Large-scale degradation of Amazonian freshwater ecosystems
Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land‐cover changes, and global climate change. Thi...
Saved in:
Published in | Global change biology Vol. 22; no. 3; pp. 990 - 1007 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.03.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1354-1013 1365-2486 1365-2486 |
DOI | 10.1111/gcb.13173 |
Cover
Abstract | Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land‐cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free‐flowing tributaries in the next few decades if all 277 planned dams are completed. Land‐cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries. |
---|---|
AbstractList | Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land‐cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free‐flowing tributaries in the next few decades if all 277 planned dams are completed. Land‐cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries. Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free-flowing tributaries in the next few decades if all 277 planned dams are completed. Land-cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries.Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free-flowing tributaries in the next few decades if all 277 planned dams are completed. Land-cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries. |
Author | Macedo, Marcia N. Castello, Leandro |
Author_xml | – sequence: 1 givenname: Leandro surname: Castello fullname: Castello, Leandro email: leandro@vt.edu organization: Department of Fish and Wildlife Conservation, College of Natural Resources and Environment, Virginia Polytechnic Institute and State University, 310 West Campus Drive, VA 24061, Blacksburg, United States – sequence: 2 givenname: Marcia N. surname: Macedo fullname: Macedo, Marcia N. organization: Woods Hole Research Center, 149 Woods Hole Rd., Falmouth, MA 02540, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26700407$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1P2zAYxq2piJaPw_6BKdIu2yFgx5_ZDapRQBVcQBwtx3nThSUx2KlY99fPoS2Himnzxdar3_Po8fscoFHnOkDoI8EnJJ7ThS1OCCWSfkATQgVPM6bEaHhzlhJM6BgdhPCIMaYZFvtonAmJMcNygr7NjV9AGqxpIClh4U1p-tp1iauSs9b8dl1tuqTyEH68mB58AtaFVeihDUdorzJNgOPNfYjuL77fTS_T-e3sano2Ty3PKU2ZMobxQmHBpZWclTlRuBxmMQGBksphVBV5gRW1WYULCVUB1nCecZCcHqIva98n756XEHrd1sFC05gO3DLoaEdJRlmu_o1KKUTMweR_oIITEheZR_TzDvrolr6Lfx4opiih-RDz04ZaFi2U-snXrfErvd11BE7XgPUuBA-VtnX_uuzem7rRBOuhTR3b1K9tRsXXHcXW9D124_5SN7D6O6hn0_OtIl0r6ljnrzeF8T-1kFRy_XAz0_L85k5d59da0T9DXrmO |
CitedBy_id | crossref_primary_10_3390_w11040664 crossref_primary_10_3390_su13041869 crossref_primary_10_1111_fwb_13702 crossref_primary_10_1111_ecog_03711 crossref_primary_10_1002_eco_2535 crossref_primary_10_1016_j_gecco_2018_e00498 crossref_primary_10_54033_cadpedv21n9_276 crossref_primary_10_1098_rspb_2023_1130 crossref_primary_10_1007_s10750_019_04091_2 crossref_primary_10_1080_03632415_2016_1182513 crossref_primary_10_1002_aqc_2658 crossref_primary_10_1016_j_biocon_2016_09_032 crossref_primary_10_1016_j_jhydrol_2018_10_034 crossref_primary_10_1590_1982_0224_2021_0103 crossref_primary_10_1002_ldr_4381 crossref_primary_10_1016_j_chemosphere_2018_10_106 crossref_primary_10_1126_sciadv_abf9967 crossref_primary_10_1371_journal_pone_0220882 crossref_primary_10_3390_rs16101749 crossref_primary_10_1093_forsci_fxac034 crossref_primary_10_1016_j_ecoenv_2023_115771 crossref_primary_10_1007_s13280_020_01316_w crossref_primary_10_1002_sd_1997 crossref_primary_10_7717_peerj_8060 crossref_primary_10_1002_aqc_3051 crossref_primary_10_1007_s13280_017_0994_7 crossref_primary_10_3390_w14091502 crossref_primary_10_1111_fwb_13284 crossref_primary_10_1016_j_aquaculture_2021_737460 crossref_primary_10_1016_j_scitotenv_2022_158121 crossref_primary_10_1590_1982_0224_2023_0009 crossref_primary_10_1635_053_166_0120 crossref_primary_10_1016_j_ocecoaman_2023_106733 crossref_primary_10_1038_s43247_025_02058_x crossref_primary_10_1017_S0030605320001350 crossref_primary_10_1016_j_scitotenv_2021_151315 crossref_primary_10_1002_aqc_3615 crossref_primary_10_1111_gcb_15285 crossref_primary_10_1016_j_jenvman_2022_115590 crossref_primary_10_3389_fgene_2018_00295 crossref_primary_10_1002_2016GB005427 crossref_primary_10_1016_j_scitotenv_2021_149494 crossref_primary_10_1111_fme_12667 crossref_primary_10_1111_cobi_13466 crossref_primary_10_1016_j_biocon_2017_12_032 crossref_primary_10_3897_mbmg_9_138172 crossref_primary_10_1242_jeb_216440 crossref_primary_10_1371_journal_pone_0210496 crossref_primary_10_1002_2017GL076526 crossref_primary_10_1111_ddi_12745 crossref_primary_10_1007_s00027_021_00782_y crossref_primary_10_1590_1678_4766e2021021 crossref_primary_10_5194_hess_24_307_2020 crossref_primary_10_1007_s10098_021_02144_6 crossref_primary_10_1007_s11356_022_24391_w crossref_primary_10_1371_journal_pone_0182618 crossref_primary_10_1016_j_fishres_2021_106091 crossref_primary_10_1111_ele_14388 crossref_primary_10_1111_eff_12292 crossref_primary_10_1002_aqc_3046 crossref_primary_10_1007_s00248_021_01746_3 crossref_primary_10_1007_s40899_020_00440_5 crossref_primary_10_1186_s12862_024_02213_6 crossref_primary_10_1111_csp2_12786 crossref_primary_10_1016_j_watres_2024_122362 crossref_primary_10_1038_s41598_023_36518_1 crossref_primary_10_1111_gcb_15500 crossref_primary_10_5194_essd_8_651_2016 crossref_primary_10_1016_j_fishres_2016_06_017 crossref_primary_10_1007_s10750_018_3630_z crossref_primary_10_3389_fmars_2022_899671 crossref_primary_10_3390_w12071921 crossref_primary_10_1038_s43247_024_01530_4 crossref_primary_10_1016_j_foreco_2017_04_016 crossref_primary_10_1590_1676_0611_bn_2022_1392 crossref_primary_10_3390_w11112348 crossref_primary_10_1007_s10113_019_01549_w crossref_primary_10_1016_j_jenvman_2024_122360 crossref_primary_10_1007_s11600_024_01330_6 crossref_primary_10_1016_j_fishres_2016_12_015 crossref_primary_10_1016_j_jhydrol_2020_124714 crossref_primary_10_7717_peerj_12443 crossref_primary_10_1016_j_scitotenv_2022_155679 crossref_primary_10_1002_edn3_268 crossref_primary_10_1007_s10661_024_13199_5 crossref_primary_10_3390_w12123422 crossref_primary_10_1111_conl_13046 crossref_primary_10_3390_w16060808 crossref_primary_10_1007_s10201_023_00714_9 crossref_primary_10_1029_2019WR026081 crossref_primary_10_1016_j_foreco_2020_118032 crossref_primary_10_1002_ece3_9567 crossref_primary_10_1016_j_scitotenv_2021_146724 crossref_primary_10_1186_s12898_019_0251_y crossref_primary_10_1002_aqc_3424 crossref_primary_10_1002_rvr2_110 crossref_primary_10_1016_j_ecoinf_2023_102442 crossref_primary_10_1016_j_oneear_2020_02_012 crossref_primary_10_1111_gcbb_12476 crossref_primary_10_1016_j_ecolind_2020_106162 crossref_primary_10_1007_s10661_023_11396_2 crossref_primary_10_1016_j_jclepro_2019_02_021 crossref_primary_10_1007_s11356_020_09174_5 crossref_primary_10_1007_s10452_021_09904_y crossref_primary_10_1038_s41560_022_01121_7 crossref_primary_10_1093_icb_icw104 crossref_primary_10_3390_w12113077 crossref_primary_10_1080_20442041_2025_2476399 crossref_primary_10_1016_j_jclepro_2020_120767 crossref_primary_10_1146_annurev_ecolsys_011620_031032 crossref_primary_10_1016_j_scitotenv_2025_179021 crossref_primary_10_1002_aqc_3775 crossref_primary_10_1016_j_biocon_2021_109090 crossref_primary_10_1038_s41586_024_08448_z crossref_primary_10_1111_jai_13798 crossref_primary_10_1371_journal_pone_0250022 crossref_primary_10_1016_j_landusepol_2017_12_062 crossref_primary_10_1002_eco_1899 crossref_primary_10_1016_j_fishres_2019_105399 crossref_primary_10_1038_nature22333 crossref_primary_10_1007_s10750_024_05625_z crossref_primary_10_1111_fwb_13886 crossref_primary_10_1371_journal_pone_0262357 crossref_primary_10_1111_faf_12228 crossref_primary_10_1186_s40562_021_00187_7 crossref_primary_10_1016_j_ecolind_2024_112677 crossref_primary_10_1088_1748_9326_acb9a7 crossref_primary_10_1080_10106049_2021_1933212 crossref_primary_10_1016_j_ejrh_2023_101319 crossref_primary_10_1007_s10661_024_13591_1 crossref_primary_10_1088_1748_9326_aaafd8 crossref_primary_10_1111_1365_2664_12967 crossref_primary_10_1371_journal_pone_0256805 crossref_primary_10_1007_s00248_024_02484_y crossref_primary_10_7717_peerj_14287 crossref_primary_10_1007_s43217_024_00206_5 crossref_primary_10_1029_2023GB007749 crossref_primary_10_1007_s11442_018_1551_4 crossref_primary_10_1016_j_watres_2021_117251 crossref_primary_10_1111_j_1936_704X_2020_3346_x crossref_primary_10_1002_ecs2_4379 crossref_primary_10_1590_s2179_975x5823 crossref_primary_10_1002_aqc_3767 crossref_primary_10_1002_aqc_3526 crossref_primary_10_1029_2020JG006104 crossref_primary_10_1029_2023RG000819 crossref_primary_10_1002_aqc_3528 crossref_primary_10_1126_sciadv_1700611 crossref_primary_10_1088_1748_9326_ab0128 crossref_primary_10_1590_1982_0224_20170130 crossref_primary_10_1002_aqc_4163 crossref_primary_10_3390_rs14153580 crossref_primary_10_1111_raq_12732 crossref_primary_10_1126_sciadv_aao1642 crossref_primary_10_1002_aqc_3634 crossref_primary_10_1016_j_geoderma_2020_114801 crossref_primary_10_1111_gcb_16596 crossref_primary_10_3390_w10040349 crossref_primary_10_1111_faf_12328 crossref_primary_10_1111_faf_12449 crossref_primary_10_3390_w16172536 crossref_primary_10_1111_1365_2664_13028 crossref_primary_10_1016_j_ecohyd_2023_03_002 crossref_primary_10_1016_j_scitotenv_2018_12_208 crossref_primary_10_1016_j_ecolind_2021_108392 crossref_primary_10_1371_journal_pone_0288385 crossref_primary_10_1016_j_ancene_2024_100441 crossref_primary_10_3390_rs12060911 crossref_primary_10_1016_j_ecoser_2023_101557 crossref_primary_10_1088_1748_9326_ac6df9 crossref_primary_10_1016_j_jhydrol_2024_132622 crossref_primary_10_1002_aqc_3461 crossref_primary_10_1002_aqc_3582 crossref_primary_10_1007_s42974_023_00139_5 crossref_primary_10_1590_1676_0611_bn_2019_0803 crossref_primary_10_3390_w12010260 crossref_primary_10_1016_j_earscirev_2024_104967 crossref_primary_10_1016_j_exis_2020_12_005 crossref_primary_10_1007_s10452_020_09794_6 crossref_primary_10_1002_aqc_3465 crossref_primary_10_1002_gch2_201800095 crossref_primary_10_1038_s41467_022_30842_2 crossref_primary_10_1242_jeb_246269 crossref_primary_10_3389_fpls_2019_01504 crossref_primary_10_2139_ssrn_4094737 crossref_primary_10_1002_oca_2510 crossref_primary_10_1002_rse2_83 crossref_primary_10_1016_j_scitotenv_2020_143915 crossref_primary_10_1016_j_biocon_2017_08_002 crossref_primary_10_1016_j_jenvman_2024_121528 crossref_primary_10_1007_s10661_020_08837_7 crossref_primary_10_1088_1748_9326_acea37 crossref_primary_10_3389_fevo_2023_1157981 crossref_primary_10_1590_1809_4392201600862 crossref_primary_10_1002_gdj3_207 crossref_primary_10_1016_j_ecolind_2020_106231 crossref_primary_10_1111_faf_12261 crossref_primary_10_1016_j_marpol_2021_104520 crossref_primary_10_1016_j_accre_2021_10_005 crossref_primary_10_1002_pan3_10086 crossref_primary_10_1002_rse2_418 crossref_primary_10_1016_j_marpol_2020_104261 crossref_primary_10_1111_gcb_16533 crossref_primary_10_1016_j_jtherbio_2024_103995 crossref_primary_10_1016_j_jhydrol_2022_128939 crossref_primary_10_1080_00222933_2019_1577508 crossref_primary_10_1002_eco_2144 crossref_primary_10_3390_w12082301 crossref_primary_10_1016_j_scitotenv_2024_169981 crossref_primary_10_1038_s41586_018_0301_1 crossref_primary_10_1016_j_agrformet_2018_03_023 crossref_primary_10_1007_s10750_017_3274_4 crossref_primary_10_1371_journal_pone_0245991 crossref_primary_10_1016_j_ecolind_2020_106707 crossref_primary_10_1016_j_scitotenv_2022_154485 crossref_primary_10_3390_land13060819 crossref_primary_10_1111_eff_12572 crossref_primary_10_1111_1365_2745_13769 crossref_primary_10_1016_j_jclepro_2024_143533 crossref_primary_10_1590_1676_0611_bn_2018_0654 crossref_primary_10_3390_w11030566 crossref_primary_10_1002_aqc_3565 crossref_primary_10_1016_j_ecolind_2021_107406 crossref_primary_10_1098_rspb_2022_0726 crossref_primary_10_1080_10106049_2018_1533594 crossref_primary_10_1016_j_fishres_2020_105643 crossref_primary_10_1007_s13412_024_00904_6 crossref_primary_10_1590_1982_0224_2023_0095 crossref_primary_10_3390_agriculture12122088 crossref_primary_10_1016_j_jes_2023_12_029 crossref_primary_10_1007_s10668_019_00532_z crossref_primary_10_1016_j_csr_2022_104811 crossref_primary_10_1111_gcb_13846 crossref_primary_10_1128_spectrum_00406_22 crossref_primary_10_1002_ece3_4142 crossref_primary_10_1038_s41598_022_13671_7 crossref_primary_10_1016_j_scitotenv_2021_145743 crossref_primary_10_1029_2020RG000728 crossref_primary_10_5194_essd_11_1655_2019 crossref_primary_10_1016_j_chemosphere_2023_140067 crossref_primary_10_1002_aqc_3556 crossref_primary_10_1002_aqc_3550 crossref_primary_10_1016_j_scitotenv_2025_178630 crossref_primary_10_1089_vbz_2021_0067 crossref_primary_10_1016_j_earscirev_2020_103294 crossref_primary_10_3390_w14223762 crossref_primary_10_1007_s10750_022_04867_z crossref_primary_10_1590_1809_4422asoc20190068r3vu2021l2ao crossref_primary_10_1002_aqc_3558 crossref_primary_10_1016_j_biocon_2019_05_042 crossref_primary_10_1007_s10750_018_3790_x crossref_primary_10_3390_w16050723 crossref_primary_10_1007_s10531_024_02839_4 crossref_primary_10_1371_journal_pone_0264490 crossref_primary_10_1038_s41598_019_52243_0 crossref_primary_10_3897_BDJ_6_e24375 crossref_primary_10_1016_j_aqpro_2016_06_012 crossref_primary_10_3390_ijerph15061185 crossref_primary_10_1016_j_envint_2021_106702 crossref_primary_10_1590_1982_0224_20190118 crossref_primary_10_1016_j_chemosphere_2018_12_035 crossref_primary_10_1638_2022_0069 crossref_primary_10_1016_j_scitotenv_2023_164034 crossref_primary_10_1186_s13717_023_00463_8 crossref_primary_10_1007_s11756_022_01181_w crossref_primary_10_1371_journal_pone_0202976 crossref_primary_10_1002_ecs2_3468 crossref_primary_10_1007_s10750_024_05485_7 crossref_primary_10_1007_s10113_017_1268_4 crossref_primary_10_1007_s11160_019_09559_x crossref_primary_10_1111_mec_15944 crossref_primary_10_1029_2022WR033646 crossref_primary_10_1002_fee_2114 crossref_primary_10_1016_j_biocon_2018_04_002 crossref_primary_10_1002_aqc_3373 crossref_primary_10_1038_s41598_017_10750_y crossref_primary_10_1007_s10646_024_02776_6 crossref_primary_10_1016_j_jhydrol_2024_132317 