山东省花生年产量的组合预测模型研究

以山东省花生年产量为研究对象.针对花生年产量的强烈波动性而导致的预测难、准确率低等难题,提出了一种基于GM(1,1)和RBF神经网络的组合预测模型,利用GM(1,1)来捕捉花生年产量的总体趋势,RBF神经网络来预测带有强烈非线性的残差项;同时为了提高RBF神经网络的训练速度和精度,针对标准遗传算法存在的早熟现象和收敛速度慢的缺点,提出了一种改进的自适应遗传算法,对RBF神经网络的初始参数进行优化.试验结果表明,组合预测模型可以较准确预测花生年产量,说明了组合预测模型的可行性....

Full description

Saved in:
Bibliographic Details
Published in广东农业科学 Vol. 41; no. 21; pp. 11 - 15
Main Author 张永强 才正 王刚毅
Format Journal Article
LanguageChinese
Published 东北农业大学经济管理学院,黑龙江哈尔滨,150030 2014
Subjects
Online AccessGet full text
ISSN1004-874X

Cover

Abstract 以山东省花生年产量为研究对象.针对花生年产量的强烈波动性而导致的预测难、准确率低等难题,提出了一种基于GM(1,1)和RBF神经网络的组合预测模型,利用GM(1,1)来捕捉花生年产量的总体趋势,RBF神经网络来预测带有强烈非线性的残差项;同时为了提高RBF神经网络的训练速度和精度,针对标准遗传算法存在的早熟现象和收敛速度慢的缺点,提出了一种改进的自适应遗传算法,对RBF神经网络的初始参数进行优化.试验结果表明,组合预测模型可以较准确预测花生年产量,说明了组合预测模型的可行性.
AbstractList 以山东省花生年产量为研究对象.针对花生年产量的强烈波动性而导致的预测难、准确率低等难题,提出了一种基于GM(1,1)和RBF神经网络的组合预测模型,利用GM(1,1)来捕捉花生年产量的总体趋势,RBF神经网络来预测带有强烈非线性的残差项;同时为了提高RBF神经网络的训练速度和精度,针对标准遗传算法存在的早熟现象和收敛速度慢的缺点,提出了一种改进的自适应遗传算法,对RBF神经网络的初始参数进行优化.试验结果表明,组合预测模型可以较准确预测花生年产量,说明了组合预测模型的可行性.
S565.2%F326.12; 以山东省花生年产量为研究对象.针对花生年产量的强烈波动性而导致的预测难、准确率低等难题,提出了一种基于GM(1,1)和RBF神经网络的组合预测模型,利用GM(1,1)来捕捉花生年产量的总体趋势,RBF神经网络来预测带有强烈非线性的残差项;同时为了提高RBF神经网络的训练速度和精度,针对标准遗传算法存在的早熟现象和收敛速度慢的缺点,提出了一种改进的自适应遗传算法,对RBF神经网络的初始参数进行优化.试验结果表明,组合预测模型可以较准确预测花生年产量,说明了组合预测模型的可行性.
Author 张永强 才正 王刚毅
AuthorAffiliation 东北农业大学经济管理学院,黑龙江哈尔滨150030
AuthorAffiliation_xml – name: 东北农业大学经济管理学院,黑龙江哈尔滨,150030
Author_FL ZHANG Yong-qiang
WANG Gang-yi
CAI Zheng
Author_FL_xml – sequence: 1
  fullname: ZHANG Yong-qiang
– sequence: 2
  fullname: CAI Zheng
– sequence: 3
  fullname: WANG Gang-yi
Author_xml – sequence: 1
  fullname: 张永强 才正 王刚毅
BookMark eNrjYmDJy89LZWHgNDQwMNG1MDeJ4GDgLS7OTDIwMDQ0MDQyMORkMH66ceOTHXOez2l80bXx-ZT5T3duebJr-cv2_uezWp7vbnk6oePlopZnW7ufrVj4dF738wVTnq_cxsPAmpaYU5zKC6W5GULcXEOcPXR9_N09nR19dJNNLY11LY0Nk8wtk0zTEs1NjYxNTExSzRPNLS0tTZNMLUxTDE1Tk0yTzdKMDFINgWKGyaYpyUnJ5ilJhpaGpmZplqlpxtwM6hBjyxPz0hLz0uOz8kuL8oAWxqen5FVmVwDdb2IE9JoxUKUSRGVyRn5eemEmUG1BUWZuYlFlvJmZsZGFJVCdMQCGNF-h
ClassificationCodes S565.2%F326.12
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Combined predictive model research of annual production of peanut in Shandong province
DocumentTitle_FL Combined predictive model research of annual production of peanut in Shandong province
EndPage 15
ExternalDocumentID gdnykx201421003
663289421
GrantInformation_xml – fundername: 黑龙江省自然科学基金; 国家自然科学基金; 中国博士后科学基金; 黑龙江省博士后科学基金
  funderid: (G201112); (71173035); (20100480973); (LBH-Z10211)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
GROUPED_DOAJ
TCJ
TGD
U1G
U5N
W95
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c593-931b79b5fa7523444e7a79995b585d15eb5c6f20e19951c5dcbc7db19156f9ef3
ISSN 1004-874X
IngestDate Thu May 29 03:55:15 EDT 2025
Wed Feb 14 10:35:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords 花生产量预测
RBF神经网络
遗传算法
组合模型
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c593-931b79b5fa7523444e7a79995b585d15eb5c6f20e19951c5dcbc7db19156f9ef3
Notes 44-1267/S
peanut annual production prediction; RBF neural network; genetic algorithm; combined model
ZHANG Yong-qiang, CAI Zheng, WANG Gang-yi (College of Economics and Management, Northeast Agricultural University,Harbin 150030, China)
This paper studies annual production of peanut in Shandong province. Considering the problem of difficult prediction and low accuracy due to strong volatility in peanut annual production, this paper proposes a novel combined model on the basis of GM (13) model and RBF neural network. GM (1,1) is to capture the global trend of peanut annual production, and RBF neural network is to predict the strong nonlinear residual item. To improve the training velocity and accuracy, considering the precocious phenomenon and slow convergence rate of standard genetic algorithm, a new self- adaptive genetic algorithm is proposed to optimize initial parameters of RBF neural network. Experimental results demonstrate the new combined model can accurately predict the peanut annual production, which s
PageCount 5
ParticipantIDs wanfang_journals_gdnykx201421003
chongqing_primary_663289421
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 广东农业科学
PublicationTitleAlternate Guangdong Agricultural Sciences
PublicationTitle_FL Guangdong Agricultural Sciences
PublicationYear 2014
Publisher 东北农业大学经济管理学院,黑龙江哈尔滨,150030
Publisher_xml – name: 东北农业大学经济管理学院,黑龙江哈尔滨,150030
SSID ssib001101201
ssib017478013
ssib051371967
ssj0000993252
Score 1.9427781
Snippet ...
S565.2%F326.12;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 11
SubjectTerms RBF神经网络
组合模型
花生产量预测
遗传算法
Title 山东省花生年产量的组合预测模型研究
URI http://lib.cqvip.com/qk/93806X/201421/663289421.html
https://d.wanfangdata.com.cn/periodical/gdnykx201421003
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Ni9QwtKx78iKKiuuqzMEcR5omaZJj221ZBD2NsLdh0mlnQej6MQu6N2FAcQ962JMsfl3U44CKH39nZ8f9F76XdGaqLPgBQ3i8vCTvY9L38pqknncVgu6gZ4KwDd7ctHnow5RSlLU5L_0-y42QFE8j37gZrt_i1zfExtIJ3di1tD001_KdY8-V_I9VAQd2xVOy_2DZeaeAABjsCyVYGMq_sjFJBYkp_lJOYkV0QlKJpQKMIiqyVYDhRGeWWJOYW-KIRJKkmihJVGZpIqI4AnFsAUG0T5RCmiiwmJDEgqgYgUiRiFqa1GIkiXwcBQEYImyGvLNxswaT0E9oAYeJbEPgwfYZrZFoni-0rRPsHsf3kdxhFgkGrFEgyZrlDBqzRQ1I5zgUKAsOBCQZcd_vmWU76CLP-SuPCdHyOGaBR271VzM7U1s2U1JqBUqtkqRVZNgg1kRbpQYJwtAQ5QYgRTz2QGtzaWYtIFBw7SwQo-6DBAJsv37T5DwK7vRR0m1Dnbkcd9dXPbXcCfHagdSep6i9ycJLz_dODvrVw9sPUDewWrf33EKMqRrJBBsI47Vt_vzJLSiT8KiV8-wjrAtYINxWgJo_vFxkc6sa3IWQyZ5gq8peNWgEW53T3ql6ldSK3F_-jLe0s3nWY5Px-ODL_nT_0Y-n4-neq8nXjwff3h09fjZ9MZp-H02ePzl6Ozr8tHv4_s3k5e709d70w-dzXidLO8l6u_7mRzsXmrU1o0ZqI8qeFAHjnBeyJ2ENIwwsa_tUFEbkYRn4Bd4sQHPRz00u-4ZqKsJSFyU77y1XW1VxwWv5rB_wsCxLymGVgIQcEyAlVcbwgrMVb3Uub_eOu9qlC_F3oDRodsVr1Rro1hP-fvc3zV_8M8mqdxJhl7K75C0P720XlyGIHZor1l4_AeQzcfQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%B1%B1%E4%B8%9C%E7%9C%81%E8%8A%B1%E7%94%9F%E5%B9%B4%E4%BA%A7%E9%87%8F%E7%9A%84%E7%BB%84%E5%90%88%E9%A2%84%E6%B5%8B%E6%A8%A1%E5%9E%8B%E7%A0%94%E7%A9%B6&rft.jtitle=%E5%B9%BF%E4%B8%9C%E5%86%9C%E4%B8%9A%E7%A7%91%E5%AD%A6&rft.au=%E5%BC%A0%E6%B0%B8%E5%BC%BA&rft.au=%E6%89%8D%E6%AD%A3&rft.au=%E7%8E%8B%E5%88%9A%E6%AF%85&rft.date=2014&rft.pub=%E4%B8%9C%E5%8C%97%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E7%BB%8F%E6%B5%8E%E7%AE%A1%E7%90%86%E5%AD%A6%E9%99%A2%2C%E9%BB%91%E9%BE%99%E6%B1%9F%E5%93%88%E5%B0%94%E6%BB%A8%2C150030&rft.issn=1004-874X&rft.volume=41&rft.issue=21&rft.spage=11&rft.epage=21&rft.externalDocID=gdnykx201421003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93806X%2F93806X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgdnykx%2Fgdnykx.jpg