Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide

Microbial catalysis of carbon dioxide (CO 2 ) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO 2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 23; no. 22; pp. 22292 - 22308
Main Authors Bajracharya, Suman, Vanbroekhoven, Karolien, Buisman, Cees J.N., Pant, Deepak, Strik, David P. B. T. B.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microbial catalysis of carbon dioxide (CO 2 ) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO 2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO 2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO 2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO 2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO 2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at −1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO 2 reduction. Bioelectrochemical CO 2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO 2 gas mixture feed were achieved with 10 cm 2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO 2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO 2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO 2 . Graphical abstract ᅟ
AbstractList Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at −1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO2 reduction. Bioelectrochemical CO2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO2 gas mixture feed were achieved with 10 cm2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO2. [Figure not available: see fulltext.]
Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO2 reduction. Bioelectrochemical CO2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO2 gas mixture feed were achieved with 10 cm2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO2. [Figure not available: see fulltext.]
Microbial catalysis of carbon dioxide (CO 2 ) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO 2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO 2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO 2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO 2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO 2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at −1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO 2 reduction. Bioelectrochemical CO 2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO 2 gas mixture feed were achieved with 10 cm 2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO 2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO 2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO 2 . Graphical abstract ᅟ
Microbial catalysis of carbon dioxide (CO₂) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO₂ by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO₂ as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO₂ in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO₂ through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO₂ and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at −1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO₂ reduction. Bioelectrochemical CO₂ reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO₂ gas mixture feed were achieved with 10 cm² of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO₂ gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO₂ reduction with enhanced mass transfer rate at continuous supply of gaseous CO₂. Graphical abstract ᅟ
Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO2 reduction. Bioelectrochemical CO2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO2 gas mixture feed were achieved with 10 cm2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO2. Graphical abstract ᅟ.Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO2 reduction. Bioelectrochemical CO2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO2 gas mixture feed were achieved with 10 cm2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO2. Graphical abstract ᅟ.
Microbial catalysis of carbon dioxide (CO sub(2)) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO sub(2) by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO sub(2) as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO sub(2) in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO sub(2) through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO sub(2) and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO sub(2) reduction. Bioelectrochemical CO sub(2) reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO sub(2) gas mixture feed were achieved with 10 cm super(2) of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO sub(2) gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO sub(2) reduction with enhanced mass transfer rate at continuous supply of gaseous CO sub(2). [Figure not available: see fulltext.]
Microbial catalysis of carbon dioxide (CO ) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO reduction. Bioelectrochemical CO reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO gas mixture feed were achieved with 10 cm of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO reduction with enhanced mass transfer rate at continuous supply of gaseous CO . Graphical abstract ᅟ.
Author Strik, David P. B. T. B.
Buisman, Cees J.N.
Bajracharya, Suman
Vanbroekhoven, Karolien
Pant, Deepak
Author_xml – sequence: 1
  givenname: Suman
  surname: Bajracharya
  fullname: Bajracharya, Suman
  organization: Separation and Conversion Technologies, Flemish Institute for Technological Research (VITO), Sub-department of Environmental Technology, Wageningen University
– sequence: 2
  givenname: Karolien
  surname: Vanbroekhoven
  fullname: Vanbroekhoven, Karolien
  organization: Separation and Conversion Technologies, Flemish Institute for Technological Research (VITO)
– sequence: 3
  givenname: Cees J.N.
  surname: Buisman
  fullname: Buisman, Cees J.N.
  organization: Sub-department of Environmental Technology, Wageningen University
– sequence: 4
  givenname: Deepak
  orcidid: 0000-0002-1425-9588
  surname: Pant
  fullname: Pant, Deepak
  email: deepak.pant@vito.be, pantonline@gmail.com
  organization: Separation and Conversion Technologies, Flemish Institute for Technological Research (VITO)
– sequence: 5
  givenname: David P. B. T. B.
  surname: Strik
  fullname: Strik, David P. B. T. B.
  organization: Sub-department of Environmental Technology, Wageningen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27436381$$D View this record in MEDLINE/PubMed
BookMark eNqNkslq3jAURkVJaP6kfYBuiqGbbtxKssbuQugEgW6SRVdCkxMFW3Ilm_x5-8h1Ukqgw0YC6Zyr4X7H4CCm6AF4heA7BCF_XxDqKGshYi1HkrX7Z2CHGCItJ1IegB2UhLSoI-QIHJdyAyGGEvPn4Ahz0rFOoB34fjpNQ7B6Dik2qW-udGlc6PulrAsmpLp1nZxvQmzGYHMyQQ-NH7ydcyp3cb72JZSmz2lsrM6mSi6kfXD-BTjs9VD8y4f5BFx--nhx9qU9__b569npeWupxHPbC6IF7ZGjxDndeQ57SLExxDgpsbPecm-l5sxJRIR1XUeNwMIJSw2zhnYn4MNW91Zf-RhiHVTU2Yaikg5qCCbrfKdul6zisE7TYoqikDEGq_x2k6ecfiy-zGoMxfph0NGnpSgMISSdxFj8E0WCMAIlZeQ_UMz42oO16psn6E1acqwfVikGRSXRWvD1A7WY0Ts15TCuj3rsYwXQBtQOlZJ9_wtBUK1ZUVtWVM2KWrOi9tXhTxwb5p9BmLMOw19NvJmlnlI_PP926T9K9xHp1NY
CitedBy_id crossref_primary_10_1016_j_apenergy_2020_115684
crossref_primary_10_1016_j_apenergy_2023_121609
crossref_primary_10_1016_j_bioelechem_2016_09_001
crossref_primary_10_1016_j_biortech_2017_12_075
crossref_primary_10_1016_j_ijhydene_2021_08_129
crossref_primary_10_1039_C8TA05322G