crossref_primary_10_3390_agronomy12071608 crossref_primary_10_1007_s11356_020_07658_y crossref_primary_10_3389_fevo_2021_643994 crossref_primary_10_3390_ijgi6030081 crossref_primary_10_1029_2022GB007301 crossref_primary_10_1016_j_biocon_2022_109672 crossref_primary_10_1590_1982_0224_2021_0097 crossref_primary_10_5194_bg_16_1781_2019 crossref_primary_10_1016_j_scitotenv_2023_164024 crossref_primary_10_1590_1982_0224_2021_0099 crossref_primary_10_3354_aei00253 crossref_primary_10_1590_1676_0611_bn_2024_1682 crossref_primary_10_5194_hess_20_2179_2016 crossref_primary_10_1590_0001_3765202220201598 crossref_primary_10_1177_1940082919839902 crossref_primary_10_1002_aqc_2969 crossref_primary_10_1111_csp2_13241 crossref_primary_10_1007_s10750_023_05416_y crossref_primary_10_1016_j_watbs_2022_100009 crossref_primary_10_1002_rse2_366 crossref_primary_10_1371_journal_pone_0182254 crossref_primary_10_1016_j_ecolind_2023_110256 crossref_primary_10_1071_MF20098 crossref_primary_10_1016_j_biocon_2021_108998 crossref_primary_10_3389_feart_2018_00228 crossref_primary_10_1371_journal_pone_0244580 crossref_primary_10_1111_ecog_02845 crossref_primary_10_1038_s41598_024_76747_6 crossref_primary_10_3390_biology11111641 crossref_primary_10_1111_fwb_13372 crossref_primary_10_1088_1748_9326_abc4fc crossref_primary_10_1111_ecog_03134 crossref_primary_10_1126_science_abj4017 crossref_primary_10_1080_23308249_2018_1463511 crossref_primary_10_1016_j_ecolind_2024_112959 crossref_primary_10_1016_j_gecco_2020_e01309 crossref_primary_10_1088_1748_9326_ab639c crossref_primary_10_1016_j_ecolind_2019_105952 crossref_primary_10_5194_gmd_12_179_2019 crossref_primary_10_1007_s11769_023_1395_4 crossref_primary_10_1007_s10750_016_2738_2 crossref_primary_10_1016_j_cosust_2019_06_003 crossref_primary_10_1002_aqc_3590 crossref_primary_10_1007_s11069_017_2758_x crossref_primary_10_1016_j_ejrh_2020_100755 crossref_primary_10_1007_s11356_018_3875_0 crossref_primary_10_1016_j_scitotenv_2022_160934 crossref_primary_10_1007_s10531_016_1192_9 crossref_primary_10_3389_fenvs_2022_871530 crossref_primary_10_1016_j_scitotenv_2019_04_377 crossref_primary_10_1007_s10457_023_00825_3 crossref_primary_10_1007_s12371_023_00910_0 crossref_primary_10_1002_aqc_2706 |
Cites_doi | 10.1007/s11273-005-1767-9 10.7560/777705 10.1002/2013JD021349 10.1126/science.1260194 10.1023/A:1008846531941 10.1525/bio.2009.59.11.7 10.1175/JCLI-D-12-00369.1 10.1371/journal.pone.0018875 10.1029/2010JD015174 10.1002/hyp.6850 10.1038/nclimate1690 10.1016/j.marpol.2012.09.001 10.1111/j.1744-7429.2005.00079.x 10.1073/pnas.0804619106 10.1111/conl.12151 10.1007/s00027-012-0253-8 10.1016/S1366-7017(01)00007-1 10.1029/2001JD000623 10.1111/j.1752-1688.2007.00007.x 10.1029/2007GL029479 10.1111/j.1748-7692.2004.tb01150.x 10.1098/rstb.2012.0425 10.1007/s00267-005-0113-6 10.1029/2000GB001341 10.1126/science.1127291 10.1021/es4042644 10.1073/pnas.1111374109 10.1002/rrr.3450110308 10.1016/j.gloenvcha.2014.03.014 10.1088/1748-9326/6/4/044029 10.2307/1313099 10.1016/0022-1694(95)02825-0 10.1016/j.biocon.2014.03.015 10.1002/joc.1475 10.1111/j.1752-1688.2007.00002.x 10.1111/j.1365-294X.2004.02125.x 10.1111/faf.12089 10.1029/2010JG001465 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2 10.1371/journal.pone.0002932 10.1016/j.chemosphere.2014.01.035 10.1146/annurev.ecolsys.28.1.621 10.2307/1941118 10.1590/S1519-69842010000100012 10.1088/1748-9326/10/10/104015 10.1038/nature11390 10.1093/oso/9780195114317.001.0001 10.1016/j.landusepol.2014.06.026 10.1111/j.1440-1770.2003.00227.x 10.1890/1051-0761(2001)011[1817:DFPANA]2.0.CO;2 10.1073/pnas.1318271110 10.1111/cobi.12298 10.1371/journal.pone.0033305 10.1007/978-94-015-8212-4_14 10.1126/science.289.5477.284 10.1023/B:CLIM.0000043174.02841.23 10.1016/j.geomorph.2009.03.014 10.1111/j.1365-2486.2011.02392.x 10.1016/j.jhydrol.2003.12.015 10.1016/j.jhydrol.2015.02.018 10.4319/lo.2006.51.1_part_2.0356 10.1016/S0305-750X(02)00067-0 10.1016/j.fishres.2015.03.012 10.1098/rspb.1988.0024 10.2307/1940793 10.1002/joc.2254 10.1080/08941920.2015.1014607 10.1641/0006-3568(2002)052[0659:HDVAWI]2.0.CO;2 10.1590/S1984-46702009000300016 10.1038/nclimate1556 10.1007/s13157-015-0666-y 10.1017/S095283690400528X 10.1111/j.1523-1739.2007.00870.x 10.1073/pnas.0913048107 10.1007/s00267-004-0100-3 10.1111/j.1365-2486.2011.02533.x 10.1890/0012-9658(2002)083[3243:CFAERI]2.0.CO;2 10.1175/JCLI-D-12-00412.1 10.1007/s11160-015-9395-9 10.1111/j.1600-0633.2007.00255.x 10.1017/S0376892903000237 10.1525/bio.2012.62.6.5 10.1126/science.1246663 10.1007/s10533-011-9582-2 10.1111/conl.12175 10.1007/s002670010156 10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2 10.1073/pnas.1305499111 10.1093/treephys/18.8-9.625 10.1016/S0022-1694(03)00267-1 10.1086/285922 10.1073/pnas.0405895101 10.1002/esp.2132 10.1111/j.1439-0426.2009.01355.x 10.1590/S0103-40141990000100010 10.1126/science.aaa0181 10.1098/rsos.150299 10.1111/j.1365-2427.2009.02179.x 10.1890/05-1098 10.1111/j.1469-7998.2008.00440.x 10.1046/j.1523-1739.1995.09010034.x 10.1175/JHM560.1 10.1007/s10641-011-9917-9 10.1126/science.291.5503.438 10.1002/hyp.5021 10.1046/j.1365-2427.2002.00956.x 10.1016/S1462-9011(02)00023-0 10.1126/science.1182108 10.1016/j.envint.2010.03.011 10.1890/1051-0761(2001)011[0981:HCATMO]2.0.CO;2 10.1126/science.1200807 10.1098/rstb.2012.0153 10.1111/j.1095-8649.2007.01778.x 10.1016/B978-0-12-353550-4.50012-5 10.1023/A:1005801303639 10.1670/08-340.1 10.1029/2008GM000721 10.1525/9780520316133 10.1890/080090 10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2 10.1073/pnas.1215331110 10.1146/annurev.energy.32.031306.102758 10.1126/science.1248525 10.1007/s13157-011-0190-7 10.1111/cobi.12260 10.1007/s10980-013-9962-1 10.1016/j.rse.2003.04.001 10.1038/35001562 10.1111/conl.12008 10.1126/science.1244693 10.1126/science.234.4781.1256 10.1641/0006-3568(2000)050[0746:GSEEOH]2.0.CO;2 10.2744/1071-8443(2006)5[18:SMOPST]2.0.CO;2 10.1016/j.enpol.2011.04.033 10.1155/2014/945963 10.1007/978-94-009-6542-3_5 10.1016/j.rse.2011.08.008 10.1016/j.agee.2004.01.015 10.1051/alr:1993010 10.1641/B580507 10.1016/j.envint.2006.06.022 10.1029/2000JD000306 10.1046/j.1365-2400.1997.00119.x 10.1111/j.1365-2664.2007.01404.x 10.2307/1467397 10.1111/jai.12772 10.1641/B580408 10.1016/j.biocon.2006.08.017 10.1007/s10668-008-9154-3 |
ContentType | Journal Article |
Copyright | 2015 John Wiley & Sons Ltd 2015 John Wiley & Sons Ltd. Copyright © 2016 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2015 John Wiley & Sons Ltd – notice: 2015 John Wiley & Sons Ltd. – notice: Copyright © 2016 John Wiley & Sons Ltd |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7QH 7ST 7U6 7S9 L.6 |
DOI | 10.1111/gcb.13173 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Aqualine Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Sustainability Science Abstracts Aqualine Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences Agriculture |
EISSN | 1365-2486 |
EndPage | 1007 |
ExternalDocumentID | 3951349711 26700407 10_1111_gcb_13173 GCB13173 ark_67375_WNG_7BNT8J9J_8 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Aeronautics and Space Administration funderid: NNX14AD29G; NNX12AK11G – fundername: World Wildlife Fund (WWF) Living Amazon Initiative |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H97 L.G 7X8 7QH 7ST 7U6 7S9 L.6 |
ID | FETCH-LOGICAL-c5933-48aa45b80657c754d9180daa450401ed374d91fb9b083c2f0b7efbeca5525e753 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Jul 11 18:28:08 EDT 2025 Fri Jul 11 09:59:14 EDT 2025 Fri Jul 11 02:12:59 EDT 2025 Sun Aug 10 12:11:03 EDT 2025 Wed Feb 19 02:00:14 EST 2025 Tue Jul 01 03:52:54 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Wed Jan 22 16:21:23 EST 2025 Wed Oct 30 09:51:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | watershed conservation land-cover change mining dams fragmentation climate change hydrological connectivity policy |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5933-48aa45b80657c754d9180daa450401ed374d91fb9b083c2f0b7efbeca5525e753 |
Notes | National Aeronautics and Space Administration - No. NNX14AD29G; No. NNX12AK11G istex:8A15C2D551CF820F4F57F39F2F8659D1783E8CD9 World Wildlife Fund (WWF) Living Amazon Initiative ark:/67375/WNG-7BNT8J9J-8 ArticleID:GCB13173 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 26700407 |
PQID | 1764831395 |
PQPubID | 30327 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1803123498 proquest_miscellaneous_1776665747 proquest_miscellaneous_1765112489 proquest_journals_1764831395 pubmed_primary_26700407 crossref_citationtrail_10_1111_gcb_13173 crossref_primary_10_1111_gcb_13173 wiley_primary_10_1111_gcb_13173_GCB13173 istex_primary_ark_67375_WNG_7BNT8J9J_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2016 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: March 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Change Biol |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Brando PM, Balch JK, Nepstad DC et al. (2014) Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proceedings of the National Academy of Sciences, 111, 6347-6352. Gibbs HK, Rausch L, Munger J et al. (2015b) Brazil's soy moratorium. Science, 347, 377-378. Pelicice FM, Pompeu PS, Agostinho AA (2014) Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries, 16, 697-715. Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C4 Grass Echinochloa-Polystachya on the Amazon floodplain. Ecology, 72, 1456-1463. Haugaasen T, Peres CA (2005) Tree phenology in adjacent Amazonian flooded and unflooded forests. Biotropica, 37, 620-630. Nevado JJB, Martin-Doimeadios RCR, Bernardo FJG, Moreno MJ, Herculano AM, Do Nascimento JLM, Crespo-Lopez ME (2010) Mercury in the Tapajos River basin, Brazilian Amazon: a review. Environment International, 36, 593-608. Switkes G (2002) Brazilian government pushes ahead with plans for huge dams in Amazon. World Rivers Review, 17, 12-13. Kacowicz Z (1985) Covenio ELETRONORTE/CNPQ/INPA. Relatorio do Projeto: Estudo de Ecologia e Controle Ambiental nas Regiões do Reservatório UHE de Balbina e Samuel: Comentário. Conselho Nacional de Desenvolvimento Cientiífico e Tecnológico (CNPq), Brasilia. McGrath DG, Cardoso A, Almeida OT, Pezzuti J (2008) Constructing a policy and institutional framework for an ecosystem-based approach to managing the Lower Amazon floodplain. Environment, Development and Sustainability, 10, 677-695. Brando PM, Nepstad DC, Balch JK, Bolker B, Christman MC, Coe M, Putz FE (2012) Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Global Change Biology, 18, 630-641. Calder IR (1998) Water use by forests, limits and controls. Tree Physiology, 18, 625-631. Giambelluca TW (2002) Hydrology of altered tropical forest. Hydrological Processes, 16, 1665-1669. Soares-Filho B, Rajão R, Macedo M et al. (2014) Cracking Brazil's forest code. Science, 344, 363-364. Kalliola R, Puhakka M, Salo J, Tuomisto H, Ruokolainen K (1991) The dynamics, distribution and classification of swamp vegetation in Peruvian Amazonia. Annales Botanici Fennici, 28, 225-239. Coe MT, Latrubesse EM, Ferreira ME, Amsler ML (2011) The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry, 105, 119-131. Macedo M, Defries R, Morton D, Stickler C, Galford G, Shimabukuro Y (2012) Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Procedings of the National Academy of Sciences, 109, 1341-1346. Panday PK, Coe MT, Macedo MN, Lefebvre P, Castanho AD (2015) Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. Journal of Hydrology, 523, 822-829. Martin AR, Da Silva VMF, Salmon DL (2004) Riverine habitat preferences of botos (Inia geoffrensis) and tucuxis (Sotalia fluviatilis) in the central Amazon. Marine Mammal Science, 20, 189-200. Godoy JR, Petts G, Salo J (1999) Riparian flooded forests of the Orinoco and Amazon basins: a comparative review. Biodiversity and Conservation, 8, 551-586. Peres CA, Terborgh JW (1995) Amazonian nature reserves - an analysis of the defensibility status of existing conservation units and design criteria for the future. Conservation Biology, 9, 34-46. Naiman RJ, Decamps H, Mcclain ME (2005) Riparia - Ecology, Conservation and Management of Streamside Communities. Elsevier Academic Press, London. Gutiérrez-Vélez VH, Defries R, Pinedo-Vásquez M et al. (2011) High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environmental Research Letters, 6, 044029. Fagan WF (2002) Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology, 83, 3243-3249. McClain ME, Cossio RE (2003) The use of riparian environments in the rural Peruvian Amazon. Environmental Conservation, 30, 242-248. Switkes G (2007) Madeira dams in Amazon get go-ahead. World Rivers Review, 22, 12-13. Freeman MC, Pringle CM, Jackson CR (2007b) Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales. Journal of the American Water Resources Association, 43, 5-14. Malhi Y, Pegoraro E, Nobre AD, Pereira MGP, Grace J, Culf AD, Clement R (2002) Energy and water dynamics of a central Amazonian rain forest. Journal of Geophysical Research-Atmospheres, 107, LBA 45-1-LBA 45-17. Liermann CR, Nilsson C, Robertson J, Ng RY (2012) Implications of dam obstruction for global freshwater fish diversity. BioScience, 62, 539-548. Williams MR, Fisher TR, Melack JM (1997) Solute dynamics in soil water and groundwater in a central Amazon catchment undergoing deforestation. Biogeochemistry, 38, 303-335. Costa MH, Botta A, Cardille JA (2003) Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. Journal of Hydrology, 283, 206-217. Lubiana A, Ferreira Júnior PD (2009) Pivotal temperature and sexual dimorphism of Podocnemis expansa hatchlings (Testudines: Podocnemididae) from Bananal Island, Brazil. Zoologia, 26, 527-533. Macedo MN, Coe MT, Defries R, Uriarte M, Brando PM, Neill C, Walker WS (2013) Land-use-driven stream warming in southeastern Amazonia. Philosophical Transactions of the Royal Society: B Biological Sciences, 368, 20120153. Fearnside PM (2001) Environmental impacts of Brazil's Tucurui Dam: Unlearned lessons for hydroelectric development in Amazonia. Environmental Management, 27, 377-396. Arantes CC, Castello L, Cetra M, Schilling A (2013) Environmental factors affecting the distribution of arapaima in floodplains of the Amazon. Environmental Biology of Fishes, 96, 1257-1267. Ferreira Júnior P, Castro P (2010) Nesting ecology of Podocnemis expansa (Schweigger, 1812) and Podocnemis unifilis (Troschel, 1848) (Testudines, Podocnemididae) in the Javaés River, Brazil. Brazilian Journal of Biology, 70, 85-94. Fearnside PM (2006) Dams in the Amazon: Belo Monte and Brazil's hydroelectric development of the Xingu River basin. Environmental Management, 38, 16-27. Flores BM, Piedade M-TF, Nelson BW (2012) Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecology & Diversity, 7, 1-9. Fearnside PM (2014) Viewpoint - Brazil's Madeira River dams: A setback for environmental policy in Amazonian development Water. Alternatives, 7, 1-15. Parry L, Barlow J, Pereira H (2014) Wildlife harvest and consumption in Amazonia's Urbanized Wilderness. Conservation Letters, 7, 565-574. Pringle CM (2001) Hydrologic connectivity and the management of biological reserves: A global perspective. Ecological Applications, 11, 981-998. Gunkel G, Lange U, Walde D, Rosa JWC (2003) The environmental and operational costs of Curuá-Una, a reservoir in the Amazon region of Pará, Brazil. Lakes & Reservoir: Research & Management, 8, 201-216. IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. Naiman RJ, Decamps H (1997) The ecology of interfaces: Riparian zones. Annual Review of Ecology and Systematics, 28, 621-658. Brum SM, Rossoni F, Da Silva VMF, Castello L (2015) Use of dolphins and caimans as bait for Calophysus macropterus in the Amazon. Journal of Applied Ichthyology, 31, 675-680. Cavole LM, Arantes CC, Castello L (2015) How illegal are tropical small-scale fisheries? Data on arapaima from the Amazon. Fisheries Research, 168, 1-5. Pinedo-Vasquez M, Pasqualle JB, Torres DC, Coffey K (2001) A tradition of change: the dynamic relationship between biodiversity and society in sector Muyuy, Peru. Environmental Science and Policy, 5, 43-53. Fearnside PM (1989) The charcoal of Carajas - a threat to the forests of Brazils eastern Amazon region. Ambio, 18, 141-143. Forsberg BR, Araujo-Lima CARM, Martinelli LA, Victoria RI, Bonassi JA (1993) Autotrophic carbon sources for fish of the central Amazon. Ecology, 74, 643-652. Fei C, Li W, Castello L et al. (2015) Impacts of cascade dams on fishes of the Yangtzee River. Reviews in Fish Biology and Fisheries, 25, 569-585. Stotz DF, Fitzpatrick JW, Parker TE III, Moskovits DK (1996) Neotropical Birds. University of Chicago Press, Chicago. Nilsson C, Berggren K (2000) Aterations of riparian ecosystems caused by river regulation. BioScience, 50, 783-792. Sonter LJ, Barrett DJ, Soares-Filho BS (2014b) Offsetting the impacts of mining to achieve no net loss of native vegetation. Conservation Biology, 28, 1068-1076. Renó VF, Novo EMLM, Suemitsu C, Rennó CD, Silva TSF (2011) Assessment of deforestation in the Lower Amazon floodplain using historical Landsat MSS/TM imagery. Remote Sensing of Environment, 115, 3446-3456. Ribeiro M, Petrere M, Juras AA (1995) Ecological integrity and fisheries ecology of the Araguaia-Tocantins River Basin, Brazil. Regulated Rivers-Research & Management, 11, 325-350. Barthem R, Goulding M (1997) The Catfish Connection: Ecology, Migration and Conservation of Amazon Predators. Columbia University Press, New York. Hess LL, Melack JM, Novo EMLM, Barbosa CCF, Gastil M (2003) Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment, 87, 404-428. Bagley JE, Desai AR, Harding KJ, Snyder PK (2014) Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon?. Journal of Climate, 27, 345-361. Lagler KF, Kapetski JF, Stewart DJ (1971) The Fisheries of the Kafue River Flats, Zambia, in Relation to the Kafue Gorge Dam. Central Fisheries Research Institute, Chilanga (Zambia). Fachín-Terán A, Vogt RC, Thorbjarnarson JB (2006) Seasonal Movements of Podocnemis sextuberculata (Testudines: Podocnemididae) in the Mamirauá Sustainable Development Reserve, Amazonas, Brazil. Chelonian Conservation and Biology, 5, 18-24. La Rovere EL, Mendes FE (2000) TucuruÌ Hydropower 2011; 116 2002; 16 2011; 115 2002; 17 2004; 20 2010; 107 2006; 38 2013; 368 1997; 47 2014; 27 2009; 113 2012; 18 1971 2014; 28 1996; 148 2012; 489 2013; 6 1997; 4 1998; 18 2010; 26 1989; 106 2004; 291 1990 2002; 83 2000; 403 2003; 283 2007; 8 2014; 16 1985 1984 2008; 22 2013; 110 1980 2014a; 26 1989 2007; 17 1995; 9 2004; 263 1986; 234 2010; 36 2006; 51 2015; 523 2013a; 38 1991; 72 1989; 8 2008; 58 1998 1997 2013; 342 2014; 48 1997; 28 1996 2001; 27 1993 2014; 2014 2014; 41 2011; 4 2011; 6 2003; 30 2012; 32 2007b; 43 2012; 109 1999 2010; 44 2015a 2013; 75 2013b; 6 2008; 45 1997; 38 2007; 319 1998; 8 1990; 4 2009; 106 2015; 35 2004; 66 2013; 29 2010; 55 2013; 26 2002; 52 2015; 31 2014b; 28 2000; 50 2008; 3 2011; 17 2007; 32 2014; 174 2007; 33 2007; 34 1993; 6 2007; 134 2002; 47 2001 2000; 289 2000 2015b; 347 2001; 291 2003; 8 2013; 96 1993; 74 2002; 107 2001; 15 2010; 70 2005; 37 2001; 11 2014; 7 2008; 275 2007; 22 1996; 178 2003; 87 2009; 59 2005; 35 2007; 27 2012; 62 2009; 326 2015; 2 2004; 101 2014; 119 2008a; 17 2004; 104 2012 2002; 30 2011 2015; 168 2007a; 43 1995; 11 2015; 10 2011; 31 2009 2008 2007 2006; 5 2008; 10 2005 2004 2003 2011; 36 2002 2011; 39 1999; 8 2014; 111 2006; 313 2011; 331 2009; 26 2011; 105 2014; 108 2015; 25 2015; 28 2012; 2 1991; 28 2012; 3 2001; 5 2008b; 72 2004; 12 1988; 233 2009; 8 2001; 3 2015 2014 2013 2012; 7 2007; 43 2014; 346 1989; 18 2014; 344 Da Silveira R (e_1_2_8_40_1) 2011; 4 Reis RE (e_1_2_8_153_1) 2003 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Bodmer R (e_1_2_8_18_1) 1999 Malhi Y (e_1_2_8_115_1) 2002; 107 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 Isaac V (e_1_2_8_83_1) 2011 e_1_2_8_5_1 Melack JM (e_1_2_8_126_1) 2013 e_1_2_8_151_1 Magalhaes SB (e_1_2_8_113_1) 1990 e_1_2_8_9_1 Jackson DC (e_1_2_8_84_1) 2001 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 Mahli Y (e_1_2_8_114_1) 2007; 319 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_136_1 e_1_2_8_174_1 e_1_2_8_41_1 e_1_2_8_60_1 Veríssimo A (e_1_2_8_183_1) 2011 Kalliola R (e_1_2_8_94_1) 1991; 28 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 Fearnside P (e_1_2_8_53_1) 2013; 6 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_76_1 Barthem R (e_1_2_8_14_1) 1997 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 Balbín C (e_1_2_8_13_1) 2012 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 Fearnside PM (e_1_2_8_54_1) 2014; 7 e_1_2_8_67_1 e_1_2_8_171_1 e_1_2_8_44_1 Fearnside PM (e_1_2_8_48_1) 1989; 18 e_1_2_8_86_1 e_1_2_8_118_1 Switkes G (e_1_2_8_180_1) 2005 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_175_1 McClain ME (e_1_2_8_122_1) 2001 Bruijnzeel LA (e_1_2_8_23_1) 1990 Barthem R (e_1_2_8_15_1) 2007 e_1_2_8_37_1 e_1_2_8_79_1 Switkes G (e_1_2_8_179_1) 2002; 17 La Rovere EL (e_1_2_8_100_1) 2000 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_98_1 e_1_2_8_140_1 Welcomme RL (e_1_2_8_187_1) 1985 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_182_1 Rieu‐Clarke A (e_1_2_8_156_1) 2012 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_167_1 e_1_2_8_28_1 Switkes G (e_1_2_8_181_1) 2007; 22 Junk WJ (e_1_2_8_91_1) 1989; 106 e_1_2_8_24_1 e_1_2_8_47_1 Stotz DF (e_1_2_8_176_1) 1996 Melack JM (e_1_2_8_127_1) 2001 Schaefer SA (e_1_2_8_159_1) 1998 e_1_2_8_3_1 e_1_2_8_111_1 e_1_2_8_130_1 Petts GE (e_1_2_8_146_1) 1984 e_1_2_8_7_1 Millennium Ecosystem Assessment (e_1_2_8_129_1) 2005 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_172_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 Flores BM (e_1_2_8_59_1) 2012; 7 e_1_2_8_36_1 Macedo M (e_1_2_8_110_1) 2015 e_1_2_8_190_1 e_1_2_8_70_1 e_1_2_8_141_1 e_1_2_8_164_1 Petermann P (e_1_2_8_145_1) 1997 e_1_2_8_97_1 e_1_2_8_160_1 Setti AA (e_1_2_8_162_1) 2004 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 Kacowicz Z (e_1_2_8_93_1) 1985 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_168_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_150_1 e_1_2_8_8_1 Lagler KF (e_1_2_8_101_1) 1971 e_1_2_8_192_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 WCD (e_1_2_8_186_1) 2000 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_177_1 IPCC (e_1_2_8_82_1) 2014 e_1_2_8_39_1 INPE (e_1_2_8_81_1) 2014 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 World Bank (e_1_2_8_191_1) 2008 e_1_2_8_92_1 Naiman RJ (e_1_2_8_131_1) 2005 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – reference: Spracklen DV, Arnold SR, Taylor CM (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282-285. – reference: Asner GP, Llactayp W, Tupayachi R, Luna ER (2013) Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proceedings of the National Academy of Sciences, 110, 18454-18459. – reference: Hansen AJ, Defries R (2007) Ecological mechanisms linking protected areas to surrounding lands. Ecological Applications, 17, 974-988. – reference: Ferreira Júnior P, Castro P (2010) Nesting ecology of Podocnemis expansa (Schweigger, 1812) and Podocnemis unifilis (Troschel, 1848) (Testudines, Podocnemididae) in the Javaés River, Brazil. Brazilian Journal of Biology, 70, 85-94. – reference: Ferreira J, Aragao LEOC, Barlow J et al. (2014) Brazil's environmental leadership at risk: Mining and dams threaten protected areas. Science, 346, 706-707. – reference: La Rovere EL, Mendes FE (2000) TucuruÌ Hydropower Complex, Brazil, A WCD Case Study Prepared as an Input to the World Commission on Dams. World Commission on Dams, Cape Town. – reference: Andreassian V (2004) Waters and forests: from historical controversy to scientific debate. Journal of Hydrology, 291, 1-27. – reference: Castello L (2008a) Lateral migration of Arapaima gigas in floodplains of the Amazon. Ecology of Freshwater Fish, 17, 38-46. – reference: Fagan WF (2002) Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology, 83, 3243-3249. – reference: Rieu-Clarke A, Moynihan R, Magsig B-O (2012) UN Watercourses Convention. IHP-HELP Centre for Water Law, Policy and Science (under the auspices of UNESCO), Dundee. – reference: Bernard E, Penna LA, Araujo E (2014) Downgrading, downsizing, degazettement, and reclassification of protected areas in Brazil. Conservation Biology, 28, 939-950. – reference: Lima LS, Coe MT, Soares Filho BS et al. (2013) Feedbacks between deforestation, climate, and hydrology in the Southwestern Amazon: implications for the provision of ecosystem services. Landscape Ecology, 29, 261-274. – reference: Cavole LM, Arantes CC, Castello L (2015) How illegal are tropical small-scale fisheries? Data on arapaima from the Amazon. Fisheries Research, 168, 1-5. – reference: Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agriculture Ecosystems & Environment, 104, 185-228. – reference: Fearnside P (2013) Viewpoint - Decision making on Amazon dams: Politics trumps uncertainty in the Madeira River sediments controversy. Water Alternatives, 6, 313-325. – reference: Macedo MN, Coe MT, Defries R, Uriarte M, Brando PM, Neill C, Walker WS (2013) Land-use-driven stream warming in southeastern Amazonia. Philosophical Transactions of the Royal Society: B Biological Sciences, 368, 20120153. – reference: Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science, 289, 284-288. – reference: Ribeiro M, Petrere M, Juras AA (1995) Ecological integrity and fisheries ecology of the Araguaia-Tocantins River Basin, Brazil. Regulated Rivers-Research & Management, 11, 325-350. – reference: Malhi Y, Pegoraro E, Nobre AD, Pereira MGP, Grace J, Culf AD, Clement R (2002) Energy and water dynamics of a central Amazonian rain forest. Journal of Geophysical Research-Atmospheres, 107, LBA 45-1-LBA 45-17. – reference: Sweeney BW, Bott TL, Jackson JK et al. (2004) Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proceedings of the National Academy of Sciences, 101, 14132-14137. – reference: Hess GR (1996) Linking extinction to connectivity and habitat destruction in metapopulation models. The American Naturalist, 148, 226-236. – reference: Fearnside PM (2006) Dams in the Amazon: Belo Monte and Brazil's hydroelectric development of the Xingu River basin. Environmental Management, 38, 16-27. – reference: Isaac V, Almeida M (2011) El Consumo de Pescado en la Amazonian Brasileña. Technical Report. Food & Agriculture Organization, Rome. – reference: Coe MT, Latrubesse EM, Ferreira ME, Amsler ML (2011) The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry, 105, 119-131. – reference: Laurance WF, Cochrane MA, Bergen S et al. (2001) The future of the Brazilian Amazon. Science, 291, 438-439. – reference: Lubiana A, Ferreira Júnior PD (2009) Pivotal temperature and sexual dimorphism of Podocnemis expansa hatchlings (Testudines: Podocnemididae) from Bananal Island, Brazil. Zoologia, 26, 527-533. – reference: Kacowicz Z (1985) Covenio ELETRONORTE/CNPQ/INPA. Relatorio do Projeto: Estudo de Ecologia e Controle Ambiental nas Regiões do Reservatório UHE de Balbina e Samuel: Comentário. Conselho Nacional de Desenvolvimento Cientiífico e Tecnológico (CNPq), Brasilia. – reference: Liermann CR, Nilsson C, Robertson J, Ng RY (2012) Implications of dam obstruction for global freshwater fish diversity. BioScience, 62, 539-548. – reference: Gibbs HK, Munger J, L'roe J et al. (2015a) Did ranchers and slaughterhouses respond to zero-deforestation agreements in the Brazilian Amazon? Conservation Letters, doi: 10.1111/conl.12175. – reference: Naiman RJ, Decamps H (1997) The ecology of interfaces: Riparian zones. Annual Review of Ecology and Systematics, 28, 621-658. – reference: Wohl E, Barros A, Brunsell N et al. (2012) The hydrology of the humid tropics. Nature Climate Change, 2, 655-662. – reference: Godoy JR, Petts G, Salo J (1999) Riparian flooded forests of the Orinoco and Amazon basins: a comparative review. Biodiversity and Conservation, 8, 551-586. – reference: Castello L, Mcgrath DG, Arantes CC, Almeida OT (2013a) Accounting for heterogeneity in small-scale fisheries management: The Amazon case. Marine Policy, 38, 557-565. – reference: Brando PM, Balch JK, Nepstad DC et al. (2014) Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proceedings of the National Academy of Sciences, 111, 6347-6352. – reference: Da Silveira R, Ramalho EE, Thorbjarnarson JB, Magnusson WE (2010) Depredation by jaguars on caimans and importance of reptiles in the diet of jaguar. Journal of Herpetology, 44, 418-424. – reference: Malhi Y, Aragão LE, Galbraith D et al. (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Procedings of the National Academy of Sciences, 106, 20610-20615. – reference: Renó VF, Novo EMLM, Suemitsu C, Rennó CD, Silva TSF (2011) Assessment of deforestation in the Lower Amazon floodplain using historical Landsat MSS/TM imagery. Remote Sensing of Environment, 115, 3446-3456. – reference: Abell R, Allan JD, Lehner B (2007) Unlocking the potential of protected areas for freshwaters. Biological Conservation, 134, 48-63. – reference: Neill C, Coe MT, Riskin SH et al. (2013) Watershed responses to Amazon soya bean cropland expansion and intensification. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20120425. – reference: Pelicice FM, Pompeu PS, Agostinho AA (2014) Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries, 16, 697-715. – reference: Pringle CM (2001) Hydrologic connectivity and the management of biological reserves: A global perspective. Ecological Applications, 11, 981-998. – reference: Latrubesse EM, Amsler ML, De Morais RP, Aquino S (2009) The Geomorphologic response of a large pristine alluvial river to tremendous deforestation in the South American tropics: the case of the Araguaia River. Geomorphology, 113, 239-252. – reference: Finer M, Jenkins CN, Pimm SL, Keane B, Ross C (2008) Oil and gas projects in the western Amazon: threats to wilderness, biodiversity, and indigenous peoples. PLoS ONE, 3, e2932. – reference: Macedo M, Defries R, Morton D, Stickler C, Galford G, Shimabukuro Y (2012) Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Procedings of the National Academy of Sciences, 109, 1341-1346. – reference: Nilsson C, Berggren K (2000) Aterations of riparian ecosystems caused by river regulation. BioScience, 50, 783-792. – reference: Castello L, Mcgrath DG, Hess LL et al. (2013b) The vulnerability of Amazon freshwater ecosystems. Conservation Letters, 6, 217-229. – reference: Mahli Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2007) Climate change, deforestation, and the fate of the Amazon. Science, 319, 169-172. – reference: Sterling SM, Ducharne A, Polcher J (2012) The impact of global land-cover change on the terrestrial water cycle. Nature Climate Change, 3, 385-390. – reference: Alexander RB, Smith RA, Schwarz GE (2000) Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature, 403, 758-761. – reference: Shuttleworth WJ (1988) Evaporation from Amazonian forests. Philosophical Transactions of the Royal Society: B Biological Sciences, 233, 321-346. – reference: Bruijnzeel LA, International Hydrological P, International Association of Hydrological S, International Institute for Aerospace S, Earth S (1990) Hydrology of Moist Tropical Forests and Effects of Conversion: A State of Knowledge Review. Faculty of Earth Sciences, Free University Amsterdam, The Netherlands. – reference: Hess LL, Melack JM, Novo EMLM, Barbosa CCF, Gastil M (2003) Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment, 87, 404-428. – reference: Fei C, Li W, Castello L et al. (2015) Impacts of cascade dams on fishes of the Yangtzee River. Reviews in Fish Biology and Fisheries, 25, 569-585. – reference: Castello L, Stewart DJ (2010) Assessing CITES non-detriment finding procedures for Arapaima in Brazil. Journal of Applied Ichthyology, 26, 49-56. – reference: D'Almeida C, Vorosmarty CJ, Hurtt GC, Marengo JA, Dingman SL, Keim BD (2007) The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. International Journal of Climatology, 27, 633-647. – reference: Martin AR, Da Silva VME (2004) River dolphins and flooded forest: seasonal habitat use and sexual segregation of botos (Inia geoffrensis) in an extreme cetacean environment. Journal of Zoology, 263, 295-305. – reference: Junk WJ, Piedade MTF, Schöngart J, Cohn-Haft M, Adeney JM, Wittmann F (2011) A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands, 31, 623-640. – reference: Kemenes A, Forsberg BR, Melack JM (2011) CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil). Journal of Geophysical Research-Biogeosciences, 116, G03044. – reference: McClain ME, Cossio RE (2003) The use of riparian environments in the rural Peruvian Amazon. Environmental Conservation, 30, 242-248. – reference: Kallis G, Butler D (2001) The EU water framework directive: measures and implications. Water Policy, 3, 125-142. – reference: Gibbs HK, Rausch L, Munger J et al. (2015b) Brazil's soy moratorium. Science, 347, 377-378. – reference: Sonter LJ, Barrett DJ, Soares-Filho BS (2014b) Offsetting the impacts of mining to achieve no net loss of native vegetation. Conservation Biology, 28, 1068-1076. – reference: Huffman GJ, Adler RF, Bolvin DT et al. (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. Journal of Hydrometeor, 8, 38-55. – reference: Nepstad D, Mcgrath D, Stickler C et al. (2014) Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science, 344, 1118-1123. – reference: Petts GE (1984) Impounded Rivers: Perspectives for Ecological Management. John Wiley & Sons Ltd., New York, NY. – reference: Reis RE, Kullander SO, Ferraris C Jr (2003) Check List of the Freshwater Fishes of South and Central America. EDIPUCRS, Porto Alegre. – reference: Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C4 Grass Echinochloa-Polystachya on the Amazon floodplain. Ecology, 72, 1456-1463. – reference: Peres CA, Terborgh JW (1995) Amazonian nature reserves - an analysis of the defensibility status of existing conservation units and design criteria for the future. Conservation Biology, 9, 34-46. – reference: Ashe K (2012) Elevated mercury concentrations in humans of Madre de Dios, Peru. PLoS ONE, 7, e33305. – reference: INPE (2014). Satellite Monitoring of Brazil's Amazon Forest (PRODES). Brazilian National Agency for Space Research, São José dos Campos, SP. Available at: http://www.obt.inpe.br/prodes/ (accessed 7 December 2014). – reference: Brando PM, Nepstad DC, Balch JK, Bolker B, Christman MC, Coe M, Putz FE (2012) Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Global Change Biology, 18, 630-641. – reference: Marengo JA, Liebmann B, Grimm AM et al. (2012) Recent developments on the South American monsoon system. International Journal of Climatology, 32, 1-21. – reference: Freeman MC, Pringle CM, Jackson CR (2007a) Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales. Journal of the American Water Resources Association, 43, 5-14. – reference: Williams MR, Fisher TR, Melack JM (1997) Solute dynamics in soil water and groundwater in a central Amazon catchment undergoing deforestation. Biogeochemistry, 38, 303-335. – reference: Nevado JJB, Martin-Doimeadios RCR, Bernardo FJG, Moreno MJ, Herculano AM, Do Nascimento JLM, Crespo-Lopez ME (2010) Mercury in the Tapajos River basin, Brazilian Amazon: a review. Environment International, 36, 593-608. – reference: Silvério DV, Brando PM, Macedo MN, Beck PSA, Bustamante M, Coe MT. (2015). Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing. Environmental Research Letters 10, 104015. – reference: Neill C, Deegan LA, Thomas SM, Cerri CC (2001) Deforestation for pasture alters nitrogen and phosphorus in small Amazonian Streams. Ecological Applications, 11, 1817-1828. – reference: Flores BM, Piedade M-TF, Nelson BW (2012) Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecology & Diversity, 7, 1-9. – reference: Kasper D, Forsberg BR, Amaral JHF, Leitao RP, Py-Daniel SS, Bastos WR, Malm O (2014) Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from Balbina hydroelectric dam, Amazonas, Brazil. Environmental Science & Technology, 48, 1032-1040. – reference: McGrath DG, Castello L, Almeida OT (2015) Market formalization, governance and the integration of community fisheries in the Brazilian Amazon. Society & Natural Resources, 28, 513-529. – reference: Smith NJH (2002) Amazon Sweet Sea: Land, Life, and Water at the River's Mouth. University of Texas Press, Austin, TX. – reference: Castello L, Isaac VJ, Thapa R (2015) Flood pulse effects on multispecies fishery yields in the Lower Amazon. Royal Society Open Science, 2, doi:10.1098/rsos.150299. – reference: Gunkel G, Lange U, Walde D, Rosa JWC (2003) The environmental and operational costs of Curuá-Una, a reservoir in the Amazon region of Pará, Brazil. Lakes & Reservoir: Research & Management, 8, 201-216. – reference: Junk WJ, Piedade MTF (2004) Status of knowledge, ongoing research, and research needs in Amazonian wetlands. Wetlands Ecology and Management, 12, 597-609. – reference: Switkes G (2005) Foiling the Aluminum Industry: A Toolkit for Communities, Consumers, and Workers. International Rivers Network, Berkeley, CA. – reference: Switkes G (2007) Madeira dams in Amazon get go-ahead. World Rivers Review, 22, 12-13. – reference: Hansen MC, Potapov PV, Moore R et al. (2013) High-resolution global maps of 21st-century forest cover change. Science, 342, 850-853. – reference: De Mérona B, Gascuel D (1993) The effects of flood regime and fishing effort on the overall abundance of an exploited fish community in the Amazon floodplain. Aquatic Living Resources, 6, 97-108. – reference: Fearnside PM (2001) Environmental impacts of Brazil's Tucurui Dam: Unlearned lessons for hydroelectric development in Amazonia. Environmental Management, 27, 377-396. – reference: Fearnside PM (2014) Viewpoint - Brazil's Madeira River dams: A setback for environmental policy in Amazonian development Water. Alternatives, 7, 1-15. – reference: Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in riverfloodplain systems. In: Proceedings of the International Large River Symposium (ed. Dodge DP), Canadian Special Publication of Fisheries and Aquatic Sciences, 106, 110-127. – reference: Naiman RJ, Decamps H, Mcclain ME (2005) Riparia - Ecology, Conservation and Management of Streamside Communities. Elsevier Academic Press, London. – reference: Forsberg BR, Araujo-Lima CARM, Martinelli LA, Victoria RI, Bonassi JA (1993) Autotrophic carbon sources for fish of the central Amazon. Ecology, 74, 643-652. – reference: Lewis SL, Brando PM, Phillips OL, Van Der Heijden GM, Nepstad D (2011) The 2010 Amazon drought. Science, 331, 554. – reference: Gomes LC, Agostinho AA (1997) Influence of the flooding regime on the nutritional state and juvenile recruitment of the curimba, Prochilodus scrofa, Steindachner, in upper Parana River, Brazil. Fisheries Management and Ecology, 4, 263-274. – reference: Arantes CC, Castello L, Cetra M, Schilling A (2013) Environmental factors affecting the distribution of arapaima in floodplains of the Amazon. Environmental Biology of Fishes, 96, 1257-1267. – reference: Beighley RE, Gummadi V (2011) Developing channel and floodplain dimensions with limited data: a case study in the Amazon Basin. Earth Surface Processes and Landforms, 36, 1059-1071. – reference: Goulding M (1980) The Fishes and the Forest: Explorations in Amazonian Natural History. University of California Press, Los Angeles, CA. – reference: Swenson JJ, Carter CE, Domec J-C, Delgado CI (2011) Gold mining in the Peruvian Amazon: global prices, deforestation, and mercury imports. PLoS ONE, 6, e18875. – reference: Oliveira JAP (2002) Implementing environmental policies in developing countries through decentralization: the case of protected areas in Bahia, Brazil. World Development, 30, 1713-1736. – reference: Jones C, Carvalho LMV (2013) Climate change in the south american monsoon system: present climate and CMIP5 projections. Journal of Climate, 26, 6660-6678. – reference: Nepstad D, Soares-Filho B, Merry F et al. (2009) The end of deforestation in the Brazilian Amazon. Science, 326, 1350-1351. – reference: Macedo M, Castello L (2015) State of the Amazon: Freshwater Connectivity and Ecosystem Health. WWF Living Amazon Initiative, Brasilia. – reference: Rosenberg DM, Mccully P, Pringle CM (2000) Global-scale environmental effects of hydrological alterations: introduction. BioScience, 50, 746-751. – reference: Wipfli MS, Richardson JS, Naiman RJ (2007) Ecological linkages between headwaters and downstream ecosystems: Transport of organic matter, invertebrates, and wood down headwater channels. Journal of the American Water Resources Association, 43, 72-85. – reference: Kalliola R, Puhakka M, Salo J, Tuomisto H, Ruokolainen K (1991) The dynamics, distribution and classification of swamp vegetation in Peruvian Amazonia. Annales Botanici Fennici, 28, 225-239. – reference: Brauman KA, Daily GC, Duarte TK, Mooney HA (2007) The nature and value of ecosystem services: An overview highlighting hydrologic services. Annual Review of Environment and Resources, 32, 67-98. – reference: Soares-Filho B, Moutinho P, Nepstad D et al. (2010) Role of Brazilian Amazon protected areas in climate change mitigation. Proceedings of the National Academy of Sciences, 107, 10821-10826. – reference: Limburg KE, Waldman JR (2009) Dramatic declines in North Atlantic diadromous fishes. BioScience, 59, 955-965. – reference: Calder IR (1998) Water use by forests, limits and controls. Tree Physiology, 18, 625-631. – reference: Abell R, Thieme ML, Revenga C, et al. (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58, 403-414. – reference: Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559-568. – reference: Fearnside PM (2004) Greenhouse gas emissions from hydroelectric dams: Controversies provide a springboard for rethinking a supposedly 'clean' energy source - An editorial comment. Climatic Change, 66, 1-8. – reference: Poff NL, Allan JD, Bain MB et al. (1997) The natural flow regime: A paradigm for river restoration and conservation. BioScience, 47, 769-784. – reference: Switkes G (2002) Brazilian government pushes ahead with plans for huge dams in Amazon. World Rivers Review, 17, 12-13. – reference: Hess LL, Melack JM, Affonso AG, Barbosa C, Gastil-Buhl M, Novo EMLM (2015) Wetlands of the lowland Amazon Basin: extent, vegetative cover, and dual-season inundation area as mapped with JERS-1 synthetic aperture radar. Wetlands, 35, 745-756. – reference: Marinho JS, Lima MO, Santos ECDO, De Jesus IM, Pinheiro MDCN, Alves CN, Muller RCS (2014) Mercury speciation in hair of children in three communities of the Amazon, Brazil. BioMed Research International, 2014, 1-9. – reference: Stotz DF, Fitzpatrick JW, Parker TE III, Moskovits DK (1996) Neotropical Birds. University of Chicago Press, Chicago. – reference: Barthem R, Goulding M (1997) The Catfish Connection: Ecology, Migration and Conservation of Amazon Predators. Columbia University Press, New York. – reference: Coe MT, Costa MH, Howard EA (2008) Simulating the surface waters of the Amazon River basin: impacts of new river geomorphic and flow parameterizations. Hydrological Processes, 22, 2542-2553. – reference: Demarty M, Bastien J (2011) GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements. Energy Policy, 39, 4197-4206. – reference: Brum SM, Rossoni F, Da Silva VMF, Castello L (2015) Use of dolphins and caimans as bait for Calophysus macropterus in the Amazon. Journal of Applied Ichthyology, 31, 675-680. – reference: Hayhoe SJ, Neill C, Porder S et al. (2011) Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics. Global Change Biology, 17, 1821-1833. – reference: Palmeirim AF, Peres CA, Rosas FCW (2014) Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam. Biological Conservation, 174, 30-38. – reference: Houghton RA, Skole DL, Nobre CA, Hackler JL, Lawrence KT, Chomentowski WH (2000) Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature, 403, 301-304. – reference: Van Der Windt HJ, Swart JAA (2008) Ecological corridors, connecting science and politics: the case of the green river in the Netherlands. Journal of Applied Ecology, 45, 124-132. – reference: Sahin V, Hall MJ (1996) The effects of afforestation and deforestation on water yields. Journal of Hydrology, 178, 293-309. – reference: Balbín C, La Rosa V (2012) Hidroeléctricas y Conflictos Sociales: Recomendaciones Para una Mejor Gestión Ambiental. Friedrich Ebert Stiftung, Lima. – reference: Hamilton SK, Sippel SJ, Melack JM (2002) Comparison of inundation patterns among major South American floodplains. Journal of Geophysical Research: Atmospheres, 107, 5-14. – reference: Araujo-Lima CARM, Forsberg BR, Victoria R, Martinelli L (1986) Energy-sources for Detrivorous fishes in the Amazon. Science, 234, 1256-1258. – reference: Junk WJ, Mello JASND (1990) Impactos ecológicos das represas hidrelétricas na bacia amazônica brasileira. Estudos Avançados, 4, 126-143. – reference: Bojsen BH, Barriga R (2002) Effects of deforestation on fish community structure in Ecuadorian Amazon streams. Freshwater Biology, 47, 2246-2260. – reference: Gutiérrez-Vélez VH, Defries R, Pinedo-Vásquez M et al. (2011) High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environmental Research Letters, 6, 044029. – reference: De Miguel E, Clavijo D, Ortega MF, Gomez A (2014) Probabilistic meta-analysis of risk from the exposure to Hg in artisanal gold mining communities in Colombia. Chemosphere, 108, 183-189. – reference: Keuroghlian A, Eaton DP (2008) Importance of rare habitats and riparian zones in a tropical forest fragment: preferential use by Tayassu pecari, a wide-ranging frugivore. Journal of Zoology, 275, 283-293. – reference: Welcomme RL (1985) River Fisheries. FAO, Rome. – reference: Parry L, Barlow J, Pereira H (2014) Wildlife harvest and consumption in Amazonia's Urbanized Wilderness. Conservation Letters, 7, 565-574. – reference: Sonter LJ, Barrett DJ, Soares-Filho BS, Moran CJ (2014a) Global demand for steel drives extensive land-use change in Brazil's Iron Quadrangle. Global Environmental Change, 26, 63-72. – reference: Schindler DW (2006) Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, 51, 356-363. – reference: St Louis VL, Kelly CA, Duchemin E, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate. BioScience, 50, 766-775. – reference: Lees AC, Peres CA (2008) Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conservation Biology, 22, 439-449. – reference: IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. – reference: Junk W (2013) Current state of knowledge regarding South America wetlands and their future under global climate change. Aquatic Sciences, 75, 113-131. – reference: Haugaasen T, Peres CA (2005) Tree phenology in adjacent Amazonian flooded and unflooded forests. Biotropica, 37, 620-630. – reference: Yin L, Fu R, Zhang Y-F et al. (2014) What controls the interannual variation of the wet season onsets over the Amazon? Journal of Geophysical Research: Atmospheres, 119, 2314-2328. – reference: Veríssimo A, Rolla A, Souto Maior APC et al. (2011) Áreas Protegidas na Amazônia Brasileira: Avanços e Desafios. IMAZON/ISA, Brasil. – reference: Lagler KF, Kapetski JF, Stewart DJ (1971) The Fisheries of the Kafue River Flats, Zambia, in Relation to the Kafue Gorge Dam. Central Fisheries Research Institute, Chilanga (Zambia). – reference: Ewel KC (2009) Appreciating tropical coastal wetlands from a landscape perspective. Frontiers in Ecology and the Environment, 8, 20-26. – reference: Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science, 313, 1072-1077. – reference: Ward J (1989) The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society, 8, 2-8. – reference: Bagley JE, Desai AR, Harding KJ, Snyder PK (2014) Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon?. Journal of Climate, 27, 345-361. – reference: Soares-Filho B, Rajão R, Macedo M et al. (2014) Cracking Brazil's forest code. Science, 344, 363-364. – reference: Butt N, De Oliveira PA, Costa MH (2011) Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. Journal of Geophysical Research-Atmospheres, 116, D11. – reference: Da Silveira R, Amaral JV, Magnussson WE, Thorbjarnarson JB (2011) Melanosuchus Niger (Black Caiman): long distance movement. Herpetological Review, 4, 424-425. – reference: Fearnside PM (2005) Brazil's Samuel Dam: Lessons for hydroelectric development policy and the environment in Amazonia. Environmental Management, 35, 1-19. – reference: Panday PK, Coe MT, Macedo MN, Lefebvre P, Castanho AD (2015) Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. Journal of Hydrology, 523, 822-829. – reference: Stickler CM, Coe MT, Costa MH et al. (2013) Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Procedings of the National Academy of Sciences, 110, 9601-9606. – reference: Freeman MC, Pringle CM, Jackson CR (2007b) Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales. Journal of the American Water Resources Association, 43, 5-14. – reference: Arima EY, Barreto P, Araújo E et al. (2014) Public policies can reduce tropical deforestation: lessons and challenges from Brazil. Land Use Policy, 41, 465-473. – reference: Millennium Ecosystem Assessment (2005) Ecosystem and Human WellbBeing: Wetlands and WatersSynthesis. World Resources Institute, Washington, DC. – reference: Martin AR, Da Silva VMF, Salmon DL (2004) Riverine habitat preferences of botos (Inia geoffrensis) and tucuxis (Sotalia fluviatilis) in the central Amazon. Marine Mammal Science, 20, 189-200. – reference: Castello L (2008b) Nesting habitat of pirarucu Arapaima gigas in floodplains of the Amazon. Journal of Fish Biology, 72, 1520-1528. – reference: Kemenes A, Forsberg BR, Melack JM (2007) Methane release below a tropical hydroelectric dam. Geophysical Research Letters, 34, L12809. – reference: McGrath DG, Cardoso A, Almeida OT, Pezzuti J (2008) Constructing a policy and institutional framework for an ecosystem-based approach to managing the Lower Amazon floodplain. Environment, Development and Sustainability, 10, 677-695. – reference: Zhang L, Wong MH (2007) Environmental mercury contamination in China: Sources and impacts. Environment International, 33, 108-121. – reference: Smith SV, Renwick WH, Buddemeier RW, Crossland CJ (2001) Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochemical Cycles, 15, 697-707. – reference: Fachín-Terán A, Vogt RC, Thorbjarnarson JB (2006) Seasonal Movements of Podocnemis sextuberculata (Testudines: Podocnemididae) in the Mamirauá Sustainable Development Reserve, Amazonas, Brazil. Chelonian Conservation and Biology, 5, 18-24. – reference: Poff NL, Hart DD (2002) How dams vary and why it matters for the emerging science of dam removal. BioScience, 52, 659-668. – reference: Barthem R, Goulding M (2007) An Unexpected Ecosystem: The Amazon as Revealed by Fisheries. Amazon Conservation Association; Missouri Botanical Garden Press, Washington, DC. – reference: Costa MH, Botta A, Cardille JA (2003) Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. Journal of Hydrology, 283, 206-217. – reference: Fearnside PM (1989) The charcoal of Carajas - a threat to the forests of Brazils eastern Amazon region. Ambio, 18, 141-143. – reference: Pinedo-Vasquez M, Pasqualle JB, Torres DC, Coffey K (2001) A tradition of change: the dynamic relationship between biodiversity and society in sector Muyuy, Peru. Environmental Science and Policy, 5, 43-53. – reference: McClain ME, Naiman RJ (2008) Andean influences on the biogeochemistry and ecology of the Amazon River. BioScience, 58, 325-338. – reference: Giambelluca TW (2002) Hydrology of altered tropical forest. Hydrological Processes, 16, 1665-1669. – reference: Olden JD, Naiman RJ (2010) Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology, 55, 86-107. – year: 2011 – volume: 7 start-page: 1 year: 2014 end-page: 15 article-title: Viewpoint – Brazil's Madeira River dams: A setback for environmental policy in Amazonian development Water publication-title: Alternatives – year: 2005 – volume: 38 start-page: 303 year: 1997 end-page: 335 article-title: Solute dynamics in soil water and groundwater in a central Amazon catchment undergoing deforestation publication-title: Biogeochemistry – volume: 289 start-page: 284 year: 2000 end-page: 288 article-title: Global water resources: vulnerability from climate change and population growth publication-title: Science – volume: 55 start-page: 86 year: 2010 end-page: 107 article-title: Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity publication-title: Freshwater Biology – volume: 28 start-page: 1068 year: 2014b end-page: 1076 article-title: Offsetting the impacts of mining to achieve no net loss of native vegetation publication-title: Conservation Biology – start-page: 1 year: 2001 end-page: 44 – volume: 75 start-page: 113 year: 2013 end-page: 131 article-title: Current state of knowledge regarding South America wetlands and their future under global climate change publication-title: Aquatic Sciences – start-page: 167 year: 2004 end-page: 202 – start-page: 235 year: 2001 end-page: 274 – volume: 25 start-page: 569 year: 2015 end-page: 585 article-title: Impacts of cascade dams on fishes of the Yangtzee River publication-title: Reviews in Fish Biology and Fisheries – volume: 58 start-page: 403 year: 2008 end-page: 414 article-title: Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation publication-title: BioScience – volume: 51 start-page: 356 year: 2006 end-page: 363 article-title: Recent advances in the understanding and management of eutrophication publication-title: Limnology and Oceanography – volume: 30 start-page: 1713 year: 2002 end-page: 1736 article-title: Implementing environmental policies in developing countries through decentralization: the case of protected areas in Bahia, Brazil publication-title: World Development – volume: 50 start-page: 746 year: 2000 end-page: 751 article-title: Global‐scale environmental effects of hydrological alterations: introduction publication-title: BioScience – volume: 28 start-page: 225 year: 1991 end-page: 239 article-title: The dynamics, distribution and classification of swamp vegetation in Peruvian Amazonia publication-title: Annales Botanici Fennici – volume: 101 start-page: 14132 year: 2004 end-page: 14137 article-title: Riparian deforestation, stream narrowing, and loss of stream ecosystem services publication-title: Proceedings of the National Academy of Sciences – year: 1990 – volume: 31 start-page: 623 year: 2011 end-page: 640 article-title: A classification of major naturally‐occurring Amazonian lowland wetlands publication-title: Wetlands – volume: 48 start-page: 1032 year: 2014 end-page: 1040 article-title: Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from Balbina hydroelectric dam, Amazonas, Brazil publication-title: Environmental Science & Technology – year: 2014 – volume: 30 start-page: 242 year: 2003 end-page: 248 article-title: The use of riparian environments in the rural Peruvian Amazon publication-title: Environmental Conservation – start-page: 185 year: 2001 end-page: 208 – volume: 104 start-page: 185 year: 2004 end-page: 228 article-title: Hydrological functions of tropical forests: not seeing the soil for the trees? publication-title: Agriculture Ecosystems & Environment – volume: 47 start-page: 2246 year: 2002 end-page: 2260 article-title: Effects of deforestation on fish community structure in Ecuadorian Amazon streams publication-title: Freshwater Biology – volume: 2 start-page: 655 year: 2012 end-page: 662 article-title: The hydrology of the humid tropics publication-title: Nature Climate Change – volume: 26 start-page: 527 year: 2009 end-page: 533 article-title: Pivotal temperature and sexual dimorphism of hatchlings (Testudines: Podocnemididae) from Bananal Island, Brazil publication-title: Zoologia – volume: 50 start-page: 783 year: 2000 end-page: 792 article-title: Aterations of riparian ecosystems caused by river regulation publication-title: BioScience – volume: 8 start-page: 201 year: 2003 end-page: 216 article-title: The environmental and operational costs of Curuá‐Una, a reservoir in the Amazon region of Pará, Brazil publication-title: Lakes & Reservoir: Research & Management – volume: 368 start-page: 20120425 year: 2013 article-title: Watershed responses to Amazon soya bean cropland expansion and intensification publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – start-page: 47 year: 1989 end-page: 64 – volume: 6 start-page: 044029 year: 2011 article-title: High‐yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon publication-title: Environmental Research Letters – start-page: 525 year: 2009 end-page: 540 – year: 2008 – volume: 18 start-page: 141 year: 1989 end-page: 143 article-title: The charcoal of Carajas – a threat to the forests of Brazils eastern Amazon region publication-title: Ambio – volume: 20 start-page: 189 year: 2004 end-page: 200 article-title: Riverine habitat preferences of botos ( ) and tucuxis ( ) in the central Amazon publication-title: Marine Mammal Science – volume: 105 start-page: 119 year: 2011 end-page: 131 article-title: The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil publication-title: Biogeochemistry – volume: 115 start-page: 3446 year: 2011 end-page: 3456 article-title: Assessment of deforestation in the Lower Amazon floodplain using historical Landsat MSS/TM imagery publication-title: Remote Sensing of Environment – volume: 17 start-page: 12 year: 2002 end-page: 13 article-title: Brazilian government pushes ahead with plans for huge dams in Amazon publication-title: World Rivers Review – volume: 37 start-page: 620 year: 2005 end-page: 630 article-title: Tree phenology in adjacent Amazonian flooded and unflooded forests publication-title: Biotropica – start-page: 127 year: 1984 end-page: 165 – volume: 28 start-page: 621 year: 1997 end-page: 658 article-title: The ecology of interfaces: Riparian zones publication-title: Annual Review of Ecology and Systematics – volume: 31 start-page: 675 year: 2015 end-page: 680 article-title: Use of dolphins and caimans as bait for in the Amazon publication-title: Journal of Applied Ichthyology – volume: 4 start-page: 424 year: 2011 end-page: 425 article-title: (Black Caiman): long distance movement publication-title: Herpetological Review – year: 2015a article-title: Did ranchers and slaughterhouses respond to zero‐deforestation agreements in the Brazilian Amazon? publication-title: Conservation Letters – volume: 283 start-page: 206 year: 2003 end-page: 217 article-title: Effects of large‐scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia publication-title: Journal of Hydrology – volume: 11 start-page: 1817 year: 2001 end-page: 1828 article-title: Deforestation for pasture alters nitrogen and phosphorus in small Amazonian Streams publication-title: Ecological Applications – volume: 32 start-page: 1 year: 2012 end-page: 21 article-title: Recent developments on the South American monsoon system publication-title: International Journal of Climatology – volume: 106 start-page: 20610 year: 2009 end-page: 20615 article-title: Exploring the likelihood and mechanism of a climate‐change‐induced dieback of the Amazon rainforest publication-title: Procedings of the National Academy of Sciences – volume: 74 start-page: 643 year: 1993 end-page: 652 article-title: Autotrophic carbon sources for fish of the central Amazon publication-title: Ecology – volume: 113 start-page: 239 year: 2009 end-page: 252 article-title: The Geomorphologic response of a large pristine alluvial river to tremendous deforestation in the South American tropics: the case of the Araguaia River publication-title: Geomorphology – volume: 43 start-page: 5 year: 2007a end-page: 14 article-title: Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales publication-title: Journal of the American Water Resources Association – year: 2007 – volume: 17 start-page: 974 year: 2007 end-page: 988 article-title: Ecological mechanisms linking protected areas to surrounding lands publication-title: Ecological Applications – volume: 9 start-page: 34 year: 1995 end-page: 46 article-title: Amazonian nature reserves – an analysis of the defensibility status of existing conservation units and design criteria for the future publication-title: Conservation Biology – volume: 5 start-page: 43 year: 2001 end-page: 53 article-title: A tradition of change: the dynamic relationship between biodiversity and society in sector Muyuy, Peru publication-title: Environmental Science and Policy – volume: 4 start-page: 126 year: 1990 end-page: 143 article-title: Impactos ecológicos das represas hidrelétricas na bacia amazônica brasileira publication-title: Estudos Avançados – volume: 26 start-page: 49 year: 2010 end-page: 56 article-title: Assessing CITES non‐detriment finding procedures for in Brazil publication-title: Journal of Applied Ichthyology – start-page: 217 year: 1999 end-page: 232 – volume: 35 start-page: 745 year: 2015 end-page: 756 article-title: Wetlands of the lowland Amazon Basin: extent, vegetative cover, and dual‐season inundation area as mapped with JERS‐1 synthetic aperture radar publication-title: Wetlands – start-page: 679 year: 1993 end-page: 739 – volume: 7 start-page: e33305 year: 2012 article-title: Elevated mercury concentrations in humans of Madre de Dios, Peru publication-title: PLoS ONE – volume: 110 start-page: 18454 year: 2013 end-page: 18459 article-title: Elevated rates of gold mining in the Amazon revealed through high‐resolution monitoring publication-title: Proceedings of the National Academy of Sciences – volume: 319 start-page: 169 year: 2007 end-page: 172 article-title: Climate change, deforestation, and the fate of the Amazon publication-title: Science – volume: 3 start-page: 385 year: 2012 end-page: 390 article-title: The impact of global land‐cover change on the terrestrial water cycle publication-title: Nature Climate Change – volume: 66 start-page: 1 year: 2004 end-page: 8 article-title: Greenhouse gas emissions from hydroelectric dams: Controversies provide a springboard for rethinking a supposedly ‘clean’ energy source – An editorial comment publication-title: Climatic Change – volume: 2014 start-page: 1 year: 2014 end-page: 9 article-title: Mercury speciation in hair of children in three communities of the Amazon, Brazil publication-title: BioMed Research International – volume: 234 start-page: 1256 year: 1986 end-page: 1258 article-title: Energy‐sources for Detrivorous fishes in the Amazon publication-title: Science – volume: 2 year: 2015 article-title: Flood pulse effects on multispecies fishery yields in the Lower Amazon publication-title: Royal Society Open Science – volume: 344 start-page: 1118 year: 2014 end-page: 1123 article-title: Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains publication-title: Science – year: 1984 – volume: 291 start-page: 438 year: 2001 end-page: 439 article-title: The future of the Brazilian Amazon publication-title: Science – volume: 83 start-page: 3243 year: 2002 end-page: 3249 article-title: Connectivity, fragmentation, and extinction risk in dendritic metapopulations publication-title: Ecology – year: 2002 – volume: 106 start-page: 110 year: 1989 end-page: 127 publication-title: Canadian Special Publication of Fisheries and Aquatic Sciences – volume: 109 start-page: 1341 year: 2012 end-page: 1346 article-title: Decoupling of deforestation and soy production in the southern Amazon during the late 2000s publication-title: Procedings of the National Academy of Sciences – volume: 11 start-page: 981 year: 2001 end-page: 998 article-title: Hydrologic connectivity and the management of biological reserves: A global perspective publication-title: Ecological Applications – volume: 36 start-page: 593 year: 2010 end-page: 608 article-title: Mercury in the Tapajos River basin, Brazilian Amazon: a review publication-title: Environment International – volume: 35 start-page: 1 year: 2005 end-page: 19 article-title: Brazil's Samuel Dam: Lessons for hydroelectric development policy and the environment in Amazonia publication-title: Environmental Management – volume: 344 start-page: 363 year: 2014 end-page: 364 article-title: Cracking Brazil's forest code publication-title: Science – volume: 291 start-page: 1 year: 2004 end-page: 27 article-title: Waters and forests: from historical controversy to scientific debate publication-title: Journal of Hydrology – volume: 342 start-page: 850 year: 2013 end-page: 853 article-title: High‐resolution global maps of 21st‐century forest cover change publication-title: Science – volume: 8 start-page: 2 year: 1989 end-page: 8 article-title: The four‐dimensional nature of lotic ecosystems publication-title: Journal of the North American Benthological Society – volume: 110 start-page: 9601 year: 2013 end-page: 9606 article-title: Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales publication-title: Procedings of the National Academy of Sciences – volume: 523 start-page: 822 year: 2015 end-page: 829 article-title: Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia publication-title: Journal of Hydrology – start-page: 375 year: 1998 end-page: 400 – year: 1985 – volume: 403 start-page: 758 year: 2000 end-page: 761 article-title: Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico publication-title: Nature – volume: 275 start-page: 283 year: 2008 end-page: 293 article-title: Importance of rare habitats and riparian zones in a tropical forest fragment: preferential use by Tayassu pecari, a wide‐ranging frugivore publication-title: Journal of Zoology – volume: 233 start-page: 321 year: 1988 end-page: 346 article-title: Evaporation from Amazonian forests publication-title: Philosophical Transactions of the Royal Society: B Biological Sciences – volume: 12 start-page: 597 year: 2004 end-page: 609 article-title: Status of knowledge, ongoing research, and research needs in Amazonian wetlands publication-title: Wetlands Ecology and Management – volume: 368 start-page: 20120153 year: 2013 article-title: Land‐use‐driven stream warming in southeastern Amazonia publication-title: Philosophical Transactions of the Royal Society: B Biological Sciences – volume: 43 start-page: 5 year: 2007b end-page: 14 article-title: Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales publication-title: Journal of the American Water Resources Association – volume: 403 start-page: 301 year: 2000 end-page: 304 article-title: Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon publication-title: Nature – volume: 28 start-page: 513 year: 2015 end-page: 529 article-title: Market formalization, governance and the integration of community fisheries in the Brazilian Amazon publication-title: Society & Natural Resources – year: 1971 – volume: 27 start-page: 345 year: 2014 end-page: 361 article-title: Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon? publication-title: Journal of Climate – volume: 26 start-page: 6660 year: 2013 end-page: 6678 article-title: Climate change in the south american monsoon system: present climate and CMIP5 projections publication-title: Journal of Climate – volume: 6 start-page: 97 year: 1993 end-page: 108 article-title: The effects of flood regime and fishing effort on the overall abundance of an exploited fish community in the Amazon floodplain publication-title: Aquatic Living Resources – volume: 45 start-page: 124 year: 2008 end-page: 132 article-title: Ecological corridors, connecting science and politics: the case of the green river in the Netherlands publication-title: Journal of Applied Ecology – volume: 10 start-page: 104015 year: 2015 article-title: Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non‐GHG forcing publication-title: Environmental Research Letters – volume: 7 start-page: 565 year: 2014 end-page: 574 article-title: Wildlife harvest and consumption in Amazonia's Urbanized Wilderness publication-title: Conservation Letters – volume: 28 start-page: 939 year: 2014 end-page: 950 article-title: Downgrading, downsizing, degazettement, and reclassification of protected areas in Brazil publication-title: Conservation Biology – volume: 70 start-page: 85 year: 2010 end-page: 94 article-title: Nesting ecology of (Schweigger, 1812) and (Troschel, 1848) (Testudines, Podocnemididae) in the Javaés River, Brazil publication-title: Brazilian Journal of Biology – volume: 116 start-page: D11 year: 2011 article-title: Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil publication-title: Journal of Geophysical Research‐Atmospheres – volume: 22 start-page: 2542 year: 2008 end-page: 2553 article-title: Simulating the surface waters of the Amazon River basin: impacts of new river geomorphic and flow parameterizations publication-title: Hydrological Processes – volume: 107 start-page: 10821 year: 2010 end-page: 10826 article-title: Role of Brazilian Amazon protected areas in climate change mitigation publication-title: Proceedings of the National Academy of Sciences – volume: 3 start-page: e2932 year: 2008 article-title: Oil and gas projects in the western Amazon: threats to wilderness, biodiversity, and indigenous peoples publication-title: PLoS ONE – volume: 59 start-page: 955 year: 2009 end-page: 965 article-title: Dramatic declines in North Atlantic diadromous fishes publication-title: BioScience – volume: 39 start-page: 4197 year: 2011 end-page: 4206 article-title: GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements publication-title: Energy Policy – volume: 6 start-page: e18875 year: 2011 article-title: Gold mining in the Peruvian Amazon: global prices, deforestation, and mercury imports publication-title: PLoS ONE – volume: 6 start-page: 217 year: 2013b end-page: 229 article-title: The vulnerability of Amazon freshwater ecosystems publication-title: Conservation Letters – volume: 168 start-page: 1 year: 2015 end-page: 5 article-title: How illegal are tropical small‐scale fisheries? Data on arapaima from the Amazon publication-title: Fisheries Research – volume: 16 start-page: 1665 year: 2002 end-page: 1669 article-title: Hydrology of altered tropical forest publication-title: Hydrological Processes – volume: 34 start-page: L12809 year: 2007 article-title: Methane release below a tropical hydroelectric dam publication-title: Geophysical Research Letters – volume: 119 start-page: 2314 year: 2014 end-page: 2328 article-title: What controls the interannual variation of the wet season onsets over the Amazon? publication-title: Journal of Geophysical Research: Atmospheres – year: 1997 – volume: 15 start-page: 697 year: 2001 end-page: 707 article-title: Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States publication-title: Global Biogeochemical Cycles – volume: 111 start-page: 6347 year: 2014 end-page: 6352 article-title: Abrupt increases in Amazonian tree mortality due to drought–fire interactions publication-title: Proceedings of the National Academy of Sciences – volume: 313 start-page: 1072 year: 2006 end-page: 1077 article-title: The challenge of micropollutants in aquatic systems publication-title: Science – volume: 148 start-page: 226 year: 1996 end-page: 236 article-title: Linking extinction to connectivity and habitat destruction in metapopulation models publication-title: The American Naturalist – volume: 107 start-page: 45 year: 2002 end-page: 17 article-title: Energy and water dynamics of a central Amazonian rain forest publication-title: Journal of Geophysical Research‐Atmospheres – volume: 44 start-page: 418 year: 2010 end-page: 424 article-title: Depredation by jaguars on caimans and importance of reptiles in the diet of jaguar publication-title: Journal of Herpetology – volume: 26 start-page: 63 year: 2014a end-page: 72 article-title: Global demand for steel drives extensive land‐use change in Brazil's Iron Quadrangle publication-title: Global Environmental Change – volume: 96 start-page: 1257 year: 2013 end-page: 1267 article-title: Environmental factors affecting the distribution of arapaima in floodplains of the Amazon publication-title: Environmental Biology of Fishes – volume: 41 start-page: 465 year: 2014 end-page: 473 article-title: Public policies can reduce tropical deforestation: lessons and challenges from Brazil publication-title: Land Use Policy – volume: 8 start-page: 38 year: 2007 end-page: 55 article-title: The TRMM multi‐satellite precipitation analysis: quasi‐global, multi‐year, combined‐sensor precipitation estimates at fine scale publication-title: Journal of Hydrometeor – volume: 27 start-page: 377 year: 2001 end-page: 396 article-title: Environmental impacts of Brazil's Tucurui Dam: Unlearned lessons for hydroelectric development in Amazonia publication-title: Environmental Management – year: 2015 – volume: 116 start-page: G03044 year: 2011 article-title: CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil) publication-title: Journal of Geophysical Research‐Biogeosciences – volume: 8 start-page: 559 year: 1998 end-page: 568 article-title: Nonpoint pollution of surface waters with phosphorus and nitrogen publication-title: Ecological Applications – volume: 326 start-page: 1350 year: 2009 end-page: 1351 article-title: The end of deforestation in the Brazilian Amazon publication-title: Science – volume: 32 start-page: 67 year: 2007 end-page: 98 article-title: The nature and value of ecosystem services: An overview highlighting hydrologic services publication-title: Annual Review of Environment and Resources – start-page: 295 year: 2013 end-page: 310 – volume: 18 start-page: 630 year: 2012 end-page: 641 article-title: Fire‐induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior publication-title: Global Change Biology – volume: 8 start-page: 20 year: 2009 end-page: 26 article-title: Appreciating tropical coastal wetlands from a landscape perspective publication-title: Frontiers in Ecology and the Environment – start-page: 299 year: 1997 end-page: 314 – volume: 50 start-page: 766 year: 2000 end-page: 775 article-title: Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate publication-title: BioScience – volume: 4 start-page: 263 year: 1997 end-page: 274 article-title: Influence of the flooding regime on the nutritional state and juvenile recruitment of the curimba, , Steindachner, in upper Parana River, Brazil publication-title: Fisheries Management and Ecology – volume: 263 start-page: 295 year: 2004 end-page: 305 article-title: River dolphins and flooded forest: seasonal habitat use and sexual segregation of botos ( ) in an extreme cetacean environment publication-title: Journal of Zoology – year: 2003 – volume: 38 start-page: 16 year: 2006 end-page: 27 article-title: Dams in the Amazon: Belo Monte and Brazil's hydroelectric development of the Xingu River basin publication-title: Environmental Management – volume: 6 start-page: 313 year: 2013 end-page: 325 article-title: Viewpoint – Decision making on Amazon dams: Politics trumps uncertainty in the Madeira River sediments controversy publication-title: Water Alternatives – year: 2000 – year: 1996 – volume: 58 start-page: 325 year: 2008 end-page: 338 article-title: Andean influences on the biogeochemistry and ecology of the Amazon River publication-title: BioScience – volume: 33 start-page: 108 year: 2007 end-page: 121 article-title: Environmental mercury contamination in China: Sources and impacts publication-title: Environment International – volume: 22 start-page: 12 year: 2007 end-page: 13 article-title: Madeira dams in Amazon get go‐ahead publication-title: World Rivers Review – volume: 72 start-page: 1520 year: 2008b end-page: 1528 article-title: Nesting habitat of pirarucu in floodplains of the Amazon publication-title: Journal of Fish Biology – volume: 47 start-page: 769 year: 1997 end-page: 784 article-title: The natural flow regime: A paradigm for river restoration and conservation publication-title: BioScience – volume: 62 start-page: 539 year: 2012 end-page: 548 article-title: Implications of dam obstruction for global freshwater fish diversity publication-title: BioScience – volume: 18 start-page: 625 year: 1998 end-page: 631 article-title: Water use by forests, limits and controls publication-title: Tree Physiology – volume: 3 start-page: 125 year: 2001 end-page: 142 article-title: The EU water framework directive: measures and implications publication-title: Water Policy – volume: 347 start-page: 377 year: 2015b end-page: 378 article-title: Brazil's soy moratorium publication-title: Science – year: 2012 – volume: 11 start-page: 325 year: 1995 end-page: 350 article-title: Ecological integrity and fisheries ecology of the Araguaia‐Tocantins River Basin, Brazil publication-title: Regulated Rivers‐Research & Management – volume: 43 start-page: 72 year: 2007 end-page: 85 article-title: Ecological linkages between headwaters and downstream ecosystems: Transport of organic matter, invertebrates, and wood down headwater channels publication-title: Journal of the American Water Resources Association – volume: 107 start-page: 5 year: 2002 end-page: 14 article-title: Comparison of inundation patterns among major South American floodplains publication-title: Journal of Geophysical Research: Atmospheres – volume: 16 start-page: 697 year: 2014 end-page: 715 article-title: Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish publication-title: Fish and Fisheries – volume: 346 start-page: 706 year: 2014 end-page: 707 article-title: Brazil's environmental leadership at risk: Mining and dams threaten protected areas publication-title: Science – volume: 22 start-page: 439 year: 2008 end-page: 449 article-title: Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals publication-title: Conservation Biology – volume: 17 start-page: 38 year: 2008a end-page: 46 article-title: Lateral migration of in floodplains of the Amazon publication-title: Ecology of Freshwater Fish – year: 1980 – volume: 489 start-page: 282 year: 2012 end-page: 285 article-title: Observations of increased tropical rainfall preceded by air passage over forests publication-title: Nature – volume: 5 start-page: 18 year: 2006 end-page: 24 article-title: Seasonal Movements of Podocnemis sextuberculata (Testudines: Podocnemididae) in the Mamirauá Sustainable Development Reserve, Amazonas, Brazil publication-title: Chelonian Conservation and Biology – volume: 331 start-page: 554 year: 2011 article-title: The 2010 Amazon drought publication-title: Science – volume: 52 start-page: 659 year: 2002 end-page: 668 article-title: How dams vary and why it matters for the emerging science of dam removal publication-title: BioScience – volume: 17 start-page: 1821 year: 2011 end-page: 1833 article-title: Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics publication-title: Global Change Biology – volume: 36 start-page: 1059 year: 2011 end-page: 1071 article-title: Developing channel and floodplain dimensions with limited data: a case study in the Amazon Basin publication-title: Earth Surface Processes and Landforms – volume: 29 start-page: 261 year: 2013 end-page: 274 article-title: Feedbacks between deforestation, climate, and hydrology in the Southwestern Amazon: implications for the provision of ecosystem services publication-title: Landscape Ecology – volume: 10 start-page: 677 year: 2008 end-page: 695 article-title: Constructing a policy and institutional framework for an ecosystem‐based approach to managing the Lower Amazon floodplain publication-title: Environment, Development and Sustainability – start-page: 105 year: 1990 end-page: 113 – volume: 8 start-page: 551 year: 1999 end-page: 586 article-title: Riparian flooded forests of the Orinoco and Amazon basins: a comparative review publication-title: Biodiversity and Conservation – volume: 174 start-page: 30 year: 2014 end-page: 38 article-title: Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam publication-title: Biological Conservation – volume: 72 start-page: 1456 year: 1991 end-page: 1463 article-title: The productivity of the C4 Grass on the Amazon floodplain publication-title: Ecology – volume: 108 start-page: 183 year: 2014 end-page: 189 article-title: Probabilistic meta‐analysis of risk from the exposure to Hg in artisanal gold mining communities in Colombia publication-title: Chemosphere – volume: 87 start-page: 404 year: 2003 end-page: 428 article-title: Dual‐season mapping of wetland inundation and vegetation for the central Amazon basin publication-title: Remote Sensing of Environment – volume: 7 start-page: 1 year: 2012 end-page: 9 article-title: Fire disturbance in Amazonian blackwater floodplain forests publication-title: Plant Ecology & Diversity – volume: 27 start-page: 633 year: 2007 end-page: 647 article-title: The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution publication-title: International Journal of Climatology – volume: 178 start-page: 293 year: 1996 end-page: 309 article-title: The effects of afforestation and deforestation on water yields publication-title: Journal of Hydrology – volume: 134 start-page: 48 year: 2007 end-page: 63 article-title: Unlocking the potential of protected areas for freshwaters publication-title: Biological Conservation – volume: 38 start-page: 557 year: 2013a end-page: 565 article-title: Accounting for heterogeneity in small‐scale fisheries management: The Amazon case publication-title: Marine Policy – ident: e_1_2_8_90_1 doi: 10.1007/s11273-005-1767-9 – ident: e_1_2_8_166_1 doi: 10.7560/777705 – ident: e_1_2_8_192_1 doi: 10.1002/2013JD021349 – volume-title: Check List of the Freshwater Fishes of South and Central America year: 2003 ident: e_1_2_8_153_1 – ident: e_1_2_8_57_1 doi: 10.1126/science.1260194 – volume-title: Impounded Rivers: Perspectives for Ecological Management year: 1984 ident: e_1_2_8_146_1 – ident: e_1_2_8_66_1 doi: 10.1023/A:1008846531941 – ident: e_1_2_8_108_1 doi: 10.1525/bio.2009.59.11.7 – ident: e_1_2_8_12_1 doi: 10.1175/JCLI-D-12-00369.1 – ident: e_1_2_8_178_1 doi: 10.1371/journal.pone.0018875 – ident: e_1_2_8_26_1 doi: 10.1029/2010JD015174 – ident: e_1_2_8_36_1 doi: 10.1002/hyp.6850 – ident: e_1_2_8_174_1 doi: 10.1038/nclimate1690 – ident: e_1_2_8_32_1 doi: 10.1016/j.marpol.2012.09.001 – ident: e_1_2_8_74_1 doi: 10.1111/j.1744-7429.2005.00079.x – ident: e_1_2_8_116_1 doi: 10.1073/pnas.0804619106 – ident: e_1_2_8_142_1 doi: 10.1111/conl.12151 – ident: e_1_2_8_88_1 doi: 10.1007/s00027-012-0253-8 – ident: e_1_2_8_95_1 doi: 10.1016/S1366-7017(01)00007-1 – volume: 107 start-page: 45 year: 2002 ident: e_1_2_8_115_1 article-title: Energy and water dynamics of a central Amazonian rain forest publication-title: Journal of Geophysical Research‐Atmospheres doi: 10.1029/2001JD000623 – start-page: 295 volume-title: Amazonia and Global Change year: 2013 ident: e_1_2_8_126_1 – ident: e_1_2_8_189_1 doi: 10.1111/j.1752-1688.2007.00007.x – ident: e_1_2_8_97_1 doi: 10.1029/2007GL029479 – ident: e_1_2_8_120_1 doi: 10.1111/j.1748-7692.2004.tb01150.x – ident: e_1_2_8_133_1 doi: 10.1098/rstb.2012.0425 – ident: e_1_2_8_52_1 doi: 10.1007/s00267-005-0113-6 – ident: e_1_2_8_167_1 doi: 10.1029/2000GB001341 – ident: e_1_2_8_161_1 doi: 10.1126/science.1127291 – volume-title: Hydrology of Moist Tropical Forests and Effects of Conversion: A State of Knowledge Review year: 1990 ident: e_1_2_8_23_1 – ident: e_1_2_8_96_1 doi: 10.1021/es4042644 – volume-title: Report No. 40995 year: 2008 ident: e_1_2_8_191_1 – ident: e_1_2_8_111_1 doi: 10.1073/pnas.1111374109 – ident: e_1_2_8_155_1 doi: 10.1002/rrr.3450110308 – ident: e_1_2_8_170_1 doi: 10.1016/j.gloenvcha.2014.03.014 – volume-title: Foiling the Aluminum Industry: A Toolkit for Communities, Consumers, and Workers year: 2005 ident: e_1_2_8_180_1 – ident: e_1_2_8_70_1 doi: 10.1088/1748-9326/6/4/044029 – volume: 106 start-page: 110 year: 1989 ident: e_1_2_8_91_1 publication-title: Canadian Special Publication of Fisheries and Aquatic Sciences – volume-title: Riparia — Ecology, Conservation and Management of Streamside Communities year: 2005 ident: e_1_2_8_131_1 – ident: e_1_2_8_150_1 doi: 10.2307/1313099 – ident: e_1_2_8_158_1 doi: 10.1016/0022-1694(95)02825-0 – volume: 28 start-page: 225 year: 1991 ident: e_1_2_8_94_1 article-title: The dynamics, distribution and classification of swamp vegetation in Peruvian Amazonia publication-title: Annales Botanici Fennici – ident: e_1_2_8_140_1 doi: 10.1016/j.biocon.2014.03.015 – ident: e_1_2_8_41_1 doi: 10.1002/joc.1475 – ident: e_1_2_8_62_1 doi: 10.1111/j.1752-1688.2007.00002.x – ident: e_1_2_8_79_1 doi: 10.1111/j.1365-294X.2004.02125.x – ident: e_1_2_8_143_1 doi: 10.1111/faf.12089 – ident: e_1_2_8_98_1 doi: 10.1029/2010JG001465 – volume: 7 start-page: 1 year: 2014 ident: e_1_2_8_54_1 article-title: Viewpoint – Brazil's Madeira River dams: A setback for environmental policy in Amazonian development Water publication-title: Alternatives – ident: e_1_2_8_28_1 doi: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2 – ident: e_1_2_8_58_1 doi: 10.1371/journal.pone.0002932 – ident: e_1_2_8_43_1 doi: 10.1016/j.chemosphere.2014.01.035 – ident: e_1_2_8_130_1 doi: 10.1146/annurev.ecolsys.28.1.621 – volume-title: Neotropical Birds year: 1996 ident: e_1_2_8_176_1 – volume-title: Hidroeléctricas y Conflictos Sociales: Recomendaciones Para una Mejor Gestión Ambiental year: 2012 ident: e_1_2_8_13_1 – volume-title: TucuruÌ Hydropower Complex, Brazil, A WCD Case Study Prepared as an Input to the World Commission on Dams year: 2000 ident: e_1_2_8_100_1 – volume-title: State of the Amazon: Freshwater Connectivity and Ecosystem Health year: 2015 ident: e_1_2_8_110_1 – ident: e_1_2_8_147_1 doi: 10.2307/1941118 – ident: e_1_2_8_56_1 doi: 10.1590/S1519-69842010000100012 – ident: e_1_2_8_164_1 doi: 10.1088/1748-9326/10/10/104015 – volume-title: UN Watercourses Convention year: 2012 ident: e_1_2_8_156_1 – ident: e_1_2_8_172_1 doi: 10.1038/nature11390 – start-page: 185 volume-title: The Biogeochernistry of the Amazon Basin year: 2001 ident: e_1_2_8_122_1 doi: 10.1093/oso/9780195114317.001.0001 – ident: e_1_2_8_9_1 doi: 10.1016/j.landusepol.2014.06.026 – ident: e_1_2_8_69_1 doi: 10.1111/j.1440-1770.2003.00227.x – ident: e_1_2_8_132_1 doi: 10.1890/1051-0761(2001)011[1817:DFPANA]2.0.CO;2 – ident: e_1_2_8_11_1 doi: 10.1073/pnas.1318271110 – volume-title: An Unexpected Ecosystem: The Amazon as Revealed by Fisheries year: 2007 ident: e_1_2_8_15_1 – volume-title: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2014 ident: e_1_2_8_82_1 – ident: e_1_2_8_17_1 doi: 10.1111/cobi.12298 – ident: e_1_2_8_6_1 – ident: e_1_2_8_10_1 doi: 10.1371/journal.pone.0033305 – ident: e_1_2_8_87_1 doi: 10.1007/978-94-015-8212-4_14 – volume: 4 start-page: 424 year: 2011 ident: e_1_2_8_40_1 article-title: Melanosuchus Niger (Black Caiman): long distance movement publication-title: Herpetological Review – ident: e_1_2_8_184_1 doi: 10.1126/science.289.5477.284 – ident: e_1_2_8_50_1 doi: 10.1023/B:CLIM.0000043174.02841.23 – ident: e_1_2_8_102_1 doi: 10.1016/j.geomorph.2009.03.014 – ident: e_1_2_8_75_1 doi: 10.1111/j.1365-2486.2011.02392.x – ident: e_1_2_8_5_1 doi: 10.1016/j.jhydrol.2003.12.015 – volume-title: The Fisheries of the Kafue River Flats, Zambia, in Relation to the Kafue Gorge Dam year: 1971 ident: e_1_2_8_101_1 – ident: e_1_2_8_141_1 doi: 10.1016/j.jhydrol.2015.02.018 – start-page: 105 volume-title: Hydroelectric Dams on Brazil's Xingu River and Indigenous Peoples year: 1990 ident: e_1_2_8_113_1 – ident: e_1_2_8_160_1 doi: 10.4319/lo.2006.51.1_part_2.0356 – volume: 6 start-page: 313 year: 2013 ident: e_1_2_8_53_1 article-title: Viewpoint – Decision making on Amazon dams: Politics trumps uncertainty in the Madeira River sediments controversy publication-title: Water Alternatives – ident: e_1_2_8_139_1 doi: 10.1016/S0305-750X(02)00067-0 – start-page: 1 volume-title: Dams, Fish and Fisheries: Opportunities, Challenges and Conflict Resolution year: 2001 ident: e_1_2_8_84_1 – ident: e_1_2_8_35_1 doi: 10.1016/j.fishres.2015.03.012 – volume: 17 start-page: 12 year: 2002 ident: e_1_2_8_179_1 article-title: Brazilian government pushes ahead with plans for huge dams in Amazon publication-title: World Rivers Review – ident: e_1_2_8_152_1 – ident: e_1_2_8_163_1 doi: 10.1098/rspb.1988.0024 – volume-title: River Fisheries year: 1985 ident: e_1_2_8_187_1 – ident: e_1_2_8_60_1 doi: 10.2307/1940793 – ident: e_1_2_8_117_1 doi: 10.1002/joc.2254 – ident: e_1_2_8_125_1 doi: 10.1080/08941920.2015.1014607 – volume-title: Report of the World Commission on Dams year: 2000 ident: e_1_2_8_186_1 – ident: e_1_2_8_149_1 doi: 10.1641/0006-3568(2002)052[0659:HDVAWI]2.0.CO;2 – ident: e_1_2_8_109_1 doi: 10.1590/S1984-46702009000300016 – ident: e_1_2_8_190_1 doi: 10.1038/nclimate1556 – ident: e_1_2_8_78_1 doi: 10.1007/s13157-015-0666-y – ident: e_1_2_8_119_1 doi: 10.1017/S095283690400528X – ident: e_1_2_8_104_1 doi: 10.1111/j.1523-1739.2007.00870.x – ident: e_1_2_8_168_1 doi: 10.1073/pnas.0913048107 – start-page: 375 volume-title: Phylogeny and Classification of Neotropical Fishes year: 1998 ident: e_1_2_8_159_1 – ident: e_1_2_8_51_1 doi: 10.1007/s00267-004-0100-3 – ident: e_1_2_8_20_1 doi: 10.1111/j.1365-2486.2011.02533.x – ident: e_1_2_8_47_1 doi: 10.1890/0012-9658(2002)083[3243:CFAERI]2.0.CO;2 – ident: e_1_2_8_85_1 doi: 10.1175/JCLI-D-12-00412.1 – volume-title: Ecosystem and Human WellbBeing: Wetlands and WatersSynthesis year: 2005 ident: e_1_2_8_129_1 – ident: e_1_2_8_55_1 doi: 10.1007/s11160-015-9395-9 – volume: 22 start-page: 12 year: 2007 ident: e_1_2_8_181_1 article-title: Madeira dams in Amazon get go‐ahead publication-title: World Rivers Review – ident: e_1_2_8_29_1 doi: 10.1111/j.1600-0633.2007.00255.x – ident: e_1_2_8_121_1 doi: 10.1017/S0376892903000237 – ident: e_1_2_8_106_1 doi: 10.1525/bio.2012.62.6.5 – ident: e_1_2_8_169_1 doi: 10.1126/science.1246663 – volume: 319 start-page: 169 year: 2007 ident: e_1_2_8_114_1 article-title: Climate change, deforestation, and the fate of the Amazon publication-title: Science – ident: e_1_2_8_37_1 doi: 10.1007/s10533-011-9582-2 – ident: e_1_2_8_64_1 doi: 10.1111/conl.12175 – ident: e_1_2_8_49_1 doi: 10.1007/s002670010156 – ident: e_1_2_8_137_1 doi: 10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2 – ident: e_1_2_8_21_1 doi: 10.1073/pnas.1305499111 – ident: e_1_2_8_27_1 doi: 10.1093/treephys/18.8-9.625 – ident: e_1_2_8_38_1 doi: 10.1016/S0022-1694(03)00267-1 – ident: e_1_2_8_76_1 doi: 10.1086/285922 – ident: e_1_2_8_177_1 doi: 10.1073/pnas.0405895101 – ident: e_1_2_8_16_1 doi: 10.1002/esp.2132 – ident: e_1_2_8_31_1 doi: 10.1111/j.1439-0426.2009.01355.x – ident: e_1_2_8_89_1 doi: 10.1590/S0103-40141990000100010 – volume-title: El Consumo de Pescado en la Amazonian Brasileña year: 2011 ident: e_1_2_8_83_1 – ident: e_1_2_8_65_1 doi: 10.1126/science.aaa0181 – ident: e_1_2_8_34_1 doi: 10.1098/rsos.150299 – ident: e_1_2_8_138_1 doi: 10.1111/j.1365-2427.2009.02179.x – ident: e_1_2_8_72_1 doi: 10.1890/05-1098 – volume-title: Áreas Protegidas na Amazônia Brasileira: Avanços e Desafios year: 2011 ident: e_1_2_8_183_1 – volume-title: Covenio ELETRONORTE/CNPQ/INPA. Relatorio do Projeto: Estudo de Ecologia e Controle Ambiental nas Regiões do Reservatório UHE de Balbina e Samuel: Comentário year: 1985 ident: e_1_2_8_93_1 – start-page: 235 volume-title: The Biogeochemistry of the Amazon Basin year: 2001 ident: e_1_2_8_127_1 – ident: e_1_2_8_99_1 doi: 10.1111/j.1469-7998.2008.00440.x – ident: e_1_2_8_144_1 doi: 10.1046/j.1523-1739.1995.09010034.x – ident: e_1_2_8_80_1 doi: 10.1175/JHM560.1 – ident: e_1_2_8_7_1 doi: 10.1007/s10641-011-9917-9 – ident: e_1_2_8_103_1 doi: 10.1126/science.291.5503.438 – ident: e_1_2_8_63_1 doi: 10.1002/hyp.5021 – ident: e_1_2_8_19_1 doi: 10.1046/j.1365-2427.2002.00956.x – ident: e_1_2_8_148_1 doi: 10.1016/S1462-9011(02)00023-0 – ident: e_1_2_8_134_1 doi: 10.1126/science.1182108 – ident: e_1_2_8_136_1 doi: 10.1016/j.envint.2010.03.011 – ident: e_1_2_8_151_1 doi: 10.1890/1051-0761(2001)011[0981:HCATMO]2.0.CO;2 – ident: e_1_2_8_105_1 doi: 10.1126/science.1200807 – ident: e_1_2_8_112_1 doi: 10.1098/rstb.2012.0153 – ident: e_1_2_8_30_1 doi: 10.1111/j.1095-8649.2007.01778.x – start-page: 299 volume-title: The Central Amazon Floodplain: Ecology of a Pulsing System year: 1997 ident: e_1_2_8_145_1 – ident: e_1_2_8_86_1 doi: 10.1016/B978-0-12-353550-4.50012-5 – ident: e_1_2_8_188_1 doi: 10.1023/A:1005801303639 – ident: e_1_2_8_39_1 doi: 10.1670/08-340.1 – ident: e_1_2_8_128_1 doi: 10.1029/2008GM000721 – ident: e_1_2_8_68_1 doi: 10.1525/9780520316133 – ident: e_1_2_8_61_1 doi: 10.1111/j.1752-1688.2007.00002.x – ident: e_1_2_8_45_1 doi: 10.1890/080090 – ident: e_1_2_8_173_1 doi: 10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2 – volume: 18 start-page: 141 year: 1989 ident: e_1_2_8_48_1 article-title: The charcoal of Carajas – a threat to the forests of Brazils eastern Amazon region publication-title: Ambio – ident: e_1_2_8_175_1 doi: 10.1073/pnas.1215331110 – ident: e_1_2_8_22_1 doi: 10.1146/annurev.energy.32.031306.102758 – ident: e_1_2_8_135_1 doi: 10.1126/science.1248525 – volume-title: The Catfish Connection: Ecology, Migration and Conservation of Amazon Predators year: 1997 ident: e_1_2_8_14_1 – ident: e_1_2_8_92_1 doi: 10.1007/s13157-011-0190-7 – ident: e_1_2_8_171_1 doi: 10.1111/cobi.12260 – ident: e_1_2_8_107_1 doi: 10.1007/s10980-013-9962-1 – ident: e_1_2_8_77_1 doi: 10.1016/j.rse.2003.04.001 – ident: e_1_2_8_4_1 doi: 10.1038/35001562 – ident: e_1_2_8_33_1 doi: 10.1111/conl.12008 – ident: e_1_2_8_73_1 doi: 10.1126/science.1244693 – start-page: 217 volume-title: Várzea: Diversity, Development, and Conservation of Amazonia's Whitewater Floodplains year: 1999 ident: e_1_2_8_18_1 – start-page: 167 volume-title: Issues of Local and Global Use of Water from the Amazon year: 2004 ident: e_1_2_8_162_1 – ident: e_1_2_8_8_1 doi: 10.1126/science.234.4781.1256 – ident: e_1_2_8_157_1 doi: 10.1641/0006-3568(2000)050[0746:GSEEOH]2.0.CO;2 – ident: e_1_2_8_46_1 doi: 10.2744/1071-8443(2006)5[18:SMOPST]2.0.CO;2 – ident: e_1_2_8_44_1 doi: 10.1016/j.enpol.2011.04.033 – ident: e_1_2_8_118_1 doi: 10.1155/2014/945963 – ident: e_1_2_8_165_1 doi: 10.1007/978-94-009-6542-3_5 – ident: e_1_2_8_154_1 doi: 10.1016/j.rse.2011.08.008 – ident: e_1_2_8_24_1 doi: 10.1016/j.agee.2004.01.015 – ident: e_1_2_8_42_1 doi: 10.1051/alr:1993010 – volume-title: Satellite Monitoring of Brazil's Amazon Forest (PRODES) year: 2014 ident: e_1_2_8_81_1 – ident: e_1_2_8_3_1 doi: 10.1641/B580507 – ident: e_1_2_8_193_1 doi: 10.1016/j.envint.2006.06.022 – ident: e_1_2_8_71_1 doi: 10.1029/2000JD000306 – ident: e_1_2_8_67_1 doi: 10.1046/j.1365-2400.1997.00119.x – ident: e_1_2_8_182_1 doi: 10.1111/j.1365-2664.2007.01404.x – ident: e_1_2_8_185_1 doi: 10.2307/1467397 – ident: e_1_2_8_25_1 doi: 10.1111/jai.12772 – ident: e_1_2_8_123_1 doi: 10.1641/B580408 – ident: e_1_2_8_2_1 doi: 10.1016/j.biocon.2006.08.017 – volume: 7 start-page: 1 year: 2012 ident: e_1_2_8_59_1 article-title: Fire disturbance in Amazonian blackwater floodplain forests publication-title: Plant Ecology & Diversity – ident: e_1_2_8_124_1 doi: 10.1007/s10668-008-9154-3 |
SSID | ssj0003206 |
Score | 2.6275733 |
SecondaryResourceType | review_article |
Snippet | Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 990 |
SubjectTerms | Agriculture Aquatic ecosystems basins Biodiversity Biodiversity loss Biogeochemical cycles cattle Climate Change Community structure Connectivity conservation Conservation of Natural Resources Construction Dam construction Dams Drought Ecosystem Ecosystem protection Environmental impact fires fish Flood frequency Floodplains floods fragmentation Fresh water Fresh Water - analysis Freshwater Freshwater ecosystems Global climate humans hydrological connectivity Hydrology land cover land-cover change Local population Mining policy power generation rain ranching Riparian forests Rivers Road construction South America Water availability Water quality water temperature watershed |
Title | Large-scale degradation of Amazonian freshwater ecosystems |
URI | https://api.istex.fr/ark:/67375/WNG-7BNT8J9J-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.13173 https://www.ncbi.nlm.nih.gov/pubmed/26700407 https://www.proquest.com/docview/1764831395 https://www.proquest.com/docview/1765112489 https://www.proquest.com/docview/1776665747 https://www.proquest.com/docview/1803123498 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VrZC4QFkoDRQUEKq4ZJXEdhwLLu3SD63oHlArekCKbMcG1JJFm1219MRP4DfySxg7H6WoVIjbbnZWcpyZ8Xvx-A3AC5NJTkqlo5gQJCiGxZGwNo5ik5eMUiOpcmeHDybZ_hEdH7PjJXjVnYVp9CH6F24uMny-dgEuVf1bkH_Uapjg6ueUPhOSOd38N-8upaNI6vtqJoRRTDUJaVWFXBVP_88ra9GKm9bz64DmVdzqF57du_ChG3JTb3IyXMzVUF_8oeb4n_e0CndaQBpuNR50D5ZMNYBbTYvKbwNY27k8CYdmbSqoBxAcINyezrxZuBmOTj8j9vXf7sPrt66-_Of3HzV6gAlLJ0jR9G4Kpzbc-iIvMJPIKrTI9T-dIdqdhciCG1Hp-gEc7e4cjvajtk1DpJkgJKK5lJQpt0PLNWe0FEkel-4aJojElIS7S1YJhXBPpzZW3Fh0HclYygzSpTVYrqaVWYdQay2QsiJptoLGxApjYqKRRmexolrIAF52D6zQrYa5a6VxWnRcBmew8DMYwPPe9Gsj3HGd0aZ_6r2FnJ24SjfOiveTvYJvTw7zsRgXeQAbnVsUbZDXRcIzmhOE0CyAZ_3PGJ5uz0VWZrrwNg7S0lzcZMMztwFG-Q02OWbflFCBQ3nYuGU_6NQdtUJijrPjnevv91vsjbb9h0f_bvoYbiNIzJq6uw1Yns8W5gkCsbl66iPuF-_XLOQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgguPBYKgQIBoYpLVklsJ7HUS7u0XZbdPaCt6AVZtuPQqiWL9iGgJ34Cv5Ffwth5lKJSIW672W8lx5kZf188ngF4aRKZklzpICQEBYphYcCLIgxCk-WMUiOpsmeHR-Okf0AHh-xwBbaaszBVfYj2hZv1DBevrYPbF9K_eflHrboRLn_kGqxRJBpWer1-d148isSus2ZEGMVgE5G6rpDN42n_emE1WrMT-_UyqnmRubqlZ-82fGgGXWWcnHSXC9XVZ3_Uc_zfu7oDt2pO6m9XRnQXVkzZgetVl8pvHVjfPT8Mh7A6Gsw74I2QcU9nDuZv-r3TY6S_7ts92BraFPOf33_M0QiMn9uaFFX7Jn9a-Nuf5BkGE1n6Bcr9oy9IeGc-CuGqrvT8Phzs7U56_aDu1BBoxgkJaCYlZcpu0qY6ZTTnURbm9hrGiMjkJLWXCsUVMj4dF6FKTYHWIxmLmUHFtA6r5bQ0D8HXWnNUraibC05DUnBjQqJRSSehoppLD141T0zouoy57aZxKho5gzMo3Ax68KKFfq5qd1wG2nSPvUXI2YlNdkuZeD_eF-nOeJIN-EBkHmw0diFqP5-LKE1oRpBFMw-etz-jh9ptF1ma6dJhLKulGb8KkyZ2D4ymV2AyDMAxoRyH8qCyy3bQsT1thdocZ8dZ19_vV-z3dtyHR_8OfQY3-pPRUAzfjN8-hpvIGZMqDW8DVhezpXmCvGyhnjr3-wWypTED |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VViAuPBYKgQIBoYpLVklsJ7HopV26LUu7QqgVPSBZtmMDaslW-xDQEz-hv5FfwtjJphSVCnHLYyL5MTP-vng8A_DcZDInpdJRTAgSFMPiiFsbR7EpSkapkVS5s8O7w2x7nw4O2MECvJyfhanzQ7Q_3JxleH_tDPy4tL8Z-UetugmufuQKLNEMkYRDRO_OckeR1BfWTAij6GsS0qQVcmE87afnFqMlN67fLkKa54GrX3n6N-HDvM11wMlhdzZVXX3yRzrH_-zULbjRINJwvVah27Bgqg5crWtUfu_A8ubZUTgUa3zBpAPBLuLt0diLhath7-gzgl9_dwfWdlyA-c8fpxNUAROWLiNFXbwpHNlw_Ys8QVciq9Ai2f_0FeHuOEQaXGeVntyF_f7mXm87auo0RJpxQiJaSEmZclu0uc4ZLXlSxKV7hh4iMSXJ3SOruMJZ0qmNVW4s6o5kLGUG-dIyLFajytyHUGvNkbMia7acxsRyY2KikUdnsaKaywBezCdM6CaJuaulcSTmZAZHUPgRDOBZK3pcZ-64SGjVz3orIceHLtQtZ-L9cEvkG8O9YsAHoghgZa4WorHyiUjyjBYEMTQL4Gn7Gu3TbbrIyoxmXsZhWlrwy2TyzO2A0fwSmQLdb0oox6bcq9WybXTqzlohM8fR8cr19_6Krd6Gv3jw76JP4NrbV32x83r45iFcR8CY1TF4K7A4Hc_MIwRlU_XYG98v90Uvsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+degradation+of+Amazonian+freshwater+ecosystems&rft.jtitle=Global+change+biology&rft.au=Castello%2C+Leandro&rft.au=Macedo%2C+Marcia+N&rft.date=2016-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=22&rft.issue=3&rft.spage=990&rft_id=info:doi/10.1111%2Fgcb.13173&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3951349711 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |