Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery
Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delive...
Saved in:
Published in | Biomaterials Vol. 33; no. 9; pp. 2801 - 2811 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.03.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route. |
---|---|
AbstractList | Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route. Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route.Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route. Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route. Abstract Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by chelating divalent metal ions. This study attempts to incorporate these benefits of DTPA in functional nanoparticles (NPs) for oral insulin delivery. To maintain the complexing agent concentrated on the intestinal mucosal surface, where the paracellular permeation enhancement and enzyme inhibition are required, DTPA was covalently conjugated on poly(γ-glutamic acid) (γPGA). The functional NPs were prepared by mixing cationic chitosan (CS) with anionic γPGA-DTPA conjugate. The γPGA-DTPA conjugate inhibited the intestinal proteases substantially, and produced a transient and reversible enhancement of paracellular permeability. The prepared NPs were pH-responsive; with an increasing pH, CS/γPGA-DTPA NPs swelled gradually and disintegrated at a pH value above 7.0. Additionally, the biodistribution of insulin orally delivered by CS/γPGA-DTPA NPs in rats was examined by confocal microscopy and scintigraphy. Experimental results indicate that CS/γPGA-DTPA NPs can promote the insulin absorption throughout the entire small intestine; the absorbed insulin was clearly identified in the kidney and bladder. In addition to producing a prolonged reduction in blood glucose levels, the oral intake of the enteric-coated capsule containing CS/γPGA-DTPA NPs showed a maximum insulin concentration at 4 h after treatment. The relative oral bioavailability of insulin was approximately 20%. Results of this study demonstrate the potential role for the proposed formulation in delivering therapeutic proteins by oral route. |
Author | Wey, Shiaw-Pyng Yen, Tzu-Chen Su, Fang-Yi Sonaje, Kiran Sung, Hsing-Wen Chuang, Er-Yuan Ho, Yi-Cheng Maiti, Barnali Panda, Nilendu Lin, Kun-Ju |
Author_xml | – sequence: 1 givenname: Fang-Yi surname: Su fullname: Su, Fang-Yi organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC – sequence: 2 givenname: Kun-Ju surname: Lin fullname: Lin, Kun-Ju organization: Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan, ROC – sequence: 3 givenname: Kiran surname: Sonaje fullname: Sonaje, Kiran organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC – sequence: 4 givenname: Shiaw-Pyng surname: Wey fullname: Wey, Shiaw-Pyng organization: Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan, ROC – sequence: 5 givenname: Tzu-Chen surname: Yen fullname: Yen, Tzu-Chen organization: Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC – sequence: 6 givenname: Yi-Cheng surname: Ho fullname: Ho, Yi-Cheng organization: Department of Biotechnology, Vanung University, Chungli, Taoyuan, Taiwan, ROC – sequence: 7 givenname: Nilendu surname: Panda fullname: Panda, Nilendu organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC – sequence: 8 givenname: Er-Yuan surname: Chuang fullname: Chuang, Er-Yuan organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC – sequence: 9 givenname: Barnali surname: Maiti fullname: Maiti, Barnali organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC – sequence: 10 givenname: Hsing-Wen surname: Sung fullname: Sung, Hsing-Wen email: hwsung@che.nthu.edu.tw organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22243802$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk-LFDEQxYOsuLOrX0EaL3qZMZV0uhMPoq5_YUFBPYd0usJm7E5mk-6F-famnVVkQZlTqOS9H5V6dUZOQgxIyBOgG6DQPN9uOh9HM2HyZsgbRgE2wDaUy3tkBbKVa6GoOCErCjVbqwbYKTnLeUtLTWv2gJwyxmouKVuR8CXFCU3Gyocr3_nJx1CZ0FemyzHtfpUYrkywOGKYqm5fuTnY5d4MVTAh7kyavB0wVy6mCp3D8nqDVUxF4EOeBx-qHodyl_YPyX1XesZHt-c5-f7-3beLj-vLzx8-Xby-XFuh2LRWLRhnbd2CBCbajje1YI2TQsrGIvQtd67nyGXLaxDUgipfU1KAUdzxXvFz8vTA3aV4PWOe9OizxWEwAeOctYJWtKJWvCif_VcJLVDGWsVEkT6-lc7diL3eJT-atNe_p1kELw4Cm2LOCd0fCVC9RKe3-u_o9BKdBqZLdMX86o7Z-sksg56S8cNxiLcHBJbR3nhMOluPJbrep5KK7qM_DvPyDsaWDL01ww_cY97GOYXFAzoXg_66rNmyZVDAgkpaAG_-DTi2i5-SxOsO |
CitedBy_id | crossref_primary_10_1016_j_ijpharm_2015_02_055 crossref_primary_10_1016_j_ijpharm_2018_07_037 crossref_primary_10_1080_09506608_2022_2040293 crossref_primary_10_1016_j_ijpharm_2021_121357 crossref_primary_10_1080_17425247_2016_1206074 crossref_primary_10_1039_D0BM01151G crossref_primary_10_1002_mabi_201300515 crossref_primary_10_1016_j_addr_2023_115117 crossref_primary_10_1016_j_ijbiomac_2014_03_016 crossref_primary_10_1080_1061186X_2020_1759078 crossref_primary_10_2217_nnm_2018_0322 crossref_primary_10_52711_2231_5659_2023_00025 crossref_primary_10_1016_j_ijpharm_2019_118720 crossref_primary_10_1039_C6TB02475K crossref_primary_10_1080_1061186X_2020_1817042 crossref_primary_10_1016_j_jconrel_2016_12_018 crossref_primary_10_1016_j_jconrel_2014_06_022 crossref_primary_10_3390_ijms23063362 crossref_primary_10_3109_10717544_2015_1052863 crossref_primary_10_1007_s11051_014_2847_7 crossref_primary_10_1016_j_jconrel_2016_10_002 crossref_primary_10_1021_acs_molpharmaceut_3c00907 crossref_primary_10_1016_j_ijpharm_2013_07_022 crossref_primary_10_2147_IJN_S257269 crossref_primary_10_2174_1389557521666210623164052 crossref_primary_10_1016_j_ijbiomac_2024_131428 crossref_primary_10_3390_pharmaceutics13060887 crossref_primary_10_3390_pharmaceutics15112635 crossref_primary_10_1016_j_biomaterials_2019_01_006 crossref_primary_10_1080_17425247_2020_1776698 crossref_primary_10_1016_j_apsb_2020_08_016 crossref_primary_10_1016_j_biomaterials_2014_01_020 crossref_primary_10_1016_j_biomaterials_2013_07_021 crossref_primary_10_1016_j_addr_2016_03_011 crossref_primary_10_1016_j_biomaterials_2012_05_013 crossref_primary_10_1016_j_ijbiomac_2024_139159 crossref_primary_10_1016_j_ijpharm_2012_06_054 crossref_primary_10_1016_j_ejpb_2015_03_027 crossref_primary_10_1080_00914037_2014_921919 crossref_primary_10_1016_j_apsb_2019_01_004 crossref_primary_10_1208_s12249_019_1325_z crossref_primary_10_1002_adhm_202401120 crossref_primary_10_1186_s12951_022_01260_9 crossref_primary_10_1016_j_jddst_2018_10_022 crossref_primary_10_3109_10717544_2015_1043472 crossref_primary_10_1016_j_jconrel_2017_07_045 crossref_primary_10_3390_polym13172943 crossref_primary_10_1002_anie_202008879 crossref_primary_10_1016_j_jconrel_2017_04_031 crossref_primary_10_1021_acs_chemrev_0c01062 crossref_primary_10_1016_j_addr_2018_12_001 crossref_primary_10_1016_j_ajps_2023_100848 crossref_primary_10_1517_17425247_2016_1107543 crossref_primary_10_1016_j_apsb_2021_04_001 crossref_primary_10_1517_17425247_2014_924500 crossref_primary_10_1016_j_ijpharm_2013_02_030 crossref_primary_10_1080_87559129_2022_2062772 crossref_primary_10_1002_adfm_201910168 crossref_primary_10_1016_j_addr_2012_11_002 crossref_primary_10_1088_1748_6041_11_1_014102 crossref_primary_10_1016_j_addr_2016_02_004 crossref_primary_10_1016_j_bioadv_2022_212796 crossref_primary_10_1007_s11095_014_1615_9 crossref_primary_10_1080_17425247_2023_2231343 crossref_primary_10_1016_j_ijbiomac_2020_02_079 crossref_primary_10_3390_pharmaceutics12100999 crossref_primary_10_1016_j_ijbiomac_2017_05_138 crossref_primary_10_1016_j_addr_2017_09_020 crossref_primary_10_1093_jpp_rgaa052 crossref_primary_10_1016_j_jconrel_2014_04_042 crossref_primary_10_1080_1061186X_2019_1605520 crossref_primary_10_1016_j_susc_2015_10_043 crossref_primary_10_1016_j_biomaterials_2013_06_047 crossref_primary_10_1007_s40005_022_00574_y crossref_primary_10_1016_j_biomaterials_2013_08_035 crossref_primary_10_1016_j_nano_2014_02_014 crossref_primary_10_3390_molecules24234209 crossref_primary_10_1208_s12248_015_9804_y crossref_primary_10_1016_j_biomaterials_2012_09_082 crossref_primary_10_1080_1061186X_2020_1726356 crossref_primary_10_1016_j_ijbiomac_2023_125114 crossref_primary_10_1007_s11051_015_2909_5 crossref_primary_10_1016_j_ijpharm_2019_02_014 crossref_primary_10_1016_j_addr_2012_10_010 crossref_primary_10_1002_adhm_201801123 crossref_primary_10_1007_s13346_020_00746_z crossref_primary_10_1016_j_actbio_2015_06_021 crossref_primary_10_1016_j_jconrel_2014_09_031 crossref_primary_10_3390_polym9040137 crossref_primary_10_1016_j_colsurfb_2014_10_047 crossref_primary_10_1517_17425247_2012_745848 crossref_primary_10_1002_ange_202008879 crossref_primary_10_1016_j_cis_2024_103318 crossref_primary_10_1080_08927022_2016_1270452 crossref_primary_10_1016_j_biomaterials_2015_06_035 crossref_primary_10_1016_j_jconrel_2013_05_006 crossref_primary_10_1016_j_jconrel_2013_05_002 crossref_primary_10_2147_DDDT_S273612 crossref_primary_10_1016_j_ejpb_2013_11_007 crossref_primary_10_1021_acsabm_4c01955 crossref_primary_10_1016_j_biomaterials_2017_10_022 crossref_primary_10_1080_17425247_2018_1503250 crossref_primary_10_1016_j_pmatsci_2017_05_001 crossref_primary_10_1002_ddr_21832 crossref_primary_10_1016_j_jconrel_2012_11_011 crossref_primary_10_1016_j_jddst_2015_04_008 crossref_primary_10_1016_j_addr_2016_02_011 crossref_primary_10_1016_j_jfda_2015_01_007 crossref_primary_10_1021_acs_nanolett_8b02229 crossref_primary_10_3390_ijms18020313 crossref_primary_10_1016_j_ijpharm_2013_07_079 crossref_primary_10_1039_c3cs60436e crossref_primary_10_3109_1061186X_2014_928716 crossref_primary_10_1016_j_colsurfb_2023_113613 crossref_primary_10_52711_0974_360X_2021_00349 crossref_primary_10_1002_advs_202102466 crossref_primary_10_1002_adhm_201801184 crossref_primary_10_1134_S0003683821020186 crossref_primary_10_2217_nnm_2016_0331 crossref_primary_10_1016_j_biomaterials_2012_12_041 crossref_primary_10_3109_03639045_2014_886695 crossref_primary_10_1016_j_carbpol_2016_10_021 crossref_primary_10_3109_02652048_2015_1065920 crossref_primary_10_1007_s11705_013_1306_9 crossref_primary_10_1517_17425247_2016_1160889 crossref_primary_10_1016_j_ijpharm_2019_118708 crossref_primary_10_1016_j_jconrel_2017_09_003 crossref_primary_10_1016_j_carbpol_2020_117504 crossref_primary_10_1016_j_ejpb_2017_03_015 crossref_primary_10_3390_pharmaceutics15051415 crossref_primary_10_1021_acsbiomaterials_8b00646 crossref_primary_10_1186_s12951_020_00657_8 crossref_primary_10_1016_j_actbio_2022_08_061 crossref_primary_10_1016_j_tips_2020_07_005 crossref_primary_10_1016_j_addr_2016_06_006 crossref_primary_10_1134_S0965545X19030192 crossref_primary_10_1016_j_drudis_2012_03_019 crossref_primary_10_1016_j_ijbiomac_2022_08_041 crossref_primary_10_1016_j_biotechadv_2015_02_010 crossref_primary_10_3109_1061186X_2012_693499 crossref_primary_10_1007_s10856_019_6294_y crossref_primary_10_1016_j_colsurfb_2015_02_042 crossref_primary_10_1016_j_xphs_2019_01_027 crossref_primary_10_3390_nano11112830 |
Cites_doi | 10.1016/j.biomaterials.2009.08.030 10.1016/S0378-5173(03)00380-6 10.1016/j.biomaterials.2008.12.066 10.1177/193229680900300322 10.1016/S0169-409X(98)00075-1 10.1023/A:1007696723125 10.1152/ajpcell.00015.2003 10.1016/j.carbpol.2010.01.035 10.1016/j.biomaterials.2011.08.087 10.1021/bc049910m 10.1016/j.biomaterials.2010.12.044 10.1083/jcb.117.1.169 10.1016/j.biomaterials.2010.05.042 10.2165/00063030-200519030-00003 10.1016/S0168-3659(97)00204-6 10.1177/109434209601000401 10.1248/bpb.26.886 10.1016/S0168-8227(99)00099-6 10.1016/j.jconrel.2006.10.023 10.1023/A:1011929016601 10.1016/j.biomaterials.2007.11.018 10.1016/S0169-409X(01)00231-9 10.1007/s11095-005-6137-z 10.1023/A:1016024322209 10.1016/j.vaccine.2009.07.037 10.1016/S0024-3205(98)00235-5 10.1016/j.biortech.2008.05.014 10.1016/j.molstruc.2010.11.049 10.1021/bm800276d 10.1023/A:1012108118670 10.1136/gut.29.8.1035 10.2967/jnumed.110.081539 10.1016/S0378-5173(99)00365-8 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd Elsevier Ltd Copyright © 2011 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2011 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1016/j.biomaterials.2011.12.038 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 2811 |
ExternalDocumentID | 22243802 10_1016_j_biomaterials_2011_12_038 S0142961211015080 1_s2_0_S0142961211015080 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS EFLBG AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c592t-971afcc47181257b364526f85886ce1d73ffd3e38734150c190149851a93f3d93 |
IEDL.DBID | .~1 |
ISSN | 0142-9612 1878-5905 |
IngestDate | Thu Jul 10 21:58:54 EDT 2025 Fri Jul 11 00:05:12 EDT 2025 Mon Jul 21 06:03:29 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Tue Jul 01 03:47:32 EDT 2025 Fri Feb 23 02:23:08 EST 2024 Sun Feb 23 10:18:59 EST 2025 Tue Aug 26 17:18:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Proteolytic inhibition Oral protein delivery Molecular dynamic simulation Complexing agent Adherens junction |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c592t-971afcc47181257b364526f85886ce1d73ffd3e38734150c190149851a93f3d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22243802 |
PQID | 1710227925 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_917575493 proquest_miscellaneous_1710227925 pubmed_primary_22243802 crossref_primary_10_1016_j_biomaterials_2011_12_038 crossref_citationtrail_10_1016_j_biomaterials_2011_12_038 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2011_12_038 elsevier_clinicalkeyesjournals_1_s2_0_S0142961211015080 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2011_12_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-01 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yamashita, Takashima, Kataoka, Oh, Sakuma, Takahashi (bib20) 2011; 52 Marschütz, Caliceti, Bernkop-Schnürch (bib31) 2000; 17 Wen, Jackson, Price, Kim, Wu, Wallace (bib14) 2004; 15 Sonaje, Lin, Wey, Lin, Yeh, Nguyen (bib34) 2010; 31 Inbaraj, Wang, Lu, Siao, Chen (bib28) 2009; 100 Sakai, Imai, Ohtake, Azuma, Otagiri (bib27) 1998; 63 Bernkop-Schnürch (bib11) 1998; 52 Chen, Sonaje, Chen, Sung (bib5) 2011; 32 Chen, Wong, Lin, Chen, Wey, Sonaje (bib22) 2009; 30 Bernkop-Schnürch, Freudl (bib30) 1999; 54 Arbit, Kidron (bib3) 2009; 3 Hamman, Enslin, Kotzé (bib4) 2005; 19 Evans, Pye, Bramley, Clark, Dyson, Hardcastle (bib19) 1988; 29 Carino, Mathiowitz (bib1) 1999; 35 Sogias, Williams, Khutoryanskiy (bib7) 2008; 9 Damgé, Maincent, Ubrich (bib24) 2007; 117 Chang, Bai (bib23) 1996; 13 Sameti, Bohr, Ravi Kumar, Kneuer, Bakowsky, Nacken (bib17) 2003; 266 Thanou, Verhoef, Junginger (bib26) 2001; 52 Aoki, Morishita, Asai, Akikusa, Hosoda, Takayama (bib33) 2005; 22 Nelson, Humphrey, Gursoy, Dalke, Kale, Skeel (bib18) 1996; 10 Sonaje, Lin, Juang, Wey, Chen, Sung (bib6) 2009; 30 Citi (bib12) 1992; 117 Lehr (bib35) 1994; 11 Darras, Nelea, Winnik, Buschmann (bib29) 2010; 80 Nguyen, Wey, Juang, Sonaje, Ho, Chuang (bib21) 2011; 32 Okamoto, Matsuura, Akagi, Akashi, Tanimoto, Ishikawa (bib8) 2009; 27 Illum (bib9) 1998; 15 Guo, Rao, Liu, Zou, Turner, Bass (bib13) 2003; 285 Legen, Kristl (bib16) 2003; 26 Zhao, Song, Zhang, Wang, Fu (bib10) 2011; 986 Bernkop-Schnürch, Paikl, Valenta (bib15) 1997; 14 Teply, Tong, Jeong, Luther, Sherifi, Yim (bib25) 2008; 29 Zambanini, Newson, Maisey, Feher (bib2) 1999; 46 Bernkop-Schnürch (bib32) 2000; 194 Lehr (10.1016/j.biomaterials.2011.12.038_bib35) 1994; 11 Guo (10.1016/j.biomaterials.2011.12.038_bib13) 2003; 285 Teply (10.1016/j.biomaterials.2011.12.038_bib25) 2008; 29 Aoki (10.1016/j.biomaterials.2011.12.038_bib33) 2005; 22 Hamman (10.1016/j.biomaterials.2011.12.038_bib4) 2005; 19 Arbit (10.1016/j.biomaterials.2011.12.038_bib3) 2009; 3 Bernkop-Schnürch (10.1016/j.biomaterials.2011.12.038_bib30) 1999; 54 Wen (10.1016/j.biomaterials.2011.12.038_bib14) 2004; 15 Bernkop-Schnürch (10.1016/j.biomaterials.2011.12.038_bib15) 1997; 14 Nguyen (10.1016/j.biomaterials.2011.12.038_bib21) 2011; 32 Zambanini (10.1016/j.biomaterials.2011.12.038_bib2) 1999; 46 Marschütz (10.1016/j.biomaterials.2011.12.038_bib31) 2000; 17 Damgé (10.1016/j.biomaterials.2011.12.038_bib24) 2007; 117 Yamashita (10.1016/j.biomaterials.2011.12.038_bib20) 2011; 52 Sameti (10.1016/j.biomaterials.2011.12.038_bib17) 2003; 266 Evans (10.1016/j.biomaterials.2011.12.038_bib19) 1988; 29 Inbaraj (10.1016/j.biomaterials.2011.12.038_bib28) 2009; 100 Carino (10.1016/j.biomaterials.2011.12.038_bib1) 1999; 35 Sakai (10.1016/j.biomaterials.2011.12.038_bib27) 1998; 63 Citi (10.1016/j.biomaterials.2011.12.038_bib12) 1992; 117 Sonaje (10.1016/j.biomaterials.2011.12.038_bib6) 2009; 30 Sogias (10.1016/j.biomaterials.2011.12.038_bib7) 2008; 9 Okamoto (10.1016/j.biomaterials.2011.12.038_bib8) 2009; 27 Thanou (10.1016/j.biomaterials.2011.12.038_bib26) 2001; 52 Chang (10.1016/j.biomaterials.2011.12.038_bib23) 1996; 13 Darras (10.1016/j.biomaterials.2011.12.038_bib29) 2010; 80 Zhao (10.1016/j.biomaterials.2011.12.038_bib10) 2011; 986 Nelson (10.1016/j.biomaterials.2011.12.038_bib18) 1996; 10 Chen (10.1016/j.biomaterials.2011.12.038_bib5) 2011; 32 Sonaje (10.1016/j.biomaterials.2011.12.038_bib34) 2010; 31 Legen (10.1016/j.biomaterials.2011.12.038_bib16) 2003; 26 Bernkop-Schnürch (10.1016/j.biomaterials.2011.12.038_bib11) 1998; 52 Chen (10.1016/j.biomaterials.2011.12.038_bib22) 2009; 30 Bernkop-Schnürch (10.1016/j.biomaterials.2011.12.038_bib32) 2000; 194 Illum (10.1016/j.biomaterials.2011.12.038_bib9) 1998; 15 22811979 - Nanomedicine (Lond). 2012 May;7(5):632 |
References_xml | – volume: 46 start-page: 239 year: 1999 end-page: 246 ident: bib2 article-title: Injection related anxiety in insulin-treated diabetes publication-title: Diabetes Res Clin Pract – volume: 54 start-page: 369 year: 1999 end-page: 371 ident: bib30 article-title: Comparative publication-title: Pharmazie – volume: 15 start-page: 1326 year: 1998 end-page: 1331 ident: bib9 article-title: Chitosan and its use as a pharmaceutical excipient publication-title: Pharm Res – volume: 10 start-page: 251 year: 1996 end-page: 268 ident: bib18 article-title: NAMD: a parallel, object-oriented molecular dynamics program publication-title: Int J Supercomput Appl High Perform Comput – volume: 32 start-page: 2673 year: 2011 end-page: 2682 ident: bib21 article-title: The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion publication-title: Biomaterials – volume: 17 start-page: 1468 year: 2000 end-page: 1474 ident: bib31 article-title: Design and publication-title: Pharm Res – volume: 11 start-page: 119 year: 1994 end-page: 160 ident: bib35 article-title: Bioadhesion technologies for the delivery of peptide and protein drugs to the gastrointestinal tract publication-title: Crit Rev Ther Drug Carrier Syst – volume: 22 start-page: 1854 year: 2005 end-page: 1862 ident: bib33 article-title: Region-dependent role of the mucous/glycocalyx layers in insulin permeation across rat small intestinal membrane publication-title: Pharm Res – volume: 29 start-page: 1216 year: 2008 end-page: 1223 ident: bib25 article-title: The use of charge-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules publication-title: Biomaterials – volume: 117 start-page: 169 year: 1992 end-page: 178 ident: bib12 article-title: Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells publication-title: J Cell Biol – volume: 194 start-page: 1 year: 2000 end-page: 13 ident: bib32 article-title: Chitosan and its derivatives: potential excipients for peroral peptide delivery systems publication-title: Int J Pharm – volume: 9 start-page: 1837 year: 2008 end-page: 1842 ident: bib7 article-title: Why is chitosan mucoadhesive? publication-title: Biomacromolecules – volume: 986 start-page: 68 year: 2011 end-page: 74 ident: bib10 article-title: Adsorption investigation of MA-DTPA chelating resin for Ni(II) and Cu(II) using experimental and DFT methods publication-title: J Mol Struct – volume: 52 start-page: 1 year: 1998 end-page: 16 ident: bib11 article-title: The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins publication-title: J Control Release – volume: 3 start-page: 562 year: 2009 end-page: 567 ident: bib3 article-title: Oral insulin: the rationale for this approach and current developments publication-title: J Diabetes Sci Technol – volume: 13 start-page: 801 year: 1996 end-page: 803 ident: bib23 article-title: Evidence for the existence of insulin-degrading enzyme on the brush-border membranes of rat enterocytes publication-title: Pharm Res – volume: 52 start-page: 117 year: 2001 end-page: 126 ident: bib26 article-title: Oral drug absorption enhancement by chitosan and its derivatives publication-title: Adv Drug Deliv Rev – volume: 31 start-page: 6849 year: 2010 end-page: 6858 ident: bib34 article-title: Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: oral delivery using pH-responsive nanoparticles vs. subcutaneous injection publication-title: Biomaterials – volume: 52 start-page: 249 year: 2011 end-page: 256 ident: bib20 article-title: PET imaging of the gastrointestinal absorption of orally administered drugs in conscious and anesthetized rats publication-title: J Nucl Med – volume: 30 start-page: 2329 year: 2009 end-page: 2339 ident: bib6 article-title: evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery publication-title: Biomaterials – volume: 63 start-page: 45 year: 1998 end-page: 54 ident: bib27 article-title: Effects of absorption enhancers on cytoskeletal actin filaments in Caco-2 cell monolayers publication-title: Life Sci – volume: 32 start-page: 9826 year: 2011 end-page: 9838 ident: bib5 article-title: A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery publication-title: Biomaterials – volume: 19 start-page: 165 year: 2005 end-page: 177 ident: bib4 article-title: Oral delivery of peptide drugs: barriers and developments publication-title: BioDrugs – volume: 285 start-page: C1174 year: 2003 end-page: C1187 ident: bib13 article-title: Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines publication-title: Am J Physiol Cell Physiol – volume: 30 start-page: 6629 year: 2009 end-page: 6637 ident: bib22 article-title: The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin publication-title: Biomaterials – volume: 14 start-page: 917 year: 1997 end-page: 922 ident: bib15 article-title: Novel bioadhesive chitosan-EDTA conjugate protects leucine enkephalin from degradation by aminopeptidase N publication-title: Pharm Res – volume: 29 start-page: 1035 year: 1988 end-page: 1041 ident: bib19 article-title: Measurement of gastrointestinal pH profiles in normal ambulant human subjects publication-title: Gut – volume: 15 start-page: 1408 year: 2004 end-page: 1415 ident: bib14 article-title: Synthesis and characterization of poly(L-glutamic acid) gadolinium chelate: a new biodegradable MRI contrast agent publication-title: Bioconjug Chem – volume: 100 start-page: 200 year: 2009 end-page: 207 ident: bib28 article-title: Adsorption of toxic mercury(II) by an extracellular biopolymer poly(gamma-glutamic acid) publication-title: Bioresour Technol – volume: 27 start-page: 5896 year: 2009 end-page: 5905 ident: bib8 article-title: Poly(gamma-glutamic acid) nano-particles combined with mucosal influenza virus hemagglutinin vaccine protects against influenza virus infection in mice publication-title: Vaccine – volume: 266 start-page: 51 year: 2003 end-page: 60 ident: bib17 article-title: Stabilisation by freeze-drying of cationically modified silica nanoparticles for gene delivery publication-title: Int J Pharm – volume: 117 start-page: 163 year: 2007 end-page: 170 ident: bib24 article-title: Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats publication-title: J Control Release – volume: 35 start-page: 249 year: 1999 end-page: 257 ident: bib1 article-title: Oral insulin delivery publication-title: Adv Drug Deliv Rev – volume: 26 start-page: 886 year: 2003 end-page: 889 ident: bib16 article-title: Factors affecting the microclimate pH of the rat jejunum in ringer bicarbonate buffer publication-title: Biol Pharm Bull – volume: 80 start-page: 1137 year: 2010 end-page: 1146 ident: bib29 article-title: Chitosan modified with gadolinium diethylenetriaminepentaacetic acid for magnetic resonance imaging of DNA/chitosan nanoparticles publication-title: Carbohydr Polym – volume: 30 start-page: 6629 year: 2009 ident: 10.1016/j.biomaterials.2011.12.038_bib22 article-title: The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.08.030 – volume: 266 start-page: 51 year: 2003 ident: 10.1016/j.biomaterials.2011.12.038_bib17 article-title: Stabilisation by freeze-drying of cationically modified silica nanoparticles for gene delivery publication-title: Int J Pharm doi: 10.1016/S0378-5173(03)00380-6 – volume: 30 start-page: 2329 year: 2009 ident: 10.1016/j.biomaterials.2011.12.038_bib6 article-title: In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.12.066 – volume: 3 start-page: 562 year: 2009 ident: 10.1016/j.biomaterials.2011.12.038_bib3 article-title: Oral insulin: the rationale for this approach and current developments publication-title: J Diabetes Sci Technol doi: 10.1177/193229680900300322 – volume: 35 start-page: 249 year: 1999 ident: 10.1016/j.biomaterials.2011.12.038_bib1 article-title: Oral insulin delivery publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(98)00075-1 – volume: 17 start-page: 1468 year: 2000 ident: 10.1016/j.biomaterials.2011.12.038_bib31 article-title: Design and in vivo evaluation of an oral delivery system for insulin publication-title: Pharm Res doi: 10.1023/A:1007696723125 – volume: 285 start-page: C1174 year: 2003 ident: 10.1016/j.biomaterials.2011.12.038_bib13 article-title: Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00015.2003 – volume: 80 start-page: 1137 year: 2010 ident: 10.1016/j.biomaterials.2011.12.038_bib29 article-title: Chitosan modified with gadolinium diethylenetriaminepentaacetic acid for magnetic resonance imaging of DNA/chitosan nanoparticles publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2010.01.035 – volume: 32 start-page: 9826 year: 2011 ident: 10.1016/j.biomaterials.2011.12.038_bib5 article-title: A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.08.087 – volume: 15 start-page: 1408 year: 2004 ident: 10.1016/j.biomaterials.2011.12.038_bib14 article-title: Synthesis and characterization of poly(L-glutamic acid) gadolinium chelate: a new biodegradable MRI contrast agent publication-title: Bioconjug Chem doi: 10.1021/bc049910m – volume: 32 start-page: 2673 year: 2011 ident: 10.1016/j.biomaterials.2011.12.038_bib21 article-title: The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.12.044 – volume: 117 start-page: 169 year: 1992 ident: 10.1016/j.biomaterials.2011.12.038_bib12 article-title: Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells publication-title: J Cell Biol doi: 10.1083/jcb.117.1.169 – volume: 54 start-page: 369 year: 1999 ident: 10.1016/j.biomaterials.2011.12.038_bib30 article-title: Comparative in vitro study of different chitosan-complexing agent conjugates publication-title: Pharmazie – volume: 31 start-page: 6849 year: 2010 ident: 10.1016/j.biomaterials.2011.12.038_bib34 article-title: Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: oral delivery using pH-responsive nanoparticles vs. subcutaneous injection publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.05.042 – volume: 19 start-page: 165 year: 2005 ident: 10.1016/j.biomaterials.2011.12.038_bib4 article-title: Oral delivery of peptide drugs: barriers and developments publication-title: BioDrugs doi: 10.2165/00063030-200519030-00003 – volume: 52 start-page: 1 year: 1998 ident: 10.1016/j.biomaterials.2011.12.038_bib11 article-title: The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins publication-title: J Control Release doi: 10.1016/S0168-3659(97)00204-6 – volume: 10 start-page: 251 year: 1996 ident: 10.1016/j.biomaterials.2011.12.038_bib18 article-title: NAMD: a parallel, object-oriented molecular dynamics program publication-title: Int J Supercomput Appl High Perform Comput doi: 10.1177/109434209601000401 – volume: 26 start-page: 886 year: 2003 ident: 10.1016/j.biomaterials.2011.12.038_bib16 article-title: Factors affecting the microclimate pH of the rat jejunum in ringer bicarbonate buffer publication-title: Biol Pharm Bull doi: 10.1248/bpb.26.886 – volume: 46 start-page: 239 year: 1999 ident: 10.1016/j.biomaterials.2011.12.038_bib2 article-title: Injection related anxiety in insulin-treated diabetes publication-title: Diabetes Res Clin Pract doi: 10.1016/S0168-8227(99)00099-6 – volume: 117 start-page: 163 year: 2007 ident: 10.1016/j.biomaterials.2011.12.038_bib24 article-title: Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats publication-title: J Control Release doi: 10.1016/j.jconrel.2006.10.023 – volume: 15 start-page: 1326 year: 1998 ident: 10.1016/j.biomaterials.2011.12.038_bib9 article-title: Chitosan and its use as a pharmaceutical excipient publication-title: Pharm Res doi: 10.1023/A:1011929016601 – volume: 29 start-page: 1216 year: 2008 ident: 10.1016/j.biomaterials.2011.12.038_bib25 article-title: The use of charge-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.11.018 – volume: 52 start-page: 117 year: 2001 ident: 10.1016/j.biomaterials.2011.12.038_bib26 article-title: Oral drug absorption enhancement by chitosan and its derivatives publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(01)00231-9 – volume: 22 start-page: 1854 year: 2005 ident: 10.1016/j.biomaterials.2011.12.038_bib33 article-title: Region-dependent role of the mucous/glycocalyx layers in insulin permeation across rat small intestinal membrane publication-title: Pharm Res doi: 10.1007/s11095-005-6137-z – volume: 11 start-page: 119 year: 1994 ident: 10.1016/j.biomaterials.2011.12.038_bib35 article-title: Bioadhesion technologies for the delivery of peptide and protein drugs to the gastrointestinal tract publication-title: Crit Rev Ther Drug Carrier Syst – volume: 13 start-page: 801 year: 1996 ident: 10.1016/j.biomaterials.2011.12.038_bib23 article-title: Evidence for the existence of insulin-degrading enzyme on the brush-border membranes of rat enterocytes publication-title: Pharm Res doi: 10.1023/A:1016024322209 – volume: 27 start-page: 5896 year: 2009 ident: 10.1016/j.biomaterials.2011.12.038_bib8 article-title: Poly(gamma-glutamic acid) nano-particles combined with mucosal influenza virus hemagglutinin vaccine protects against influenza virus infection in mice publication-title: Vaccine doi: 10.1016/j.vaccine.2009.07.037 – volume: 63 start-page: 45 year: 1998 ident: 10.1016/j.biomaterials.2011.12.038_bib27 article-title: Effects of absorption enhancers on cytoskeletal actin filaments in Caco-2 cell monolayers publication-title: Life Sci doi: 10.1016/S0024-3205(98)00235-5 – volume: 100 start-page: 200 year: 2009 ident: 10.1016/j.biomaterials.2011.12.038_bib28 article-title: Adsorption of toxic mercury(II) by an extracellular biopolymer poly(gamma-glutamic acid) publication-title: Bioresour Technol doi: 10.1016/j.biortech.2008.05.014 – volume: 986 start-page: 68 year: 2011 ident: 10.1016/j.biomaterials.2011.12.038_bib10 article-title: Adsorption investigation of MA-DTPA chelating resin for Ni(II) and Cu(II) using experimental and DFT methods publication-title: J Mol Struct doi: 10.1016/j.molstruc.2010.11.049 – volume: 9 start-page: 1837 year: 2008 ident: 10.1016/j.biomaterials.2011.12.038_bib7 article-title: Why is chitosan mucoadhesive? publication-title: Biomacromolecules doi: 10.1021/bm800276d – volume: 14 start-page: 917 year: 1997 ident: 10.1016/j.biomaterials.2011.12.038_bib15 article-title: Novel bioadhesive chitosan-EDTA conjugate protects leucine enkephalin from degradation by aminopeptidase N publication-title: Pharm Res doi: 10.1023/A:1012108118670 – volume: 29 start-page: 1035 year: 1988 ident: 10.1016/j.biomaterials.2011.12.038_bib19 article-title: Measurement of gastrointestinal pH profiles in normal ambulant human subjects publication-title: Gut doi: 10.1136/gut.29.8.1035 – volume: 52 start-page: 249 year: 2011 ident: 10.1016/j.biomaterials.2011.12.038_bib20 article-title: PET imaging of the gastrointestinal absorption of orally administered drugs in conscious and anesthetized rats publication-title: J Nucl Med doi: 10.2967/jnumed.110.081539 – volume: 194 start-page: 1 year: 2000 ident: 10.1016/j.biomaterials.2011.12.038_bib32 article-title: Chitosan and its derivatives: potential excipients for peroral peptide delivery systems publication-title: Int J Pharm doi: 10.1016/S0378-5173(99)00365-8 – reference: 22811979 - Nanomedicine (Lond). 2012 May;7(5):632 |
SSID | ssj0014042 |
Score | 2.4591637 |
Snippet | Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases by... Abstract Complexing agents such as diethylene triamine pentaacetic acid (DTPA) are known to disrupt intestinal tight junctions and inhibit intestinal proteases... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2801 |
SubjectTerms | absorption Absorption - drug effects Adherens junction Administration, Oral Advanced Basic Science Animals bioavailability Biological Availability biopharmaceuticals bladder blood glucose Blood Glucose - drug effects Cell Adhesion - drug effects chitosan Chitosan - chemical synthesis Chitosan - chemistry Complexing agent confocal microscopy Dentistry Diabetes Mellitus, Experimental - blood Diabetes Mellitus, Experimental - pathology Drug Delivery Systems - methods Electric Impedance enzyme inhibition Injections, Subcutaneous insulin Insulin - administration & dosage Insulin - blood Insulin - pharmacokinetics Insulin - pharmacology kidneys metal ions mixing Molecular dynamic simulation Molecular Dynamics Simulation nanoparticles Nanoparticles - chemistry Oral protein delivery Particle Size Pentetic Acid - chemistry permeability Polyglutamic Acid - chemical synthesis Polyglutamic Acid - chemistry Protease Inhibitors - pharmacology Protective Agents - pharmacology proteinases Proteolytic inhibition Rats Rats, Wistar scintigraphy small intestine Spectroscopy, Fourier Transform Infrared Static Electricity tight junctions Tissue Distribution - drug effects Tomography, Emission-Computed, Single-Photon Tomography, X-Ray Computed |
Title | Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961211015080 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961211015080 https://dx.doi.org/10.1016/j.biomaterials.2011.12.038 https://www.ncbi.nlm.nih.gov/pubmed/22243802 https://www.proquest.com/docview/1710227925 https://www.proquest.com/docview/917575493 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1CCqU9lCb9cpsGFXp1N5ZkS6L0EELDtiWhhwZyE7ItkQ1BG7KbQy797Z2x5CUlCSzkaKPBRjOaeSO9GQF81rzyHC2plD1aMBqFLrVsQylMU9fe7wU-XNN5dNxMT-TP0_p0Aw7GWhiiVWbfn3z64K3zm0mezcnlbDYhWhI31ACroqxdU94upSIr__J3RfOg7jE80Rh5SaPHxqMDx4tK3N0yqTq186StQapVuT9IPQRCh2B0-BJeZBTJ9tOPbsGGj9vw_FZvwW14epRPzV9B_E3NGDBcsVk8m7UDSYu52DPXLuZXg89gPp6R_mmvkLU3jMJd2iVk0UVMrDN_jiHGZYkDgm6SUXk_y3R21vsLInncvIaTw-9_DqZlvmeh7GrDl6VRlQtdR2EK4Y5q6WSSN0HXWjedr3olQuiFF1phyKv3OsIQ0iBUc0YE0RvxBjbjPPp3wEKjekc5lWpbqZx2XOlOulqFvqdDvALMOLG2y03I6S6MCzuyzc7tbaVYUoqtuEWlFCBWspepFcdaUl9H_dmx2BTdo8WIsZa0uk_aL_JKX9jKLnCkvWONBXxbSf5n0Gt_-dNobBZXPB3juOjn1_hFAoXU97EugD0wBpNwxOHSiALeJkNdTRkCQrplgL9_5A9-gGf4xBMfbwc2l1fX_iMCtGW7O6zAXXiy_-PX9Pgf5LE8jg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7CBvo4lDZ9uU8VejW7lixLovQQQsOmyS49JJCbkC2ZbAnakN0c8u87Y8tLShNY6NXWYKMZzUPzzQzAV82LwFGS8tKjBKNQ6FyXdZsLU0kZwqTl3ZjO2byanpU_z-X5DhwMtTAEq0y6v9fpnbZOT8ZpN8dXi8WYYEncUAOsgqJ2jXH7LnWnkiPY3T86ns43yYRy0s3QofU5EQy9RzuYF1W5u3XP7b6jJ90OUrnK_XbqIT-0s0eHz-FZciTZfv-vL2AnxD14eqe94B48mqXE-UuIv6gfA1ostogXi7rDaTEXPXP1anndqQ0W4gWJAF0XsvqWkcXrLwpZdBFj6wShY-jmsh4GgpqSUYU_S4h25sMl4TxuX8HZ4Y_Tg2meRi3kjTR8nRtVuLZpyFKhx6NqSk7yqtVS66oJhVeibb0IQiu0enLSkBtRGvTWnBGt8Ea8hlFcxvAWWFsp7yisUnVdKqcdV7opnVSt95THy8AMG2ub1IecxmFc2gFw9tveZYolptiCW2RKBmJDe9V349iK6tvAPzvUm6KGtGg0tqJW91GHVTrsK1vYFa60_whkBt83lH_J9NZf_jIIm8VDT5kcF8PyBr9IfiG1fpQZsAfWYByOrnhpRAZvekHdbBn6hDRogL_7zx_8DI-np7MTe3I0P34PT_AN7-F5H2C0vr4JH9FfW9ef0nn8A5TZPz8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protease+inhibition+and+absorption+enhancement+by+functional+nanoparticles+for+effective+oral+insulin+delivery&rft.jtitle=Biomaterials&rft.au=Su%2C+Fang-Yi&rft.au=Lin%2C+Kun-Ju&rft.au=Sonaje%2C+Kiran&rft.au=Wey%2C+Shiaw-Pyng&rft.date=2012-03-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=33&rft.issue=9&rft.spage=2801&rft_id=info:doi/10.1016%2Fj.biomaterials.2011.12.038&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961212X00036%2Fcov150h.gif |