crossref_primary_10_1002_adfm_201804860
crossref_primary_10_1016_j_scitotenv_2021_145677
crossref_primary_10_1016_j_seta_2021_101114
crossref_primary_10_1016_j_rser_2020_110358
crossref_primary_10_1016_j_biortech_2022_126788
crossref_primary_10_1016_j_bej_2021_108028
crossref_primary_10_1039_D2MH01178F
crossref_primary_10_1016_j_biotechadv_2020_107675
crossref_primary_10_1002_bit_28383
crossref_primary_10_1021_acssuschemeng_0c01276
crossref_primary_10_1007_s40726_022_00218_7
crossref_primary_10_1016_j_tibtech_2020_10_014
crossref_primary_10_1038_s41893_018_0187_9
crossref_primary_10_1016_j_cej_2023_144325
crossref_primary_10_1149_1945_7111_abb836
crossref_primary_10_1016_j_fuel_2021_121124
crossref_primary_10_3390_mi13070980
crossref_primary_10_1016_j_biortech_2019_121401
crossref_primary_10_1039_D3EN00912B
crossref_primary_10_1016_j_scitotenv_2020_142668
crossref_primary_10_1186_s12934_017_0676_y
crossref_primary_10_1016_j_jcou_2018_04_027
crossref_primary_10_1016_j_psep_2024_07_030
crossref_primary_10_1016_j_jece_2022_108067
crossref_primary_10_3389_fmicb_2019_02563
crossref_primary_10_1016_j_biortech_2020_124350
crossref_primary_10_1016_j_rser_2020_109816
crossref_primary_10_3389_fenrg_2019_00093
crossref_primary_10_1016_j_chemosphere_2022_136088
crossref_primary_10_1016_j_electacta_2019_02_046
crossref_primary_10_1016_j_joule_2021_08_003
crossref_primary_10_1002_bit_27871
crossref_primary_10_3390_ijms18040874
crossref_primary_10_1021_acs_est_9b00902
crossref_primary_10_1155_2023_1318365
crossref_primary_10_1016_j_biotechadv_2021_107810
crossref_primary_10_1016_j_cej_2022_138230
crossref_primary_10_1016_j_rser_2021_111997
crossref_primary_10_3389_fenrg_2018_00072
crossref_primary_10_1002_cphc_201700017
crossref_primary_10_1016_j_tibtech_2020_12_004
crossref_primary_10_1016_j_biortech_2017_02_128
crossref_primary_10_1016_j_ese_2022_100211
crossref_primary_10_1016_j_jece_2021_105549
crossref_primary_10_1016_j_biortech_2018_06_074
crossref_primary_10_1016_j_bioelechem_2017_10_002
crossref_primary_10_1016_j_jenvman_2023_117323
crossref_primary_10_1016_j_biortech_2018_08_101
crossref_primary_10_3390_molecules29040834
crossref_primary_10_1002_ente_201800987
crossref_primary_10_1039_D0EE03756G
crossref_primary_10_3389_fmicb_2022_947550
crossref_primary_10_1039_D1GC02094C
crossref_primary_10_1016_j_biortech_2020_124177
crossref_primary_10_1016_j_scitotenv_2020_144477
crossref_primary_10_1016_j_rser_2021_111926
crossref_primary_10_1007_s11244_021_01503_3
crossref_primary_10_3389_fenrg_2018_00088
crossref_primary_10_3390_catal10060713
crossref_primary_10_1016_j_jcou_2021_101640
crossref_primary_10_1038_s41598_023_49246_3
crossref_primary_10_1016_j_bioelechem_2017_06_004
crossref_primary_10_3389_fmicb_2021_669218
crossref_primary_10_3389_fmicb_2022_913311
crossref_primary_10_1021_acsaem_8b02017
crossref_primary_10_1016_j_jece_2024_112535
crossref_primary_10_1016_j_bioelechem_2022_108140
crossref_primary_10_1016_j_scitotenv_2022_155793
crossref_primary_10_1021_acs_chemrev_0c00472
crossref_primary_10_1016_j_chemosphere_2023_140251
crossref_primary_10_1038_s41522_020_00151_x
crossref_primary_10_1016_j_bej_2022_108745
crossref_primary_10_1016_j_biortech_2020_124289
crossref_primary_10_3390_fermentation6030092
crossref_primary_10_1016_j_biortech_2024_131380
crossref_primary_10_1039_C6EW00325G
crossref_primary_10_1007_s00253_017_8421_3
crossref_primary_10_1016_j_cej_2019_122687
crossref_primary_10_1016_j_procbio_2020_11_017
crossref_primary_10_1007_s13762_021_03499_5
crossref_primary_10_1016_j_renene_2020_08_036
crossref_primary_10_1002_cssc_201701506
crossref_primary_10_1016_j_ijhydene_2023_11_055
crossref_primary_10_1016_j_jece_2024_114027
crossref_primary_10_1016_j_totert_2022_100023
crossref_primary_10_1039_D1RE00166C
crossref_primary_10_1016_j_resconrec_2024_107827
crossref_primary_10_1016_j_jece_2024_112369
crossref_primary_10_1016_j_bioelechem_2018_03_015
crossref_primary_10_1016_j_watres_2023_120657
crossref_primary_10_1016_j_watres_2016_10_018
crossref_primary_10_1016_j_watres_2019_04_053
crossref_primary_10_1016_j_ijhydene_2024_01_210
crossref_primary_10_1016_j_chemosphere_2017_02_135
crossref_primary_10_1016_j_procbio_2020_11_005
crossref_primary_10_1016_j_cogsc_2019_01_005
crossref_primary_10_1016_j_ese_2023_100261
crossref_primary_10_1016_j_biteb_2019_100284
crossref_primary_10_20517_energymater_2023_60
crossref_primary_10_1016_j_nbt_2017_06_006
crossref_primary_10_1016_j_apenergy_2020_116310
crossref_primary_10_1007_s11356_021_18287_4
crossref_primary_10_1016_j_biortech_2022_127178
crossref_primary_10_1021_acssuschemeng_2c05724
crossref_primary_10_1016_j_ijhydene_2021_03_165
crossref_primary_10_1016_j_chemosphere_2021_132843
crossref_primary_10_1021_acs_energyfuels_2c04122
crossref_primary_10_1016_j_electacta_2017_03_209
crossref_primary_10_1039_C7RE00220C
crossref_primary_10_1016_j_chemosphere_2021_132299
crossref_primary_10_1186_s13068_017_0943_5
crossref_primary_10_1016_j_watres_2018_10_092
crossref_primary_10_1016_j_electacta_2021_137853
crossref_primary_10_1016_j_jpowsour_2017_04_024
crossref_primary_10_1007_s11356_016_7838_z
crossref_primary_10_1016_j_jcou_2019_11_008
crossref_primary_10_1016_j_jtice_2024_105748
crossref_primary_10_1016_j_bioelechem_2020_107686
crossref_primary_10_1016_j_bios_2019_111922
crossref_primary_10_1016_j_biortech_2018_10_031
crossref_primary_10_1016_j_isci_2021_102998
crossref_primary_10_1016_j_jece_2023_110467
crossref_primary_10_1016_j_chemosphere_2024_143430
crossref_primary_10_1016_j_biortech_2020_122863
crossref_primary_10_1039_C9EE02410G
crossref_primary_10_3390_catal9020166
crossref_primary_10_1016_j_biortech_2018_02_058
crossref_primary_10_1016_j_biortech_2018_02_059
crossref_primary_10_1016_j_biotechadv_2024_108474
crossref_primary_10_1016_j_procbio_2020_12_021
crossref_primary_10_1039_C7GC01801K
crossref_primary_10_1016_j_pecs_2019_100814
crossref_primary_10_1016_j_envpol_2020_115135
Cites_doi 10.1021/es400341b
10.1007/s10800-014-0731-x
10.1016/j.elecom.2009.09.024
10.1128/AEM.02642-10
10.5194/essd-6-235-2014
10.1021/es9031985
10.1196/annals.1419.016
10.1002/bit.24446
10.1016/j.ijhydene.2015.07.049
10.1021/es902371e
10.1002/bit.260370907
10.1038/nrmicro2422
10.1016/j.electacta.2012.06.096
10.1016/j.jpowsour.2007.07.010
10.1039/C4TA03101F
10.1007/BF02936525
10.1126/science.1181637
10.1002/celc.201402123
10.1023/B:BILE.0000045661.03366.f2
10.1128/mBio.00103-10
10.1007/s10811-005-8701-7
10.4236/eng.2013.59088
10.1021/ie060242t
10.1016/j.biotechadv.2015.03.002
10.1039/C4CC10121A
10.1016/j.jcou.2015.04.001
10.1007/BF01023599
10.1007/s00253-012-4362-z
10.1371/journal.pone.0109935
10.1128/AEM.02401-12
10.1023/A:1026737000160
10.1016/j.rser.2009.10.003
10.1021/es034291y
10.1016/j.coche.2012.07.005
10.1016/j.tibtech.2010.11.006
10.1016/j.electacta.2009.11.086
10.1002/aic.14127
10.1002/bbb.3
10.1149/1.3456590
10.1021/es071739c
10.1016/j.copbio.2011.10.008
10.1039/C5EE03088A
10.4014/jmb.1304.04039
10.1016/j.copbio.2013.02.012
10.1016/j.biortech.2015.05.081
10.1021/es506149d
10.5006/1833
10.1039/C5FD00041F
10.1128/mBio.00103-10.Editor
10.2166/wst.2005.0493
10.1002/celc.201500530
10.1021/Es034291y
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Environmental Science and Pollution Research is a copyright of Springer, 2016.
Wageningen University & Research
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: Environmental Science and Pollution Research is a copyright of Springer, 2016.
– notice: Wageningen University & Research
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
QVL
DOI 10.1007/s11356-016-7196-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Database
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest Health & Medical Collection
Medical Database
Science Database (subscription)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

AGRICOLA
MEDLINE - Academic
Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 22308
ExternalDocumentID oai_library_wur_nl_wurpubs_506660
4306570261
27436381
10_1007_s11356_016_7196_x
Genre Journal Article
Feature
GrantInformation_xml – fundername: Vlaamse Instelling Voor Technologisch Onderzoek
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
ABRTQ
C1K
FR3
K9.
L.-
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7X8
7S9
L.6
-
02
0R
5
5A
5G
6XO
95
AAPBV
ABEOS
ACIPQ
ACVWB
BBAFP
BR
C
EM
HZ
IPNFZ
K6
KM
QVL
RIG
UNUBA
VR
Z7S
ID FETCH-LOGICAL-c592t-f84a85f1d54dda3e70f052bb4bd992dcec7ec9a76d9148cd335b828d8c5b6cb53
IEDL.DBID U2A
ISSN 0944-1344
1614-7499
IngestDate Thu Jul 22 20:32:10 EDT 2021
Tue Aug 05 11:18:07 EDT 2025
Fri Jul 11 04:08:08 EDT 2025
Thu Jul 10 17:28:25 EDT 2025
Fri Jul 25 23:19:05 EDT 2025
Wed Feb 19 01:58:54 EST 2025
Thu Apr 24 22:56:12 EDT 2025
Tue Jul 01 03:05:54 EDT 2025
Fri Feb 21 02:34:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Gas diffusion electrode
Microbial electrosynthesis
Biocathode
CO
reduction
Autotrophic bioproduction
CO2 reduction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c592t-f84a85f1d54dda3e70f052bb4bd992dcec7ec9a76d9148cd335b828d8c5b6cb53
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1425-9588
PMID 27436381
PQID 1860882614
PQPubID 54208
PageCount 17
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_506660
proquest_miscellaneous_2000439228
proquest_miscellaneous_1846409564
proquest_miscellaneous_1826727438
proquest_journals_1860882614
pubmed_primary_27436381
crossref_primary_10_1007_s11356_016_7196_x
crossref_citationtrail_10_1007_s11356_016_7196_x
springer_journals_10_1007_s11356_016_7196_x
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Nevin, Woodard, Franks, Summers, Lovley (CR36) 2010; 1
Drake, Gößner, Daniel (CR10) 2008; 1125
Gabriel Acien Fernandez, Gonzalez-Lopez, Fernandez Sevilla, Molina Grima (CR15) 2012; 96
Modestra, Navaneeth, Venkata Mohan (CR32) 2015; 10
Pant, Van Bogaert, De Smet, Diels, Vanbroekhoven (CR38) 2010; 55
Rabaey, Rozendal (CR42) 2010; 8
Cassman, Liska (CR5) 2007; 1
Jourdin, Freguia, Donose, Chen, Wallace, Keller, Flexer (CR22) 2014; 2
Fast, Papoutsakis (CR12) 2012; 1
Ying, Al-mashhadani, Hanotu, Gilmour, Zimmerman (CR52) 2013; 2013
Sakai, Nakashimada, Yoshimoto, Watanabe, Okada, Nishio (CR43) 2004; 26
Ganigué, Puig, Batlle-Vilanova, Balaguer, Colprim (CR16) 2015; 51
HaoYu, Cheng, Scott, Logan (CR18) 2007; 171
Nevin, Hensley, Franks, Summers, Ou, Woodard, Snoeyenbos-West, Lovley (CR35) 2011; 77
Doucha, Straka, Lívanský (CR9) 2005; 17
Kopljar, Inan, Vindayer, Wagner, Klemm (CR24) 2014; 44
Stams, Plugge, De Bok, Van Houten, Lens, Dijkman, Weijma (CR44) 2005; 52
Zhang, Cheng, Pant, Bogaert, Logan (CR53) 2009; 11
Patil, Gildemyn, Pant, Zengler, Logan, Rabaey (CR41) 2015; 33
Zhang, Miyachi, Kurano (CR54) 2001; 23
Alvarez-Gallego, Dominguez-Benetton, Pant, Diels, Vanbroekhoven, Genné, Vermeiren (CR2) 2012; 82
Vega, Prieto, Elmore, Clausen, Gaddy (CR50) 1989; 20-21
LaBelle, Marshall, Gilbert, May (CR25) 2014; 9
CR40
Mahmood, Masheder, Harty (CR29) 1987; 17
Tracy, Jones, Fast, Indurthi, Papoutsakis (CR48) 2012; 23
Fan, Hongqiang, Liu, Fan, Hu, Liu (CR11) 2007; 41
Whipple, Finke, Kenis (CR51) 2010; 13
Hu, Rismani-yazdi, Gregory (CR20) 2013; 59
Agler, Wrenn, Zinder, Angenent (CR1) 2011; 29
Mohanakrishna, Seelam, Vanbroekhoven, Pant (CR33) 2015
Fornero, Rosenbaum, Cotta, Angenent (CR14) 2010; 44
Marshall, Ross, Fichot, Norman, May (CR30) 2012; 78
Su, Jiang, Li (CR46) 2013; 23
CR13
Steinbusch, Hamelers, Schaap, Kampman, Buisman (CR45) 2010; 44
Bajracharya, ter Heijne, Dominguez, Strik, Vanbroekhoven, Buisman, Pant, ter Heijne, Benetton, Vanbroekhoven, Buisman, Strik, Pant (CR3) 2015
Blanchet, Duquenne, Rafrafi, Etcheverry, Erable, Bergel (CR4) 2015; 8
Marshall, Ross, Fichot, Norman, May (CR31) 2013; 47
Zhang, Pant, Zhang, Liu, He, Logan (CR55) 2014; 1
Pasupuleti, Srikanth, Venkata Mohan, Pant (CR39) 2015; 40
Naik, Goud, Rout, Dalai (CR34) 2010; 14
Lee, Little (CR27) 2015
Hill (CR19) 2006; 45
Treybal (CR49) 1981
CR28
Jourdin, Lu, Flexer, Keller, Freguia (CR23) 2015
Talbot, Gortares, Lencki, de la Noüe (CR47) 1991; 37
Chu (CR7) 2009; 325
CR21
González-López, Acién Fernández, Fernández-Sevilla, Sánchez Fernández, Molina Grima (CR17) 2012; 109
Oh, Van Ginkel, Logan (CR37) 2003; 37
Cussler (CR8) 1997
Le Quéré, Peters, Andres, Andrew, Boden, Ciais, Friedlingstein, Houghton, Marland, Moriarty, Sitch, Tans, Arneth, Arvanitis, Bakker, Bopp, Canadell, Chini, Doney, Harper, Harris, House, Jain, Jones, Kato, Keeling, Klein Goldewijk, Körtzinger, Koven, Lefèvre, Maignan, Omar, Ono, Park, Pfeil, Poulter, Raupach, Regnier, Rödenbeck, Saito, Schwinger, Segschneider, Stocker, Takahashi, Tilbrook, van Heuven, Viovy, Wanninkhof, Wiltshire, Zaehle (CR26) 2014; 6
(CR6) 2006
SA Patil (7196_CR41) 2015; 33
CV González-López (7196_CR17) 2012; 109
L Jourdin (7196_CR22) 2014; 2
SN Naik (7196_CR34) 2010; 14
Y Fan (7196_CR11) 2007; 41
CW Marshall (7196_CR31) 2013; 47
J Doucha (7196_CR9) 2005; 17
7196_CR13
E HaoYu (7196_CR18) 2007; 171
CW Marshall (7196_CR30) 2012; 78
K Rabaey (7196_CR42) 2010; 8
MT Agler (7196_CR1) 2011; 29
GA Hill (7196_CR19) 2006; 45
S Sakai (7196_CR43) 2004; 26
S Chu (7196_CR7) 2009; 325
CAST (7196_CR6) 2006
KP Nevin (7196_CR35) 2011; 77
C Quéré Le (7196_CR26) 2014; 6
MN Mahmood (7196_CR29) 1987; 17
K Ying (7196_CR52) 2013; 2013
KG Cassman (7196_CR5) 2007; 1
L Jourdin (7196_CR23) 2015
EV LaBelle (7196_CR25) 2014; 9
KP Nevin (7196_CR36) 2010; 1
AG Fast (7196_CR12) 2012; 1
7196_CR21
K Zhang (7196_CR54) 2001; 23
Y Alvarez-Gallego (7196_CR2) 2012; 82
KJJ Steinbusch (7196_CR45) 2010; 44
JL Vega (7196_CR50) 1989; 20-21
7196_CR28
BP Tracy (7196_CR48) 2012; 23
HL Drake (7196_CR10) 2008; 1125
S-E Oh (7196_CR37) 2003; 37
RE Treybal (7196_CR49) 1981
EL Cussler (7196_CR8) 1997
F Gabriel Acien Fernandez (7196_CR15) 2012; 96
EM Blanchet (7196_CR4) 2015; 8
P Hu (7196_CR20) 2013; 59
X Zhang (7196_CR55) 2014; 1
D Kopljar (7196_CR24) 2014; 44
AJM Stams (7196_CR44) 2005; 52
D Pant (7196_CR38) 2010; 55
JJ Fornero (7196_CR14) 2010; 44
SB Pasupuleti (7196_CR39) 2015; 40
7196_CR40
DT Whipple (7196_CR51) 2010; 13
R Ganigué (7196_CR16) 2015; 51
S Bajracharya (7196_CR3) 2015
M Su (7196_CR46) 2013; 23
F Zhang (7196_CR53) 2009; 11
JA Modestra (7196_CR32) 2015; 10
J Lee (7196_CR27) 2015
P Talbot (7196_CR47) 1991; 37
G Mohanakrishna (7196_CR33) 2015
20844557 - Nat Rev Microbiol. 2010 Oct;8(10):706-16
23465755 - Curr Opin Biotechnol. 2013 Jun;24(3):385-90
20178380 - Environ Sci Technol. 2010 Apr 1;44(7):2728-34
20714445 - MBio. 2010 May 25;1(2):null
26399888 - Faraday Discuss. 2015;183:445-62
26066971 - Bioresour Technol. 2015 Nov;195:14-24
25333313 - PLoS One. 2014 Oct 15;9(10):e109935
25765230 - Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):736-44
22079352 - Curr Opin Biotechnol. 2012 Jun;23(3):364-81
16187442 - Water Sci Technol. 2005;52(1-2):13-20
18186352 - Environ Sci Technol. 2007 Dec 1;41(23):8154-8
18600683 - Biotechnol Bioeng. 1991 Apr 15;37(9):834-42
25608945 - Chem Commun (Camb). 2015 Feb 21;51(15):3235-8
23727797 - J Microbiol Biotechnol. 2013 Aug;23(8):1140-6
21378039 - Appl Environ Microbiol. 2011 May;77(9):2882-6
14655706 - Environ Sci Technol. 2003 Nov 15;37(22):5186-90
18378590 - Ann N Y Acad Sci. 2008 Mar;1125:100-28
19779157 - Science. 2009 Sep 25;325(5948):1599
22252403 - Biotechnol Bioeng. 2012 Jul;109(7):1637-50
26079858 - Environ Sci Technol. 2015 Jul 21;49(14):8833-43
15604806 - Biotechnol Lett. 2004 Oct;26(20):1607-12
22923096 - Appl Microbiol Biotechnol. 2012 Nov;96(3):577-86
23676111 - Environ Sci Technol. 2013 Jun 4;47(11):6023-9
19950965 - Environ Sci Technol. 2010 Jan 1;44(1):513-7
21190748 - Trends Biotechnol. 2011 Feb;29(2):70-8
23001672 - Appl Environ Microbiol. 2012 Dec;78(23):8412-20
References_xml – volume: 47
  start-page: 6023
  year: 2013
  end-page: 6029
  ident: CR31
  article-title: Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
  publication-title: Environ Sci Technol
  doi: 10.1021/es400341b
– year: 2015
  ident: CR23
  article-title: Biologically-induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide
  publication-title: ChemElectroChem
– volume: 44
  start-page: 1107
  year: 2014
  end-page: 1116
  ident: CR24
  article-title: Electrochemical reduction of CO to formate at high current density using gas diffusion electrodes
  publication-title: J Appl Electrochem
  doi: 10.1007/s10800-014-0731-x
– volume: 11
  start-page: 2177
  year: 2009
  end-page: 2179
  ident: CR53
  article-title: Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2009.09.024
– volume: 77
  start-page: 2882
  year: 2011
  end-page: 2886
  ident: CR35
  article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02642-10
– year: 2006
  ident: CR6
  publication-title: Convergence of agriculture and energy : implications for research and policy, CAST commentary, QTA2006-3
– volume: 6
  start-page: 235
  year: 2014
  end-page: 263
  ident: CR26
  article-title: Global carbon budget 2013
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-6-235-2014
– volume: 44
  start-page: 2728
  year: 2010
  end-page: 2734
  ident: CR14
  article-title: Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity
  publication-title: Environ Sci Technol
  doi: 10.1021/es9031985
– volume: 1125
  start-page: 100
  year: 2008
  ident: CR10
  article-title: Old acetogens, new light
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1419.016
– volume: 109
  start-page: 1637
  year: 2012
  end-page: 1650
  ident: CR17
  article-title: Development of a process for efficient use of CO from flue gases in the production of photosynthetic microorganisms
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.24446
– volume: 40
  start-page: 12424
  year: 2015
  end-page: 12435
  ident: CR39
  article-title: Continuous mode operation of microbial fuel cell (MFC) stack with dual gas diffusion cathode design for the treatment of dark fermentation effluent
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.07.049
– year: 2015
  ident: CR3
  article-title: CO reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode
  publication-title: Bioresour Technol
– volume: 44
  start-page: 513
  year: 2010
  end-page: 517
  ident: CR45
  article-title: Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures
  publication-title: Environ Sci Technol
  doi: 10.1021/es902371e
– volume: 37
  start-page: 834
  year: 1991
  end-page: 842
  ident: CR47
  article-title: Absorption of CO in algal mass culture systems: a different characterization approach
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.260370907
– volume: 8
  start-page: 706
  year: 2010
  end-page: 716
  ident: CR42
  article-title: Microbial electrosynthesis—revisiting the electrical route for microbial production
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2422
– volume: 82
  start-page: 415
  year: 2012
  end-page: 426
  ident: CR2
  article-title: Development of gas diffusion electrodes for cogeneration of chemicals and electricity
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.06.096
– year: 2015
  ident: CR27
  article-title: Electrochemical and chemical complications resulting from yeast extract addition to stimulate microbial growth
  publication-title: Corrosion
– volume: 52
  start-page: 13
  year: 2005
  end-page: 20
  ident: CR44
  article-title: Metabolic interactions in methanogenic and sulfate-reducing bioreactors
  publication-title: Water Sci Technol
– ident: CR21
– volume: 171
  start-page: 275
  year: 2007
  end-page: 281
  ident: CR18
  article-title: Microbial fuel cell performance with non-Pt cathode catalysts
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.07.010
– volume: 2
  start-page: 13093
  year: 2014
  end-page: 13102
  ident: CR22
  article-title: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA03101F
– volume: 20-21
  start-page: 781
  year: 1989
  end-page: 797
  ident: CR50
  article-title: The biological production of ethanol from synthesis gas
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/BF02936525
– volume: 325
  start-page: 1599
  year: 2009
  ident: CR7
  article-title: Carbon capture and sequestration
  publication-title: Science
  doi: 10.1126/science.1181637
– volume: 1
  start-page: 1859
  year: 2014
  end-page: 1866
  ident: CR55
  article-title: Long-term performance of chemically and physically modified activated carbons in air cathodes of microbial fuel cells
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201402123
– volume: 26
  start-page: 1607
  year: 2004
  end-page: 1612
  ident: CR43
  article-title: Ethanol production from H and CO by a newly isolated thermophilic bacterium, sp. HUC22-1
  publication-title: Biotechnol Lett
  doi: 10.1023/B:BILE.0000045661.03366.f2
– volume: 1
  start-page: e00103
  year: 2010
  end-page: e00110
  ident: CR36
  article-title: Microbial electrosynthesis : feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic
  publication-title: MBio
  doi: 10.1128/mBio.00103-10
– volume: 17
  start-page: 403
  year: 2005
  end-page: 412
  ident: CR9
  article-title: Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-005-8701-7
– year: 1997
  ident: CR8
  publication-title: Diffusion: mass transfer in fluid systems
– volume: 2013
  start-page: 735
  year: 2013
  end-page: 743
  ident: CR52
  article-title: Enhanced mass transfer in microbubble driven airlift bioreactor for microalgal culture
  publication-title: Engineering
  doi: 10.4236/eng.2013.59088
– volume: 45
  start-page: 5796
  year: 2006
  end-page: 5800
  ident: CR19
  article-title: Measurement of overall volumetric mass transfer coefficients for carbon dioxide in a well-mixed reactor using a pH probe
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie060242t
– volume: 33
  start-page: 736
  year: 2015
  end-page: 744
  ident: CR41
  article-title: A logical data representation framework for electricity-driven bioproduction processes
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2015.03.002
– volume: 51
  start-page: 3235
  year: 2015
  end-page: 3238
  ident: CR16
  article-title: Microbial electrosynthesis of butyrate from carbon dioxide
  publication-title: Chem Commun
  doi: 10.1039/C4CC10121A
– volume: 10
  start-page: 78
  year: 2015
  end-page: 87
  ident: CR32
  article-title: Bio-electrocatalytic reduction of CO : enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis
  publication-title: J CO2 Util
  doi: 10.1016/j.jcou.2015.04.001
– volume: 17
  start-page: 1159
  year: 1987
  end-page: 1170
  ident: CR29
  article-title: Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes
  publication-title: J Appl Electrochem
  doi: 10.1007/BF01023599
– year: 1981
  ident: CR49
  publication-title: Mass-transfer operations
– volume: 96
  start-page: 577
  year: 2012
  end-page: 586
  ident: CR15
  article-title: Conversion of CO into biomass by microalgae: how realistic a contribution may it be to significant CO removal?
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4362-z
– volume: 9
  start-page: e109935
  year: 2014
  ident: CR25
  article-title: Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0109935
– volume: 78
  start-page: 8412
  year: 2012
  end-page: 8420
  ident: CR30
  article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02401-12
– volume: 23
  start-page: 21
  year: 2001
  end-page: 26
  ident: CR54
  article-title: Photosynthetic performance of a cyanobacterium in a vertical flat-plate photobioreactor for outdoor microalgal production and fixation of CO
  publication-title: Biotechnol Lett
  doi: 10.1023/A:1026737000160
– ident: CR40
– year: 2015
  ident: CR33
  article-title: An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction
  publication-title: Faraday Discuss
– volume: 14
  start-page: 578
  year: 2010
  end-page: 597
  ident: CR34
  article-title: Production of first and second generation biofuels: a comprehensive review
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2009.10.003
– volume: 37
  start-page: 5186
  year: 2003
  end-page: 5190
  ident: CR37
  article-title: The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production
  publication-title: Environ Sci Technol
  doi: 10.1021/es034291y
– volume: 1
  start-page: 380
  year: 2012
  end-page: 395
  ident: CR12
  article-title: Stoichiometric and energetic analyses of non-photosynthetic CO -fixation pathways to support synthetic biology strategies for production of fuels and chemicals
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2012.07.005
– ident: CR13
– volume: 29
  start-page: 70
  year: 2011
  end-page: 78
  ident: CR1
  article-title: Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2010.11.006
– volume: 55
  start-page: 7710
  year: 2010
  end-page: 7716
  ident: CR38
  article-title: Use of novel permeable membrane and air cathodes in acetate microbial fuel cells
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2009.11.086
– volume: 59
  start-page: 3176
  year: 2013
  end-page: 3183
  ident: CR20
  article-title: Anaerobic CO fixation by the acetogenic bacterium Moorella thermoacetica
  publication-title: AICHE J
  doi: 10.1002/aic.14127
– volume: 1
  start-page: 18
  year: 2007
  end-page: 23
  ident: CR5
  article-title: Food and fuel for all: realistic or foolish?
  publication-title: Biofuels, Bioproducts and Biorefining
  doi: 10.1002/bbb.3
– volume: 13
  start-page: B109
  year: 2010
  ident: CR51
  article-title: Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH
  publication-title: Electrochem Solid-State Lett
  doi: 10.1149/1.3456590
– volume: 41
  start-page: 8154
  year: 2007
  end-page: 8158
  ident: CR11
  article-title: Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms
  publication-title: Environ Sci Technol
  doi: 10.1021/es071739c
– ident: CR28
– volume: 23
  start-page: 364
  year: 2012
  end-page: 381
  ident: CR48
  article-title: Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2011.10.008
– volume: 8
  start-page: 3731
  year: 2015
  end-page: 3744
  ident: CR4
  article-title: Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO reduction
  publication-title: Energy Environ Sci
  doi: 10.1039/C5EE03088A
– volume: 23
  start-page: 1140
  year: 2013
  end-page: 1146
  ident: CR46
  article-title: Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/jmb.1304.04039
– volume: 82
  start-page: 415
  year: 2012
  ident: 7196_CR2
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2012.06.096
– volume: 23
  start-page: 21
  year: 2001
  ident: 7196_CR54
  publication-title: Biotechnol Lett
  doi: 10.1023/A:1026737000160
– volume: 14
  start-page: 578
  year: 2010
  ident: 7196_CR34
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2009.10.003
– volume: 20-21
  start-page: 781
  year: 1989
  ident: 7196_CR50
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/BF02936525
– volume: 44
  start-page: 513
  year: 2010
  ident: 7196_CR45
  publication-title: Environ Sci Technol
  doi: 10.1021/es902371e
– volume: 55
  start-page: 7710
  year: 2010
  ident: 7196_CR38
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2009.11.086
– volume: 325
  start-page: 1599
  year: 2009
  ident: 7196_CR7
  publication-title: Science
  doi: 10.1126/science.1181637
– volume: 77
  start-page: 2882
  year: 2011
  ident: 7196_CR35
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02642-10
– ident: 7196_CR28
  doi: 10.1016/j.copbio.2013.02.012
– year: 2015
  ident: 7196_CR3
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2015.05.081
– volume: 59
  start-page: 3176
  year: 2013
  ident: 7196_CR20
  publication-title: AICHE J
  doi: 10.1002/aic.14127
– volume: 23
  start-page: 364
  year: 2012
  ident: 7196_CR48
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2011.10.008
– volume: 171
  start-page: 275
  year: 2007
  ident: 7196_CR18
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.07.010
– ident: 7196_CR21
– volume: 6
  start-page: 235
  year: 2014
  ident: 7196_CR26
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-6-235-2014
– volume: 47
  start-page: 6023
  year: 2013
  ident: 7196_CR31
  publication-title: Environ Sci Technol
  doi: 10.1021/es400341b
– volume: 40
  start-page: 12424
  year: 2015
  ident: 7196_CR39
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.07.049
– volume: 11
  start-page: 2177
  year: 2009
  ident: 7196_CR53
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2009.09.024
– volume: 1
  start-page: 18
  year: 2007
  ident: 7196_CR5
  publication-title: Biofuels, Bioproducts and Biorefining
  doi: 10.1002/bbb.3
– volume: 2013
  start-page: 735
  year: 2013
  ident: 7196_CR52
  publication-title: Engineering
  doi: 10.4236/eng.2013.59088
– volume: 2
  start-page: 13093
  year: 2014
  ident: 7196_CR22
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA03101F
– volume: 8
  start-page: 3731
  year: 2015
  ident: 7196_CR4
  publication-title: Energy Environ Sci
  doi: 10.1039/C5EE03088A
– volume: 51
  start-page: 3235
  year: 2015
  ident: 7196_CR16
  publication-title: Chem Commun
  doi: 10.1039/C4CC10121A
– ident: 7196_CR40
  doi: 10.1021/es506149d
– volume: 1125
  start-page: 100
  year: 2008
  ident: 7196_CR10
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1419.016
– volume: 41
  start-page: 8154
  year: 2007
  ident: 7196_CR11
  publication-title: Environ Sci Technol
  doi: 10.1021/es071739c
– volume: 33
  start-page: 736
  year: 2015
  ident: 7196_CR41
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2015.03.002
– volume-title: Convergence of agriculture and energy : implications for research and policy, CAST commentary, QTA2006-3
  year: 2006
  ident: 7196_CR6
– volume: 17
  start-page: 403
  year: 2005
  ident: 7196_CR9
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-005-8701-7
– volume: 37
  start-page: 834
  year: 1991
  ident: 7196_CR47
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.260370907
– volume: 44
  start-page: 2728
  year: 2010
  ident: 7196_CR14
  publication-title: Environ Sci Technol
  doi: 10.1021/es9031985
– year: 2015
  ident: 7196_CR27
  publication-title: Corrosion
  doi: 10.5006/1833
– year: 2015
  ident: 7196_CR33
  publication-title: Faraday Discuss
  doi: 10.1039/C5FD00041F
– volume: 78
  start-page: 8412
  year: 2012
  ident: 7196_CR30
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02401-12
– volume: 26
  start-page: 1607
  year: 2004
  ident: 7196_CR43
  publication-title: Biotechnol Lett
  doi: 10.1023/B:BILE.0000045661.03366.f2
– volume: 44
  start-page: 1107
  year: 2014
  ident: 7196_CR24
  publication-title: J Appl Electrochem
  doi: 10.1007/s10800-014-0731-x
– volume: 1
  start-page: e00103
  year: 2010
  ident: 7196_CR36
  publication-title: MBio
  doi: 10.1128/mBio.00103-10.Editor
– volume: 8
  start-page: 706
  year: 2010
  ident: 7196_CR42
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2422
– volume-title: Diffusion: mass transfer in fluid systems
  year: 1997
  ident: 7196_CR8
– volume: 9
  start-page: e109935
  year: 2014
  ident: 7196_CR25
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0109935
– volume: 29
  start-page: 70
  year: 2011
  ident: 7196_CR1
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2010.11.006
– volume: 52
  start-page: 13
  year: 2005
  ident: 7196_CR44
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2005.0493
– year: 2015
  ident: 7196_CR23
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201500530
– volume: 1
  start-page: 1859
  year: 2014
  ident: 7196_CR55
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201402123
– volume: 13
  start-page: B109
  year: 2010
  ident: 7196_CR51
  publication-title: Electrochem Solid-State Lett
  doi: 10.1149/1.3456590
– volume: 45
  start-page: 5796
  year: 2006
  ident: 7196_CR19
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie060242t
– volume: 17
  start-page: 1159
  year: 1987
  ident: 7196_CR29
  publication-title: J Appl Electrochem
  doi: 10.1007/BF01023599
– volume: 96
  start-page: 577
  year: 2012
  ident: 7196_CR15
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4362-z
– volume-title: Mass-transfer operations
  year: 1981
  ident: 7196_CR49
– ident: 7196_CR13
– volume: 109
  start-page: 1637
  year: 2012
  ident: 7196_CR17
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.24446
– volume: 1
  start-page: 380
  year: 2012
  ident: 7196_CR12
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2012.07.005
– volume: 10
  start-page: 78
  year: 2015
  ident: 7196_CR32
  publication-title: J CO2 Util
  doi: 10.1016/j.jcou.2015.04.001
– volume: 37
  start-page: 5186
  year: 2003
  ident: 7196_CR37
  publication-title: Environ Sci Technol
  doi: 10.1021/Es034291y
– volume: 23
  start-page: 1140
  year: 2013
  ident: 7196_CR46
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/jmb.1304.04039
– reference: 23001672 - Appl Environ Microbiol. 2012 Dec;78(23):8412-20
– reference: 25765230 - Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):736-44
– reference: 26399888 - Faraday Discuss. 2015;183:445-62
– reference: 25608945 - Chem Commun (Camb). 2015 Feb 21;51(15):3235-8
– reference: 23727797 - J Microbiol Biotechnol. 2013 Aug;23(8):1140-6
– reference: 21190748 - Trends Biotechnol. 2011 Feb;29(2):70-8
– reference: 20714445 - MBio. 2010 May 25;1(2):null
– reference: 15604806 - Biotechnol Lett. 2004 Oct;26(20):1607-12
– reference: 19779157 - Science. 2009 Sep 25;325(5948):1599
– reference: 26066971 - Bioresour Technol. 2015 Nov;195:14-24
– reference: 18378590 - Ann N Y Acad Sci. 2008 Mar;1125:100-28
– reference: 23465755 - Curr Opin Biotechnol. 2013 Jun;24(3):385-90
– reference: 18186352 - Environ Sci Technol. 2007 Dec 1;41(23):8154-8
– reference: 14655706 - Environ Sci Technol. 2003 Nov 15;37(22):5186-90
– reference: 16187442 - Water Sci Technol. 2005;52(1-2):13-20
– reference: 21378039 - Appl Environ Microbiol. 2011 May;77(9):2882-6
– reference: 26079858 - Environ Sci Technol. 2015 Jul 21;49(14):8833-43
– reference: 25333313 - PLoS One. 2014 Oct 15;9(10):e109935
– reference: 22923096 - Appl Microbiol Biotechnol. 2012 Nov;96(3):577-86
– reference: 22252403 - Biotechnol Bioeng. 2012 Jul;109(7):1637-50
– reference: 22079352 - Curr Opin Biotechnol. 2012 Jun;23(3):364-81
– reference: 18600683 - Biotechnol Bioeng. 1991 Apr 15;37(9):834-42
– reference: 20844557 - Nat Rev Microbiol. 2010 Oct;8(10):706-16
– reference: 19950965 - Environ Sci Technol. 2010 Jan 1;44(1):513-7
– reference: 23676111 - Environ Sci Technol. 2013 Jun 4;47(11):6023-9
– reference: 20178380 - Environ Sci Technol. 2010 Apr 1;44(7):2728-34
SSID ssj0020927
Score 2.504441
Snippet Microbial catalysis of carbon dioxide (CO 2 ) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial...
Microbial catalysis of carbon dioxide (CO ) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis...
Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis...
Microbial catalysis of carbon dioxide (CO sub(2)) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial...
Microbial catalysis of carbon dioxide (CO₂) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis...
SourceID wageningen
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22292
SubjectTerms acetates
Acetates - chemistry
Activated carbon
Alternative energy sources
Anaerobiosis
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Autotrophic bioproduction
bacteria
Bacteria - classification
Bacteria - metabolism
Biocatalysts
Biocathode
biocathodes
Bioelectric Energy Sources - microbiology
Biomass
Bioreactors
butyrates
Carbon
Carbon dioxide
Carbon Dioxide - chemistry
Carbon sources
Catalysis
catalytic activity
Chemicals
Climate change
CO reduction
Conservation of Natural Resources
Earth and Environmental Science
Ecotoxicology
Electric rates
Electrodes
Electrolytes
electrons
Environment
Environmental Chemistry
Environmental Health
Environmental Pollutants
Environmental science
Ethanol
Flue gas
Gas diffusion electrode
Gases
Hydrogen
Hydrogen - chemistry
hydrophobicity
inoculum
Mass transfer
Microbial electrosynthesis
polytetrafluoroethylene
Renewable resources
Sewage - microbiology
silver
silver chloride
Sludge
Studies
Technoeconomic Perspectives on Sustainable CO2 Capture and Utilization
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXMoB0UJhoUVG4gSySPxI4hOqUKuKQ09UWk6WX0GRitOud9Xl3-PJOptFiD1FkR9xPDP2jMfzDUIfWss9dXVFbC0c4bYUpBGtT6-ScV8IXbgB7fO6urrh3-Zing_cYr5WOa6Jw0Ltegtn5J_LpgJtMO0mX-7uCWSNAu9qTqHxGD0B6DK40lXPJ4OrkJuUrZJzUjLOR6_mEDpXMgG2dEXqxIRk_fe-9I-yueMofYoOH5KshyH4aWczunyOnmUtEp9vyH6EHvlwjE4upqC1VJilNr5AP84nLzXuW_xTRwyJUVZwUoZN1wN2a-887gL-1Q3ITKl9TpATf4ekI8YuYohEwVYvTGrkun7dOf8S3VxefP96RXJKBWKFpEvSNlwnWpROcOc083XRFoIaw42Tkjrrbe2t1HXlZLKTrGNMmGSTucYKU1kj2Ak6CH3wrxFu2kI31stGVGmHa5mhNpl2WpYQ6uo9m6FinFBlM944pL24VRNSMtBAwR0zoIFaz9DHbZO7DdjGvsqnI5VUlruoJi6Zoffb4iQx4AbRwfcrqEPB_cxZs68OrzhgNO7phw5uVElp6ufVhku2o4bu08pWztCnkW12Bvn_X2ITZ6kAyaSiAvzvfKKnHlYLFW7hkb4XlQDjs3izfyLeokMKbD7ET56ig-Vi5c-SIrU07wZp-QNclh0J
  priority: 102
  providerName: ProQuest
Title Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide
URI https://link.springer.com/article/10.1007/s11356-016-7196-x
https://www.ncbi.nlm.nih.gov/pubmed/27436381
https://www.proquest.com/docview/1860882614
https://www.proquest.com/docview/1826727438
https://www.proquest.com/docview/1846409564
https://www.proquest.com/docview/2000439228
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F506660
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1da9swUGztS_cwuo9uabugwZ42DLY-bOsxK2nLBmWMBdInYX14GFp7RAnt_n3vHDvO2Bboi4WRdJJ9d9KdTndHyIfSCs9clkY2ky4SNpFRLksPr4oLH8sidm20z6v0cia-zOW88-MO_W333iTZrtSDs1vCJWq_aZQB2UQgOO5LVN2BiGdsstGyYrXO06qEiBIuRG_K_BeIPzejvyTMLevoM3JwBwxetx5PWzvQ-SF53omOdLLG9QvyxNcvydF08FSDyo5VwytyPRlM07Qp6c8iUMyGssLjMWqqBgO2Ns7Tqqa3VRuOCfp3WXHC7xoEw1AFiu4n1BYLA51c1dxXzr8ms_Ppj7PLqMujEFmp2DIqc1EAAhInhXMF91lcxpIZI4xTijnrbeatKrLUKVCOrONcGlDEXG6lSa2R_Ijs1U3t3xKal3GRW69ymcK2VnLDLOhzhUrQv9V7PiJx_0O17YKMY66LGz2ER0YcaLxYhjjQ9yPycdPl1zrCxq7Gpz2WdMdsQcPgqCiAoDEi7zfVwCZo-yhq36ywDUObs-D5rjYiFRiYcQcc1tpOFWMA582aSjazRvCwnCUj8qknm61J_v-T-EBZusYMUkFj0O_uGE_frRa6vsECxgtaosYZHz9qjBNywJDqWx_KU7K3XKz8OxCmlmZMnmbzDJ75WTIm-5OL669TKD9Pr759H7eM9QAjWh7-
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7YFyQLwKWwoYCS6giMSPJD4gVGCrLS0rhFqpnExiOyhSm5TNrnb7p_iNzOSxWYTYW09R5Eccz3g84_HMR8jLzAjHbBR6JpLWEyaQXiwzB6-KC-fLxLd1ts9JOD4Tn8_l-Rb53cXC4LXKTibWgtqWBs_I3wZxiNog7Cbvr355iBqF3tUOQqNhi2N3vQCTrXp39Ano-4qxw9Hpx7HXogp4Rio287JYJDCcwEphbcJd5Ge-ZGkqUqsUs8aZyBmVRKFVYCoYy7lMwSyxsZFpaFJEiQCRvy04mDIDsv1hNPn6bWXi-aoBiVVCeAEXovOj1sF6AZdovYdeBGzvLf_eCf9Rb9dcs7fJzgKkS1GHW61tf4d3yZ1Wb6UHDaPdI1uuuE92R32YHBS2cqJ6QL4f9H5xWmb0Z1JRhGKZ49kcTfMSs8WW1tG8oJd5nQsK2reQPNV1AVpplVcUY1-oSaYpNLJ5ucyte0jObmS6d8mgKAv3mNA485PYOBXLEPbUjKfMgDGZqACDa53jQ-J3E6pNm-EcgTYudJ-bGWmg8VYb0kAvh-T1qslVk95jU-X9jkq6XemV7vlySF6simGNouMlKVw5xzoMHd6Cx5vqiFBgVsgN_bDacasYg34eNVyyGjV2D7I0GJI3HdusDfL_v8R7ztIFwldVGjOOt2eIejGf6uICH_C9Sks0d_29zRPxnNwan3450SdHk-MnZIchy9fRm_tkMJvO3VNQ42bps3btUPLjppfrHxlJXRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIqFyQLwKWwoYCS4gq4kfSXxAqKJdtRRVHKi0nExiOyhSSdrNrnb71_h1zOSxWYTYW09R5Ecce2Y84_HMR8ib3ErPXRwxGyvHpA0VS1Tu4VUL6QOVBq7J9nkenVzIzxM12SK_-1gYvFbZy8RGULvK4hn5QZhEqA3CbnKQd9civh6NP15dM0SQQk9rD6fRksiZv1mA-VZ_OD2CtX7L-fj426cT1iEMMKs0n7E8kSkMLXRKOpcKHwd5oHiWycxpzZ31NvZWp3HkNJgN1gmhMjBRXGJVFtkMESNA_N-JhQqRx-LJYOwFuoWL1VKyUEjZe1SbsL1QKLTjIxYDA7Dl33viP4rumpP2HtlZgJwpm8CrtY1w_IDc7zRYetiS3EOy5ctHZPd4CJiDwk5i1I_J98PBQ06rnP5Ma4qgLHM8paNZUWHe2Mp5WpT0V9FkhYL2HThPfVOCfloXNcUoGGrTaQaNXFEtC-efkItbmexdsl1WpX9GaJIHaWK9TlQEu2suMm7BrEx1iGG23osRCfoJNbbLdY6QG5dmyNKMa2DwfhuugVmOyLtVk6s20cemyvv9KpmO52szUOiIvF4VA7eiCyYtfTXHOhxd31Ikm-rISGJ-yA398MaFqzmHfp62VLIaNXYPUjUckfc92awN8v-_JAbKMiUCWdUGc493p4lmMZ-a8hIf8L3aKDR8g73NE_GK3AUmNV9Oz8-ekx2OFN-Ece6T7dl07l-APjfLXjaMQ8mP2-bUP1axX-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+gas+diffusion+biocathode+in+microbial+electrosynthesis+from+carbon+dioxide&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Bajracharya%2C+Suman&rft.au=Vanbroekhoven%2C+Karolien&rft.au=Buisman%2C+Cees+J.N.&rft.au=Pant%2C+Deepak&rft.date=2016-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=23&rft.issue=22&rft.spage=22292&rft.epage=22308&rft_id=info:doi/10.1007%2Fs11356-016-7196-x&rft.externalDocID=10_1007_s11356_016_7196_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon