029&rft.epage=1045&rft_id=info:doi/10.1111%2Fgcb.13967&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon