Protective effect of alirocumab, a PCSK9 inhibitor, on the sciatic nerve of rats with diabetic peripheral neuropathy
Dyslipidemia has been considered a risk factor for diabetic peripheral neuropathy. Proprotein convertase subtilisin-like/Kexin 9 inhibitor (PCSK9) inhibitors are a new type of lipid-lowering drug currently in clinical use. The role of PCSK9 in diabetic peripheral neuropathy is still unclear. In this...
Saved in:
Published in | Endocrine Journal Vol. 71; no. 3; pp. 233 - 244 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japan Endocrine Society
01.01.2024
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dyslipidemia has been considered a risk factor for diabetic peripheral neuropathy. Proprotein convertase subtilisin-like/Kexin 9 inhibitor (PCSK9) inhibitors are a new type of lipid-lowering drug currently in clinical use. The role of PCSK9 in diabetic peripheral neuropathy is still unclear. In this study, the effect of alirocumab, a PCSK9 inhibitor, on the sciatic nerve in rats with diabetic peripheral neuropathy and its underlying mechanisms were investigated. The diabetic peripheral neuropathy rat model was established by using a high-fat diet combined with streptozotocin injection, and experimental subjects were divided into normal, diabetic peripheral neuropathy, and alirocumab groups. The results showed that Alirocumab improved nerve conduction, morphological changes, and small fiber deficits in rats with DPN, possibly related to its amelioration of oxidative stress and the inflammatory response. |
---|---|
AbstractList | Dyslipidemia has been considered a risk factor for diabetic peripheral neuropathy. Proprotein convertase subtilisin-like/Kexin 9 inhibitor (PCSK9) inhibitors are a new type of lipid-lowering drug currently in clinical use. The role of PCSK9 in diabetic peripheral neuropathy is still unclear. In this study, the effect of alirocumab, a PCSK9 inhibitor, on the sciatic nerve in rats with diabetic peripheral neuropathy and its underlying mechanisms were investigated. The diabetic peripheral neuropathy rat model was established by using a high-fat diet combined with streptozotocin injection, and experimental subjects were divided into normal, diabetic peripheral neuropathy, and alirocumab groups. The results showed that Alirocumab improved nerve conduction, morphological changes, and small fiber deficits in rats with DPN, possibly related to its amelioration of oxidative stress and the inflammatory response. Dyslipidemia has been considered a risk factor for diabetic peripheral neuropathy. Proprotein convertase subtilisin-like/Kexin 9 inhibitor (PCSK9) inhibitors are a new type of lipid-lowering drug currently in clinical use. The role of PCSK9 in diabetic peripheral neuropathy is still unclear. In this study, the effect of alirocumab, a PCSK9 inhibitor, on the sciatic nerve in rats with diabetic peripheral neuropathy and its underlying mechanisms were investigated. The diabetic peripheral neuropathy rat model was established by using a high-fat diet combined with streptozotocin injection, and experimental subjects were divided into normal, diabetic peripheral neuropathy, and alirocumab groups. The results showed that Alirocumab improved nerve conduction, morphological changes, and small fiber deficits in rats with DPN, possibly related to its amelioration of oxidative stress and the inflammatory response.Dyslipidemia has been considered a risk factor for diabetic peripheral neuropathy. Proprotein convertase subtilisin-like/Kexin 9 inhibitor (PCSK9) inhibitors are a new type of lipid-lowering drug currently in clinical use. The role of PCSK9 in diabetic peripheral neuropathy is still unclear. In this study, the effect of alirocumab, a PCSK9 inhibitor, on the sciatic nerve in rats with diabetic peripheral neuropathy and its underlying mechanisms were investigated. The diabetic peripheral neuropathy rat model was established by using a high-fat diet combined with streptozotocin injection, and experimental subjects were divided into normal, diabetic peripheral neuropathy, and alirocumab groups. The results showed that Alirocumab improved nerve conduction, morphological changes, and small fiber deficits in rats with DPN, possibly related to its amelioration of oxidative stress and the inflammatory response. |
ArticleNumber | EJ23-0359 |
Author | Lu, Xiuyan Cui, Na Feng, Yonghao Chen, Yinghui Huang, Yongmei Shi, Xiaohong Wang, Ming |
Author_xml | – sequence: 1 fullname: Lu, Xiuyan organization: Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China – sequence: 1 fullname: Chen, Yinghui organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China – sequence: 1 fullname: Cui, Na organization: Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China – sequence: 1 fullname: Feng, Yonghao organization: Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China – sequence: 1 fullname: Shi, Xiaohong organization: Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China – sequence: 1 fullname: Wang, Ming organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China – sequence: 1 fullname: Huang, Yongmei organization: Department of Electromyography, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38233122$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv3CAQgK0qVbNJ-wN6qZB66SFOwRgDx2qVpkkjNVLbMxrDOGblNVuMU-Xfl-0-DjmEAyD4vhkec1acjGHEonjP6CUTVH7G0QUbV5dXtxUvKRf6VbFgvFZlLWp6UiyoZqpUWujT4myaVpRyLmr-pjjlquKcVdWiSPcxJLTJPyLBrsszEjoCg4_BzmtoLwiQ--XP75r4sfetTyFekDCS1COZrIfkLRkxZjtrEdJE_vrUE-ehxe3eBqPf9BhhyNgcwwZS__S2eN3BMOG7_Xhe_P569Wv5rbz7cX2z_HJXWqGrVEreNq1lQqGjVNa6U07bmnWCg1MaG8s5Us2BOlpVwkJb2aZm1OW-okIiPy9udnFdgJXZRL-G-GQCePN_IcQHAzGfckAjBCiQtoWO17nZVjohcyrrJAqUTY71aRdrE8OfGadk1n6yOAwwYpgnU2nW1DTnVxn9-AxdhTmO-aaGU1E3WlVKZ-rDnprbNbrj8Q5_kwG5A2wM0xSxM9an_OBhTBH8YBg12yow-yow2yow2yrIJntmHoK_5FzvnNWU4AGPxuGBDoZkhm-7o3kkbA8xY_wftu_Qkg |
CitedBy_id | crossref_primary_10_1155_jdr_3661739 |
Cites_doi | 10.1016/j.jdiacomp.2013.04.003 10.1080/13813455.2020.1788605 10.1093/eurheartj/ehy357 10.1016/j.jacc.2022.05.041 10.1186/s12974-022-02409-x 10.1161/CIR.0000000000000698 10.1038/s41572-019-0092-1 10.7150/thno.54072 10.1016/j.atherosclerosis.2022.11.003 10.1016/j.numecd.2013.03.007 10.1007/s12035-023-03342-7 10.1093/eurheartj/ehu095 10.1161/STROKEAHA.121.034576 10.1016/S2213-8587(19)30081-6 10.1093/cvr/cvy128 10.1111/dom.13235 10.1111/dom.13599 10.1002/14651858.CD007543.pub2 10.1523/JNEUROSCI.0219-10.2010 10.1016/j.nano.2019.01.007 10.1053/meta.2001.24914 10.1016/j.metabol.2017.03.016 10.1093/cvr/cvz313 10.1016/S2213-8587(16)30396-5 10.1016/j.clinthera.2018.04.001 10.1016/j.exger.2022.112064 10.1007/s00125-019-4959-1 10.1007/s11011-022-00956-z 10.1111/bcpt.13320 10.1016/j.biopha.2020.110147 10.1093/cvr/cvab034 10.1186/1742-2094-10-69 10.1016/S2213-8587(19)30158-5 10.3390/biom11020165 10.1016/j.neulet.2012.06.038 10.7150/thno.80289 10.1007/s001250050131 10.1007/s00125-007-0919-2 10.3390/ijms23137378 10.1194/jlr.R026658 10.1016/j.clinthera.2022.03.013 10.1016/j.metabol.2015.11.002 10.3109/10520295.2010.506159 10.1016/j.phrs.2021.106014 10.3390/cells10102688 10.1016/S1474-4422(12)70065-0 10.2337/diacare.28.8.2082 10.1093/ehjcvp/pvz022 10.1016/j.dsx.2020.04.005 |
ContentType | Journal Article |
Copyright | The Japan Endocrine Society 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Japan Endocrine Society – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 7QP 7T5 7TK 8FD FR3 H94 K9. NAPCQ P64 RC3 7X8 DOA |
DOI | 10.1507/endocrj.EJ23-0359 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Nursing & Allied Health Premium Genetics Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1348-4540 |
EndPage | 244 |
ExternalDocumentID | oai_doaj_org_article_55a8a7cbaf34444cb7d571f5cd7e5e76 38233122 10_1507_endocrj_EJ23_0359 article_endocrj_71_3_71_EJ23_0359_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 .GJ 29G 2WC 3O- 53G 5GY 5RE AAEJM AAFWJ ACPRK ADBBV AENEX AFPKN AJJEV ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP CS3 DIK DU5 E3Z EBD EBS EJD EMOBN F5P GROUPED_DOAJ JMI JSF JSH KQ8 MOJWN OK1 OVT P2P RJT RNS RPM RZJ SV3 TKC TR2 X7M XSB ZGI ZXP AAYXX CITATION NPM 7QP 7T5 7TK 8FD FR3 H94 K9. NAPCQ P64 RC3 7X8 |
ID | FETCH-LOGICAL-c592t-73b6bc158ed00749f8d9c41f53ad89e6c33e093a0d0225cab2c6410dc642057e3 |
IEDL.DBID | DOA |
ISSN | 0918-8959 1348-4540 |
IngestDate | Wed Aug 27 01:28:23 EDT 2025 Fri Jul 11 06:53:42 EDT 2025 Mon Jun 30 08:22:13 EDT 2025 Mon Jul 21 06:06:30 EDT 2025 Tue Jul 01 01:17:35 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Wed Sep 03 06:31:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Oxidative stress Inflammatory response Alirocumab Diabetic peripheral neuropathy Sciatic nerve |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c592t-73b6bc158ed00749f8d9c41f53ad89e6c33e093a0d0225cab2c6410dc642057e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/55a8a7cbaf34444cb7d571f5cd7e5e76 |
PMID | 38233122 |
PQID | 3054698289 |
PQPubID | 2048504 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_55a8a7cbaf34444cb7d571f5cd7e5e76 proquest_miscellaneous_2916406418 proquest_journals_3054698289 pubmed_primary_38233122 crossref_citationtrail_10_1507_endocrj_EJ23_0359 crossref_primary_10_1507_endocrj_EJ23_0359 jstage_primary_article_endocrj_71_3_71_EJ23_0359_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Kyoto |
PublicationTitle | Endocrine Journal |
PublicationTitleAlternate | Endocr J |
PublicationYear | 2024 |
Publisher | The Japan Endocrine Society Japan Science and Technology Agency |
Publisher_xml | – name: The Japan Endocrine Society – name: Japan Science and Technology Agency |
References | 7 Eid S, Sas KM, Abcouwer SF, Feldman EL, Gardner TW, et al. (2019) New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia 62: 1539–1549. 48 Huang HC, Hsu SJ, Chang CC, Chuang CL, Hou MC, et al. (2022) Effects of PCSK-9 inhibition by alirocumab treatments on biliary cirrhotic rats. Int J Mol Sci 23: 7378. 50 Rosoff DB, Bell AS, Jung J, Wagner J, Mavromatis LA, et al. (2022) Mendelian randomization study of PCSK9 and HMG-CoA reductase inhibition and cognitive function. J Am Coll Cardiol 80: 653–662. 28 Zhan C, Huang M, Yang X, Hou J (2021) MLKL: Functions beyond serving as the Executioner of Necroptosis. Theranostics 11: 4759–4769. 9 Syed AA, Reza MI, Yadav H, Gayen JR (2023) Hesperidin inhibits NOX4 mediated oxidative stress and inflammation by upregulating SIRT1 in experimental diabetic neuropathy. Exp Gerontol 172: 112064. 6 Callaghan BC, Little AA, Feldman EL, Hughes RAC (2012) Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev 6: CD007543. 1 Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, et al. (2019) Diabetic neuropathy. Nat Rev Dis Primers 5: 42. 26 Patel S, Khan H, Majumdar A (2022) Crosstalk between sirtuins and Nrf2: SIRT1 activators as emerging treatment for diabetic neuropathy. Metab Brain Dis 37: 2181–2195. 44 Schmid JA (2022) PCSK9 inhibition might increase endothelial inflammation. Atherosclerosis 362: 26–28. 47 Shi X, Chen Y, Nadeem L, Xu G (2013) Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J Neuroinflammation 10: 69. 2 Rogers MA, Hutcheson JD, Okui T, Goettsch C, Singh SA, et al. (2021) Dynamin-related protein 1 inhibition reduces hepatic PCSK9 secretion. Cardiovasc Res 117: 2340–2353. 33 Cao YX, Liu HH, Dong QT, Li S, Li JJ (2018) Effect of proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies on new-onset diabetes mellitus and glucose metabolism: a systematic review and meta-analysis. Diabetes Obes Metab 20: 1391–1398. 3 Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, et al. (2018) Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clin Ther 40: 828–849. 34 Monami M, Sesti G, Mannucci E (2019) PCSK9 inhibitor therapy: a systematic review and meta-analysis of metabolic and cardiovascular outcomes in patients with diabetes. Diabetes Obes Metab 21: 903–908. 23 Baum P, Kosacka J, Estrela-Lopis I, Woidt K, Serke H, et al. (2016) The role of nerve inflammation and exogenous iron load in experimental peripheral diabetic neuropathy (PDN). Metabolism 65: 391–405. 30 Schmidt AF, Swerdlow DI, Holmes MV, Patel RS, Fairhurst-Hunter Z, et al. (2017) PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol 5: 97–105. 14 Lambert G, Sjouke B, Choque B, Kastelein JJP, Hovingh GK (2012) The PCSK9 decade. J Lipid Res 53: 2515–2524. 8 Smith AG, Singleton JR (2013) Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J Diabetes Complications 27: 436–442. 40 Alrafiah A (2021) Thymoquinone protects neurons in the cerebellum of rats through mitigating oxidative stress and inflammation following high-fat diet supplementation. Biomolecules 11: 165. 20 Shi X, Chen Y, Nadeem L, Xu G (2013) Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J Neuroinflammation 10: 69. 27 Miranda MX, van Tits LJ, Lohmann C, Arsiwala T, Winnik S, et al. (2015) The Sirt1 activator SRT3025 provides atheroprotection in Apoe–/– mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur Heart J 36: 51–59. 21 Goebbels S, Oltrogge JH, Kemper R, Heilmann I, Bormuth I, et al. (2010) Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci 30: 8953–8964. 41 Pek SLT, Sum CF, Yeoh LY, Lee SBM, Tang WE, et al. (2017) Association of apolipoprotein-CIII (apoC-III), endothelium-dependent vasodilation and peripheral neuropathy in a multi-ethnic population with type 2 diabetes. Metabolism 72: 75–82. 12 Lin Q, Li K, Chen Y, Xie J, Wu C, et al. (2023) Oxidative stress in diabetic peripheral neuropathy: pathway and mechanism-based treatment. Mol Neurobiol 60: 4574–4594. 49 Sanz-Cuesta BE, Saver JL (2021) Lipid-lowering therapy and hemorrhagic stroke risk: comparative meta-analysis of statins and PCSK9 inhibitors. Stroke 52: 3142–3150. 29 Monami M, Adalsteinsson JE, Desideri CM, Ragghianti B, Dicembrini I, et al. (2013) Fasting and post-prandial glucose and diabetic complication. A meta-analysis. Nutr Metab Cardiovasc Dis 23: 591–598. 31 Da Dalt L, Ruscica M, Bonacina F, Balzarotti G, Dhyani A, et al. (2019) PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. Eur Heart J 40: 357–368. 45 Vigne S, Duc D, Peter B, Rebeaud J, Yersin Y, et al. (2022) Lowering blood cholesterol does not affect neuroinflammation in experimental autoimmune encephalomyelitis. J Neuroinflammation 19: 42. 15 Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, et al. (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the american college of cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139: e1082–e1143. 39 Vaughan TB, Bell DSH (2005) Statin Neuropathy Masquerading as Diabetic Autoimmune Polyneuropathy. Diabetes Care 28: 2082. 36 Gürpinar T, Ekerbiçer N, Harzadin NU, Barut T, Tarakçi F, et al. (2011) Statin treatment reduces oxidative stress-associated apoptosis of sciatic nerve in diabetes mellitus. Biotech Histochem 86: 373–378. 13 Cameron NE, Cotter MA, Archibald V, Dines KC, Maxfield EK (1994) Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and streptozotocin-diabetic rats. Diabetologia 37: 449–459. 37 Svendsen TK, Krøigård T, Wirenfeldt M, Schrøder HD, Bak S, et al. (2020) Statin use and peripheral nerve function—a prospective follow-up study. Basic Clin Pharmacol Toxicol 126: 203–211. 4 Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL (2012) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11: 521–534. 17 Ding Z, Wang X, Liu S, Shahanawaz J, Theus S, et al. (2018) PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovasc Res 114: 1738–1751. 35 Davis TME, Yeap BB, Davis WA, Bruce DG (2008) Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia 51: 562–566. 22 Cheng YC, Chiu YM, Dai ZK, Wu BN (2021) Loganin ameliorates painful diabetic neuropathy by modulating oxidative stress, inflammation and insulin sensitivity in streptozotocin-nicotinamide-induced diabetic rats. Cells 10: 2688. 32 Ray KK, Colhoun HM, Szarek M, Baccara-Dinet M, Bhatt DL, et al. (2019) Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol 7: 618–628. 16 Momtazi-Borojeni AA, Sabouri-Rad S, Gotto AM, Pirro M, Banach M, et al. (2019) PCSK9 and inflammation: a review of experimental and clinical evidence. Eur Heart J Cardiovasc Pharmacother 5: 237–245. 42 Pasha R, Azmi S, Ferdousi M, Kalteniece A, Bashir B, et al. (2022) Lipids, lipid-lowering therapy, and neuropathy: a narrative review. Clin Ther 44: 1012–1025. 18 D’Onofrio N, Prattichizzo F, Marfella R, Sardu C, Martino E, et al. (2023) SIRT3 mediates the effects of PCSK9 inhibitors on inflammation, autophagy, and oxidative stress in endothelial cells. Theranostics 13: 531–542. 5 Selvarajah D, Kar D, Khunti K, Davies MJ, Scott AR, et al. (2019) Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol 7: 938–948. 46 Ford I, Cotter MA, Cameron NE, Greaves M (2001) The effects of treatment with alpha-lipoic acid or evening primrose oil on vascular hemostatic and lipid risk factors, blood flow, and peripheral nerve conduction in the streptozotocin-diabetic rat. Metabolism 50: 868–875. 43 Ding Z, Pothineni NVK, Goel A, Lüscher TF, Mehta JL (2020) PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovasc Res 116: 908–915. 19 Safaeian L, Mirian M, Bahrizadeh S (2022) Evolocumab, a PCSK9 inhibitor, protects human endothelial cells against H2O2-induced oxidative stress. Arch Physiol Biochem 128: 1681–1686. 24 Luo Q, Feng Y, Xie Y, Shao Y, Wu M, et al. (2019) Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomedicine 17: 188–197. 38 Hammad MA, Syed Sulaiman SA, Alghamdi S, Mangi AA, Aziz NA, et al. (2020) Statins-related peripheral neuropathy among diabetic patients. Diabetes Metab Syndr 14: 341–346. 10 Xie J, Song W, Liang X, Zhang Q, Shi Y, et al. (2020) Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level. Biomed Pharmacother 127: 110147. 25 Jalgaonkar MP, Parmar UM, Kulkarni YA, Oza MJ (2022) SIRT1-FOXOs activity regulates diabetic complications. Pharmacol Res 175: 106014. 11 Wu YB, Shi LL, Wu YJ, Xu WH, Wang L, et al. (2012) Protective effect of gliclazide on diabetic peripheral neuropathy through Drp-1 mediated-oxidative stress and apoptosis. Neurosci Lett 523: 45–49. 44 45 46 47 48 49 50 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 25 26 Q Luo (24) 2019; 17 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 15 Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, et al. (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the american college of cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139: e1082–e1143. – reference: 17 Ding Z, Wang X, Liu S, Shahanawaz J, Theus S, et al. (2018) PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovasc Res 114: 1738–1751. – reference: 39 Vaughan TB, Bell DSH (2005) Statin Neuropathy Masquerading as Diabetic Autoimmune Polyneuropathy. Diabetes Care 28: 2082. – reference: 7 Eid S, Sas KM, Abcouwer SF, Feldman EL, Gardner TW, et al. (2019) New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia 62: 1539–1549. – reference: 11 Wu YB, Shi LL, Wu YJ, Xu WH, Wang L, et al. (2012) Protective effect of gliclazide on diabetic peripheral neuropathy through Drp-1 mediated-oxidative stress and apoptosis. Neurosci Lett 523: 45–49. – reference: 12 Lin Q, Li K, Chen Y, Xie J, Wu C, et al. (2023) Oxidative stress in diabetic peripheral neuropathy: pathway and mechanism-based treatment. Mol Neurobiol 60: 4574–4594. – reference: 16 Momtazi-Borojeni AA, Sabouri-Rad S, Gotto AM, Pirro M, Banach M, et al. (2019) PCSK9 and inflammation: a review of experimental and clinical evidence. Eur Heart J Cardiovasc Pharmacother 5: 237–245. – reference: 23 Baum P, Kosacka J, Estrela-Lopis I, Woidt K, Serke H, et al. (2016) The role of nerve inflammation and exogenous iron load in experimental peripheral diabetic neuropathy (PDN). Metabolism 65: 391–405. – reference: 41 Pek SLT, Sum CF, Yeoh LY, Lee SBM, Tang WE, et al. (2017) Association of apolipoprotein-CIII (apoC-III), endothelium-dependent vasodilation and peripheral neuropathy in a multi-ethnic population with type 2 diabetes. Metabolism 72: 75–82. – reference: 24 Luo Q, Feng Y, Xie Y, Shao Y, Wu M, et al. (2019) Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomedicine 17: 188–197. – reference: 48 Huang HC, Hsu SJ, Chang CC, Chuang CL, Hou MC, et al. (2022) Effects of PCSK-9 inhibition by alirocumab treatments on biliary cirrhotic rats. Int J Mol Sci 23: 7378. – reference: 1 Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, et al. (2019) Diabetic neuropathy. Nat Rev Dis Primers 5: 42. – reference: 40 Alrafiah A (2021) Thymoquinone protects neurons in the cerebellum of rats through mitigating oxidative stress and inflammation following high-fat diet supplementation. Biomolecules 11: 165. – reference: 4 Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL (2012) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11: 521–534. – reference: 10 Xie J, Song W, Liang X, Zhang Q, Shi Y, et al. (2020) Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level. Biomed Pharmacother 127: 110147. – reference: 14 Lambert G, Sjouke B, Choque B, Kastelein JJP, Hovingh GK (2012) The PCSK9 decade. J Lipid Res 53: 2515–2524. – reference: 50 Rosoff DB, Bell AS, Jung J, Wagner J, Mavromatis LA, et al. (2022) Mendelian randomization study of PCSK9 and HMG-CoA reductase inhibition and cognitive function. J Am Coll Cardiol 80: 653–662. – reference: 3 Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, et al. (2018) Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clin Ther 40: 828–849. – reference: 46 Ford I, Cotter MA, Cameron NE, Greaves M (2001) The effects of treatment with alpha-lipoic acid or evening primrose oil on vascular hemostatic and lipid risk factors, blood flow, and peripheral nerve conduction in the streptozotocin-diabetic rat. Metabolism 50: 868–875. – reference: 29 Monami M, Adalsteinsson JE, Desideri CM, Ragghianti B, Dicembrini I, et al. (2013) Fasting and post-prandial glucose and diabetic complication. A meta-analysis. Nutr Metab Cardiovasc Dis 23: 591–598. – reference: 35 Davis TME, Yeap BB, Davis WA, Bruce DG (2008) Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia 51: 562–566. – reference: 36 Gürpinar T, Ekerbiçer N, Harzadin NU, Barut T, Tarakçi F, et al. (2011) Statin treatment reduces oxidative stress-associated apoptosis of sciatic nerve in diabetes mellitus. Biotech Histochem 86: 373–378. – reference: 42 Pasha R, Azmi S, Ferdousi M, Kalteniece A, Bashir B, et al. (2022) Lipids, lipid-lowering therapy, and neuropathy: a narrative review. Clin Ther 44: 1012–1025. – reference: 6 Callaghan BC, Little AA, Feldman EL, Hughes RAC (2012) Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev 6: CD007543. – reference: 31 Da Dalt L, Ruscica M, Bonacina F, Balzarotti G, Dhyani A, et al. (2019) PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. Eur Heart J 40: 357–368. – reference: 32 Ray KK, Colhoun HM, Szarek M, Baccara-Dinet M, Bhatt DL, et al. (2019) Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol 7: 618–628. – reference: 43 Ding Z, Pothineni NVK, Goel A, Lüscher TF, Mehta JL (2020) PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovasc Res 116: 908–915. – reference: 8 Smith AG, Singleton JR (2013) Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J Diabetes Complications 27: 436–442. – reference: 9 Syed AA, Reza MI, Yadav H, Gayen JR (2023) Hesperidin inhibits NOX4 mediated oxidative stress and inflammation by upregulating SIRT1 in experimental diabetic neuropathy. Exp Gerontol 172: 112064. – reference: 26 Patel S, Khan H, Majumdar A (2022) Crosstalk between sirtuins and Nrf2: SIRT1 activators as emerging treatment for diabetic neuropathy. Metab Brain Dis 37: 2181–2195. – reference: 22 Cheng YC, Chiu YM, Dai ZK, Wu BN (2021) Loganin ameliorates painful diabetic neuropathy by modulating oxidative stress, inflammation and insulin sensitivity in streptozotocin-nicotinamide-induced diabetic rats. Cells 10: 2688. – reference: 27 Miranda MX, van Tits LJ, Lohmann C, Arsiwala T, Winnik S, et al. (2015) The Sirt1 activator SRT3025 provides atheroprotection in Apoe–/– mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur Heart J 36: 51–59. – reference: 2 Rogers MA, Hutcheson JD, Okui T, Goettsch C, Singh SA, et al. (2021) Dynamin-related protein 1 inhibition reduces hepatic PCSK9 secretion. Cardiovasc Res 117: 2340–2353. – reference: 5 Selvarajah D, Kar D, Khunti K, Davies MJ, Scott AR, et al. (2019) Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol 7: 938–948. – reference: 13 Cameron NE, Cotter MA, Archibald V, Dines KC, Maxfield EK (1994) Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and streptozotocin-diabetic rats. Diabetologia 37: 449–459. – reference: 30 Schmidt AF, Swerdlow DI, Holmes MV, Patel RS, Fairhurst-Hunter Z, et al. (2017) PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol 5: 97–105. – reference: 37 Svendsen TK, Krøigård T, Wirenfeldt M, Schrøder HD, Bak S, et al. (2020) Statin use and peripheral nerve function—a prospective follow-up study. Basic Clin Pharmacol Toxicol 126: 203–211. – reference: 20 Shi X, Chen Y, Nadeem L, Xu G (2013) Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J Neuroinflammation 10: 69. – reference: 45 Vigne S, Duc D, Peter B, Rebeaud J, Yersin Y, et al. (2022) Lowering blood cholesterol does not affect neuroinflammation in experimental autoimmune encephalomyelitis. J Neuroinflammation 19: 42. – reference: 44 Schmid JA (2022) PCSK9 inhibition might increase endothelial inflammation. Atherosclerosis 362: 26–28. – reference: 47 Shi X, Chen Y, Nadeem L, Xu G (2013) Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J Neuroinflammation 10: 69. – reference: 18 D’Onofrio N, Prattichizzo F, Marfella R, Sardu C, Martino E, et al. (2023) SIRT3 mediates the effects of PCSK9 inhibitors on inflammation, autophagy, and oxidative stress in endothelial cells. Theranostics 13: 531–542. – reference: 34 Monami M, Sesti G, Mannucci E (2019) PCSK9 inhibitor therapy: a systematic review and meta-analysis of metabolic and cardiovascular outcomes in patients with diabetes. Diabetes Obes Metab 21: 903–908. – reference: 19 Safaeian L, Mirian M, Bahrizadeh S (2022) Evolocumab, a PCSK9 inhibitor, protects human endothelial cells against H2O2-induced oxidative stress. Arch Physiol Biochem 128: 1681–1686. – reference: 25 Jalgaonkar MP, Parmar UM, Kulkarni YA, Oza MJ (2022) SIRT1-FOXOs activity regulates diabetic complications. Pharmacol Res 175: 106014. – reference: 49 Sanz-Cuesta BE, Saver JL (2021) Lipid-lowering therapy and hemorrhagic stroke risk: comparative meta-analysis of statins and PCSK9 inhibitors. Stroke 52: 3142–3150. – reference: 33 Cao YX, Liu HH, Dong QT, Li S, Li JJ (2018) Effect of proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies on new-onset diabetes mellitus and glucose metabolism: a systematic review and meta-analysis. Diabetes Obes Metab 20: 1391–1398. – reference: 21 Goebbels S, Oltrogge JH, Kemper R, Heilmann I, Bormuth I, et al. (2010) Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci 30: 8953–8964. – reference: 38 Hammad MA, Syed Sulaiman SA, Alghamdi S, Mangi AA, Aziz NA, et al. (2020) Statins-related peripheral neuropathy among diabetic patients. Diabetes Metab Syndr 14: 341–346. – reference: 28 Zhan C, Huang M, Yang X, Hou J (2021) MLKL: Functions beyond serving as the Executioner of Necroptosis. Theranostics 11: 4759–4769. – ident: 8 doi: 10.1016/j.jdiacomp.2013.04.003 – ident: 19 doi: 10.1080/13813455.2020.1788605 – ident: 31 doi: 10.1093/eurheartj/ehy357 – ident: 50 doi: 10.1016/j.jacc.2022.05.041 – ident: 45 doi: 10.1186/s12974-022-02409-x – ident: 15 doi: 10.1161/CIR.0000000000000698 – ident: 1 doi: 10.1038/s41572-019-0092-1 – ident: 28 doi: 10.7150/thno.54072 – ident: 44 doi: 10.1016/j.atherosclerosis.2022.11.003 – ident: 29 doi: 10.1016/j.numecd.2013.03.007 – ident: 12 doi: 10.1007/s12035-023-03342-7 – ident: 27 doi: 10.1093/eurheartj/ehu095 – ident: 49 doi: 10.1161/STROKEAHA.121.034576 – ident: 5 doi: 10.1016/S2213-8587(19)30081-6 – ident: 17 doi: 10.1093/cvr/cvy128 – ident: 33 doi: 10.1111/dom.13235 – ident: 34 doi: 10.1111/dom.13599 – ident: 6 doi: 10.1002/14651858.CD007543.pub2 – ident: 21 doi: 10.1523/JNEUROSCI.0219-10.2010 – volume: 17 start-page: 188 issn: 1743-5889 year: 2019 ident: 24 publication-title: Nanomedicine doi: 10.1016/j.nano.2019.01.007 – ident: 46 doi: 10.1053/meta.2001.24914 – ident: 41 doi: 10.1016/j.metabol.2017.03.016 – ident: 43 doi: 10.1093/cvr/cvz313 – ident: 30 doi: 10.1016/S2213-8587(16)30396-5 – ident: 3 doi: 10.1016/j.clinthera.2018.04.001 – ident: 9 doi: 10.1016/j.exger.2022.112064 – ident: 7 doi: 10.1007/s00125-019-4959-1 – ident: 26 doi: 10.1007/s11011-022-00956-z – ident: 37 doi: 10.1111/bcpt.13320 – ident: 10 doi: 10.1016/j.biopha.2020.110147 – ident: 2 doi: 10.1093/cvr/cvab034 – ident: 20 doi: 10.1186/1742-2094-10-69 – ident: 32 doi: 10.1016/S2213-8587(19)30158-5 – ident: 40 doi: 10.3390/biom11020165 – ident: 11 doi: 10.1016/j.neulet.2012.06.038 – ident: 18 doi: 10.7150/thno.80289 – ident: 13 doi: 10.1007/s001250050131 – ident: 47 doi: 10.1186/1742-2094-10-69 – ident: 35 doi: 10.1007/s00125-007-0919-2 – ident: 48 doi: 10.3390/ijms23137378 – ident: 14 doi: 10.1194/jlr.R026658 – ident: 42 doi: 10.1016/j.clinthera.2022.03.013 – ident: 23 doi: 10.1016/j.metabol.2015.11.002 – ident: 36 doi: 10.3109/10520295.2010.506159 – ident: 25 doi: 10.1016/j.phrs.2021.106014 – ident: 22 doi: 10.3390/cells10102688 – ident: 4 doi: 10.1016/S1474-4422(12)70065-0 – ident: 39 doi: 10.2337/diacare.28.8.2082 – ident: 16 doi: 10.1093/ehjcvp/pvz022 – ident: 38 doi: 10.1016/j.dsx.2020.04.005 |
SSID | ssj0033543 |
Score | 2.3790479 |
Snippet | Dyslipidemia has been considered a risk factor for diabetic peripheral neuropathy. Proprotein convertase subtilisin-like/Kexin 9 inhibitor (PCSK9) inhibitors... |
SourceID | doaj proquest pubmed crossref jstage |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 233 |
SubjectTerms | Alirocumab Diabetes mellitus Diabetic neuropathy Diabetic peripheral neuropathy Dyslipidemia High fat diet Inflammation Inflammatory response Kexin Nerve conduction Oxidative stress Peripheral neuropathy Proprotein convertases Risk factors Sciatic nerve Streptozocin Subtilisin |
Title | Protective effect of alirocumab, a PCSK9 inhibitor, on the sciatic nerve of rats with diabetic peripheral neuropathy |
URI | https://www.jstage.jst.go.jp/article/endocrj/71/3/71_EJ23-0359/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/38233122 https://www.proquest.com/docview/3054698289 https://www.proquest.com/docview/2916406418 https://doaj.org/article/55a8a7cbaf34444cb7d571f5cd7e5e76 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Endocrine Journal, 2024, Vol.71(3), pp.233-244 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27b9cwELZQB8SCeBMolZGYUEOT2M5jA6pWVVFRJajUzfKdHWhVEvR7DPz33NlJBAOwkMFDbMeJ7873-ZHvhHiFpsECCLkRFMdcA1k6QKtzV5sANSmYj3-lnX2sTy706aW5_CXUF58JS_TAqeMOjHGtaxBcrzRdCI03Tdkb9E0woYlk2-Tz5slUGoOVMlpNe5gEeA7C4EdcXb85Oq1UzqR1v3mhSNZPHuia8NiX8GeoGV3O8T1xd8KK8l16x_viVhgeiNtn0274Q7E5TyQLNGDJdC5Djr0kYE1OafvNwb508vzw04dOXg1fr4Bsd7Uvx0ES5pPrKBOUA5945GqkCWvJq7IyLcdSHpMgR9aBGxlpLzl68Y9H4uL46PPhST5FUcjRdNUmbxTUgKVpg2e80PWt71BTDyrn2y7UqFQoOuUKT-7coIMKa10WntKKwFxQj8XOMA7hqZAaECi7CXVA7Q1JVqMBgmR9B6Bqk4li7lWLE8U4R7q4sTzVIEHYSRCWBWFZEJl4vVT5nvg1_lb4PYtqKcjU2PEGKYydFMb-S2Ey8TYJennMXHNurymt4mRpdynBf8JRsUzszipiJ5NfW9JrjsZJE9hMvFyyyVh5B8YNYdyubUVgnBCULttMPEmqtbwFb8iqsqqe_Y-PfC7uVIS-0lrRrtjZrLbhBaGnDexFQ9mLy1o_AXjvHC8 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protective+effect+of+alirocumab%2C+a+PCSK9+inhibitor%2C+on+the+sciatic+nerve+of+rats+with+diabetic+peripheral+neuropathy&rft.jtitle=Endocrine+journal&rft.au=Cui%2C+Na&rft.au=Feng%2C+Yonghao&rft.au=Wang%2C+Ming&rft.au=Lu%2C+Xiuyan&rft.date=2024-01-01&rft.eissn=1348-4540&rft.volume=71&rft.issue=3&rft.spage=233&rft_id=info:doi/10.1507%2Fendocrj.EJ23-0359&rft_id=info%3Apmid%2F38233122&rft.externalDocID=38233122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-8959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-8959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-8959&client=summon |