Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide
Microbial catalysis of carbon dioxide (CO 2 ) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO 2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO...
Saved in:
Published in | Environmental science and pollution research international Vol. 23; no. 22; pp. 22292 - 22308 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microbial catalysis of carbon dioxide (CO
2
) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO
2
by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO
2
as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO
2
in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO
2
through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO
2
and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at −1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO
2
reduction. Bioelectrochemical CO
2
reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO
2
gas mixture feed were achieved with 10 cm
2
of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO
2
gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO
2
reduction with enhanced mass transfer rate at continuous supply of gaseous CO
2
.
Graphical abstract
ᅟ |
---|---|
AbstractList | Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at −1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO2 reduction. Bioelectrochemical CO2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO2 gas mixture feed were achieved with 10 cm2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO2. [Figure not available: see fulltext.] Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO2 reduction. Bioelectrochemical CO2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO2 gas mixture feed were achieved with 10 cm2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO2. [Figure not available: see fulltext.] Microbial catalysis of carbon dioxide (CO 2 ) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO 2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO 2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO 2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO 2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO 2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at −1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO 2 reduction. Bioelectrochemical CO 2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO 2 gas mixture feed were achieved with 10 cm 2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO 2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO 2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO 2 . Graphical abstract ᅟ Microbial catalysis of carbon dioxide (CO₂) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO₂ by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO₂ as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO₂ in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO₂ through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO₂ and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at −1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO₂ reduction. Bioelectrochemical CO₂ reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO₂ gas mixture feed were achieved with 10 cm² of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO₂ gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO₂ reduction with enhanced mass transfer rate at continuous supply of gaseous CO₂. Graphical abstract ᅟ Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO2 reduction. Bioelectrochemical CO2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO2 gas mixture feed were achieved with 10 cm2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO2. Graphical abstract ᅟ.Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO2 reduction. Bioelectrochemical CO2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO2 gas mixture feed were achieved with 10 cm2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO2. Graphical abstract ᅟ. Microbial catalysis of carbon dioxide (CO sub(2)) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO sub(2) by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO sub(2) as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO sub(2) in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO sub(2) through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO sub(2) and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO sub(2) reduction. Bioelectrochemical CO sub(2) reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO sub(2) gas mixture feed were achieved with 10 cm super(2) of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO sub(2) gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO sub(2) reduction with enhanced mass transfer rate at continuous supply of gaseous CO sub(2). [Figure not available: see fulltext.] Microbial catalysis of carbon dioxide (CO ) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO reduction. Bioelectrochemical CO reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO gas mixture feed were achieved with 10 cm of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO reduction with enhanced mass transfer rate at continuous supply of gaseous CO . Graphical abstract ᅟ. |
Author | Strik, David P. B. T. B. Buisman, Cees J.N. Bajracharya, Suman Vanbroekhoven, Karolien Pant, Deepak |
Author_xml | – sequence: 1 givenname: Suman surname: Bajracharya fullname: Bajracharya, Suman organization: Separation and Conversion Technologies, Flemish Institute for Technological Research (VITO), Sub-department of Environmental Technology, Wageningen University – sequence: 2 givenname: Karolien surname: Vanbroekhoven fullname: Vanbroekhoven, Karolien organization: Separation and Conversion Technologies, Flemish Institute for Technological Research (VITO) – sequence: 3 givenname: Cees J.N. surname: Buisman fullname: Buisman, Cees J.N. organization: Sub-department of Environmental Technology, Wageningen University – sequence: 4 givenname: Deepak orcidid: 0000-0002-1425-9588 surname: Pant fullname: Pant, Deepak email: deepak.pant@vito.be, pantonline@gmail.com organization: Separation and Conversion Technologies, Flemish Institute for Technological Research (VITO) – sequence: 5 givenname: David P. B. T. B. surname: Strik fullname: Strik, David P. B. T. B. organization: Sub-department of Environmental Technology, Wageningen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27436381$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkslq3jAURkVJaP6kfYBuiqGbbtxKssbuQugEgW6SRVdCkxMFW3Ilm_x5-8h1Ukqgw0YC6Zyr4X7H4CCm6AF4heA7BCF_XxDqKGshYi1HkrX7Z2CHGCItJ1IegB2UhLSoI-QIHJdyAyGGEvPn4Ahz0rFOoB34fjpNQ7B6Dik2qW-udGlc6PulrAsmpLp1nZxvQmzGYHMyQQ-NH7ydcyp3cb72JZSmz2lsrM6mSi6kfXD-BTjs9VD8y4f5BFx--nhx9qU9__b569npeWupxHPbC6IF7ZGjxDndeQ57SLExxDgpsbPecm-l5sxJRIR1XUeNwMIJSw2zhnYn4MNW91Zf-RhiHVTU2Yaikg5qCCbrfKdul6zisE7TYoqikDEGq_x2k6ecfiy-zGoMxfph0NGnpSgMISSdxFj8E0WCMAIlZeQ_UMz42oO16psn6E1acqwfVikGRSXRWvD1A7WY0Ts15TCuj3rsYwXQBtQOlZJ9_wtBUK1ZUVtWVM2KWrOi9tXhTxwb5p9BmLMOw19NvJmlnlI_PP926T9K9xHp1NY |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2020_115684 crossref_primary_10_1016_j_apenergy_2023_121609 crossref_primary_10_1016_j_bioelechem_2016_09_001 crossref_primary_10_1016_j_biortech_2017_12_075 crossref_primary_10_1016_j_ijhydene_2021_08_129 crossref_primary_10_1039_C8TA05322G crossref_primary_10_1002_adfm_201804860 crossref_primary_10_1016_j_scitotenv_2021_145677 crossref_primary_10_1016_j_seta_2021_101114 crossref_primary_10_1016_j_rser_2020_110358 crossref_primary_10_1016_j_biortech_2022_126788 crossref_primary_10_1016_j_bej_2021_108028 crossref_primary_10_1039_D2MH01178F crossref_primary_10_1016_j_biotechadv_2020_107675 crossref_primary_10_1002_bit_28383 crossref_primary_10_1021_acssuschemeng_0c01276 crossref_primary_10_1007_s40726_022_00218_7 crossref_primary_10_1016_j_tibtech_2020_10_014 crossref_primary_10_1038_s41893_018_0187_9 crossref_primary_10_1016_j_cej_2023_144325 crossref_primary_10_1149_1945_7111_abb836 crossref_primary_10_1016_j_fuel_2021_121124 crossref_primary_10_3390_mi13070980 crossref_primary_10_1016_j_biortech_2019_121401 crossref_primary_10_1039_D3EN00912B crossref_primary_10_1016_j_scitotenv_2020_142668 crossref_primary_10_1186_s12934_017_0676_y crossref_primary_10_1016_j_jcou_2018_04_027 crossref_primary_10_1016_j_psep_2024_07_030 crossref_primary_10_1016_j_jece_2022_108067 crossref_primary_10_3389_fmicb_2019_02563 crossref_primary_10_1016_j_biortech_2020_124350 crossref_primary_10_1016_j_rser_2020_109816 crossref_primary_10_3389_fenrg_2019_00093 crossref_primary_10_1016_j_chemosphere_2022_136088 crossref_primary_10_1016_j_electacta_2019_02_046 crossref_primary_10_1016_j_joule_2021_08_003 crossref_primary_10_1002_bit_27871 crossref_primary_10_3390_ijms18040874 crossref_primary_10_1021_acs_est_9b00902 crossref_primary_10_1155_2023_1318365 crossref_primary_10_1016_j_biotechadv_2021_107810 crossref_primary_10_1016_j_cej_2022_138230 crossref_primary_10_1016_j_rser_2021_111997 crossref_primary_10_3389_fenrg_2018_00072 crossref_primary_10_1002_cphc_201700017 crossref_primary_10_1016_j_tibtech_2020_12_004 crossref_primary_10_1016_j_biortech_2017_02_128 crossref_primary_10_1016_j_ese_2022_100211 crossref_primary_10_1016_j_jece_2021_105549 crossref_primary_10_1016_j_biortech_2018_06_074 crossref_primary_10_1016_j_bioelechem_2017_10_002 crossref_primary_10_1016_j_jenvman_2023_117323 crossref_primary_10_1016_j_biortech_2018_08_101 crossref_primary_10_3390_molecules29040834 crossref_primary_10_1002_ente_201800987 crossref_primary_10_1039_D0EE03756G crossref_primary_10_3389_fmicb_2022_947550 crossref_primary_10_1039_D1GC02094C crossref_primary_10_1016_j_biortech_2020_124177 crossref_primary_10_1016_j_scitotenv_2020_144477 crossref_primary_10_1016_j_rser_2021_111926 crossref_primary_10_1007_s11244_021_01503_3 crossref_primary_10_3389_fenrg_2018_00088 crossref_primary_10_3390_catal10060713 crossref_primary_10_1016_j_jcou_2021_101640 crossref_primary_10_1038_s41598_023_49246_3 crossref_primary_10_1016_j_bioelechem_2017_06_004 crossref_primary_10_3389_fmicb_2021_669218 crossref_primary_10_3389_fmicb_2022_913311 crossref_primary_10_1021_acsaem_8b02017 crossref_primary_10_1016_j_jece_2024_112535 crossref_primary_10_1016_j_bioelechem_2022_108140 crossref_primary_10_1016_j_scitotenv_2022_155793 crossref_primary_10_1021_acs_chemrev_0c00472 crossref_primary_10_1016_j_chemosphere_2023_140251 crossref_primary_10_1038_s41522_020_00151_x crossref_primary_10_1016_j_bej_2022_108745 crossref_primary_10_1016_j_biortech_2020_124289 crossref_primary_10_3390_fermentation6030092 crossref_primary_10_1016_j_biortech_2024_131380 crossref_primary_10_1039_C6EW00325G crossref_primary_10_1007_s00253_017_8421_3 crossref_primary_10_1016_j_cej_2019_122687 crossref_primary_10_1016_j_procbio_2020_11_017 crossref_primary_10_1007_s13762_021_03499_5 crossref_primary_10_1016_j_renene_2020_08_036 crossref_primary_10_1002_cssc_201701506 crossref_primary_10_1016_j_ijhydene_2023_11_055 crossref_primary_10_1016_j_jece_2024_114027 crossref_primary_10_1016_j_totert_2022_100023 crossref_primary_10_1039_D1RE00166C crossref_primary_10_1016_j_resconrec_2024_107827 crossref_primary_10_1016_j_jece_2024_112369 crossref_primary_10_1016_j_bioelechem_2018_03_015 crossref_primary_10_1016_j_watres_2023_120657 crossref_primary_10_1016_j_watres_2016_10_018 crossref_primary_10_1016_j_watres_2019_04_053 crossref_primary_10_1016_j_ijhydene_2024_01_210 crossref_primary_10_1016_j_chemosphere_2017_02_135 crossref_primary_10_1016_j_procbio_2020_11_005 crossref_primary_10_1016_j_cogsc_2019_01_005 crossref_primary_10_1016_j_ese_2023_100261 crossref_primary_10_1016_j_biteb_2019_100284 crossref_primary_10_20517_energymater_2023_60 crossref_primary_10_1016_j_nbt_2017_06_006 crossref_primary_10_1016_j_apenergy_2020_116310 crossref_primary_10_1007_s11356_021_18287_4 crossref_primary_10_1016_j_biortech_2022_127178 crossref_primary_10_1021_acssuschemeng_2c05724 crossref_primary_10_1016_j_ijhydene_2021_03_165 crossref_primary_10_1016_j_chemosphere_2021_132843 crossref_primary_10_1021_acs_energyfuels_2c04122 crossref_primary_10_1016_j_electacta_2017_03_209 crossref_primary_10_1039_C7RE00220C crossref_primary_10_1016_j_chemosphere_2021_132299 crossref_primary_10_1186_s13068_017_0943_5 crossref_primary_10_1016_j_watres_2018_10_092 crossref_primary_10_1016_j_electacta_2021_137853 crossref_primary_10_1016_j_jpowsour_2017_04_024 crossref_primary_10_1007_s11356_016_7838_z crossref_primary_10_1016_j_jcou_2019_11_008 crossref_primary_10_1016_j_jtice_2024_105748 crossref_primary_10_1016_j_bioelechem_2020_107686 crossref_primary_10_1016_j_bios_2019_111922 crossref_primary_10_1016_j_biortech_2018_10_031 crossref_primary_10_1016_j_isci_2021_102998 crossref_primary_10_1016_j_jece_2023_110467 crossref_primary_10_1016_j_chemosphere_2024_143430 crossref_primary_10_1016_j_biortech_2020_122863 crossref_primary_10_1039_C9EE02410G crossref_primary_10_3390_catal9020166 crossref_primary_10_1016_j_biortech_2018_02_058 crossref_primary_10_1016_j_biortech_2018_02_059 crossref_primary_10_1016_j_biotechadv_2024_108474 crossref_primary_10_1016_j_procbio_2020_12_021 crossref_primary_10_1039_C7GC01801K crossref_primary_10_1016_j_pecs_2019_100814 crossref_primary_10_1016_j_envpol_2020_115135 |
Cites_doi | 10.1021/es400341b 10.1007/s10800-014-0731-x 10.1016/j.elecom.2009.09.024 10.1128/AEM.02642-10 10.5194/essd-6-235-2014 10.1021/es9031985 10.1196/annals.1419.016 10.1002/bit.24446 10.1016/j.ijhydene.2015.07.049 10.1021/es902371e 10.1002/bit.260370907 10.1038/nrmicro2422 10.1016/j.electacta.2012.06.096 10.1016/j.jpowsour.2007.07.010 10.1039/C4TA03101F 10.1007/BF02936525 10.1126/science.1181637 10.1002/celc.201402123 10.1023/B:BILE.0000045661.03366.f2 10.1128/mBio.00103-10 10.1007/s10811-005-8701-7 10.4236/eng.2013.59088 10.1021/ie060242t 10.1016/j.biotechadv.2015.03.002 10.1039/C4CC10121A 10.1016/j.jcou.2015.04.001 10.1007/BF01023599 10.1007/s00253-012-4362-z 10.1371/journal.pone.0109935 10.1128/AEM.02401-12 10.1023/A:1026737000160 10.1016/j.rser.2009.10.003 10.1021/es034291y 10.1016/j.coche.2012.07.005 10.1016/j.tibtech.2010.11.006 10.1016/j.electacta.2009.11.086 10.1002/aic.14127 10.1002/bbb.3 10.1149/1.3456590 10.1021/es071739c 10.1016/j.copbio.2011.10.008 10.1039/C5EE03088A 10.4014/jmb.1304.04039 10.1016/j.copbio.2013.02.012 10.1016/j.biortech.2015.05.081 10.1021/es506149d 10.5006/1833 10.1039/C5FD00041F 10.1128/mBio.00103-10.Editor 10.2166/wst.2005.0493 10.1002/celc.201500530 10.1021/Es034291y |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2016 Environmental Science and Pollution Research is a copyright of Springer, 2016. Wageningen University & Research |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 – notice: Environmental Science and Pollution Research is a copyright of Springer, 2016. – notice: Wageningen University & Research |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7X8 7S9 L.6 QVL |
DOI | 10.1007/s11356-016-7196-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Database ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Health & Medical Collection Medical Database Science Database (subscription) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA MEDLINE - Academic Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1614-7499 |
EndPage | 22308 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_506660 4306570261 27436381 10_1007_s11356_016_7196_x |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: Vlaamse Instelling Voor Technologisch Onderzoek |
GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK ABRTQ C1K FR3 K9. L.- M7N P64 PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 7S9 L.6 - 02 0R 5 5A 5G 6XO 95 AAPBV ABEOS ACIPQ ACVWB BBAFP BR C EM HZ IPNFZ K6 KM QVL RIG UNUBA VR Z7S |
ID | FETCH-LOGICAL-c592t-f84a85f1d54dda3e70f052bb4bd992dcec7ec9a76d9148cd335b828d8c5b6cb53 |
IEDL.DBID | U2A |
ISSN | 0944-1344 1614-7499 |
IngestDate | Thu Jul 22 20:32:10 EDT 2021 Tue Aug 05 11:18:07 EDT 2025 Fri Jul 11 04:08:08 EDT 2025 Thu Jul 10 17:28:25 EDT 2025 Fri Jul 25 23:19:05 EDT 2025 Wed Feb 19 01:58:54 EST 2025 Thu Apr 24 22:56:12 EDT 2025 Tue Jul 01 03:05:54 EDT 2025 Fri Feb 21 02:34:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Gas diffusion electrode Microbial electrosynthesis Biocathode CO reduction Autotrophic bioproduction CO2 reduction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c592t-f84a85f1d54dda3e70f052bb4bd992dcec7ec9a76d9148cd335b828d8c5b6cb53 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1425-9588 |
PMID | 27436381 |
PQID | 1860882614 |
PQPubID | 54208 |
PageCount | 17 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_506660 proquest_miscellaneous_2000439228 proquest_miscellaneous_1846409564 proquest_miscellaneous_1826727438 proquest_journals_1860882614 pubmed_primary_27436381 crossref_primary_10_1007_s11356_016_7196_x crossref_citationtrail_10_1007_s11356_016_7196_x springer_journals_10_1007_s11356_016_7196_x |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Environmental science and pollution research international |
PublicationTitleAbbrev | Environ Sci Pollut Res |
PublicationTitleAlternate | Environ Sci Pollut Res Int |
PublicationYear | 2016 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Nevin, Woodard, Franks, Summers, Lovley (CR36) 2010; 1 Drake, Gößner, Daniel (CR10) 2008; 1125 Gabriel Acien Fernandez, Gonzalez-Lopez, Fernandez Sevilla, Molina Grima (CR15) 2012; 96 Modestra, Navaneeth, Venkata Mohan (CR32) 2015; 10 Pant, Van Bogaert, De Smet, Diels, Vanbroekhoven (CR38) 2010; 55 Rabaey, Rozendal (CR42) 2010; 8 Cassman, Liska (CR5) 2007; 1 Jourdin, Freguia, Donose, Chen, Wallace, Keller, Flexer (CR22) 2014; 2 Fast, Papoutsakis (CR12) 2012; 1 Ying, Al-mashhadani, Hanotu, Gilmour, Zimmerman (CR52) 2013; 2013 Sakai, Nakashimada, Yoshimoto, Watanabe, Okada, Nishio (CR43) 2004; 26 Ganigué, Puig, Batlle-Vilanova, Balaguer, Colprim (CR16) 2015; 51 HaoYu, Cheng, Scott, Logan (CR18) 2007; 171 Nevin, Hensley, Franks, Summers, Ou, Woodard, Snoeyenbos-West, Lovley (CR35) 2011; 77 Doucha, Straka, Lívanský (CR9) 2005; 17 Kopljar, Inan, Vindayer, Wagner, Klemm (CR24) 2014; 44 Stams, Plugge, De Bok, Van Houten, Lens, Dijkman, Weijma (CR44) 2005; 52 Zhang, Cheng, Pant, Bogaert, Logan (CR53) 2009; 11 Patil, Gildemyn, Pant, Zengler, Logan, Rabaey (CR41) 2015; 33 Zhang, Miyachi, Kurano (CR54) 2001; 23 Alvarez-Gallego, Dominguez-Benetton, Pant, Diels, Vanbroekhoven, Genné, Vermeiren (CR2) 2012; 82 Vega, Prieto, Elmore, Clausen, Gaddy (CR50) 1989; 20-21 LaBelle, Marshall, Gilbert, May (CR25) 2014; 9 CR40 Mahmood, Masheder, Harty (CR29) 1987; 17 Tracy, Jones, Fast, Indurthi, Papoutsakis (CR48) 2012; 23 Fan, Hongqiang, Liu, Fan, Hu, Liu (CR11) 2007; 41 Whipple, Finke, Kenis (CR51) 2010; 13 Hu, Rismani-yazdi, Gregory (CR20) 2013; 59 Agler, Wrenn, Zinder, Angenent (CR1) 2011; 29 Mohanakrishna, Seelam, Vanbroekhoven, Pant (CR33) 2015 Fornero, Rosenbaum, Cotta, Angenent (CR14) 2010; 44 Marshall, Ross, Fichot, Norman, May (CR30) 2012; 78 Su, Jiang, Li (CR46) 2013; 23 CR13 Steinbusch, Hamelers, Schaap, Kampman, Buisman (CR45) 2010; 44 Bajracharya, ter Heijne, Dominguez, Strik, Vanbroekhoven, Buisman, Pant, ter Heijne, Benetton, Vanbroekhoven, Buisman, Strik, Pant (CR3) 2015 Blanchet, Duquenne, Rafrafi, Etcheverry, Erable, Bergel (CR4) 2015; 8 Marshall, Ross, Fichot, Norman, May (CR31) 2013; 47 Zhang, Pant, Zhang, Liu, He, Logan (CR55) 2014; 1 Pasupuleti, Srikanth, Venkata Mohan, Pant (CR39) 2015; 40 Naik, Goud, Rout, Dalai (CR34) 2010; 14 Lee, Little (CR27) 2015 Hill (CR19) 2006; 45 Treybal (CR49) 1981 CR28 Jourdin, Lu, Flexer, Keller, Freguia (CR23) 2015 Talbot, Gortares, Lencki, de la Noüe (CR47) 1991; 37 Chu (CR7) 2009; 325 CR21 González-López, Acién Fernández, Fernández-Sevilla, Sánchez Fernández, Molina Grima (CR17) 2012; 109 Oh, Van Ginkel, Logan (CR37) 2003; 37 Cussler (CR8) 1997 Le Quéré, Peters, Andres, Andrew, Boden, Ciais, Friedlingstein, Houghton, Marland, Moriarty, Sitch, Tans, Arneth, Arvanitis, Bakker, Bopp, Canadell, Chini, Doney, Harper, Harris, House, Jain, Jones, Kato, Keeling, Klein Goldewijk, Körtzinger, Koven, Lefèvre, Maignan, Omar, Ono, Park, Pfeil, Poulter, Raupach, Regnier, Rödenbeck, Saito, Schwinger, Segschneider, Stocker, Takahashi, Tilbrook, van Heuven, Viovy, Wanninkhof, Wiltshire, Zaehle (CR26) 2014; 6 (CR6) 2006 SA Patil (7196_CR41) 2015; 33 CV González-López (7196_CR17) 2012; 109 L Jourdin (7196_CR22) 2014; 2 SN Naik (7196_CR34) 2010; 14 Y Fan (7196_CR11) 2007; 41 CW Marshall (7196_CR31) 2013; 47 J Doucha (7196_CR9) 2005; 17 7196_CR13 E HaoYu (7196_CR18) 2007; 171 CW Marshall (7196_CR30) 2012; 78 K Rabaey (7196_CR42) 2010; 8 MT Agler (7196_CR1) 2011; 29 GA Hill (7196_CR19) 2006; 45 S Sakai (7196_CR43) 2004; 26 S Chu (7196_CR7) 2009; 325 CAST (7196_CR6) 2006 KP Nevin (7196_CR35) 2011; 77 C Quéré Le (7196_CR26) 2014; 6 MN Mahmood (7196_CR29) 1987; 17 K Ying (7196_CR52) 2013; 2013 KG Cassman (7196_CR5) 2007; 1 L Jourdin (7196_CR23) 2015 EV LaBelle (7196_CR25) 2014; 9 KP Nevin (7196_CR36) 2010; 1 AG Fast (7196_CR12) 2012; 1 7196_CR21 K Zhang (7196_CR54) 2001; 23 Y Alvarez-Gallego (7196_CR2) 2012; 82 KJJ Steinbusch (7196_CR45) 2010; 44 JL Vega (7196_CR50) 1989; 20-21 7196_CR28 BP Tracy (7196_CR48) 2012; 23 HL Drake (7196_CR10) 2008; 1125 S-E Oh (7196_CR37) 2003; 37 RE Treybal (7196_CR49) 1981 EL Cussler (7196_CR8) 1997 F Gabriel Acien Fernandez (7196_CR15) 2012; 96 EM Blanchet (7196_CR4) 2015; 8 P Hu (7196_CR20) 2013; 59 X Zhang (7196_CR55) 2014; 1 D Kopljar (7196_CR24) 2014; 44 AJM Stams (7196_CR44) 2005; 52 D Pant (7196_CR38) 2010; 55 JJ Fornero (7196_CR14) 2010; 44 SB Pasupuleti (7196_CR39) 2015; 40 7196_CR40 DT Whipple (7196_CR51) 2010; 13 R Ganigué (7196_CR16) 2015; 51 S Bajracharya (7196_CR3) 2015 M Su (7196_CR46) 2013; 23 F Zhang (7196_CR53) 2009; 11 JA Modestra (7196_CR32) 2015; 10 J Lee (7196_CR27) 2015 P Talbot (7196_CR47) 1991; 37 G Mohanakrishna (7196_CR33) 2015 20844557 - Nat Rev Microbiol. 2010 Oct;8(10):706-16 23465755 - Curr Opin Biotechnol. 2013 Jun;24(3):385-90 20178380 - Environ Sci Technol. 2010 Apr 1;44(7):2728-34 20714445 - MBio. 2010 May 25;1(2):null 26399888 - Faraday Discuss. 2015;183:445-62 26066971 - Bioresour Technol. 2015 Nov;195:14-24 25333313 - PLoS One. 2014 Oct 15;9(10):e109935 25765230 - Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):736-44 22079352 - Curr Opin Biotechnol. 2012 Jun;23(3):364-81 16187442 - Water Sci Technol. 2005;52(1-2):13-20 18186352 - Environ Sci Technol. 2007 Dec 1;41(23):8154-8 18600683 - Biotechnol Bioeng. 1991 Apr 15;37(9):834-42 25608945 - Chem Commun (Camb). 2015 Feb 21;51(15):3235-8 23727797 - J Microbiol Biotechnol. 2013 Aug;23(8):1140-6 21378039 - Appl Environ Microbiol. 2011 May;77(9):2882-6 14655706 - Environ Sci Technol. 2003 Nov 15;37(22):5186-90 18378590 - Ann N Y Acad Sci. 2008 Mar;1125:100-28 19779157 - Science. 2009 Sep 25;325(5948):1599 22252403 - Biotechnol Bioeng. 2012 Jul;109(7):1637-50 26079858 - Environ Sci Technol. 2015 Jul 21;49(14):8833-43 15604806 - Biotechnol Lett. 2004 Oct;26(20):1607-12 22923096 - Appl Microbiol Biotechnol. 2012 Nov;96(3):577-86 23676111 - Environ Sci Technol. 2013 Jun 4;47(11):6023-9 19950965 - Environ Sci Technol. 2010 Jan 1;44(1):513-7 21190748 - Trends Biotechnol. 2011 Feb;29(2):70-8 23001672 - Appl Environ Microbiol. 2012 Dec;78(23):8412-20 |
References_xml | – volume: 47 start-page: 6023 year: 2013 end-page: 6029 ident: CR31 article-title: Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes publication-title: Environ Sci Technol doi: 10.1021/es400341b – year: 2015 ident: CR23 article-title: Biologically-induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide publication-title: ChemElectroChem – volume: 44 start-page: 1107 year: 2014 end-page: 1116 ident: CR24 article-title: Electrochemical reduction of CO to formate at high current density using gas diffusion electrodes publication-title: J Appl Electrochem doi: 10.1007/s10800-014-0731-x – volume: 11 start-page: 2177 year: 2009 end-page: 2179 ident: CR53 article-title: Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell publication-title: Electrochem Commun doi: 10.1016/j.elecom.2009.09.024 – volume: 77 start-page: 2882 year: 2011 end-page: 2886 ident: CR35 article-title: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02642-10 – year: 2006 ident: CR6 publication-title: Convergence of agriculture and energy : implications for research and policy, CAST commentary, QTA2006-3 – volume: 6 start-page: 235 year: 2014 end-page: 263 ident: CR26 article-title: Global carbon budget 2013 publication-title: Earth Syst Sci Data doi: 10.5194/essd-6-235-2014 – volume: 44 start-page: 2728 year: 2010 end-page: 2734 ident: CR14 article-title: Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity publication-title: Environ Sci Technol doi: 10.1021/es9031985 – volume: 1125 start-page: 100 year: 2008 ident: CR10 article-title: Old acetogens, new light publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1419.016 – volume: 109 start-page: 1637 year: 2012 end-page: 1650 ident: CR17 article-title: Development of a process for efficient use of CO from flue gases in the production of photosynthetic microorganisms publication-title: Biotechnol Bioeng doi: 10.1002/bit.24446 – volume: 40 start-page: 12424 year: 2015 end-page: 12435 ident: CR39 article-title: Continuous mode operation of microbial fuel cell (MFC) stack with dual gas diffusion cathode design for the treatment of dark fermentation effluent publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.07.049 – year: 2015 ident: CR3 article-title: CO reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode publication-title: Bioresour Technol – volume: 44 start-page: 513 year: 2010 end-page: 517 ident: CR45 article-title: Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures publication-title: Environ Sci Technol doi: 10.1021/es902371e – volume: 37 start-page: 834 year: 1991 end-page: 842 ident: CR47 article-title: Absorption of CO in algal mass culture systems: a different characterization approach publication-title: Biotechnol Bioeng doi: 10.1002/bit.260370907 – volume: 8 start-page: 706 year: 2010 end-page: 716 ident: CR42 article-title: Microbial electrosynthesis—revisiting the electrical route for microbial production publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2422 – volume: 82 start-page: 415 year: 2012 end-page: 426 ident: CR2 article-title: Development of gas diffusion electrodes for cogeneration of chemicals and electricity publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.06.096 – year: 2015 ident: CR27 article-title: Electrochemical and chemical complications resulting from yeast extract addition to stimulate microbial growth publication-title: Corrosion – volume: 52 start-page: 13 year: 2005 end-page: 20 ident: CR44 article-title: Metabolic interactions in methanogenic and sulfate-reducing bioreactors publication-title: Water Sci Technol – ident: CR21 – volume: 171 start-page: 275 year: 2007 end-page: 281 ident: CR18 article-title: Microbial fuel cell performance with non-Pt cathode catalysts publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.07.010 – volume: 2 start-page: 13093 year: 2014 end-page: 13102 ident: CR22 article-title: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis publication-title: J Mater Chem A doi: 10.1039/C4TA03101F – volume: 20-21 start-page: 781 year: 1989 end-page: 797 ident: CR50 article-title: The biological production of ethanol from synthesis gas publication-title: Appl Biochem Biotechnol doi: 10.1007/BF02936525 – volume: 325 start-page: 1599 year: 2009 ident: CR7 article-title: Carbon capture and sequestration publication-title: Science doi: 10.1126/science.1181637 – volume: 1 start-page: 1859 year: 2014 end-page: 1866 ident: CR55 article-title: Long-term performance of chemically and physically modified activated carbons in air cathodes of microbial fuel cells publication-title: ChemElectroChem doi: 10.1002/celc.201402123 – volume: 26 start-page: 1607 year: 2004 end-page: 1612 ident: CR43 article-title: Ethanol production from H and CO by a newly isolated thermophilic bacterium, sp. HUC22-1 publication-title: Biotechnol Lett doi: 10.1023/B:BILE.0000045661.03366.f2 – volume: 1 start-page: e00103 year: 2010 end-page: e00110 ident: CR36 article-title: Microbial electrosynthesis : feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic publication-title: MBio doi: 10.1128/mBio.00103-10 – volume: 17 start-page: 403 year: 2005 end-page: 412 ident: CR9 article-title: Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor publication-title: J Appl Phycol doi: 10.1007/s10811-005-8701-7 – year: 1997 ident: CR8 publication-title: Diffusion: mass transfer in fluid systems – volume: 2013 start-page: 735 year: 2013 end-page: 743 ident: CR52 article-title: Enhanced mass transfer in microbubble driven airlift bioreactor for microalgal culture publication-title: Engineering doi: 10.4236/eng.2013.59088 – volume: 45 start-page: 5796 year: 2006 end-page: 5800 ident: CR19 article-title: Measurement of overall volumetric mass transfer coefficients for carbon dioxide in a well-mixed reactor using a pH probe publication-title: Ind Eng Chem Res doi: 10.1021/ie060242t – volume: 33 start-page: 736 year: 2015 end-page: 744 ident: CR41 article-title: A logical data representation framework for electricity-driven bioproduction processes publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2015.03.002 – volume: 51 start-page: 3235 year: 2015 end-page: 3238 ident: CR16 article-title: Microbial electrosynthesis of butyrate from carbon dioxide publication-title: Chem Commun doi: 10.1039/C4CC10121A – volume: 10 start-page: 78 year: 2015 end-page: 87 ident: CR32 article-title: Bio-electrocatalytic reduction of CO : enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis publication-title: J CO2 Util doi: 10.1016/j.jcou.2015.04.001 – volume: 17 start-page: 1159 year: 1987 end-page: 1170 ident: CR29 article-title: Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes publication-title: J Appl Electrochem doi: 10.1007/BF01023599 – year: 1981 ident: CR49 publication-title: Mass-transfer operations – volume: 96 start-page: 577 year: 2012 end-page: 586 ident: CR15 article-title: Conversion of CO into biomass by microalgae: how realistic a contribution may it be to significant CO removal? publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4362-z – volume: 9 start-page: e109935 year: 2014 ident: CR25 article-title: Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome publication-title: PLoS One doi: 10.1371/journal.pone.0109935 – volume: 78 start-page: 8412 year: 2012 end-page: 8420 ident: CR30 article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02401-12 – volume: 23 start-page: 21 year: 2001 end-page: 26 ident: CR54 article-title: Photosynthetic performance of a cyanobacterium in a vertical flat-plate photobioreactor for outdoor microalgal production and fixation of CO publication-title: Biotechnol Lett doi: 10.1023/A:1026737000160 – ident: CR40 – year: 2015 ident: CR33 article-title: An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction publication-title: Faraday Discuss – volume: 14 start-page: 578 year: 2010 end-page: 597 ident: CR34 article-title: Production of first and second generation biofuels: a comprehensive review publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2009.10.003 – volume: 37 start-page: 5186 year: 2003 end-page: 5190 ident: CR37 article-title: The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production publication-title: Environ Sci Technol doi: 10.1021/es034291y – volume: 1 start-page: 380 year: 2012 end-page: 395 ident: CR12 article-title: Stoichiometric and energetic analyses of non-photosynthetic CO -fixation pathways to support synthetic biology strategies for production of fuels and chemicals publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2012.07.005 – ident: CR13 – volume: 29 start-page: 70 year: 2011 end-page: 78 ident: CR1 article-title: Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2010.11.006 – volume: 55 start-page: 7710 year: 2010 end-page: 7716 ident: CR38 article-title: Use of novel permeable membrane and air cathodes in acetate microbial fuel cells publication-title: Electrochim Acta doi: 10.1016/j.electacta.2009.11.086 – volume: 59 start-page: 3176 year: 2013 end-page: 3183 ident: CR20 article-title: Anaerobic CO fixation by the acetogenic bacterium Moorella thermoacetica publication-title: AICHE J doi: 10.1002/aic.14127 – volume: 1 start-page: 18 year: 2007 end-page: 23 ident: CR5 article-title: Food and fuel for all: realistic or foolish? publication-title: Biofuels, Bioproducts and Biorefining doi: 10.1002/bbb.3 – volume: 13 start-page: B109 year: 2010 ident: CR51 article-title: Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH publication-title: Electrochem Solid-State Lett doi: 10.1149/1.3456590 – volume: 41 start-page: 8154 year: 2007 end-page: 8158 ident: CR11 article-title: Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms publication-title: Environ Sci Technol doi: 10.1021/es071739c – ident: CR28 – volume: 23 start-page: 364 year: 2012 end-page: 381 ident: CR48 article-title: Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2011.10.008 – volume: 8 start-page: 3731 year: 2015 end-page: 3744 ident: CR4 article-title: Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO reduction publication-title: Energy Environ Sci doi: 10.1039/C5EE03088A – volume: 23 start-page: 1140 year: 2013 end-page: 1146 ident: CR46 article-title: Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1304.04039 – volume: 82 start-page: 415 year: 2012 ident: 7196_CR2 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.06.096 – volume: 23 start-page: 21 year: 2001 ident: 7196_CR54 publication-title: Biotechnol Lett doi: 10.1023/A:1026737000160 – volume: 14 start-page: 578 year: 2010 ident: 7196_CR34 publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2009.10.003 – volume: 20-21 start-page: 781 year: 1989 ident: 7196_CR50 publication-title: Appl Biochem Biotechnol doi: 10.1007/BF02936525 – volume: 44 start-page: 513 year: 2010 ident: 7196_CR45 publication-title: Environ Sci Technol doi: 10.1021/es902371e – volume: 55 start-page: 7710 year: 2010 ident: 7196_CR38 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2009.11.086 – volume: 325 start-page: 1599 year: 2009 ident: 7196_CR7 publication-title: Science doi: 10.1126/science.1181637 – volume: 77 start-page: 2882 year: 2011 ident: 7196_CR35 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02642-10 – ident: 7196_CR28 doi: 10.1016/j.copbio.2013.02.012 – year: 2015 ident: 7196_CR3 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.05.081 – volume: 59 start-page: 3176 year: 2013 ident: 7196_CR20 publication-title: AICHE J doi: 10.1002/aic.14127 – volume: 23 start-page: 364 year: 2012 ident: 7196_CR48 publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2011.10.008 – volume: 171 start-page: 275 year: 2007 ident: 7196_CR18 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.07.010 – ident: 7196_CR21 – volume: 6 start-page: 235 year: 2014 ident: 7196_CR26 publication-title: Earth Syst Sci Data doi: 10.5194/essd-6-235-2014 – volume: 47 start-page: 6023 year: 2013 ident: 7196_CR31 publication-title: Environ Sci Technol doi: 10.1021/es400341b – volume: 40 start-page: 12424 year: 2015 ident: 7196_CR39 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.07.049 – volume: 11 start-page: 2177 year: 2009 ident: 7196_CR53 publication-title: Electrochem Commun doi: 10.1016/j.elecom.2009.09.024 – volume: 1 start-page: 18 year: 2007 ident: 7196_CR5 publication-title: Biofuels, Bioproducts and Biorefining doi: 10.1002/bbb.3 – volume: 2013 start-page: 735 year: 2013 ident: 7196_CR52 publication-title: Engineering doi: 10.4236/eng.2013.59088 – volume: 2 start-page: 13093 year: 2014 ident: 7196_CR22 publication-title: J Mater Chem A doi: 10.1039/C4TA03101F – volume: 8 start-page: 3731 year: 2015 ident: 7196_CR4 publication-title: Energy Environ Sci doi: 10.1039/C5EE03088A – volume: 51 start-page: 3235 year: 2015 ident: 7196_CR16 publication-title: Chem Commun doi: 10.1039/C4CC10121A – ident: 7196_CR40 doi: 10.1021/es506149d – volume: 1125 start-page: 100 year: 2008 ident: 7196_CR10 publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1419.016 – volume: 41 start-page: 8154 year: 2007 ident: 7196_CR11 publication-title: Environ Sci Technol doi: 10.1021/es071739c – volume: 33 start-page: 736 year: 2015 ident: 7196_CR41 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2015.03.002 – volume-title: Convergence of agriculture and energy : implications for research and policy, CAST commentary, QTA2006-3 year: 2006 ident: 7196_CR6 – volume: 17 start-page: 403 year: 2005 ident: 7196_CR9 publication-title: J Appl Phycol doi: 10.1007/s10811-005-8701-7 – volume: 37 start-page: 834 year: 1991 ident: 7196_CR47 publication-title: Biotechnol Bioeng doi: 10.1002/bit.260370907 – volume: 44 start-page: 2728 year: 2010 ident: 7196_CR14 publication-title: Environ Sci Technol doi: 10.1021/es9031985 – year: 2015 ident: 7196_CR27 publication-title: Corrosion doi: 10.5006/1833 – year: 2015 ident: 7196_CR33 publication-title: Faraday Discuss doi: 10.1039/C5FD00041F – volume: 78 start-page: 8412 year: 2012 ident: 7196_CR30 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02401-12 – volume: 26 start-page: 1607 year: 2004 ident: 7196_CR43 publication-title: Biotechnol Lett doi: 10.1023/B:BILE.0000045661.03366.f2 – volume: 44 start-page: 1107 year: 2014 ident: 7196_CR24 publication-title: J Appl Electrochem doi: 10.1007/s10800-014-0731-x – volume: 1 start-page: e00103 year: 2010 ident: 7196_CR36 publication-title: MBio doi: 10.1128/mBio.00103-10.Editor – volume: 8 start-page: 706 year: 2010 ident: 7196_CR42 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2422 – volume-title: Diffusion: mass transfer in fluid systems year: 1997 ident: 7196_CR8 – volume: 9 start-page: e109935 year: 2014 ident: 7196_CR25 publication-title: PLoS One doi: 10.1371/journal.pone.0109935 – volume: 29 start-page: 70 year: 2011 ident: 7196_CR1 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2010.11.006 – volume: 52 start-page: 13 year: 2005 ident: 7196_CR44 publication-title: Water Sci Technol doi: 10.2166/wst.2005.0493 – year: 2015 ident: 7196_CR23 publication-title: ChemElectroChem doi: 10.1002/celc.201500530 – volume: 1 start-page: 1859 year: 2014 ident: 7196_CR55 publication-title: ChemElectroChem doi: 10.1002/celc.201402123 – volume: 13 start-page: B109 year: 2010 ident: 7196_CR51 publication-title: Electrochem Solid-State Lett doi: 10.1149/1.3456590 – volume: 45 start-page: 5796 year: 2006 ident: 7196_CR19 publication-title: Ind Eng Chem Res doi: 10.1021/ie060242t – volume: 17 start-page: 1159 year: 1987 ident: 7196_CR29 publication-title: J Appl Electrochem doi: 10.1007/BF01023599 – volume: 96 start-page: 577 year: 2012 ident: 7196_CR15 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4362-z – volume-title: Mass-transfer operations year: 1981 ident: 7196_CR49 – ident: 7196_CR13 – volume: 109 start-page: 1637 year: 2012 ident: 7196_CR17 publication-title: Biotechnol Bioeng doi: 10.1002/bit.24446 – volume: 1 start-page: 380 year: 2012 ident: 7196_CR12 publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2012.07.005 – volume: 10 start-page: 78 year: 2015 ident: 7196_CR32 publication-title: J CO2 Util doi: 10.1016/j.jcou.2015.04.001 – volume: 37 start-page: 5186 year: 2003 ident: 7196_CR37 publication-title: Environ Sci Technol doi: 10.1021/Es034291y – volume: 23 start-page: 1140 year: 2013 ident: 7196_CR46 publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1304.04039 – reference: 23001672 - Appl Environ Microbiol. 2012 Dec;78(23):8412-20 – reference: 25765230 - Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):736-44 – reference: 26399888 - Faraday Discuss. 2015;183:445-62 – reference: 25608945 - Chem Commun (Camb). 2015 Feb 21;51(15):3235-8 – reference: 23727797 - J Microbiol Biotechnol. 2013 Aug;23(8):1140-6 – reference: 21190748 - Trends Biotechnol. 2011 Feb;29(2):70-8 – reference: 20714445 - MBio. 2010 May 25;1(2):null – reference: 15604806 - Biotechnol Lett. 2004 Oct;26(20):1607-12 – reference: 19779157 - Science. 2009 Sep 25;325(5948):1599 – reference: 26066971 - Bioresour Technol. 2015 Nov;195:14-24 – reference: 18378590 - Ann N Y Acad Sci. 2008 Mar;1125:100-28 – reference: 23465755 - Curr Opin Biotechnol. 2013 Jun;24(3):385-90 – reference: 18186352 - Environ Sci Technol. 2007 Dec 1;41(23):8154-8 – reference: 14655706 - Environ Sci Technol. 2003 Nov 15;37(22):5186-90 – reference: 16187442 - Water Sci Technol. 2005;52(1-2):13-20 – reference: 21378039 - Appl Environ Microbiol. 2011 May;77(9):2882-6 – reference: 26079858 - Environ Sci Technol. 2015 Jul 21;49(14):8833-43 – reference: 25333313 - PLoS One. 2014 Oct 15;9(10):e109935 – reference: 22923096 - Appl Microbiol Biotechnol. 2012 Nov;96(3):577-86 – reference: 22252403 - Biotechnol Bioeng. 2012 Jul;109(7):1637-50 – reference: 22079352 - Curr Opin Biotechnol. 2012 Jun;23(3):364-81 – reference: 18600683 - Biotechnol Bioeng. 1991 Apr 15;37(9):834-42 – reference: 20844557 - Nat Rev Microbiol. 2010 Oct;8(10):706-16 – reference: 19950965 - Environ Sci Technol. 2010 Jan 1;44(1):513-7 – reference: 23676111 - Environ Sci Technol. 2013 Jun 4;47(11):6023-9 – reference: 20178380 - Environ Sci Technol. 2010 Apr 1;44(7):2728-34 |
SSID | ssj0020927 |
Score | 2.504441 |
Snippet | Microbial catalysis of carbon dioxide (CO
2
) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial... Microbial catalysis of carbon dioxide (CO ) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis... Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis... Microbial catalysis of carbon dioxide (CO sub(2)) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial... Microbial catalysis of carbon dioxide (CO₂) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis... |
SourceID | wageningen proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22292 |
SubjectTerms | acetates Acetates - chemistry Activated carbon Alternative energy sources Anaerobiosis Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Autotrophic bioproduction bacteria Bacteria - classification Bacteria - metabolism Biocatalysts Biocathode biocathodes Bioelectric Energy Sources - microbiology Biomass Bioreactors butyrates Carbon Carbon dioxide Carbon Dioxide - chemistry Carbon sources Catalysis catalytic activity Chemicals Climate change CO reduction Conservation of Natural Resources Earth and Environmental Science Ecotoxicology Electric rates Electrodes Electrolytes electrons Environment Environmental Chemistry Environmental Health Environmental Pollutants Environmental science Ethanol Flue gas Gas diffusion electrode Gases Hydrogen Hydrogen - chemistry hydrophobicity inoculum Mass transfer Microbial electrosynthesis polytetrafluoroethylene Renewable resources Sewage - microbiology silver silver chloride Sludge Studies Technoeconomic Perspectives on Sustainable CO2 Capture and Utilization Waste Water Technology Water Management Water Pollution Control |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXMoB0UJhoUVG4gSySPxI4hOqUKuKQ09UWk6WX0GRitOud9Xl3-PJOptFiD1FkR9xPDP2jMfzDUIfWss9dXVFbC0c4bYUpBGtT6-ScV8IXbgB7fO6urrh3-Zing_cYr5WOa6Jw0Ltegtn5J_LpgJtMO0mX-7uCWSNAu9qTqHxGD0B6DK40lXPJ4OrkJuUrZJzUjLOR6_mEDpXMgG2dEXqxIRk_fe-9I-yueMofYoOH5KshyH4aWczunyOnmUtEp9vyH6EHvlwjE4upqC1VJilNr5AP84nLzXuW_xTRwyJUVZwUoZN1wN2a-887gL-1Q3ITKl9TpATf4ekI8YuYohEwVYvTGrkun7dOf8S3VxefP96RXJKBWKFpEvSNlwnWpROcOc083XRFoIaw42Tkjrrbe2t1HXlZLKTrGNMmGSTucYKU1kj2Ak6CH3wrxFu2kI31stGVGmHa5mhNpl2WpYQ6uo9m6FinFBlM944pL24VRNSMtBAwR0zoIFaz9DHbZO7DdjGvsqnI5VUlruoJi6Zoffb4iQx4AbRwfcrqEPB_cxZs68OrzhgNO7phw5uVElp6ufVhku2o4bu08pWztCnkW12Bvn_X2ITZ6kAyaSiAvzvfKKnHlYLFW7hkb4XlQDjs3izfyLeokMKbD7ET56ig-Vi5c-SIrU07wZp-QNclh0J priority: 102 providerName: ProQuest |
Title | Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide |
URI | https://link.springer.com/article/10.1007/s11356-016-7196-x https://www.ncbi.nlm.nih.gov/pubmed/27436381 https://www.proquest.com/docview/1860882614 https://www.proquest.com/docview/1826727438 https://www.proquest.com/docview/1846409564 https://www.proquest.com/docview/2000439228 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F506660 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1da9swUGztS_cwuo9uabugwZ42DLY-bOsxK2nLBmWMBdInYX14GFp7RAnt_n3vHDvO2Bboi4WRdJJ9d9KdTndHyIfSCs9clkY2ky4SNpFRLksPr4oLH8sidm20z6v0cia-zOW88-MO_W333iTZrtSDs1vCJWq_aZQB2UQgOO5LVN2BiGdsstGyYrXO06qEiBIuRG_K_BeIPzejvyTMLevoM3JwBwxetx5PWzvQ-SF53omOdLLG9QvyxNcvydF08FSDyo5VwytyPRlM07Qp6c8iUMyGssLjMWqqBgO2Ns7Tqqa3VRuOCfp3WXHC7xoEw1AFiu4n1BYLA51c1dxXzr8ms_Ppj7PLqMujEFmp2DIqc1EAAhInhXMF91lcxpIZI4xTijnrbeatKrLUKVCOrONcGlDEXG6lSa2R_Ijs1U3t3xKal3GRW69ymcK2VnLDLOhzhUrQv9V7PiJx_0O17YKMY66LGz2ER0YcaLxYhjjQ9yPycdPl1zrCxq7Gpz2WdMdsQcPgqCiAoDEi7zfVwCZo-yhq36ywDUObs-D5rjYiFRiYcQcc1tpOFWMA582aSjazRvCwnCUj8qknm61J_v-T-EBZusYMUkFj0O_uGE_frRa6vsECxgtaosYZHz9qjBNywJDqWx_KU7K3XKz8OxCmlmZMnmbzDJ75WTIm-5OL669TKD9Pr759H7eM9QAjWh7- |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7YFyQLwKWwoYCS6giMSPJD4gVGCrLS0rhFqpnExiOyhSm5TNrnb7p_iNzOSxWYTYW09R5Eccz3g84_HMR8jLzAjHbBR6JpLWEyaQXiwzB6-KC-fLxLd1ts9JOD4Tn8_l-Rb53cXC4LXKTibWgtqWBs_I3wZxiNog7Cbvr355iBqF3tUOQqNhi2N3vQCTrXp39Ano-4qxw9Hpx7HXogp4Rio287JYJDCcwEphbcJd5Ge-ZGkqUqsUs8aZyBmVRKFVYCoYy7lMwSyxsZFpaFJEiQCRvy04mDIDsv1hNPn6bWXi-aoBiVVCeAEXovOj1sF6AZdovYdeBGzvLf_eCf9Rb9dcs7fJzgKkS1GHW61tf4d3yZ1Wb6UHDaPdI1uuuE92R32YHBS2cqJ6QL4f9H5xWmb0Z1JRhGKZ49kcTfMSs8WW1tG8oJd5nQsK2reQPNV1AVpplVcUY1-oSaYpNLJ5ucyte0jObmS6d8mgKAv3mNA485PYOBXLEPbUjKfMgDGZqACDa53jQ-J3E6pNm-EcgTYudJ-bGWmg8VYb0kAvh-T1qslVk95jU-X9jkq6XemV7vlySF6simGNouMlKVw5xzoMHd6Cx5vqiFBgVsgN_bDacasYg34eNVyyGjV2D7I0GJI3HdusDfL_v8R7ztIFwldVGjOOt2eIejGf6uICH_C9Sks0d_29zRPxnNwan3450SdHk-MnZIchy9fRm_tkMJvO3VNQ42bps3btUPLjppfrHxlJXRg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIqFyQLwKWwoYCS4gq4kfSXxAqKJdtRRVHKi0nExiOyhSSdrNrnb71_h1zOSxWYTYW09R5Ecce2Y84_HMR8ib3ErPXRwxGyvHpA0VS1Tu4VUL6QOVBq7J9nkenVzIzxM12SK_-1gYvFbZy8RGULvK4hn5QZhEqA3CbnKQd9civh6NP15dM0SQQk9rD6fRksiZv1mA-VZ_OD2CtX7L-fj426cT1iEMMKs0n7E8kSkMLXRKOpcKHwd5oHiWycxpzZ31NvZWp3HkNJgN1gmhMjBRXGJVFtkMESNA_N-JhQqRx-LJYOwFuoWL1VKyUEjZe1SbsL1QKLTjIxYDA7Dl33viP4rumpP2HtlZgJwpm8CrtY1w_IDc7zRYetiS3EOy5ctHZPd4CJiDwk5i1I_J98PBQ06rnP5Ma4qgLHM8paNZUWHe2Mp5WpT0V9FkhYL2HThPfVOCfloXNcUoGGrTaQaNXFEtC-efkItbmexdsl1WpX9GaJIHaWK9TlQEu2suMm7BrEx1iGG23osRCfoJNbbLdY6QG5dmyNKMa2DwfhuugVmOyLtVk6s20cemyvv9KpmO52szUOiIvF4VA7eiCyYtfTXHOhxd31Ikm-rISGJ-yA398MaFqzmHfp62VLIaNXYPUjUckfc92awN8v-_JAbKMiUCWdUGc493p4lmMZ-a8hIf8L3aKDR8g73NE_GK3AUmNV9Oz8-ekx2OFN-Ece6T7dl07l-APjfLXjaMQ8mP2-bUP1axX-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+gas+diffusion+biocathode+in+microbial+electrosynthesis+from+carbon+dioxide&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Bajracharya%2C+Suman&rft.au=Vanbroekhoven%2C+Karolien&rft.au=Buisman%2C+Cees+J.N.&rft.au=Pant%2C+Deepak&rft.date=2016-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=23&rft.issue=22&rft.spage=22292&rft.epage=22308&rft_id=info:doi/10.1007%2Fs11356-016-7196-x&rft.externalDocID=10_1007_s11356_016_7196_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon |