Impacts of climate change on rice production in Africa and causes of simulated yield changes
This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature su...
Saved in:
Published in | Global change biology Vol. 24; no. 3; pp. 1029 - 1045 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.03.2018
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (−24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by −21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by −45% with adaptation they would decrease significantly less (−15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates.
In the Sahel zone in West Africa, temperature rise will lead to large rice yield declines. However, more investigation to understand the response of rice plants to extreme temperatures and adaptation options is needed. In East Africa temperature rise leads to new opportunities for rice the colder highlands |
---|---|
AbstractList | This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (−24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by −21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by −45% with adaptation they would decrease significantly less (−15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates. This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (−24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by −21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by −45% with adaptation they would decrease significantly less (−15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates. In the Sahel zone in West Africa, temperature rise will lead to large rice yield declines. However, more investigation to understand the response of rice plants to extreme temperatures and adaptation options is needed. In East Africa temperature rise leads to new opportunities for rice the colder highlands This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (−24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO 2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by −21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by −45% with adaptation they would decrease significantly less (−15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO 2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates. This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (-24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by -21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by -45% with adaptation they would decrease significantly less (-15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates. This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (-24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by -21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by -45% with adaptation they would decrease significantly less (-15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates.This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (-24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by -21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by -45% with adaptation they would decrease significantly less (-15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates. |
Author | Zwart, Sander J. van Oort, Pepijn A. J. |
AuthorAffiliation | 1 Africa Rice Center Bouaké Côte d'Ivoire 2 Centre for Crop Systems Analysis Wageningen Universiteit Wageningen The Netherlands 3 Faculteit Geo‐Informatie Wetenschappen en Aardobservatie Universiteit Twente Enschede The Netherlands |
AuthorAffiliation_xml | – name: 2 Centre for Crop Systems Analysis Wageningen Universiteit Wageningen The Netherlands – name: 3 Faculteit Geo‐Informatie Wetenschappen en Aardobservatie Universiteit Twente Enschede The Netherlands – name: 1 Africa Rice Center Bouaké Côte d'Ivoire |
Author_xml | – sequence: 1 givenname: Pepijn A. J. orcidid: 0000-0001-7617-5382 surname: van Oort fullname: van Oort, Pepijn A. J. email: p.vanoort@cgiar.org, pepijn.vanoort@wur.nl organization: Wageningen Universiteit – sequence: 2 givenname: Sander J. orcidid: 0000-0002-5091-1801 surname: Zwart fullname: Zwart, Sander J. organization: Universiteit Twente |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29230904$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9vFCEUx4mpse3qwX_AkHjRw7T8GJjBQ5O60dqkiRe9mZA3DLOlYWGFGTf738t010abqFwePD7fLw94p-goxGAReknJGS3jfGW6M8qVbJ6gE8qlqFjdyqN5LuqKEsqP0WnOd4QQzoh8ho6ZYpwoUp-gb9frDZgx4zhg490aRovNLYSVxTHg5IzFmxT7yYyurF3Al0NJAobQYwNTtvfK7NaTL9Ie75z1_cEhP0dPB_DZvjjEBfr68cOX5afq5vPV9fLypjJC8aZSlCozcNY0jSANqVtjej6QmluQylBL644VpAMGQwdc8bptoSO9FCC5rVu-QO_2vltY2eDK0UEHSMZlHcFp77oEaae3U9LBz2EzdVkLzjlpivhiLy7Jte2NDWMCrzepPEYRzQZ_7gR3q1fxhxYtl62cDd4cDFL8Ptk86rXLxnoPwcYpa0YEV4RTSf6LUtUIpVpRFAv0-hF6F6cUyjMWQ8JqxgpbqFe_F_9Q9a8PLsDbPWBSzDnZ4QGhRM_No0vz6PvmKez5I9a4EeaPL_d2_l-KrfN293drfbV8v1f8BMg_1as |
CitedBy_id | crossref_primary_10_1007_s42106_025_00327_5 crossref_primary_10_1016_j_eja_2022_126655 crossref_primary_10_1016_j_fcr_2020_107978 crossref_primary_10_1002_ppp3_10231 crossref_primary_10_1007_s40572_020_00292_3 crossref_primary_10_1016_j_heliyon_2023_e15480 crossref_primary_10_3724_j_1006_8775_2024_044 crossref_primary_10_1016_j_agrformet_2021_108443 crossref_primary_10_1016_j_uclim_2023_101432 crossref_primary_10_1111_pce_14702 crossref_primary_10_1016_j_apgeog_2018_05_003 crossref_primary_10_1016_j_compag_2019_105031 crossref_primary_10_1111_jac_12421 crossref_primary_10_3390_plants8100376 crossref_primary_10_1007_s00484_023_02462_y crossref_primary_10_1016_j_envc_2021_100439 crossref_primary_10_1016_j_plantsci_2019_110207 crossref_primary_10_1016_j_fcr_2018_01_016 crossref_primary_10_1016_j_rhisph_2018_08_003 crossref_primary_10_1016_j_rsci_2023_03_010 crossref_primary_10_1016_j_jclepro_2022_135760 crossref_primary_10_1007_s11356_021_14163_3 crossref_primary_10_3390_agronomy14030468 crossref_primary_10_1016_j_tplants_2023_01_005 crossref_primary_10_2139_ssrn_4014260 crossref_primary_10_1111_wej_12523 crossref_primary_10_1016_j_agwat_2021_106758 crossref_primary_10_1017_S0021859620000350 crossref_primary_10_1016_j_cj_2020_11_010 crossref_primary_10_6090_jarq_55_473 crossref_primary_10_1029_2020EF001878 crossref_primary_10_1016_j_fcr_2021_108263 crossref_primary_10_1080_23311932_2024_2327666 crossref_primary_10_1016_j_jenvman_2022_114722 crossref_primary_10_3389_fpls_2018_01768 crossref_primary_10_1111_jac_12416 crossref_primary_10_1016_j_fcr_2021_108149 crossref_primary_10_1186_s12284_023_00677_6 crossref_primary_10_3390_agronomy8120291 crossref_primary_10_1007_s00122_021_04001_y crossref_primary_10_1038_s43016_023_00770_5 crossref_primary_10_3390_environments8110117 crossref_primary_10_1111_jac_12414 crossref_primary_10_1007_s12571_023_01351_x crossref_primary_10_1038_s41467_024_44950_8 crossref_primary_10_1088_2515_7620_ad61c3 crossref_primary_10_52711_2231_3915_2021_00001 crossref_primary_10_1016_j_geoderma_2023_116732 crossref_primary_10_1079_cabireviews_2025_0006 crossref_primary_10_1002_joc_7947 crossref_primary_10_1016_j_rsci_2022_06_002 crossref_primary_10_1016_j_agrformet_2023_109355 crossref_primary_10_3390_agronomy10081135 crossref_primary_10_3390_agronomy12112625 crossref_primary_10_1016_j_jafr_2022_100315 crossref_primary_10_1007_s00704_021_03880_x crossref_primary_10_1016_j_atech_2023_100283 crossref_primary_10_3389_fclim_2024_1297225 crossref_primary_10_1111_pce_14256 crossref_primary_10_1007_s10668_022_02714_8 crossref_primary_10_3389_fsufs_2023_1206754 crossref_primary_10_1016_j_cliser_2024_100507 crossref_primary_10_1088_1748_9326_aca5a2 crossref_primary_10_2478_eko_2022_0029 crossref_primary_10_1007_s10113_022_02010_1 crossref_primary_10_1007_s10668_023_03766_0 crossref_primary_10_1088_1748_9326_aad66c crossref_primary_10_1016_j_agwat_2020_106242 crossref_primary_10_1016_j_fcr_2021_108256 crossref_primary_10_1002_csc2_21420 crossref_primary_10_1016_j_fcr_2020_107806 crossref_primary_10_1175_WAF_D_19_0122_1 crossref_primary_10_1007_s00704_022_04033_4 crossref_primary_10_1007_s40710_019_00360_3 crossref_primary_10_1080_17565529_2020_1844611 crossref_primary_10_1007_s11356_022_21656_2 crossref_primary_10_3390_agronomy13051252 crossref_primary_10_3389_fsufs_2023_1284383 crossref_primary_10_3390_app112210701 crossref_primary_10_3390_su14052881 crossref_primary_10_3389_fpls_2022_837152 crossref_primary_10_3390_plants13030432 crossref_primary_10_1088_1755_1315_1397_1_012032 crossref_primary_10_1080_14735903_2024_2423595 crossref_primary_10_1016_S2095_3119_20_63304_4 crossref_primary_10_1016_j_atech_2023_100392 crossref_primary_10_1007_s41748_021_00210_z crossref_primary_10_3390_cli11110227 crossref_primary_10_1002_csc2_20048 crossref_primary_10_3390_agriculture12101554 crossref_primary_10_5194_essd_15_791_2023 crossref_primary_10_1080_1343943X_2019_1617638 crossref_primary_10_1007_s12571_021_01149_9 crossref_primary_10_2480_agrmet_D_24_00005 crossref_primary_10_1007_s11356_021_16751_9 crossref_primary_10_1016_j_techsoc_2021_101607 crossref_primary_10_1016_j_scitotenv_2020_143206 crossref_primary_10_1080_23311886_2023_2282210 crossref_primary_10_1016_j_jenvman_2021_112458 crossref_primary_10_1016_j_fcr_2021_108074 crossref_primary_10_1016_j_jafr_2023_100576 crossref_primary_10_3390_ijerph19073804 crossref_primary_10_1007_s00704_020_03256_7 crossref_primary_10_1016_j_gfs_2022_100649 crossref_primary_10_1088_2752_5295_ad9f94 crossref_primary_10_1515_opag_2022_0185 crossref_primary_10_1108_IJOEM_06_2022_1019 crossref_primary_10_1038_s43016_023_00783_0 crossref_primary_10_1002_met_2146 crossref_primary_10_1007_s10584_021_03204_y crossref_primary_10_1186_s12284_022_00559_3 crossref_primary_10_1002_agj2_21412 crossref_primary_10_1002_joc_6767 crossref_primary_10_1057_s41599_024_02847_3 crossref_primary_10_1007_s10668_023_03615_0 crossref_primary_10_1007_s11356_021_17579_z crossref_primary_10_1080_1343943X_2020_1727752 crossref_primary_10_1080_14735903_2023_2193439 crossref_primary_10_3389_frevc_2024_1360513 crossref_primary_10_59267_ekoPolj2302377Y crossref_primary_10_3390_ijms21093187 crossref_primary_10_1007_s40003_019_00424_8 crossref_primary_10_1093_icesjms_fsz061 crossref_primary_10_1016_j_agsy_2022_103429 crossref_primary_10_1016_j_ecolind_2023_110543 crossref_primary_10_1371_journal_pone_0243779 crossref_primary_10_1002_jsfa_13237 crossref_primary_10_1093_jxb_erac156 crossref_primary_10_1016_j_fcr_2021_108209 crossref_primary_10_1016_j_agrformet_2022_108860 crossref_primary_10_1038_s41598_022_22331_9 crossref_primary_10_1108_CAER_07_2023_0179 crossref_primary_10_1002_sae2_70026 crossref_primary_10_3390_ijms241914802 crossref_primary_10_1007_s10018_024_00398_0 crossref_primary_10_1186_s12284_022_00578_0 crossref_primary_10_1016_j_agrformet_2025_110461 crossref_primary_10_1080_10095020_2021_1936656 crossref_primary_10_1080_03650340_2020_1826041 crossref_primary_10_1088_1748_9326_ac61c8 crossref_primary_10_5194_gmd_16_7253_2023 crossref_primary_10_1111_ijpo_13004 crossref_primary_10_1007_s10705_025_10397_6 crossref_primary_10_3390_plants10050839 crossref_primary_10_1007_s11356_019_07080_z crossref_primary_10_1007_s13593_021_00710_2 crossref_primary_10_1093_jxb_eraa002 crossref_primary_10_1007_s43832_025_00196_z crossref_primary_10_1093_advances_nmab104 crossref_primary_10_3390_su11226271 crossref_primary_10_1080_19376812_2024_2359997 crossref_primary_10_1007_s11027_025_10199_9 crossref_primary_10_2139_ssrn_3277844 crossref_primary_10_3390_agronomy13020587 crossref_primary_10_3390_cimb47030177 crossref_primary_10_1016_j_ecoinf_2023_102038 crossref_primary_10_1016_j_fcr_2024_109519 crossref_primary_10_1080_23322039_2024_2421894 crossref_primary_10_3390_agronomy12051234 crossref_primary_10_3390_ijerph17249241 crossref_primary_10_1016_j_agsy_2021_103149 crossref_primary_10_1007_s00382_023_06956_8 |
Cites_doi | 10.1016/j.agrformet.2014.09.016 10.1098/rstb.2013.0089 10.1016/j.fcr.2015.03.004 10.1016/j.eja.2013.03.006 10.1146/annurev.energy.25.1.441 10.1016/j.fcr.2014.11.018 10.1111/gcb.12758 10.1016/j.agrformet.2007.09.012 10.1073/pnas.1610359113 10.1016/j.agrformet.2016.07.021 10.1016/S0168-1923(98)00061-6 10.1016/j.geoderma.2014.07.019 10.1016/j.eja.2012.06.007 10.1046/j.1365-2486.2003.00628.x 10.1016/j.fcr.2014.04.002 10.1016/j.gloplacha.2008.09.007 10.1126/science.1152339 10.1016/j.fcr.2013.11.007 10.1371/journal.pone.0118114 10.1016/0308-521X(94)00027-I 10.1007/978-3-642-85193-3_29 10.1016/j.fcr.2017.02.014 10.1080/14735903.2014.945317 10.1016/j.fcr.2015.07.024 10.1016/j.fcr.2015.03.005 10.1016/j.agrformet.2011.06.012 10.1038/nclimate1357 10.1088/1748-9326/8/2/024041 10.1016/j.agwat.2015.01.014 10.1016/0308-521X(94)00028-J 10.3389/fpls.2016.01262 10.1029/2008GB003435 10.1016/j.agrformet.2015.08.262 10.1038/nclimate2947 10.1016/S0308-521X(95)00060-I 10.1016/j.fcr.2011.07.001 10.1007/s10584-008-9396-y 10.1088/1748-9326/3/3/034007 10.1111/j.1365-3040.1995.tb00370.x 10.1016/j.eja.2015.05.003 10.1023/A:1013714506779 10.1175/2008JCLI2274.1 10.1016/j.envsoft.2015.12.003 10.1016/j.eja.2016.12.010 10.1016/j.scitotenv.2016.04.021 10.1016/j.fcr.2017.07.004 10.1007/BF00386231 10.1016/j.eja.2012.01.003 10.1016/j.eja.2014.10.003 10.1016/j.fcr.2016.12.015 10.1038/sdata.2017.74 10.3354/cr032229 10.1016/j.agrformet.2004.08.005 10.1016/j.agwat.2016.07.003 10.1016/j.gfs.2014.05.002 10.1016/j.gfs.2015.01.002 10.1016/j.eja.2016.06.012 10.1016/j.fcr.2012.11.023 10.1626/pps.10.57 10.1038/s41598-016-0001-8 10.1016/j.agrformet.2017.02.025 10.1016/j.agrformet.2008.04.007 10.1016/0308-521X(92)90018-J 10.1111/gcb.12389 10.3920/978-90-8686-539-0 10.1016/j.agsy.2014.01.002 10.1007/s13593-011-0049-6 10.1016/j.ecolmodel.2010.09.001 10.1007/s10584-011-0148-z 10.1038/nature01092 |
ContentType | Journal Article |
Copyright | 2017 The Authors. Published by John Wiley & Sons Ltd. 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. Copyright © 2018 John Wiley & Sons Ltd Wageningen University & Research |
Copyright_xml | – notice: 2017 The Authors. Published by John Wiley & Sons Ltd. – notice: 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. – notice: Copyright © 2018 John Wiley & Sons Ltd – notice: Wageningen University & Research |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 5PM QVL |
DOI | 10.1111/gcb.13967 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
DocumentTitleAlternate | van OORT and ZWART |
EISSN | 1365-2486 |
EndPage | 1045 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_533307 PMC5836867 29230904 10_1111_gcb_13967 GCB13967 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | West Africa East Africa Africa Western Africa Eastern Africa |
GeographicLocations_xml | – name: East Africa – name: Africa – name: West Africa – name: Western Africa – name: Eastern Africa |
GrantInformation_xml | – fundername: The CGIAR Fund Council, Australia (ACIAR) – fundername: CGIAR Research Program on Rice (RICE) – fundername: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH – fundername: “Improving rice farmers’ decision making in lowland rice‐based systems in East Africa (East Africa ‘RiceAdvice’)” funderid: 14.1432.5‐001.00, 81180340 – fundername: Federal Ministry of Economic Cooperation and Development (BMZ) – fundername: USAID and Thailand for funding to the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) – fundername: Irish Aid, European Union, International Fund for Agricultural Development (IFAD), Netherlands, New Zealand, Switzerland, UK, – fundername: “Improving rice farmers’ decision making in lowland rice‐based systems in East Africa (East Africa ‘RiceAdvice’)” grantid: 14.1432.5‐001.00, 81180340 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 5PM 02 0R 1AW 31 3N AAPBV ABHUG ABPTK ACXME ADAWD ADDAD AGJLS DZ GA HZ IA KM NF P4A PQEST QVL RIG UNR WT Y3 |
ID | FETCH-LOGICAL-c5937-9119cf32777507048ccd3f043ea69c1e14b2119ba2afba393488ab0d65a63e483 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Feb 05 18:08:18 EST 2021 Thu Aug 21 18:20:31 EDT 2025 Fri Jul 11 18:28:48 EDT 2025 Fri Jul 11 16:50:09 EDT 2025 Fri Jul 25 10:46:00 EDT 2025 Mon Jul 21 05:55:19 EDT 2025 Tue Jul 01 03:52:59 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Wed Jan 22 16:35:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | photosynthesis heat induced sterility rainfed Africa cold induced sterility rice irrigated climate change |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5937-9119cf32777507048ccd3f043ea69c1e14b2119ba2afba393488ab0d65a63e483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7617-5382 0000-0002-5091-1801 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13967 |
PMID | 29230904 |
PQID | 2002422975 |
PQPubID | 30327 |
PageCount | 17 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_533307 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5836867 proquest_miscellaneous_2053903160 proquest_miscellaneous_1975998505 proquest_journals_2002422975 pubmed_primary_29230904 crossref_primary_10_1111_gcb_13967 crossref_citationtrail_10_1111_gcb_13967 wiley_primary_10_1111_gcb_13967_GCB13967 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | March 2018 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2018 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 2015; 183 2017; 85 2017; 4 2002; 52 2006; 32 2017; 237–238 2014; 235–236 2008; 148 2008; 3 2017; 232 2013; 8 2011; 151 2014; 20 2016; 77 2015; 173 2017; 207 1980; 149 2014; 369 2014; 127 2011; 124 2014; 3 2010; 24 2001 1997; 54 2015; 177 2008; 319 2003; 9 2016; 113 1985 2008; 21 1998; 91 2008; 64 2016; 80 2014; 163 2017; 204 1992; 40 2015; 13 2015; 5 2013; 49 2000; 25 2012 2015; 200 2015; 10 2008 2016; 562 2007 1995 2005 2002; 419 2012; 39 1993 2013; 143 1995; 18 2007; 10 2017; 211 2012; 32 2008; 90 2014; 156 2015; 152 2016; 6 2015; 214–215 2015; 69 2016; 7 2012; 2 2011; 109 1995; 48 2015; 64 2015; 21 2005; 128 2016; 177 2016 2013 2011; 222 2012; 43 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Bouman B. A. M. (e_1_2_6_9_1) 2001 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Ramirez J. (e_1_2_6_49_1) 2008 Windmeijer P. N. (e_1_2_6_73_1) 1993 e_1_2_6_5_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 Prather M. (e_1_2_6_47_1) 2013 e_1_2_6_26_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 Vergara B. S. (e_1_2_6_68_1) 1985 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 Balasubramanian V. (e_1_2_6_7_1) 2007 |
References_xml | – volume: 64 start-page: 222 year: 2008 end-page: 235 article-title: A spatially explicit assessment of current and future hotspots of hunger in Sub‐Saharan Africa in the context of global change publication-title: Global and Planetary Change – year: 1985 – volume: 143 start-page: 44 year: 2013 end-page: 55 article-title: Use of agro‐climatic zones to upscale simulated crop yield potential publication-title: Field Crops Research – volume: 128 start-page: 93 year: 2005 end-page: 110 article-title: Agricultural impacts of large‐scale variability of the West African monsoon publication-title: Agricultural and Forest Meteorology – volume: 43 start-page: 166 year: 2012 end-page: 174 article-title: Variation in time of day of anthesis in rice in different climatic environments publication-title: European Journal of Agronomy – volume: 85 start-page: 1 year: 2017 end-page: 11 article-title: On‐farm rice yield and its association with biophysical factors in sub‐Saharan Africa publication-title: European Journal of Agronomy – volume: 9 start-page: 697 year: 2003 end-page: 717 article-title: MuSICA, a CO2, water and energy multilayer, multileaf pine forest model: Evaluation from hourly to yearly time scales and sensitivity analysis publication-title: Global Change Biology – volume: 80 start-page: 168 year: 2016 end-page: 181 article-title: Intensification of an irrigated rice system in Senegal: Crop rotations, climate risks, sowing dates and varietal adaptation options publication-title: European Journal of Agronomy – year: 2005 – year: 2001 – volume: 163 start-page: 64 year: 2014 end-page: 73 article-title: Canopy microclimate and gas‐exchange in response to irrigationsystem in lowland rice in the Sahel publication-title: Field Crops Research – volume: 211 start-page: 172 year: 2017 end-page: 172 article-title: Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions publication-title: Field Crops Research – volume: 173 start-page: 68 year: 2015 end-page: 80 article-title: Options for increasing the productivity of the rice‐wheat system of north‐west India while reducing groundwater depletion. Part 1. Rice variety duration, sowing date and inclusion of mungbean publication-title: Field Crops Research – volume: 77 start-page: 143 year: 2016 end-page: 155 article-title: Simulating canopy temperature for modelling heat stress in cereals publication-title: Environmental Modelling and Software – volume: 48 start-page: 411 year: 1995 end-page: 433 article-title: Climatic determinants of irrigated rice performance in the Sahel. 2. Validation of photothermal constants and characterization of genotypes publication-title: Agricultural Systems – volume: 369 start-page: 20130089 year: 2014 article-title: Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar publication-title: Philosophical Transactions of the Royal Society B‐Biological Sciences – volume: 8 start-page: 024041 year: 2013 article-title: Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections publication-title: Environmental Research Letters – volume: 32 start-page: 229 year: 2006 end-page: 245 article-title: Food crop production in Nigeria. II. Potential effects of climate change publication-title: Climate Research – volume: 40 start-page: 125 year: 1992 end-page: 151 article-title: Resource use efficiency in agriculture publication-title: Agricultural Systems – volume: 204 start-page: 52 year: 2017 end-page: 75 article-title: Evaluation of the APSIM model in cropping systems of Asia publication-title: Field Crops Research – volume: 7 start-page: 1 year: 2016 end-page: 20 article-title: Agriculture in West Africa in the twenty‐first century: Climate change and impacts scenarios, and potential for adaptation publication-title: Frontiers in Plant Science – volume: 69 start-page: 21 year: 2015 end-page: 31 article-title: PRACT (Prototyping Rotation and Association with Cover crop and no Till) ‐ a tool for designing conservation agriculture systems publication-title: European Journal of Agronomy – volume: 6 start-page: 605 year: 2016 end-page: 609 article-title: Timescales of transformational climate change adaptation in sub‐Saharan African agriculture publication-title: Nature Climate Change – volume: 54 start-page: 399 year: 1997 end-page: 425 article-title: Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation publication-title: Agricultural Systems – volume: 148 start-page: 1412 year: 2008 end-page: 1418 article-title: Non‐stationary thermal time accumulation reduces the predictability of climate change effects on agriculture publication-title: Agricultural and Forest Meteorology – volume: 151 start-page: 1545 year: 2011 end-page: 1555 article-title: Correlation between temperature and phenology prediction error in rice ( L.) publication-title: Agricultural and Forest Meteorology – volume: 156 start-page: 303 year: 2014 end-page: 312 article-title: A simple model for simulating heat induced sterility in rice as a function of flowering time and transpirational cooling publication-title: Field Crops Research – year: 2008 – volume: 10 start-page: E0118114 year: 2015 article-title: Improved climate risk simulations for rice in arid environments publication-title: PLoS One – volume: 177 start-page: 98 year: 2015 end-page: 108 article-title: From field to atlas: Upscaling of location‐specific yield gap estimates publication-title: Field Crops Research – volume: 419 start-page: 224 year: 2002 end-page: 232 article-title: Constraints on future changes in climate and the hydrologic cycle publication-title: Nature – volume: 109 start-page: 5 year: 2011 end-page: 31 article-title: The representative concentration pathways: An overview publication-title: Climatic Change – volume: 124 start-page: 357 year: 2011 end-page: 368 article-title: Methodologies for simulating impacts of climate change on crop production publication-title: Field Crops Research – volume: 3 start-page: 034007 year: 2008 article-title: Why are agricultural impacts of climate change so uncertain? the importance of temperature relative to precipitation publication-title: Environmental Research Letters – start-page: 1217 year: 2013 end-page: 1308 – year: 1993 – start-page: 55 year: 2007 end-page: 133 – volume: 13 start-page: 87 year: 2015 end-page: 103 article-title: Climate change impacts on rain‐fed and irrigated rice yield in Malawi publication-title: International Journal of Agricultural Sustainability – volume: 64 start-page: 98 year: 2015 end-page: 113 article-title: Heat stress in cereals: Mechanisms and modelling publication-title: European Journal of Agronomy – volume: 32 start-page: 619 year: 2012 end-page: 627 article-title: Positive effects of climate change on rice in Madagascar publication-title: Agronomy for Sustainable Development – volume: 49 start-page: 50 year: 2013 end-page: 60 article-title: Predicting temperature induced sterility of rice spikelets requires simulation of crop‐generated microclimate publication-title: European Journal of Agronomy – volume: 3 start-page: 72 year: 2014 end-page: 76 article-title: Climate change adaptation in crop production: Beware of illusions publication-title: Global Food Security‐Agriculture Policy Economics and Environment – volume: 235–236 start-page: 250 year: 2014 end-page: 259 article-title: Soil quality and constraints in global rice production publication-title: Geoderma – volume: 319 start-page: 607 year: 2008 end-page: 610 article-title: Prioritizing climate change adaptation needs for food security in 2030 publication-title: Science – volume: 21 start-page: 1328 year: 2015 end-page: 1341 article-title: Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions publication-title: Global Change Biology – volume: 21 start-page: 5364 year: 2008 end-page: 5383 article-title: Recent changes in surface humidity: Development of the HadCRUH dataset publication-title: Journal of Climate – volume: 90 start-page: 359 year: 2008 end-page: 383 article-title: A global perspective on African climate publication-title: Climatic Change – volume: 25 start-page: 441 year: 2000 end-page: 475 article-title: Water vapor feedback and global warming publication-title: Annual Review of Energy and the Environment – volume: 2 start-page: 205 year: 2012 end-page: 209 article-title: The impact of climate change on global tropical cyclone damage publication-title: Nature Climate Change – volume: 91 start-page: 89 year: 1998 end-page: 111 article-title: A two‐leaf model for canopy conductance, photosynthesis and partitioning of available energy I: Model description and comparison with a multi‐layered model publication-title: Agricultural and Forest Meteorology – volume: 232 start-page: 291 year: 2017 end-page: 305 article-title: Assessing climate adaptation options and uncertainties for cereal systems in West Africa publication-title: Agricultural and Forest Meteorology – volume: 183 start-page: 282 year: 2015 end-page: 293 article-title: Field phenomics for response of a rice diversity panel to ten environments in Senegal and Madagascar. 2. Chilling‐induced spikelet sterility publication-title: Field Crops Research – volume: 4 start-page: 170074 year: 2017 article-title: RiceAtlas, a spatial database of global rice calendars and production publication-title: Nature: Scientific Data – volume: 113 start-page: 14964 year: 2016 end-page: 14969 article-title: Can sub‐Saharan Africa feed itself? publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 222 start-page: 131 year: 2011 end-page: 143 article-title: Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions publication-title: Ecological Modelling – volume: 18 start-page: 339 year: 1995 end-page: 355 article-title: A critical‐appraisal of a combined stomatal‐photosynthesis model for C‐3 Plants publication-title: Plant Cell and Environment – volume: 177 start-page: 49 year: 2015 end-page: 63 article-title: How good is good enough? Data requirements for reliable crop yield simulations and yield‐gap analysis publication-title: Field Crops Research – volume: 200 start-page: 233 year: 2015 end-page: 248 article-title: Climate forcing datasets for agricultural modeling: Merged products for gap‐filling and historical climate series estimation publication-title: Agricultural and Forest Meteorology – volume: 127 start-page: 53 year: 2014 end-page: 60 article-title: Generating global crop distribution maps: From census to grid publication-title: Agricultural Systems – year: 2016 – volume: 5 start-page: 39 year: 2015 end-page: 49 article-title: Assessment of rice self‐sufficiency in 2025 in eight African countries publication-title: Global Food Security – volume: 39 start-page: 9 year: 2012 end-page: 24 article-title: Rice in cropping systems‐modelling transitions between flooded and non‐flooded soil environments publication-title: European Journal of Agronomy – volume: 10 start-page: 57 year: 2007 end-page: 63 article-title: Stability of rice pollination in the field under hot and dry conditions in the Riverina region of New South Wales, Australia publication-title: Plant Production Science – volume: 24 start-page: 1 year: 2010 end-page: 24 article-title: IRCA2000‐Global monthly irrigated and rainfed crop areas around the year 2000: A new high‐resolution data set for agricultural and hydrological modeling publication-title: Global Biogeochemical Cycles – year: 2012 – volume: 148 start-page: 94 year: 2008 end-page: 110 article-title: Global warming, rice production, and water use in China: Developing a probabilistic assessment publication-title: Agricultural and Forest Meteorology – volume: 562 start-page: 666 year: 2016 end-page: 677 article-title: Flood projections within the Niger River Basin under future land use and climate change publication-title: Science of the Total Environment – volume: 6 start-page: 1 year: 2016 end-page: 9 article-title: Model biases in rice phenology under warmer climates publication-title: Scientific Reports – volume: 52 start-page: 331 year: 2002 end-page: 343 article-title: Climate change and rice yields in diverse agro‐environments of India. II. Effect of uncertainties in scenarios and crop models on impact assessment publication-title: Climatic Change – volume: 207 start-page: 1 year: 2017 end-page: 12 article-title: Variability and determinants of yields in rice production systems of West Africa publication-title: Field Crops Research – volume: 177 start-page: 95 year: 2016 end-page: 106 article-title: A spatially explicit approach to assess the suitability for rice cultivation in an inland valley in central Benin publication-title: Agricultural Water Management – volume: 149 start-page: 78 year: 1980 end-page: 90 article-title: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species publication-title: Planta – volume: 48 start-page: 385 year: 1995 end-page: 410 article-title: Climatic determinants of irrigated rice performance in the Sahel. 1. Photothermal and micro‐climatic responses of flowering publication-title: Agricultural Systems – year: 1995 – volume: 214–215 start-page: 208 year: 2015 end-page: 218 article-title: Sowing rules for estimating rainfed yield potential of sorghum and maize in Burkina Faso publication-title: Agricultural and Forest Meteorology – volume: 237–238 start-page: 246 year: 2017 end-page: 256 article-title: From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen‐deficient environments publication-title: Agricultural and Forest Meteorology – volume: 152 start-page: 286 year: 2015 end-page: 298 article-title: Contributions of lateral flow and groundwater to the spatio‐temporal variation of irrigated rice yields and water productivity in a West‐African inland valley publication-title: Agricultural Water Management – volume: 20 start-page: 408 year: 2014 end-page: 417 article-title: Temperatures and the growth and development of maize and rice: A review publication-title: Global Change Biology – ident: e_1_2_6_51_1 doi: 10.1016/j.agrformet.2014.09.016 – ident: e_1_2_6_26_1 doi: 10.1098/rstb.2013.0089 – ident: e_1_2_6_23_1 doi: 10.1016/j.fcr.2015.03.004 – ident: e_1_2_6_30_1 doi: 10.1016/j.eja.2013.03.006 – start-page: 1217 volume-title: Climate Change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change year: 2013 ident: e_1_2_6_47_1 – ident: e_1_2_6_27_1 doi: 10.1146/annurev.energy.25.1.441 – ident: e_1_2_6_8_1 doi: 10.1016/j.fcr.2014.11.018 – ident: e_1_2_6_34_1 doi: 10.1111/gcb.12758 – volume-title: ORYZA2000: Modeling lowland rice year: 2001 ident: e_1_2_6_9_1 – ident: e_1_2_6_28_1 – ident: e_1_2_6_58_1 doi: 10.1016/j.agrformet.2007.09.012 – ident: e_1_2_6_60_1 doi: 10.1073/pnas.1610359113 – ident: e_1_2_6_24_1 doi: 10.1016/j.agrformet.2016.07.021 – ident: e_1_2_6_69_1 doi: 10.1016/S0168-1923(98)00061-6 – volume-title: The flowering response of the rice plant to photoperiod: A Review of Literature year: 1985 ident: e_1_2_6_68_1 – ident: e_1_2_6_25_1 doi: 10.1016/j.geoderma.2014.07.019 – ident: e_1_2_6_29_1 doi: 10.1016/j.eja.2012.06.007 – ident: e_1_2_6_45_1 doi: 10.1046/j.1365-2486.2003.00628.x – ident: e_1_2_6_54_1 doi: 10.1016/j.fcr.2014.04.002 – ident: e_1_2_6_35_1 doi: 10.1016/j.gloplacha.2008.09.007 – ident: e_1_2_6_38_1 doi: 10.1126/science.1152339 – ident: e_1_2_6_64_1 doi: 10.1016/j.fcr.2013.11.007 – ident: e_1_2_6_62_1 doi: 10.1371/journal.pone.0118114 – ident: e_1_2_6_15_1 doi: 10.1016/0308-521X(94)00027-I – ident: e_1_2_6_40_1 doi: 10.1007/978-3-642-85193-3_29 – ident: e_1_2_6_44_1 doi: 10.1016/j.fcr.2017.02.014 – volume-title: High resolution statistically downscaled future climate surfaces year: 2008 ident: e_1_2_6_49_1 – ident: e_1_2_6_10_1 doi: 10.1080/14735903.2014.945317 – ident: e_1_2_6_14_1 doi: 10.1016/j.fcr.2015.07.024 – ident: e_1_2_6_59_1 doi: 10.1016/j.fcr.2015.03.005 – ident: e_1_2_6_65_1 doi: 10.1016/j.agrformet.2011.06.012 – ident: e_1_2_6_42_1 doi: 10.1038/nclimate1357 – ident: e_1_2_6_22_1 doi: 10.1088/1748-9326/8/2/024041 – ident: e_1_2_6_53_1 doi: 10.1016/j.agwat.2015.01.014 – ident: e_1_2_6_13_1 doi: 10.1016/0308-521X(94)00028-J – ident: e_1_2_6_56_1 doi: 10.3389/fpls.2016.01262 – ident: e_1_2_6_46_1 doi: 10.1029/2008GB003435 – ident: e_1_2_6_74_1 doi: 10.1016/j.agrformet.2015.08.262 – ident: e_1_2_6_50_1 doi: 10.1038/nclimate2947 – ident: e_1_2_6_41_1 doi: 10.1016/S0308-521X(95)00060-I – ident: e_1_2_6_71_1 doi: 10.1016/j.fcr.2011.07.001 – ident: e_1_2_6_79_1 – ident: e_1_2_6_21_1 doi: 10.1007/s10584-008-9396-y – ident: e_1_2_6_37_1 doi: 10.1088/1748-9326/3/3/034007 – volume-title: Inland valleys in West Africa: An agro‐ecological characterization of rice growing environments year: 1993 ident: e_1_2_6_73_1 – ident: e_1_2_6_32_1 doi: 10.1111/j.1365-3040.1995.tb00370.x – ident: e_1_2_6_43_1 doi: 10.1016/j.eja.2015.05.003 – ident: e_1_2_6_4_1 doi: 10.1023/A:1013714506779 – ident: e_1_2_6_72_1 doi: 10.1175/2008JCLI2274.1 – ident: e_1_2_6_70_1 doi: 10.1016/j.envsoft.2015.12.003 – ident: e_1_2_6_57_1 doi: 10.1016/j.eja.2016.12.010 – ident: e_1_2_6_5_1 doi: 10.1016/j.scitotenv.2016.04.021 – ident: e_1_2_6_48_1 doi: 10.1016/j.fcr.2017.07.004 – ident: e_1_2_6_17_1 doi: 10.1007/BF00386231 – ident: e_1_2_6_19_1 doi: 10.1016/j.eja.2012.01.003 – ident: e_1_2_6_16_1 doi: 10.1016/j.eja.2014.10.003 – ident: e_1_2_6_18_1 doi: 10.1016/j.fcr.2016.12.015 – ident: e_1_2_6_31_1 doi: 10.1038/sdata.2017.74 – ident: e_1_2_6_3_1 doi: 10.3354/cr032229 – start-page: 55 volume-title: Advances in agronomy year: 2007 ident: e_1_2_6_7_1 – ident: e_1_2_6_55_1 doi: 10.1016/j.agrformet.2004.08.005 – ident: e_1_2_6_11_1 doi: 10.1016/j.agwat.2016.07.003 – ident: e_1_2_6_36_1 doi: 10.1016/j.gfs.2014.05.002 – ident: e_1_2_6_63_1 doi: 10.1016/j.gfs.2015.01.002 – ident: e_1_2_6_61_1 doi: 10.1016/j.eja.2016.06.012 – ident: e_1_2_6_67_1 doi: 10.1016/j.fcr.2012.11.023 – ident: e_1_2_6_39_1 doi: 10.1626/pps.10.57 – ident: e_1_2_6_77_1 doi: 10.1038/s41598-016-0001-8 – ident: e_1_2_6_33_1 doi: 10.1016/j.agrformet.2017.02.025 – ident: e_1_2_6_78_1 doi: 10.1016/j.agrformet.2008.04.007 – ident: e_1_2_6_12_1 doi: 10.1016/0308-521X(92)90018-J – ident: e_1_2_6_52_1 doi: 10.1111/gcb.12389 – ident: e_1_2_6_75_1 doi: 10.3920/978-90-8686-539-0 – ident: e_1_2_6_76_1 doi: 10.1016/j.agsy.2014.01.002 – ident: e_1_2_6_20_1 doi: 10.1007/s13593-011-0049-6 – ident: e_1_2_6_2_1 doi: 10.1016/j.ecolmodel.2010.09.001 – ident: e_1_2_6_66_1 doi: 10.1007/s10584-011-0148-z – ident: e_1_2_6_6_1 doi: 10.1038/nature01092 |
SSID | ssj0003206 |
Score | 2.6232624 |
Snippet | This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated... |
SourceID | wageningen pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1029 |
SubjectTerms | Acclimatization Adaptation Africa Biological fertilization Carbon dioxide Climate Change Climate effects cold induced sterility Crop and Weed Ecology Crop production Crop yield Dry season Eastern Africa Environmental impact Fertilization Food Supply grain yield heat heat induced sterility heat sums High temperature highlands irrigated irrigation Irrigation systems Mineral nutrients nutrient management Oryza Oryza - growth & development Photosynthesis Primary Primary s rainfed Rainfed farming Rainy season Rice Seasons Simulation sowing date Sterility Temperature Water Water availability Western Africa Wet season |
Title | Impacts of climate change on rice production in Africa and causes of simulated yield changes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13967 https://www.ncbi.nlm.nih.gov/pubmed/29230904 https://www.proquest.com/docview/2002422975 https://www.proquest.com/docview/1975998505 https://www.proquest.com/docview/2053903160 https://pubmed.ncbi.nlm.nih.gov/PMC5836867 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F533307 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5qQeiLP06r0VpWEfElR5JNcht80qO1ChURC30ohN29TT08N-VyodS_3pndJOdZC-JTEnZ2STYzs98mM98AvBRcqiRSRVgJLXGDUohQxlERqjwxoioQgShKTj7-lB-dpB9Ps9MteNPnwnh-iOGDG1mG89dk4FI1vxn5uVZjhC85ZZJTrBYBoi9r6iieuLqaMc9SdDUx71iFKIpn6Lm5Fl0DmNfjJHcu0city3raBLNuNTq8C2f9c_gglO_jdqXG-ucfFI__-aD34E6HUtlbr1b3YcvYEdz2dSuvRrB7sE6PQ7HOPzQjCI4Rg9dLJ8ZeselijoDYXT2Asw8uIbNhdcW0azDMpx2z2jLiNmIXnn4WVYXNLfMljJi0M6Zl2xjXs5n_oIJjZsauKPauG6F5CCeHB1-nR2FX2yHUGSIi8rGFrngymSBkmaAb0XrGqyjlRuaFjk2cKuKeUzKRlZK84OhopIpmeSZzblLBd2Hb1tY8BpZo1DahMxHnUWqqSlBybJXOcqVx7EQF8Lp_y6XuiM-p_sai7DdAOMOlm-EAXgyiF57t429Ce72qlJ3BN1TNE8EOpSkH8HxoRlOl_y_SmrptyhhbcXeLmPNmmQSdYoGONo8CeOS1b7iTBMF4VERpAJMNvRwEiCp8s8XOvznK8EzwXNCt87UGl5aqVTWuV6eH5WW7LO2CDjhOU-JeANcAnECnnzdPSfl--s6dPPl30aewg-BT-Hi-PdheLVvzDAHeSu3DrST9vO_s-RfAOk9j |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIcRe-FEYBAYYhBAvqZI4SR2JFygbHax7QJu0BybLdh2oKO7UtJrGX8-dk6aUMQnxlEQ-W4lzd_6c3H0H8FJwpZNIF2EpjMINSiFCFUdFqPPEirJABKIpOXl4mA-O048n2ckGvFnmwtT8EO0HN7IM76_JwOmD9G9W_tXoLuKXvHcNrlNFb2LOf_95RR7FE19ZM-ZZis4m5g2vEMXxtF3XV6NLEPNypOTWOZq583lP63DWr0d7t-F0-SR1GMr37mKuu-bnHySP__uod-BWA1TZ21qz7sKGdR24UZeuvOjA9u4qQw7FGhdRdSAYIgyfzrwYe8X6kzFiYn91D77s-5zMik1LZnyDZXXmMZs6RvRG7KxmoEVtYWPH6ipGTLkRM2pRWd-zGv-gmmN2xC4o_K4ZoboPx3u7R_1B2JR3CE2GoIjcbGFKnvR6iFp66EmMGfEySrlVeWFiG6ea6Oe0SlSpFS84-hqlo1GeqZzbVPBt2HRTZx8CSwwqnDCZiPMotWUpKD-2TEe5Njh2ogN4vXzN0jTc51SCYyKXeyCcYelnOIAXrehZTfjxN6Gdpa7IxuYrKuiJeIcylQN43jajtdIvGOXsdFHJGFtxg4uw82qZBP1igb42jwJ4UKtfeycJ4vGoiNIAemuK2QoQW_h6ixt_86zhmeC5oFvnKxWWjgpWVb5Xo4jyfDGTbkIHHKeSuB3AZQAn0Cvo1VMiP_Tf-ZNH_y76DG4OjoYH8mD_8NNj2EIsKurwvh3YnM8W9gnivbl-6s36F5jaUqg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIlAvCBYKKQUMQohLqsTOwxEnWLq0QKseqNQDkmU7Nqy0dVabrqr-e8ZONmVVKnFKIo-tKDPf5HMyD4C3nElFE1XFlmuJG5SKxzJNqlgV1HBbIQNRPjn56Lg4OM2-nuVnG_BhlQvT1YcYPrh5ZAR_7QE-r-1fIP-l1R7Sl6K8A3f9zz4fz0Wzk8ENMxoaa6Ysz9DXpKwvK-TDeIap6y-jGwzzZqDk1iWi3IW0p3U2G15Hk4fwoOeR5GOn-EewYdwI7nWdJa9GsL1_ncCGYj2C2xFER8iSm0UQI-_IeDZFyhquHsPPw5Ay2ZLGEh0GDOkSg0njiK8-ROZdgVhUJpk60jUZItLVRMtla8LMdnruW4KZmlz56Lh-hfYJnE72f4wP4r77Qqxz5CzeC1baMlqWSCpKBLrWNbNJxowsKp2aNFO-OpySVFolWcXQFUiV1EUuC2YyzrZh0zXOPANCNdoD1zlPiyQz1nKfvmqzulAa16YqgvcrNQjdlyb3HTJmYrVFQY2JoLEI3gyi864ex7-Edle6FD0kW99vE-mITySO4PUwjGDyf0ikM82yFSmO4v4TWeHtMhTdVoWusEgieNqZx3AnFOlyUiVZBOWa4QwCvpj3-oib_g5FvXPOCu5vnV2bmHC-n1QbZvWQEJfLhXAzf8B1WoFsHb00PsBgi7c_EvFl_Cmc7Py_6Cu4f_J5Ir4fHn97DlvIFHkXfLcLmxeLpXmBbOxCvQyo-wOfVTEv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impacts+of+climate+change+on+rice+production+in+Africa+and+causes+of+simulated+yield+changes&rft.jtitle=Global+change+biology&rft.au=Pepijn+A+J+van+Oort&rft.au=Zwart%2C+Sander+J&rft.date=2018-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=24&rft.issue=3&rft.spage=1029&rft.epage=1045&rft_id=info:doi/10.1111%2Fgcb.13967&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |