Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery

Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delive...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 33; no. 9; pp. 2801 - 2811
Main Authors Su, Fang-Yi, Lin, Kun-Ju, Sonaje, Kiran, Wey, Shiaw-Pyng, Yen, Tzu-Chen, Ho, Yi-Cheng, Panda, Nilendu, Chuang, Er-Yuan, Maiti, Barnali, Sung, Hsing-Wen
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route.
AbstractList Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route.
Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route.Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route.
Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route.
Abstract Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route.
Author Wey, Shiaw-Pyng
Yen, Tzu-Chen
Su, Fang-Yi
Sonaje, Kiran
Sung, Hsing-Wen
Chuang, Er-Yuan
Ho, Yi-Cheng
Maiti, Barnali
Panda, Nilendu
Lin, Kun-Ju
Author_xml – sequence: 1
  givenname: Fang-Yi
  surname: Su
  fullname: Su, Fang-Yi
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
– sequence: 2
  givenname: Kun-Ju
  surname: Lin
  fullname: Lin, Kun-Ju
  organization: Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
– sequence: 3
  givenname: Kiran
  surname: Sonaje
  fullname: Sonaje, Kiran
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
– sequence: 4
  givenname: Shiaw-Pyng
  surname: Wey
  fullname: Wey, Shiaw-Pyng
  organization: Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
– sequence: 5
  givenname: Tzu-Chen
  surname: Yen
  fullname: Yen, Tzu-Chen
  organization: Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
– sequence: 6
  givenname: Yi-Cheng
  surname: Ho
  fullname: Ho, Yi-Cheng
  organization: Department of Biotechnology, Vanung University, Chungli, Taoyuan, Taiwan, ROC
– sequence: 7
  givenname: Nilendu
  surname: Panda
  fullname: Panda, Nilendu
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
– sequence: 8
  givenname: Er-Yuan
  surname: Chuang
  fullname: Chuang, Er-Yuan
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
– sequence: 9
  givenname: Barnali
  surname: Maiti
  fullname: Maiti, Barnali
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
– sequence: 10
  givenname: Hsing-Wen
  surname: Sung
  fullname: Sung, Hsing-Wen
  email: hwsung@che.nthu.edu.tw
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22243802$$D View this record in MEDLINE/PubMed
BookMark eNqNkk-LFDEQxYOsuLOrX0EaL3qZMZV0uhMPoq5_YUFBPYd0usJm7E5mk-6F-famnVVkQZlTqOS9H5V6dUZOQgxIyBOgG6DQPN9uOh9HM2HyZsgbRgE2wDaUy3tkBbKVa6GoOCErCjVbqwbYKTnLeUtLTWv2gJwyxmouKVuR8CXFCU3Gyocr3_nJx1CZ0FemyzHtfpUYrkywOGKYqm5fuTnY5d4MVTAh7kyavB0wVy6mCp3D8nqDVUxF4EOeBx-qHodyl_YPyX1XesZHt-c5-f7-3beLj-vLzx8-Xby-XFuh2LRWLRhnbd2CBCbajje1YI2TQsrGIvQtd67nyGXLaxDUgipfU1KAUdzxXvFz8vTA3aV4PWOe9OizxWEwAeOctYJWtKJWvCif_VcJLVDGWsVEkT6-lc7diL3eJT-atNe_p1kELw4Cm2LOCd0fCVC9RKe3-u_o9BKdBqZLdMX86o7Z-sksg56S8cNxiLcHBJbR3nhMOluPJbrep5KK7qM_DvPyDsaWDL01ww_cY97GOYXFAzoXg_66rNmyZVDAgkpaAG_-DTi2i5-SxOsO
CitedBy_id crossref_primary_10_1016_j_ijpharm_2015_02_055
crossref_primary_10_1016_j_ijpharm_2018_07_037
crossref_primary_10_1080_09506608_2022_2040293
crossref_primary_10_1016_j_ijpharm_2021_121357
crossref_primary_10_1080_17425247_2016_1206074
crossref_primary_10_1039_D0BM01151G
crossref_primary_10_1002_mabi_201300515
crossref_primary_10_1016_j_addr_2023_115117
crossref_primary_10_1016_j_ijbiomac_2014_03_016
crossref_primary_10_1080_1061186X_2020_1759078
crossref_primary_10_2217_nnm_2018_0322
crossref_primary_10_52711_2231_5659_2023_00025
crossref_primary_10_1016_j_ijpharm_2019_118720
crossref_primary_10_1039_C6TB02475K
crossref_primary_10_1080_1061186X_2020_1817042
crossref_primary_10_1016_j_jconrel_2016_12_018
crossref_primary_10_1016_j_jconrel_2014_06_022
crossref_primary_10_3390_ijms23063362
crossref_primary_10_3109_10717544_2015_1052863
crossref_primary_10_1007_s11051_014_2847_7
crossref_primary_10_1016_j_jconrel_2016_10_002
crossref_primary_10_1021_acs_molpharmaceut_3c00907
crossref_primary_10_1016_j_ijpharm_2013_07_022
crossref_primary_10_2147_IJN_S257269
crossref_primary_10_2174_1389557521666210623164052
crossref_primary_10_1016_j_ijbiomac_2024_131428
crossref_primary_10_3390_pharmaceutics13060887
crossref_primary_10_3390_pharmaceutics15112635
crossref_primary_10_1016_j_biomaterials_2019_01_006
crossref_primary_10_1080_17425247_2020_1776698
crossref_primary_10_1016_j_apsb_2020_08_016
crossref_primary_10_1016_j_biomaterials_2014_01_020
crossref_primary_10_1016_j_biomaterials_2013_07_021
crossref_primary_10_1016_j_addr_2016_03_011
crossref_primary_10_1016_j_biomaterials_2012_05_013
crossref_primary_10_1016_j_ijbiomac_2024_139159
crossref_primary_10_1016_j_ijpharm_2012_06_054
crossref_primary_10_1016_j_ejpb_2015_03_027
crossref_primary_10_1080_00914037_2014_921919
crossref_primary_10_1016_j_apsb_2019_01_004
crossref_primary_10_1208_s12249_019_1325_z
crossref_primary_10_1002_adhm_202401120
crossref_primary_10_1186_s12951_022_01260_9
crossref_primary_10_1016_j_jddst_2018_10_022
crossref_primary_10_3109_10717544_2015_1043472
crossref_primary_10_1016_j_jconrel_2017_07_045
crossref_primary_10_3390_polym13172943
crossref_primary_10_1002_anie_202008879
crossref_primary_10_1016_j_jconrel_2017_04_031
crossref_primary_10_1021_acs_chemrev_0c01062
crossref_primary_10_1016_j_addr_2018_12_001
crossref_primary_10_1016_j_ajps_2023_100848
crossref_primary_10_1517_17425247_2016_1107543
crossref_primary_10_1016_j_apsb_2021_04_001
crossref_primary_10_1517_17425247_2014_924500
crossref_primary_10_1016_j_ijpharm_2013_02_030
crossref_primary_10_1080_87559129_2022_2062772
crossref_primary_10_1002_adfm_201910168
crossref_primary_10_1016_j_addr_2012_11_002
crossref_primary_10_1088_1748_6041_11_1_014102
crossref_primary_10_1016_j_addr_2016_02_004
crossref_primary_10_1016_j_bioadv_2022_212796
crossref_primary_10_1007_s11095_014_1615_9
crossref_primary_10_1080_17425247_2023_2231343
crossref_primary_10_1016_j_ijbiomac_2020_02_079
crossref_primary_10_3390_pharmaceutics12100999
crossref_primary_10_1016_j_ijbiomac_2017_05_138
crossref_primary_10_1016_j_addr_2017_09_020
crossref_primary_10_1093_jpp_rgaa052
crossref_primary_10_1016_j_jconrel_2014_04_042
crossref_primary_10_1080_1061186X_2019_1605520
crossref_primary_10_1016_j_susc_2015_10_043
crossref_primary_10_1016_j_biomaterials_2013_06_047
crossref_primary_10_1007_s40005_022_00574_y
crossref_primary_10_1016_j_biomaterials_2013_08_035
crossref_primary_10_1016_j_nano_2014_02_014
crossref_primary_10_3390_molecules24234209
crossref_primary_10_1208_s12248_015_9804_y
crossref_primary_10_1016_j_biomaterials_2012_09_082
crossref_primary_10_1080_1061186X_2020_1726356
crossref_primary_10_1016_j_ijbiomac_2023_125114
crossref_primary_10_1007_s11051_015_2909_5
crossref_primary_10_1016_j_ijpharm_2019_02_014
crossref_primary_10_1016_j_addr_2012_10_010
crossref_primary_10_1002_adhm_201801123
crossref_primary_10_1007_s13346_020_00746_z
crossref_primary_10_1016_j_actbio_2015_06_021
crossref_primary_10_1016_j_jconrel_2014_09_031
crossref_primary_10_3390_polym9040137
crossref_primary_10_1016_j_colsurfb_2014_10_047
crossref_primary_10_1517_17425247_2012_745848
crossref_primary_10_1002_ange_202008879
crossref_primary_10_1016_j_cis_2024_103318
crossref_primary_10_1080_08927022_2016_1270452
crossref_primary_10_1016_j_biomaterials_2015_06_035
crossref_primary_10_1016_j_jconrel_2013_05_006
crossref_primary_10_1016_j_jconrel_2013_05_002
crossref_primary_10_2147_DDDT_S273612
crossref_primary_10_1016_j_ejpb_2013_11_007
crossref_primary_10_1021_acsabm_4c01955
crossref_primary_10_1016_j_biomaterials_2017_10_022
crossref_primary_10_1080_17425247_2018_1503250
crossref_primary_10_1016_j_pmatsci_2017_05_001
crossref_primary_10_1002_ddr_21832
crossref_primary_10_1016_j_jconrel_2012_11_011
crossref_primary_10_1016_j_jddst_2015_04_008
crossref_primary_10_1016_j_addr_2016_02_011
crossref_primary_10_1016_j_jfda_2015_01_007
crossref_primary_10_1021_acs_nanolett_8b02229
crossref_primary_10_3390_ijms18020313
crossref_primary_10_1016_j_ijpharm_2013_07_079
crossref_primary_10_1039_c3cs60436e
crossref_primary_10_3109_1061186X_2014_928716
crossref_primary_10_1016_j_colsurfb_2023_113613
crossref_primary_10_52711_0974_360X_2021_00349
crossref_primary_10_1002_advs_202102466
crossref_primary_10_1002_adhm_201801184
crossref_primary_10_1134_S0003683821020186
crossref_primary_10_2217_nnm_2016_0331
crossref_primary_10_1016_j_biomaterials_2012_12_041
crossref_primary_10_3109_03639045_2014_886695
crossref_primary_10_1016_j_carbpol_2016_10_021
crossref_primary_10_3109_02652048_2015_1065920
crossref_primary_10_1007_s11705_013_1306_9
crossref_primary_10_1517_17425247_2016_1160889
crossref_primary_10_1016_j_ijpharm_2019_118708
crossref_primary_10_1016_j_jconrel_2017_09_003
crossref_primary_10_1016_j_carbpol_2020_117504
crossref_primary_10_1016_j_ejpb_2017_03_015
crossref_primary_10_3390_pharmaceutics15051415
crossref_primary_10_1021_acsbiomaterials_8b00646
crossref_primary_10_1186_s12951_020_00657_8
crossref_primary_10_1016_j_actbio_2022_08_061
crossref_primary_10_1016_j_tips_2020_07_005
crossref_primary_10_1016_j_addr_2016_06_006
crossref_primary_10_1134_S0965545X19030192
crossref_primary_10_1016_j_drudis_2012_03_019
crossref_primary_10_1016_j_ijbiomac_2022_08_041
crossref_primary_10_1016_j_biotechadv_2015_02_010
crossref_primary_10_3109_1061186X_2012_693499
crossref_primary_10_1007_s10856_019_6294_y
crossref_primary_10_1016_j_colsurfb_2015_02_042
crossref_primary_10_1016_j_xphs_2019_01_027
crossref_primary_10_3390_nano11112830
Cites_doi 10.1016/j.biomaterials.2009.08.030
10.1016/S0378-5173(03)00380-6
10.1016/j.biomaterials.2008.12.066
10.1177/193229680900300322
10.1016/S0169-409X(98)00075-1
10.1023/A:1007696723125
10.1152/ajpcell.00015.2003
10.1016/j.carbpol.2010.01.035
10.1016/j.biomaterials.2011.08.087
10.1021/bc049910m
10.1016/j.biomaterials.2010.12.044
10.1083/jcb.117.1.169
10.1016/j.biomaterials.2010.05.042
10.2165/00063030-200519030-00003
10.1016/S0168-3659(97)00204-6
10.1177/109434209601000401
10.1248/bpb.26.886
10.1016/S0168-8227(99)00099-6
10.1016/j.jconrel.2006.10.023
10.1023/A:1011929016601
10.1016/j.biomaterials.2007.11.018
10.1016/S0169-409X(01)00231-9
10.1007/s11095-005-6137-z
10.1023/A:1016024322209
10.1016/j.vaccine.2009.07.037
10.1016/S0024-3205(98)00235-5
10.1016/j.biortech.2008.05.014
10.1016/j.molstruc.2010.11.049
10.1021/bm800276d
10.1023/A:1012108118670
10.1136/gut.29.8.1035
10.2967/jnumed.110.081539
10.1016/S0378-5173(99)00365-8
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Elsevier Ltd
Copyright © 2011 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2011 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
DOI 10.1016/j.biomaterials.2011.12.038
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 2811
ExternalDocumentID 22243802
10_1016_j_biomaterials_2011_12_038
S0142961211015080
1_s2_0_S0142961211015080
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
ID FETCH-LOGICAL-c592t-971afcc47181257b364526f85886ce1d73ffd3e38734150c190149851a93f3d93
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Thu Jul 10 21:58:54 EDT 2025
Fri Jul 11 00:05:12 EDT 2025
Mon Jul 21 06:03:29 EDT 2025
Thu Apr 24 23:11:22 EDT 2025
Tue Jul 01 03:47:32 EDT 2025
Fri Feb 23 02:23:08 EST 2024
Sun Feb 23 10:18:59 EST 2025
Tue Aug 26 17:18:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Proteolytic inhibition
Oral protein delivery
Molecular dynamic simulation
Complexing agent
Adherens junction
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c592t-971afcc47181257b364526f85886ce1d73ffd3e38734150c190149851a93f3d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22243802
PQID 1710227925
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_917575493
proquest_miscellaneous_1710227925
pubmed_primary_22243802
crossref_primary_10_1016_j_biomaterials_2011_12_038
crossref_citationtrail_10_1016_j_biomaterials_2011_12_038
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2011_12_038
elsevier_clinicalkeyesjournals_1_s2_0_S0142961211015080
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2011_12_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yamashita, Takashima, Kataoka, Oh, Sakuma, Takahashi (bib20) 2011; 52
Marschütz, Caliceti, Bernkop-Schnürch (bib31) 2000; 17
Wen, Jackson, Price, Kim, Wu, Wallace (bib14) 2004; 15
Sonaje, Lin, Wey, Lin, Yeh, Nguyen (bib34) 2010; 31
Inbaraj, Wang, Lu, Siao, Chen (bib28) 2009; 100
Sakai, Imai, Ohtake, Azuma, Otagiri (bib27) 1998; 63
Bernkop-Schnürch (bib11) 1998; 52
Chen, Sonaje, Chen, Sung (bib5) 2011; 32
Chen, Wong, Lin, Chen, Wey, Sonaje (bib22) 2009; 30
Bernkop-Schnürch, Freudl (bib30) 1999; 54
Arbit, Kidron (bib3) 2009; 3
Hamman, Enslin, Kotzé (bib4) 2005; 19
Evans, Pye, Bramley, Clark, Dyson, Hardcastle (bib19) 1988; 29
Carino, Mathiowitz (bib1) 1999; 35
Sogias, Williams, Khutoryanskiy (bib7) 2008; 9
Damgé, Maincent, Ubrich (bib24) 2007; 117
Chang, Bai (bib23) 1996; 13
Sameti, Bohr, Ravi Kumar, Kneuer, Bakowsky, Nacken (bib17) 2003; 266
Thanou, Verhoef, Junginger (bib26) 2001; 52
Aoki, Morishita, Asai, Akikusa, Hosoda, Takayama (bib33) 2005; 22
Nelson, Humphrey, Gursoy, Dalke, Kale, Skeel (bib18) 1996; 10
Sonaje, Lin, Juang, Wey, Chen, Sung (bib6) 2009; 30
Citi (bib12) 1992; 117
Lehr (bib35) 1994; 11
Darras, Nelea, Winnik, Buschmann (bib29) 2010; 80
Nguyen, Wey, Juang, Sonaje, Ho, Chuang (bib21) 2011; 32
Okamoto, Matsuura, Akagi, Akashi, Tanimoto, Ishikawa (bib8) 2009; 27
Illum (bib9) 1998; 15
Guo, Rao, Liu, Zou, Turner, Bass (bib13) 2003; 285
Legen, Kristl (bib16) 2003; 26
Zhao, Song, Zhang, Wang, Fu (bib10) 2011; 986
Bernkop-Schnürch, Paikl, Valenta (bib15) 1997; 14
Teply, Tong, Jeong, Luther, Sherifi, Yim (bib25) 2008; 29
Zambanini, Newson, Maisey, Feher (bib2) 1999; 46
Bernkop-Schnürch (bib32) 2000; 194
Lehr (10.1016/j.biomaterials.2011.12.038_bib35) 1994; 11
Guo (10.1016/j.biomaterials.2011.12.038_bib13) 2003; 285
Teply (10.1016/j.biomaterials.2011.12.038_bib25) 2008; 29
Aoki (10.1016/j.biomaterials.2011.12.038_bib33) 2005; 22
Hamman (10.1016/j.biomaterials.2011.12.038_bib4) 2005; 19
Arbit (10.1016/j.biomaterials.2011.12.038_bib3) 2009; 3
Bernkop-Schnürch (10.1016/j.biomaterials.2011.12.038_bib30) 1999; 54
Wen (10.1016/j.biomaterials.2011.12.038_bib14) 2004; 15
Bernkop-Schnürch (10.1016/j.biomaterials.2011.12.038_bib15) 1997; 14
Nguyen (10.1016/j.biomaterials.2011.12.038_bib21) 2011; 32
Zambanini (10.1016/j.biomaterials.2011.12.038_bib2) 1999; 46
Marschütz (10.1016/j.biomaterials.2011.12.038_bib31) 2000; 17
Damgé (10.1016/j.biomaterials.2011.12.038_bib24) 2007; 117
Yamashita (10.1016/j.biomaterials.2011.12.038_bib20) 2011; 52
Sameti (10.1016/j.biomaterials.2011.12.038_bib17) 2003; 266
Evans (10.1016/j.biomaterials.2011.12.038_bib19) 1988; 29
Inbaraj (10.1016/j.biomaterials.2011.12.038_bib28) 2009; 100
Carino (10.1016/j.biomaterials.2011.12.038_bib1) 1999; 35
Sakai (10.1016/j.biomaterials.2011.12.038_bib27) 1998; 63
Citi (10.1016/j.biomaterials.2011.12.038_bib12) 1992; 117
Sonaje (10.1016/j.biomaterials.2011.12.038_bib6) 2009; 30
Sogias (10.1016/j.biomaterials.2011.12.038_bib7) 2008; 9
Okamoto (10.1016/j.biomaterials.2011.12.038_bib8) 2009; 27
Thanou (10.1016/j.biomaterials.2011.12.038_bib26) 2001; 52
Chang (10.1016/j.biomaterials.2011.12.038_bib23) 1996; 13
Darras (10.1016/j.biomaterials.2011.12.038_bib29) 2010; 80
Zhao (10.1016/j.biomaterials.2011.12.038_bib10) 2011; 986
Nelson (10.1016/j.biomaterials.2011.12.038_bib18) 1996; 10
Chen (10.1016/j.biomaterials.2011.12.038_bib5) 2011; 32
Sonaje (10.1016/j.biomaterials.2011.12.038_bib34) 2010; 31
Legen (10.1016/j.biomaterials.2011.12.038_bib16) 2003; 26
Bernkop-Schnürch (10.1016/j.biomaterials.2011.12.038_bib11) 1998; 52
Chen (10.1016/j.biomaterials.2011.12.038_bib22) 2009; 30
Bernkop-Schnürch (10.1016/j.biomaterials.2011.12.038_bib32) 2000; 194
Illum (10.1016/j.biomaterials.2011.12.038_bib9) 1998; 15
22811979 - Nanomedicine (Lond). 2012 May;7(5):632
References_xml – volume: 46
  start-page: 239
  year: 1999
  end-page: 246
  ident: bib2
  article-title: Injection related anxiety in insulin-treated diabetes
  publication-title: Diabetes Res Clin Pract
– volume: 54
  start-page: 369
  year: 1999
  end-page: 371
  ident: bib30
  article-title: Comparative
  publication-title: Pharmazie
– volume: 15
  start-page: 1326
  year: 1998
  end-page: 1331
  ident: bib9
  article-title: Chitosan and its use as a pharmaceutical excipient
  publication-title: Pharm Res
– volume: 10
  start-page: 251
  year: 1996
  end-page: 268
  ident: bib18
  article-title: NAMD: a parallel, object-oriented molecular dynamics program
  publication-title: Int J Supercomput Appl High Perform Comput
– volume: 32
  start-page: 2673
  year: 2011
  end-page: 2682
  ident: bib21
  article-title: The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion
  publication-title: Biomaterials
– volume: 17
  start-page: 1468
  year: 2000
  end-page: 1474
  ident: bib31
  article-title: Design and
  publication-title: Pharm Res
– volume: 11
  start-page: 119
  year: 1994
  end-page: 160
  ident: bib35
  article-title: Bioadhesion technologies for the delivery of peptide and protein drugs to the gastrointestinal tract
  publication-title: Crit Rev Ther Drug Carrier Syst
– volume: 22
  start-page: 1854
  year: 2005
  end-page: 1862
  ident: bib33
  article-title: Region-dependent role of the mucous/glycocalyx layers in insulin permeation across rat small intestinal membrane
  publication-title: Pharm Res
– volume: 29
  start-page: 1216
  year: 2008
  end-page: 1223
  ident: bib25
  article-title: The use of charge-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules
  publication-title: Biomaterials
– volume: 117
  start-page: 169
  year: 1992
  end-page: 178
  ident: bib12
  article-title: Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells
  publication-title: J Cell Biol
– volume: 194
  start-page: 1
  year: 2000
  end-page: 13
  ident: bib32
  article-title: Chitosan and its derivatives: potential excipients for peroral peptide delivery systems
  publication-title: Int J Pharm
– volume: 9
  start-page: 1837
  year: 2008
  end-page: 1842
  ident: bib7
  article-title: Why is chitosan mucoadhesive?
  publication-title: Biomacromolecules
– volume: 986
  start-page: 68
  year: 2011
  end-page: 74
  ident: bib10
  article-title: Adsorption investigation of MA-DTPA chelating resin for Ni(II) and Cu(II) using experimental and DFT methods
  publication-title: J Mol Struct
– volume: 52
  start-page: 1
  year: 1998
  end-page: 16
  ident: bib11
  article-title: The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins
  publication-title: J Control Release
– volume: 3
  start-page: 562
  year: 2009
  end-page: 567
  ident: bib3
  article-title: Oral insulin: the rationale for this approach and current developments
  publication-title: J Diabetes Sci Technol
– volume: 13
  start-page: 801
  year: 1996
  end-page: 803
  ident: bib23
  article-title: Evidence for the existence of insulin-degrading enzyme on the brush-border membranes of rat enterocytes
  publication-title: Pharm Res
– volume: 52
  start-page: 117
  year: 2001
  end-page: 126
  ident: bib26
  article-title: Oral drug absorption enhancement by chitosan and its derivatives
  publication-title: Adv Drug Deliv Rev
– volume: 31
  start-page: 6849
  year: 2010
  end-page: 6858
  ident: bib34
  article-title: Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: oral delivery using pH-responsive nanoparticles vs. subcutaneous injection
  publication-title: Biomaterials
– volume: 52
  start-page: 249
  year: 2011
  end-page: 256
  ident: bib20
  article-title: PET imaging of the gastrointestinal absorption of orally administered drugs in conscious and anesthetized rats
  publication-title: J Nucl Med
– volume: 30
  start-page: 2329
  year: 2009
  end-page: 2339
  ident: bib6
  article-title: evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery
  publication-title: Biomaterials
– volume: 63
  start-page: 45
  year: 1998
  end-page: 54
  ident: bib27
  article-title: Effects of absorption enhancers on cytoskeletal actin filaments in Caco-2 cell monolayers
  publication-title: Life Sci
– volume: 32
  start-page: 9826
  year: 2011
  end-page: 9838
  ident: bib5
  article-title: A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery
  publication-title: Biomaterials
– volume: 19
  start-page: 165
  year: 2005
  end-page: 177
  ident: bib4
  article-title: Oral delivery of peptide drugs: barriers and developments
  publication-title: BioDrugs
– volume: 285
  start-page: C1174
  year: 2003
  end-page: C1187
  ident: bib13
  article-title: Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines
  publication-title: Am J Physiol Cell Physiol
– volume: 30
  start-page: 6629
  year: 2009
  end-page: 6637
  ident: bib22
  article-title: The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin
  publication-title: Biomaterials
– volume: 14
  start-page: 917
  year: 1997
  end-page: 922
  ident: bib15
  article-title: Novel bioadhesive chitosan-EDTA conjugate protects leucine enkephalin from degradation by aminopeptidase N
  publication-title: Pharm Res
– volume: 29
  start-page: 1035
  year: 1988
  end-page: 1041
  ident: bib19
  article-title: Measurement of gastrointestinal pH profiles in normal ambulant human subjects
  publication-title: Gut
– volume: 15
  start-page: 1408
  year: 2004
  end-page: 1415
  ident: bib14
  article-title: Synthesis and characterization of poly(L-glutamic acid) gadolinium chelate: a new biodegradable MRI contrast agent
  publication-title: Bioconjug Chem
– volume: 100
  start-page: 200
  year: 2009
  end-page: 207
  ident: bib28
  article-title: Adsorption of toxic mercury(II) by an extracellular biopolymer poly(gamma-glutamic acid)
  publication-title: Bioresour Technol
– volume: 27
  start-page: 5896
  year: 2009
  end-page: 5905
  ident: bib8
  article-title: Poly(gamma-glutamic acid) nano-particles combined with mucosal influenza virus hemagglutinin vaccine protects against influenza virus infection in mice
  publication-title: Vaccine
– volume: 266
  start-page: 51
  year: 2003
  end-page: 60
  ident: bib17
  article-title: Stabilisation by freeze-drying of cationically modified silica nanoparticles for gene delivery
  publication-title: Int J Pharm
– volume: 117
  start-page: 163
  year: 2007
  end-page: 170
  ident: bib24
  article-title: Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats
  publication-title: J Control Release
– volume: 35
  start-page: 249
  year: 1999
  end-page: 257
  ident: bib1
  article-title: Oral insulin delivery
  publication-title: Adv Drug Deliv Rev
– volume: 26
  start-page: 886
  year: 2003
  end-page: 889
  ident: bib16
  article-title: Factors affecting the microclimate pH of the rat jejunum in ringer bicarbonate buffer
  publication-title: Biol Pharm Bull
– volume: 80
  start-page: 1137
  year: 2010
  end-page: 1146
  ident: bib29
  article-title: Chitosan modified with gadolinium diethylenetriaminepentaacetic acid for magnetic resonance imaging of DNA/chitosan nanoparticles
  publication-title: Carbohydr Polym
– volume: 30
  start-page: 6629
  year: 2009
  ident: 10.1016/j.biomaterials.2011.12.038_bib22
  article-title: The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.08.030
– volume: 266
  start-page: 51
  year: 2003
  ident: 10.1016/j.biomaterials.2011.12.038_bib17
  article-title: Stabilisation by freeze-drying of cationically modified silica nanoparticles for gene delivery
  publication-title: Int J Pharm
  doi: 10.1016/S0378-5173(03)00380-6
– volume: 30
  start-page: 2329
  year: 2009
  ident: 10.1016/j.biomaterials.2011.12.038_bib6
  article-title: In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.12.066
– volume: 3
  start-page: 562
  year: 2009
  ident: 10.1016/j.biomaterials.2011.12.038_bib3
  article-title: Oral insulin: the rationale for this approach and current developments
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/193229680900300322
– volume: 35
  start-page: 249
  year: 1999
  ident: 10.1016/j.biomaterials.2011.12.038_bib1
  article-title: Oral insulin delivery
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(98)00075-1
– volume: 17
  start-page: 1468
  year: 2000
  ident: 10.1016/j.biomaterials.2011.12.038_bib31
  article-title: Design and in vivo evaluation of an oral delivery system for insulin
  publication-title: Pharm Res
  doi: 10.1023/A:1007696723125
– volume: 285
  start-page: C1174
  year: 2003
  ident: 10.1016/j.biomaterials.2011.12.038_bib13
  article-title: Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00015.2003
– volume: 80
  start-page: 1137
  year: 2010
  ident: 10.1016/j.biomaterials.2011.12.038_bib29
  article-title: Chitosan modified with gadolinium diethylenetriaminepentaacetic acid for magnetic resonance imaging of DNA/chitosan nanoparticles
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2010.01.035
– volume: 32
  start-page: 9826
  year: 2011
  ident: 10.1016/j.biomaterials.2011.12.038_bib5
  article-title: A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.08.087
– volume: 15
  start-page: 1408
  year: 2004
  ident: 10.1016/j.biomaterials.2011.12.038_bib14
  article-title: Synthesis and characterization of poly(L-glutamic acid) gadolinium chelate: a new biodegradable MRI contrast agent
  publication-title: Bioconjug Chem
  doi: 10.1021/bc049910m
– volume: 32
  start-page: 2673
  year: 2011
  ident: 10.1016/j.biomaterials.2011.12.038_bib21
  article-title: The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.12.044
– volume: 117
  start-page: 169
  year: 1992
  ident: 10.1016/j.biomaterials.2011.12.038_bib12
  article-title: Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells
  publication-title: J Cell Biol
  doi: 10.1083/jcb.117.1.169
– volume: 54
  start-page: 369
  year: 1999
  ident: 10.1016/j.biomaterials.2011.12.038_bib30
  article-title: Comparative in vitro study of different chitosan-complexing agent conjugates
  publication-title: Pharmazie
– volume: 31
  start-page: 6849
  year: 2010
  ident: 10.1016/j.biomaterials.2011.12.038_bib34
  article-title: Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: oral delivery using pH-responsive nanoparticles vs. subcutaneous injection
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.05.042
– volume: 19
  start-page: 165
  year: 2005
  ident: 10.1016/j.biomaterials.2011.12.038_bib4
  article-title: Oral delivery of peptide drugs: barriers and developments
  publication-title: BioDrugs
  doi: 10.2165/00063030-200519030-00003
– volume: 52
  start-page: 1
  year: 1998
  ident: 10.1016/j.biomaterials.2011.12.038_bib11
  article-title: The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins
  publication-title: J Control Release
  doi: 10.1016/S0168-3659(97)00204-6
– volume: 10
  start-page: 251
  year: 1996
  ident: 10.1016/j.biomaterials.2011.12.038_bib18
  article-title: NAMD: a parallel, object-oriented molecular dynamics program
  publication-title: Int J Supercomput Appl High Perform Comput
  doi: 10.1177/109434209601000401
– volume: 26
  start-page: 886
  year: 2003
  ident: 10.1016/j.biomaterials.2011.12.038_bib16
  article-title: Factors affecting the microclimate pH of the rat jejunum in ringer bicarbonate buffer
  publication-title: Biol Pharm Bull
  doi: 10.1248/bpb.26.886
– volume: 46
  start-page: 239
  year: 1999
  ident: 10.1016/j.biomaterials.2011.12.038_bib2
  article-title: Injection related anxiety in insulin-treated diabetes
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/S0168-8227(99)00099-6
– volume: 117
  start-page: 163
  year: 2007
  ident: 10.1016/j.biomaterials.2011.12.038_bib24
  article-title: Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2006.10.023
– volume: 15
  start-page: 1326
  year: 1998
  ident: 10.1016/j.biomaterials.2011.12.038_bib9
  article-title: Chitosan and its use as a pharmaceutical excipient
  publication-title: Pharm Res
  doi: 10.1023/A:1011929016601
– volume: 29
  start-page: 1216
  year: 2008
  ident: 10.1016/j.biomaterials.2011.12.038_bib25
  article-title: The use of charge-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.11.018
– volume: 52
  start-page: 117
  year: 2001
  ident: 10.1016/j.biomaterials.2011.12.038_bib26
  article-title: Oral drug absorption enhancement by chitosan and its derivatives
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(01)00231-9
– volume: 22
  start-page: 1854
  year: 2005
  ident: 10.1016/j.biomaterials.2011.12.038_bib33
  article-title: Region-dependent role of the mucous/glycocalyx layers in insulin permeation across rat small intestinal membrane
  publication-title: Pharm Res
  doi: 10.1007/s11095-005-6137-z
– volume: 11
  start-page: 119
  year: 1994
  ident: 10.1016/j.biomaterials.2011.12.038_bib35
  article-title: Bioadhesion technologies for the delivery of peptide and protein drugs to the gastrointestinal tract
  publication-title: Crit Rev Ther Drug Carrier Syst
– volume: 13
  start-page: 801
  year: 1996
  ident: 10.1016/j.biomaterials.2011.12.038_bib23
  article-title: Evidence for the existence of insulin-degrading enzyme on the brush-border membranes of rat enterocytes
  publication-title: Pharm Res
  doi: 10.1023/A:1016024322209
– volume: 27
  start-page: 5896
  year: 2009
  ident: 10.1016/j.biomaterials.2011.12.038_bib8
  article-title: Poly(gamma-glutamic acid) nano-particles combined with mucosal influenza virus hemagglutinin vaccine protects against influenza virus infection in mice
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2009.07.037
– volume: 63
  start-page: 45
  year: 1998
  ident: 10.1016/j.biomaterials.2011.12.038_bib27
  article-title: Effects of absorption enhancers on cytoskeletal actin filaments in Caco-2 cell monolayers
  publication-title: Life Sci
  doi: 10.1016/S0024-3205(98)00235-5
– volume: 100
  start-page: 200
  year: 2009
  ident: 10.1016/j.biomaterials.2011.12.038_bib28
  article-title: Adsorption of toxic mercury(II) by an extracellular biopolymer poly(gamma-glutamic acid)
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2008.05.014
– volume: 986
  start-page: 68
  year: 2011
  ident: 10.1016/j.biomaterials.2011.12.038_bib10
  article-title: Adsorption investigation of MA-DTPA chelating resin for Ni(II) and Cu(II) using experimental and DFT methods
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2010.11.049
– volume: 9
  start-page: 1837
  year: 2008
  ident: 10.1016/j.biomaterials.2011.12.038_bib7
  article-title: Why is chitosan mucoadhesive?
  publication-title: Biomacromolecules
  doi: 10.1021/bm800276d
– volume: 14
  start-page: 917
  year: 1997
  ident: 10.1016/j.biomaterials.2011.12.038_bib15
  article-title: Novel bioadhesive chitosan-EDTA conjugate protects leucine enkephalin from degradation by aminopeptidase N
  publication-title: Pharm Res
  doi: 10.1023/A:1012108118670
– volume: 29
  start-page: 1035
  year: 1988
  ident: 10.1016/j.biomaterials.2011.12.038_bib19
  article-title: Measurement of gastrointestinal pH profiles in normal ambulant human subjects
  publication-title: Gut
  doi: 10.1136/gut.29.8.1035
– volume: 52
  start-page: 249
  year: 2011
  ident: 10.1016/j.biomaterials.2011.12.038_bib20
  article-title: PET imaging of the gastrointestinal absorption of orally administered drugs in conscious and anesthetized rats
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.110.081539
– volume: 194
  start-page: 1
  year: 2000
  ident: 10.1016/j.biomaterials.2011.12.038_bib32
  article-title: Chitosan and its derivatives: potential excipients for peroral peptide delivery systems
  publication-title: Int J Pharm
  doi: 10.1016/S0378-5173(99)00365-8
– reference: 22811979 - Nanomedicine (Lond). 2012 May;7(5):632
SSID ssj0014042
Score 2.4591637
Snippet Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by...
Abstract Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2801
SubjectTerms absorption
Absorption - drug effects
Adherens junction
Administration, Oral
Advanced Basic Science
Animals
bioavailability
Biological Availability
biopharmaceuticals
bladder
blood glucose
Blood Glucose - drug effects
Cell Adhesion - drug effects
chitosan
Chitosan - chemical synthesis
Chitosan - chemistry
Complexing agent
confocal microscopy
Dentistry
Diabetes Mellitus, Experimental - blood
Diabetes Mellitus, Experimental - pathology
Drug Delivery Systems - methods
Electric Impedance
enzyme inhibition
Injections, Subcutaneous
insulin
Insulin - administration & dosage
Insulin - blood
Insulin - pharmacokinetics
Insulin - pharmacology
kidneys
metal ions
mixing
Molecular dynamic simulation
Molecular Dynamics Simulation
nanoparticles
Nanoparticles - chemistry
Oral protein delivery
Particle Size
Pentetic Acid - chemistry
permeability
Polyglutamic Acid - chemical synthesis
Polyglutamic Acid - chemistry
Protease Inhibitors - pharmacology
Protective Agents - pharmacology
proteinases
Proteolytic inhibition
Rats
Rats, Wistar
scintigraphy
small intestine
Spectroscopy, Fourier Transform Infrared
Static Electricity
tight junctions
Tissue Distribution - drug effects
Tomography, Emission-Computed, Single-Photon
Tomography, X-Ray Computed
Title Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961211015080
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961211015080
https://dx.doi.org/10.1016/j.biomaterials.2011.12.038
https://www.ncbi.nlm.nih.gov/pubmed/22243802
https://www.proquest.com/docview/1710227925
https://www.proquest.com/docview/917575493
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1CCqU9lCb9cpsGFXp1N5ZkS6L0EELDtiWhhwZyE7ItkQ1BG7KbQy797Z2x5CUlCSzkaKPBRjOaeSO9GQF81rzyHC2plD1aMBqFLrVsQylMU9fe7wU-XNN5dNxMT-TP0_p0Aw7GWhiiVWbfn3z64K3zm0mezcnlbDYhWhI31ACroqxdU94upSIr__J3RfOg7jE80Rh5SaPHxqMDx4tK3N0yqTq186StQapVuT9IPQRCh2B0-BJeZBTJ9tOPbsGGj9vw_FZvwW14epRPzV9B_E3NGDBcsVk8m7UDSYu52DPXLuZXg89gPp6R_mmvkLU3jMJd2iVk0UVMrDN_jiHGZYkDgm6SUXk_y3R21vsLInncvIaTw-9_DqZlvmeh7GrDl6VRlQtdR2EK4Y5q6WSSN0HXWjedr3olQuiFF1phyKv3OsIQ0iBUc0YE0RvxBjbjPPp3wEKjekc5lWpbqZx2XOlOulqFvqdDvALMOLG2y03I6S6MCzuyzc7tbaVYUoqtuEWlFCBWspepFcdaUl9H_dmx2BTdo8WIsZa0uk_aL_JKX9jKLnCkvWONBXxbSf5n0Gt_-dNobBZXPB3juOjn1_hFAoXU97EugD0wBpNwxOHSiALeJkNdTRkCQrplgL9_5A9-gGf4xBMfbwc2l1fX_iMCtGW7O6zAXXiy_-PX9Pgf5LE8jg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7CBvo4lDZ9uU8VejW7lixLovQQQsOmyS49JJCbkC2ZbAnakN0c8u87Y8tLShNY6NXWYKMZzUPzzQzAV82LwFGS8tKjBKNQ6FyXdZsLU0kZwqTl3ZjO2byanpU_z-X5DhwMtTAEq0y6v9fpnbZOT8ZpN8dXi8WYYEncUAOsgqJ2jXH7LnWnkiPY3T86ns43yYRy0s3QofU5EQy9RzuYF1W5u3XP7b6jJ90OUrnK_XbqIT-0s0eHz-FZciTZfv-vL2AnxD14eqe94B48mqXE-UuIv6gfA1ostogXi7rDaTEXPXP1anndqQ0W4gWJAF0XsvqWkcXrLwpZdBFj6wShY-jmsh4GgpqSUYU_S4h25sMl4TxuX8HZ4Y_Tg2meRi3kjTR8nRtVuLZpyFKhx6NqSk7yqtVS66oJhVeibb0IQiu0enLSkBtRGvTWnBGt8Ea8hlFcxvAWWFsp7yisUnVdKqcdV7opnVSt95THy8AMG2ub1IecxmFc2gFw9tveZYolptiCW2RKBmJDe9V349iK6tvAPzvUm6KGtGg0tqJW91GHVTrsK1vYFa60_whkBt83lH_J9NZf_jIIm8VDT5kcF8PyBr9IfiG1fpQZsAfWYByOrnhpRAZvekHdbBn6hDRogL_7zx_8DI-np7MTe3I0P34PT_AN7-F5H2C0vr4JH9FfW9ef0nn8A5TZPz8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protease+inhibition+and+absorption+enhancement+by+functional+nanoparticles+for+effective+oral+insulin+delivery&rft.jtitle=Biomaterials&rft.au=Su%2C+Fang-Yi&rft.au=Lin%2C+Kun-Ju&rft.au=Sonaje%2C+Kiran&rft.au=Wey%2C+Shiaw-Pyng&rft.date=2012-03-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=33&rft.issue=9&rft.spage=2801&rft_id=info:doi/10.1016%2Fj.biomaterials.2011.12.038&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961212X00036%2Fcov150h.gif