High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years
The variability of climate has profoundly impacted a wide range of macroecological processes in the Late Quaternary. Our understanding of these has greatly benefited from palaeoclimate simulations, however, high-quality reconstructions of ecologically relevant climatic variables have thus far been l...
Saved in:
Published in | Scientific data Vol. 7; no. 1; p. 236 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.07.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2052-4463 2052-4463 |
DOI | 10.1038/s41597-020-0552-1 |
Cover
Loading…
Abstract | The variability of climate has profoundly impacted a wide range of macroecological processes in the Late Quaternary. Our understanding of these has greatly benefited from palaeoclimate simulations, however, high-quality reconstructions of ecologically relevant climatic variables have thus far been limited to a few selected time periods. Here, we present a 0.5° resolution bias-corrected dataset of global monthly temperature, precipitation, cloud cover, relative humidity and wind speed, 17 bioclimatic variables, annual net primary productivity, leaf area index and biomes, covering the last 120,000 years at a temporal resolution of 1,000–2,000 years. We combined medium-resolution HadCM3 climate simulations of the last 120,000 years with high-resolution HadAM3H simulations of the last 21,000 years, and modern-era instrumental data. This allows for the temporal variability of small-scale features whilst ensuring consistency with observed climate. Our data make it possible to perform continuous-time analyses at a high spatial resolution for a wide range of climatic and ecological applications - such as habitat and species distribution modelling, dispersal and extinction processes, biogeography and bioanthropology.
Measurement(s)
temperature • precipitation process • vegetation layer • atmospheric wind speed • cloud • humidity
Technology Type(s)
computational modeling technique
Factor Type(s)
geographic location • temporal interval
Sample Characteristic - Environment
climate system
Sample Characteristic - Location
Earth (planet)
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.12436484 |
---|---|
AbstractList | The variability of climate has profoundly impacted a wide range of macroecological processes in the Late Quaternary. Our understanding of these has greatly benefited from palaeoclimate simulations, however, high-quality reconstructions of ecologically relevant climatic variables have thus far been limited to a few selected time periods. Here, we present a 0.5° resolution bias-corrected dataset of global monthly temperature, precipitation, cloud cover, relative humidity and wind speed, 17 bioclimatic variables, annual net primary productivity, leaf area index and biomes, covering the last 120,000 years at a temporal resolution of 1,000–2,000 years. We combined medium-resolution HadCM3 climate simulations of the last 120,000 years with high-resolution HadAM3H simulations of the last 21,000 years, and modern-era instrumental data. This allows for the temporal variability of small-scale features whilst ensuring consistency with observed climate. Our data make it possible to perform continuous-time analyses at a high spatial resolution for a wide range of climatic and ecological applications - such as habitat and species distribution modelling, dispersal and extinction processes, biogeography and bioanthropology.Measurement(s)temperature • precipitation process • vegetation layer • atmospheric wind speed • cloud • humidityTechnology Type(s)computational modeling techniqueFactor Type(s)geographic location • temporal intervalSample Characteristic - Environmentclimate systemSample Characteristic - LocationEarth (planet)Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12436484 The variability of climate has profoundly impacted a wide range of macroecological processes in the Late Quaternary. Our understanding of these has greatly benefited from palaeoclimate simulations, however, high-quality reconstructions of ecologically relevant climatic variables have thus far been limited to a few selected time periods. Here, we present a 0.5° resolution bias-corrected dataset of global monthly temperature, precipitation, cloud cover, relative humidity and wind speed, 17 bioclimatic variables, annual net primary productivity, leaf area index and biomes, covering the last 120,000 years at a temporal resolution of 1,000–2,000 years. We combined medium-resolution HadCM3 climate simulations of the last 120,000 years with high-resolution HadAM3H simulations of the last 21,000 years, and modern-era instrumental data. This allows for the temporal variability of small-scale features whilst ensuring consistency with observed climate. Our data make it possible to perform continuous-time analyses at a high spatial resolution for a wide range of climatic and ecological applications - such as habitat and species distribution modelling, dispersal and extinction processes, biogeography and bioanthropology.Measurement(s)temperature • precipitation process • vegetation layer • atmospheric wind speed • cloud • humidityTechnology Type(s)computational modeling techniqueFactor Type(s)geographic location • temporal intervalSample Characteristic - Environmentclimate systemSample Characteristic - LocationEarth (planet)Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12436484 The variability of climate has profoundly impacted a wide range of macroecological processes in the Late Quaternary. Our understanding of these has greatly benefited from palaeoclimate simulations, however, high-quality reconstructions of ecologically relevant climatic variables have thus far been limited to a few selected time periods. Here, we present a 0.5° resolution bias-corrected dataset of global monthly temperature, precipitation, cloud cover, relative humidity and wind speed, 17 bioclimatic variables, annual net primary productivity, leaf area index and biomes, covering the last 120,000 years at a temporal resolution of 1,000–2,000 years. We combined medium-resolution HadCM3 climate simulations of the last 120,000 years with high-resolution HadAM3H simulations of the last 21,000 years, and modern-era instrumental data. This allows for the temporal variability of small-scale features whilst ensuring consistency with observed climate. Our data make it possible to perform continuous-time analyses at a high spatial resolution for a wide range of climatic and ecological applications - such as habitat and species distribution modelling, dispersal and extinction processes, biogeography and bioanthropology. Measurement(s) temperature • precipitation process • vegetation layer • atmospheric wind speed • cloud • humidity Technology Type(s) computational modeling technique Factor Type(s) geographic location • temporal interval Sample Characteristic - Environment climate system Sample Characteristic - Location Earth (planet) Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12436484 The variability of climate has profoundly impacted a wide range of macroecological processes in the Late Quaternary. Our understanding of these has greatly benefited from palaeoclimate simulations, however, high-quality reconstructions of ecologically relevant climatic variables have thus far been limited to a few selected time periods. Here, we present a 0.5° resolution bias-corrected dataset of global monthly temperature, precipitation, cloud cover, relative humidity and wind speed, 17 bioclimatic variables, annual net primary productivity, leaf area index and biomes, covering the last 120,000 years at a temporal resolution of 1,000-2,000 years. We combined medium-resolution HadCM3 climate simulations of the last 120,000 years with high-resolution HadAM3H simulations of the last 21,000 years, and modern-era instrumental data. This allows for the temporal variability of small-scale features whilst ensuring consistency with observed climate. Our data make it possible to perform continuous-time analyses at a high spatial resolution for a wide range of climatic and ecological applications - such as habitat and species distribution modelling, dispersal and extinction processes, biogeography and bioanthropology. The variability of climate has profoundly impacted a wide range of macroecological processes in the Late Quaternary. Our understanding of these has greatly benefited from palaeoclimate simulations, however, high-quality reconstructions of ecologically relevant climatic variables have thus far been limited to a few selected time periods. Here, we present a 0.5° resolution bias-corrected dataset of global monthly temperature, precipitation, cloud cover, relative humidity and wind speed, 17 bioclimatic variables, annual net primary productivity, leaf area index and biomes, covering the last 120,000 years at a temporal resolution of 1,000–2,000 years. We combined medium-resolution HadCM3 climate simulations of the last 120,000 years with high-resolution HadAM3H simulations of the last 21,000 years, and modern-era instrumental data. This allows for the temporal variability of small-scale features whilst ensuring consistency with observed climate. Our data make it possible to perform continuous-time analyses at a high spatial resolution for a wide range of climatic and ecological applications - such as habitat and species distribution modelling, dispersal and extinction processes, biogeography and bioanthropology. Measurement(s) temperature • precipitation process • vegetation layer • atmospheric wind speed • cloud • humidity Technology Type(s) computational modeling technique Factor Type(s) geographic location • temporal interval Sample Characteristic - Environment climate system Sample Characteristic - Location Earth (planet) Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12436484 The variability of climate has profoundly impacted a wide range of macroecological processes in the Late Quaternary. Our understanding of these has greatly benefited from palaeoclimate simulations, however, high-quality reconstructions of ecologically relevant climatic variables have thus far been limited to a few selected time periods. Here, we present a 0.5° resolution bias-corrected dataset of global monthly temperature, precipitation, cloud cover, relative humidity and wind speed, 17 bioclimatic variables, annual net primary productivity, leaf area index and biomes, covering the last 120,000 years at a temporal resolution of 1,000-2,000 years. We combined medium-resolution HadCM3 climate simulations of the last 120,000 years with high-resolution HadAM3H simulations of the last 21,000 years, and modern-era instrumental data. This allows for the temporal variability of small-scale features whilst ensuring consistency with observed climate. Our data make it possible to perform continuous-time analyses at a high spatial resolution for a wide range of climatic and ecological applications - such as habitat and species distribution modelling, dispersal and extinction processes, biogeography and bioanthropology.The variability of climate has profoundly impacted a wide range of macroecological processes in the Late Quaternary. Our understanding of these has greatly benefited from palaeoclimate simulations, however, high-quality reconstructions of ecologically relevant climatic variables have thus far been limited to a few selected time periods. Here, we present a 0.5° resolution bias-corrected dataset of global monthly temperature, precipitation, cloud cover, relative humidity and wind speed, 17 bioclimatic variables, annual net primary productivity, leaf area index and biomes, covering the last 120,000 years at a temporal resolution of 1,000-2,000 years. We combined medium-resolution HadCM3 climate simulations of the last 120,000 years with high-resolution HadAM3H simulations of the last 21,000 years, and modern-era instrumental data. This allows for the temporal variability of small-scale features whilst ensuring consistency with observed climate. Our data make it possible to perform continuous-time analyses at a high spatial resolution for a wide range of climatic and ecological applications - such as habitat and species distribution modelling, dispersal and extinction processes, biogeography and bioanthropology. |
ArticleNumber | 236 |
Author | Beyer, Robert M. Krapp, Mario Manica, Andrea |
Author_xml | – sequence: 1 givenname: Robert M. orcidid: 0000-0003-2673-3096 surname: Beyer fullname: Beyer, Robert M. email: rb792@cam.ac.uk organization: Department of Zoology, University of Cambridge – sequence: 2 givenname: Mario orcidid: 0000-0002-2599-0683 surname: Krapp fullname: Krapp, Mario organization: Department of Zoology, University of Cambridge – sequence: 3 givenname: Andrea orcidid: 0000-0003-1895-450X surname: Manica fullname: Manica, Andrea organization: Department of Zoology, University of Cambridge |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32665576$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi1UREvpD-CCInHh0MD4274goQooUiUucOBkeZ3JrqtsXOykUv89XrKUUok9eSw_78y8nnlOjsY0IiEvKbylwM27Iqi0ugUGLUjJWvqEnDCogRCKHz2Ij8lZKdcAQLkAqeEZOeZMKSm1OiE_LuN602YsaZinmMZmwlxvU45-aMIQt37C82YV0z5u_Ng1t7jGyf_G-5SbaYPN4MvUUAbntU5zhz6XF-Rp74eCZ_vzlHz_9PHbxWV79fXzl4sPV22Qlk1tMEEFY6wXHplH4T14o3QPplNoO9EbXu1SG0zPsQ-yC6FjwXqj1Qp8J_gpeb_kvZlXW-wCjlP2g7vJtd9855KP7t-XMW7cOt06zRUoqmuCN_sEOf2cq3e3jSXgMPgR01wcE0yAVczu0NeP0Os057Hac0xqrUAYpg5SwlgLmllzmGJcSUo5r9Srh-7ubf2ZYAXoAoScSsnY3yMU3G5R3LIori6K2y2Ko1WjH2lCXOZZPygOB5VsUZZaZVxj_tv0_0W_ACjJz84 |
CitedBy_id | crossref_primary_10_1080_08912963_2022_2042807 crossref_primary_10_1177_09596836231157063 crossref_primary_10_1016_j_quascirev_2023_108390 crossref_primary_10_1111_csp2_12889 crossref_primary_10_2139_ssrn_4610230 crossref_primary_10_1093_molbev_msad255 crossref_primary_10_1007_s11356_021_15008_9 crossref_primary_10_1038_s41467_021_24779_1 crossref_primary_10_1038_s41586_021_03265_0 crossref_primary_10_1007_s00334_023_00935_z crossref_primary_10_1371_journal_pone_0268607 crossref_primary_10_1111_jbi_14350 crossref_primary_10_1038_s42003_022_03993_7 crossref_primary_10_1038_s41467_024_46161_7 crossref_primary_10_1038_s41597_021_01009_3 crossref_primary_10_3389_fevo_2020_608339 crossref_primary_10_1088_1748_9326_ac48b3 crossref_primary_10_1073_pnas_2023836118 crossref_primary_10_1038_s43247_023_01114_8 crossref_primary_10_1016_j_quascirev_2021_107312 crossref_primary_10_1111_ecog_06899 crossref_primary_10_5194_cp_20_841_2024 crossref_primary_10_1038_s41562_024_01891_y crossref_primary_10_1073_pnas_2113936119 crossref_primary_10_1002_oa_3225 crossref_primary_10_1111_ecog_06096 crossref_primary_10_1016_j_quaint_2024_109593 crossref_primary_10_1016_j_scib_2025_01_056 crossref_primary_10_21425_fob_18_139537 crossref_primary_10_1007_s00035_021_00263_w crossref_primary_10_1021_acsnano_4c15521 crossref_primary_10_1029_2021GL094194 crossref_primary_10_1038_s41598_025_92782_3 crossref_primary_10_1038_s41597_021_01051_1 crossref_primary_10_1088_1748_9326_ac39bf crossref_primary_10_3390_f16010095 crossref_primary_10_1038_s43017_022_00287_8 crossref_primary_10_1371_journal_pone_0308690 crossref_primary_10_1126_sciadv_adh2458 crossref_primary_10_1002_gdj3_217 crossref_primary_10_1016_j_quaint_2022_07_008 crossref_primary_10_1098_rspb_2022_1334 crossref_primary_10_1111_ecog_06481 crossref_primary_10_1098_rspb_2021_1066 crossref_primary_10_1093_molbev_msae092 crossref_primary_10_1080_17445647_2022_2052767 crossref_primary_10_1080_0067270X_2024_2307790 crossref_primary_10_3389_fgene_2020_564515 crossref_primary_10_1038_s41559_022_01861_5 crossref_primary_10_1126_sciadv_adi4099 crossref_primary_10_1007_s41982_024_00192_0 crossref_primary_10_1038_s41467_022_34138_3 crossref_primary_10_1016_j_quaint_2021_11_018 crossref_primary_10_1111_ecog_07202 crossref_primary_10_1038_s43247_025_02150_2 crossref_primary_10_1371_journal_pone_0281872 crossref_primary_10_1098_rsos_230495 crossref_primary_10_1111_geb_13683 crossref_primary_10_1016_j_envc_2021_100144 crossref_primary_10_1038_s41597_025_04507_w |
Cites_doi | 10.1017/9781107588783 10.1007/s00382-010-0904-1 10.17864/1947.99 10.1038/s41597-020-0453-3 10.1046/j.1466-822X.2003.00042.x 10.1038/sdata.2018.254 10.17161/bi.v10i0.4955 10.1145/800186.810616 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2 10.1017/CBO9781107415324.020 10.5194/cpd-11-3699-2015 10.1111/j.1466-8238.2009.00476.x 10.1073/pnas.1209494109 10.1016/j.quascirev.2015.06.021 10.3354/cr021001 10.1002/joc.3711 10.3133/ds691 10.6084/m9.figshare.12293345.v3 10.5194/essd-2016-58 10.17605/osf.io/p86rt 10.1016/j.quascirev.2009.10.011 10.1016/j.quascirev.2011.06.012 10.5194/cp-2019-11 10.1029/2002JD002782 10.1029/2002JD002559 10.1002/joc.1276 10.1126/science.1190653 10.1002/2014JB011176 10.1145/321607.321609 10.5194/gmd-10-3715-2017 10.1038/nature19365 10.1002/jqs.1423 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/s41597-020-0552-1 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database Publicly Available Content Database Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: Proquest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2052-4463 |
ExternalDocumentID | PMC7360617 32665576 10_1038_s41597_020_0552_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council Grant 647797 – fundername: European Research Council – fundername: ; |
GroupedDBID | 0R~ 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSFO ACSMW ADBBV ADRAZ AFKRA AGHDO AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M1P M48 M7P M~E NAO OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c592t-c8c6c889a4ae2ae4aa0a867f08d6e9d4f8310319c8f3efc5dccd2c9a876b0ad43 |
IEDL.DBID | M48 |
ISSN | 2052-4463 |
IngestDate | Thu Aug 21 13:59:27 EDT 2025 Fri Sep 05 08:39:49 EDT 2025 Wed Aug 13 04:04:45 EDT 2025 Fri Jul 25 10:03:50 EDT 2025 Wed Aug 13 04:44:45 EDT 2025 Mon Jul 21 06:03:53 EDT 2025 Tue Jul 01 03:48:59 EDT 2025 Thu Apr 24 22:50:48 EDT 2025 Fri Feb 21 02:37:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c592t-c8c6c889a4ae2ae4aa0a867f08d6e9d4f8310319c8f3efc5dccd2c9a876b0ad43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2673-3096 0000-0002-2599-0683 0000-0003-1895-450X |
OpenAccessLink | https://www.nature.com/articles/s41597-020-0552-1 |
PMID | 32665576 |
PQID | 2423651133 |
PQPubID | 2041912 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7360617 proquest_miscellaneous_2424096297 proquest_journals_2577604826 proquest_journals_2489907298 proquest_journals_2423651133 pubmed_primary_32665576 crossref_primary_10_1038_s41597_020_0552_1 crossref_citationtrail_10_1038_s41597_020_0552_1 springer_journals_10_1038_s41597_020_0552_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-14 |
PublicationDateYYYYMMDD | 2020-07-14 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific data |
PublicationTitleAbbrev | Sci Data |
PublicationTitleAlternate | Sci Data |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Arnell, N. W., Hudson, D. & Jones, R. Climate change scenarios from a regional climate model: Estimating change in runoff in southern Africa. Journal of Geophysical Research: Atmospheres108 (2003). Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography12 (2003). Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. New anthropogenic land use estimates for the Holocene: HYDE 3.2. Earth System Science Data9 (2017). Harris, I., Osborn, T. J., Jones, P., & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data7, 109 (2020). Timmermann, A. & Friedrich, T. Late Pleistocene climate drivers of early human migration. Nature538 (2016). Spratt, R. M. & Lisiecki, L. E. A Late Pleistocene sea level stack. Climate of the Past12 (2016). AkimaHA new method of interpolation and smooth curve fitting based on local proceduresJournal of the ACM19701758960210.1145/321607.321609 Eriksson, A. et al. Late Pleistocene climate change and the global expansion of anatomically modern humans. Proceedings of the National Academy of Sciences109 (2012). Flato, G. et al. Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assess-ment Report of the Intergovernmental Panel on Climate Change (eds. Stocker, T. F. et al.) 741–866 (Cambridge University Press, 2013). Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology25 (2005). Kaplan, J. O. et al. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research: Atmospheres108 (2003). New, M., Hulme, M. & Jones, P. Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. Journal of Climate12 (1999). Singarayer, J. S. & Valdes, P. J. High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr. Quaternary Science Reviews29 (2010). Hudson, D. & Jones, R. Regional climate model simulations of present-day and future climates of southern Africa (Hadley Centre for Climate Prediction and Research, 2002). Peltier, W., Argus, D. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth120 (2015). Lacis, A. A., Schmidt, G. A., Rind, D. & Ruedy, R. A. Atmospheric CO2: Principal control knob governing Earth’s temperature. Science330 (2010). Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature479 (2011). New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Climate Research21 (2002). Svenning, J.-C., Fløjgaard, C., Marske, K. A., Nógues-Bravo, D. & Normand, S. Applications of species distribution modeling to paleobiology. Quaternary Science Reviews30 (2011). Turney, C. S. & Jones, R. T. Does the Agulhas Current amplify global temperatures during super-interglacials? Journal of Quaternary Science25 (2010). Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Global Ecology and Biogeography18 (2009). O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series691 (2012). Lima-Ribeiro, M. S. et al. Ecoclimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics10 (2015). BeyerRLate Quaternary Environment202010.17605/osf.io/p86rtOpen Science Framework Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data5 (2018). Bartlein, P. et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Climate Dynamics37 (2011). ValdesPJThe BRIDGE HadCM3 family of climate models: HadCM3@ Bristol v1. 0Geoscientific Model Development201710371537432017GMD....10.3715V1:CAS:528:DC%2BC1MXmt1Chsr0%3D10.5194/gmd-10-3715-2017 Singarayer, J. S. & Burrough, S. L. Interhemispheric dynamics of the African rainbelt during the late Quaternary. Quaternary Science Reviews124 (2015). Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference, 517–524 (1968). Beyer, R., Krapp, M. & Manica, A. An empirical evaluation of bias correction methods for paleoclimate simulations. Climate of the Past. In press (2020). Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. International Journal of Climatology34 (2014). Amante, C. & Eakins, B. W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis (2009). HarrisonSBIOME 6000 DB classified plotfile version 1201710.17864/1947.99University of Reading Maraun, D. & Widmann, M. Statistical downscaling and bias correction for climate research (Cambridge University Press, 2018). BeyerRKrappMManicaALate Quaternary climate, bioclimate and vegetation202010.6084/m9.figshare.12293345.v3figshare 552_CR23 552_CR22 552_CR25 552_CR24 552_CR21 552_CR20 552_CR19 552_CR16 552_CR15 552_CR17 H Akima (552_CR18) 1970; 17 PJ Valdes (552_CR13) 2017; 10 552_CR12 552_CR11 552_CR33 552_CR14 R Beyer (552_CR31) 2020 552_CR30 S Harrison (552_CR34) 2017 552_CR10 552_CR32 552_CR3 552_CR2 552_CR1 552_CR27 R Beyer (552_CR35) 2020 552_CR26 552_CR29 552_CR28 552_CR9 552_CR8 552_CR7 552_CR6 552_CR5 552_CR4 |
References_xml | – reference: Timmermann, A. & Friedrich, T. Late Pleistocene climate drivers of early human migration. Nature538 (2016). – reference: Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data5 (2018). – reference: Eriksson, A. et al. Late Pleistocene climate change and the global expansion of anatomically modern humans. Proceedings of the National Academy of Sciences109 (2012). – reference: Lima-Ribeiro, M. S. et al. Ecoclimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics10 (2015). – reference: BeyerRKrappMManicaALate Quaternary climate, bioclimate and vegetation202010.6084/m9.figshare.12293345.v3figshare – reference: Beyer, R., Krapp, M. & Manica, A. An empirical evaluation of bias correction methods for paleoclimate simulations. Climate of the Past. In press (2020). – reference: Hudson, D. & Jones, R. Regional climate model simulations of present-day and future climates of southern Africa (Hadley Centre for Climate Prediction and Research, 2002). – reference: Lacis, A. A., Schmidt, G. A., Rind, D. & Ruedy, R. A. Atmospheric CO2: Principal control knob governing Earth’s temperature. Science330 (2010). – reference: Bartlein, P. et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Climate Dynamics37 (2011). – reference: Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology25 (2005). – reference: Flato, G. et al. Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assess-ment Report of the Intergovernmental Panel on Climate Change (eds. Stocker, T. F. et al.) 741–866 (Cambridge University Press, 2013). – reference: Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference, 517–524 (1968). – reference: Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography12 (2003). – reference: Harris, I., Osborn, T. J., Jones, P., & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data7, 109 (2020). – reference: HarrisonSBIOME 6000 DB classified plotfile version 1201710.17864/1947.99University of Reading – reference: Peltier, W., Argus, D. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth120 (2015). – reference: Svenning, J.-C., Fløjgaard, C., Marske, K. A., Nógues-Bravo, D. & Normand, S. Applications of species distribution modeling to paleobiology. Quaternary Science Reviews30 (2011). – reference: Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature479 (2011). – reference: AkimaHA new method of interpolation and smooth curve fitting based on local proceduresJournal of the ACM19701758960210.1145/321607.321609 – reference: New, M., Hulme, M. & Jones, P. Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. Journal of Climate12 (1999). – reference: Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. International Journal of Climatology34 (2014). – reference: ValdesPJThe BRIDGE HadCM3 family of climate models: HadCM3@ Bristol v1. 0Geoscientific Model Development201710371537432017GMD....10.3715V1:CAS:528:DC%2BC1MXmt1Chsr0%3D10.5194/gmd-10-3715-2017 – reference: Singarayer, J. S. & Valdes, P. J. High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr. Quaternary Science Reviews29 (2010). – reference: Singarayer, J. S. & Burrough, S. L. Interhemispheric dynamics of the African rainbelt during the late Quaternary. Quaternary Science Reviews124 (2015). – reference: Kaplan, J. O. et al. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research: Atmospheres108 (2003). – reference: Maraun, D. & Widmann, M. Statistical downscaling and bias correction for climate research (Cambridge University Press, 2018). – reference: BeyerRLate Quaternary Environment202010.17605/osf.io/p86rtOpen Science Framework – reference: Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Global Ecology and Biogeography18 (2009). – reference: Amante, C. & Eakins, B. W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis (2009). – reference: Turney, C. S. & Jones, R. T. Does the Agulhas Current amplify global temperatures during super-interglacials? Journal of Quaternary Science25 (2010). – reference: New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Climate Research21 (2002). – reference: O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series691 (2012). – reference: Spratt, R. M. & Lisiecki, L. E. A Late Pleistocene sea level stack. Climate of the Past12 (2016). – reference: Arnell, N. W., Hudson, D. & Jones, R. Climate change scenarios from a regional climate model: Estimating change in runoff in southern Africa. Journal of Geophysical Research: Atmospheres108 (2003). – reference: Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. New anthropogenic land use estimates for the Holocene: HYDE 3.2. Earth System Science Data9 (2017). – ident: 552_CR14 doi: 10.1017/9781107588783 – ident: 552_CR32 doi: 10.1007/s00382-010-0904-1 – ident: 552_CR3 – year: 2017 ident: 552_CR34 doi: 10.17864/1947.99 – ident: 552_CR23 doi: 10.1038/s41597-020-0453-3 – ident: 552_CR11 doi: 10.1046/j.1466-822X.2003.00042.x – ident: 552_CR10 doi: 10.1038/sdata.2018.254 – ident: 552_CR16 – ident: 552_CR8 doi: 10.17161/bi.v10i0.4955 – ident: 552_CR20 doi: 10.1145/800186.810616 – ident: 552_CR21 doi: 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2 – ident: 552_CR7 doi: 10.1017/CBO9781107415324.020 – ident: 552_CR25 doi: 10.5194/cpd-11-3699-2015 – ident: 552_CR1 doi: 10.1111/j.1466-8238.2009.00476.x – ident: 552_CR5 doi: 10.1073/pnas.1209494109 – ident: 552_CR12 doi: 10.1016/j.quascirev.2015.06.021 – ident: 552_CR24 doi: 10.3354/cr021001 – ident: 552_CR26 – ident: 552_CR22 doi: 10.1002/joc.3711 – ident: 552_CR27 doi: 10.3133/ds691 – year: 2020 ident: 552_CR31 doi: 10.6084/m9.figshare.12293345.v3 – ident: 552_CR30 doi: 10.5194/essd-2016-58 – year: 2020 ident: 552_CR35 doi: 10.17605/osf.io/p86rt – ident: 552_CR6 doi: 10.1016/j.quascirev.2009.10.011 – ident: 552_CR2 doi: 10.1016/j.quascirev.2011.06.012 – ident: 552_CR15 doi: 10.5194/cp-2019-11 – ident: 552_CR17 doi: 10.1029/2002JD002782 – ident: 552_CR28 doi: 10.1029/2002JD002559 – ident: 552_CR9 doi: 10.1002/joc.1276 – ident: 552_CR19 doi: 10.1126/science.1190653 – ident: 552_CR29 doi: 10.1002/2014JB011176 – volume: 17 start-page: 589 year: 1970 ident: 552_CR18 publication-title: Journal of the ACM doi: 10.1145/321607.321609 – volume: 10 start-page: 3715 year: 2017 ident: 552_CR13 publication-title: Geoscientific Model Development doi: 10.5194/gmd-10-3715-2017 – ident: 552_CR4 doi: 10.1038/nature19365 – ident: 552_CR33 doi: 10.1002/jqs.1423 |
SSID | ssj0001340570 |
Score | 2.446237 |
Snippet | The variability of climate has profoundly impacted a wide range of macroecological processes in the Late Quaternary. Our understanding of these has greatly... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 236 |
SubjectTerms | 704/106/413 704/158/2462 Bioclimatology Biogeography Cloud cover Computer applications Data Descriptor Dispersal Geographical distribution Humanities and Social Sciences Humidity Leaf area multidisciplinary Precipitation Relative humidity Science Science (multidisciplinary) Simulation Spatial discrimination Species extinction Vegetation Wind |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7azaWXkvTpNC0q9NBHRGzJluRTaUtCKDSU0kB6MrIe7ULwJvGmkH-fGa_WyzZNbgbJWJ6XvtGIbwDemFi0sXWRF7bGBEWJmrdl8NwSjU4kOoOBSPvbkTo8Lr-eVCfpwK1P1yqXMXEI1H7m6Ix8j_Z9hehAyo9n55y6RlF1NbXQuA8bGIJNNYGNz_tH33-sTlkkAZKxnCnNXo87FhGQCqoBV4IX6xvSDZR587LkPxXTYSM62ISHCUGyTwuVb8G90D2CreSjPXubiKTfPYZfdImDYz6dzIuhDKkVB9kcc6dTBKthl7XTWXpmtvPsb_idbiAyxLMM8SFDgD1nhch38VfZFbpG_wSOD_Z_fjnkqZUCd1Ut5twZp5wxtS1tEDaU1ubWKB1z41WofRmHfmNF7UyUIbrKO-eFqy3Gyja3vpRPYdLNuvAcGE7KnbYqSutK7YTxVniLwK9QSjgrMsiX8mxc4hmndhenzVDvlqZZqKBBFTSkgqbI4P34ytmCZOOuyTtLJTXJ3_pmZR23DGNaSRzp5v_DldYKQ5lQGbweh9HPqHhiuzC7HL6AqTDass7g2cIixrUiBFYVJm4Z6DVbGScQh_f6SDf9M3B5a6kIRGbwYWlVq2XdKoLtu0XwAh6Iwb41L8odmMwvLsNLhE7z9lXyj2svIxaY priority: 102 providerName: ProQuest – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5CeumlNOnLbRJU6KGPiNqSLcnHsjSEQntqID0ZWY92IXhDd1PIv8-MVnbYblLozTAyljUz0jee8TcAb0ys-ti7yCvbYoCiRMv7OnhuiUYnEp1BItL--k2dntVfzpvzHajGf2FS0X6itEzb9Fgd9nGJBw3xhgpK3TaCY8DzgJjbiS5_pma3n1UkIZApfynN9p2bJ9AWrNyujvwrRZpOnpPH8ChDRvZpPck92AnDPuxlp1yyt5k5-t0T-EFVGxwD6GxPDBeNem-QkTF3MUd0Go5ZP1_ka2YHz_6En7nkkCGAZQgIGSLqFatEeYyvyq7RF5ZP4ezk8_fZKc-9E7hrWrHizjjljGltbYOwoba2tEbpWBqvQuvrmBqMVa0zUYboGu-cF661uDn2pfW1fAa7w2IIL4DhoNJpq6K0rtZOGG-Ft4j0KqWEs6KAclzPzmVicepvcdGlBLc03VoFHaqgIxV0VQHvp1su16wa_xp8MCqpyw627AgGKgSLUt4jxjiSSNHN3eJGa4V7l1AFvJ7E6FiULbFDWFylJ2Dsi8arC3i-tohproh5VYORWgF6w1amAUTavSkZ5r8SebeWilBjAR9Gq7qd1r1L8PK_Rr-ChyKZu-ZVfQC7q99X4RCh06o_Ss5yAxlzEp4 priority: 102 providerName: Springer Nature |
Title | High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years |
URI | https://link.springer.com/article/10.1038/s41597-020-0552-1 https://www.ncbi.nlm.nih.gov/pubmed/32665576 https://www.proquest.com/docview/2423651133 https://www.proquest.com/docview/2489907298 https://www.proquest.com/docview/2577604826 https://www.proquest.com/docview/2424096297 https://pubmed.ncbi.nlm.nih.gov/PMC7360617 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N7YUXxPgZGJWReODHDImd2M4DQqXaNFXahIBK5SlybAcqVSmsHWL_PWfHKSrrkHhqVDtpev4u_s7nfAfwTDVZ3dSmoZkuMUARrKR17izVXkan8XIGQUj79EycTPLxtJjuQF_eKhpwuTW08_WkJufz179-XL5Dh3_bvTKu3ixxEvKaosyndQtGMRjaw4lJeJCfRrYflly4Zyd-1YWl2A0DId7nObddZXOmukI_r-6i_CuVGmao49twK1JLMuywsA87rr0D-9F5l-R5VJh-cRe--N0dFAPtiDuCxvU1OjwYiZnPkMW6Q1LPFvGY6NaSn-5r3JpIkOgSJI4EmfeKZCw9xL9NLtFnlvdgcnz0eXRCY40FaoqSrahRRhilSp1rx7TLtU61ErJJlRWutHkTCpFlpVENd40prDGWmVLjQ7ROtc35fdhtF617CAQ7pUZq0XBtcmmYsppZjYwwE4IZzRJIe3tWJgqQ-zoY8yokwrmquiGocAgqPwRVlsDL9SnfO_WNf3U-6Aep6nFUebookFRyfk0zxptePF1tby6kFPiMYyKBp-tmdECfVdGtW1yEX8AYGUEuE3jQIWJ9r8iNRYERXQJyAyvrDl7ce7OlnX0LIt-SC88uE3jVo-rPbV1rgkf_Y6_HcJMFtEua5Qewuzq_cE-QYa3qAdyQUzmAveFw_GmMn--Pzj58xG9HYjQIqxaD4Fm_AU0sI4w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXRHkGChgJJB61mjiJ4xwQ4tFqS9sVQq1UTsGxHVipyhayBfVP8RuZSZysltLeeotk5zUvf5NxvgF4qqqorEpT8UjnmKBIkfMycZZrotGpiM6gJdLeG8vRQfLxMD1cgj_9vzC0rbKPiW2gtlND38g3aN2XiA7i-M3xD05do6i62rfQ6Mxix53-xpSteb39AfX7TIitzf33I-67CnCT5mLGjTLSKJXrRDuhXaJ1qJXMqlBZ6XKbVG3rrSg3qopdZVJrjBUm1xg2ylDbJMbrXoEVhBk5etHKu83xp8_zrzoxAaChfBqrjQZXSCI8FVRzTgWPFhfAM6j27ObMfyq07cK3dQOue8TK3nYmtgpLrr4Jqz4mNOy5J65-cQu-0KYRjvm7N2eGOqPWH2TjzBxNEBy7dVZOpv6Y6dqyX-6b3_HIED8zxKMMAf2MRSJcx1dlpyjz5jYcXIqQ78ByPa3dPWA4KTSZllWsTZIZoawWViPQjKQURosAwl6ehfG85tRe46ho6-uxKjoVFKiCglRQRAG8HE457kg9Lpq81iup8P7dFHNrPGcY01jiZFf_H06zTGLoFDKAJ8Mw-jUVa3TtpiftHTD1Rt_JArjbWcTwrAi5ZYqJYgDZgq0ME4gzfHGknnxvucOzWBJoDeBVb1XzxzpXBPcvFsFjuDra39stdrfHOw_gmmhtPeNRsgbLs58n7iHCtln5yPsKg6-X7Z5_AX6NVas |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYR4QYxrYICRQOIyq4mT2M4DQsBWbQyqCTFpewqOL1BpSgftQPtr_DqOEydVGdvb3irZTdNz83dyTr4D8FS6pHKVdjRRBSYonBW0yqyhytPoOE9n0BBpfxrz7f3sw0F-sAJ_undhfFtlFxObQG2m2j8jH_pznyM6SNOhC20Re5ujN8c_qJ8g5Sut3TiN1kR27elvTN9mr3c2UdfPGBttfXm_TcOEAarzgs2plpprKQuVKcuUzZSKleTCxdJwW5jMNWO4kkJLl1qnc6O1YbpQGEKqWJksxetegVWBp6IcwOq7rfHe58UTntSDob6UmsrhDE9LT37KfP05ZzRZPgzPINyzjZr_VGubQ3B0A64H9Eretua2Biu2vglrIT7MyPNAYv3iFhz6BhKKuXwwbYL682NAvL0TfTRBoGw3SDWZhs9E1Yb8st9C9yNBLE0QmxIE93OSsHgD_yo5RZnPbsP-pQj5DgzqaW3vAcFNsRaKu1TpTGgmjWJGIehMOGdasQjiTp6lDhznftTGUdnU2lNZtiooUQWlV0GZRPCy_8pxS_Bx0eb1Tkll8PVZubDMc5YxpfX87PL_y7kQHMMo4xE86ZfRx33hRtV2etL8Aqbh6EcigrutRfT3ivCb55g0RiCWbKXf4PnDl1fqyfeGR1yk3APYCF51VrW4rXNFcP9iETyGq-iW5ced8e4DuMYaUxc0ydZhMP95Yh8igptXj4KrEPh62d75F0F2Wdc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+terrestrial+climate%2C+bioclimate+and+vegetation+for+the+last+120%2C000+years&rft.jtitle=Scientific+data&rft.au=Beyer%2C+Robert+M.&rft.au=Krapp%2C+Mario&rft.au=Manica%2C+Andrea&rft.date=2020-07-14&rft.issn=2052-4463&rft.eissn=2052-4463&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1038%2Fs41597-020-0552-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41597_020_0552_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon |