Protective effect of alirocumab, a PCSK9 inhibitor, on the sciatic nerve of rats with diabetic peripheral neuropathy

Dyslipidemia has been considered a risk factor for diabetic peripheral neuropathy. Proprotein convertase subtilisin-like/Kexin 9 inhibitor (PCSK9) inhibitors are a new type of lipid-lowering drug currently in clinical use. The role of PCSK9 in diabetic peripheral neuropathy is still unclear. In this...

Full description

Saved in:
Bibliographic Details
Published inEndocrine Journal Vol. 71; no. 3; pp. 233 - 244
Main Authors Lu, Xiuyan, Chen, Yinghui, Cui, Na, Feng, Yonghao, Shi, Xiaohong, Wang, Ming, Huang, Yongmei
Format Journal Article
LanguageEnglish
Published Japan The Japan Endocrine Society 01.01.2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dyslipidemia has been considered a risk factor for diabetic peripheral neuropathy. Proprotein convertase subtilisin-like/Kexin 9 inhibitor (PCSK9) inhibitors are a new type of lipid-lowering drug currently in clinical use. The role of PCSK9 in diabetic peripheral neuropathy is still unclear. In this study, the effect of alirocumab, a PCSK9 inhibitor, on the sciatic nerve in rats with diabetic peripheral neuropathy and its underlying mechanisms were investigated. The diabetic peripheral neuropathy rat model was established by using a high-fat diet combined with streptozotocin injection, and experimental subjects were divided into normal, diabetic peripheral neuropathy, and alirocumab groups. The results showed that Alirocumab improved nerve conduction, morphological changes, and small fiber deficits in rats with DPN, possibly related to its amelioration of oxidative stress and the inflammatory response.
AbstractList Dyslipidemia has been considered a risk factor for diabetic peripheral neuropathy. Proprotein convertase subtilisin-like/Kexin 9 inhibitor (PCSK9) inhibitors are a new type of lipid-lowering drug currently in clinical use. The role of PCSK9 in diabetic peripheral neuropathy is still unclear. In this study, the effect of alirocumab, a PCSK9 inhibitor, on the sciatic nerve in rats with diabetic peripheral neuropathy and its underlying mechanisms were investigated. The diabetic peripheral neuropathy rat model was established by using a high-fat diet combined with streptozotocin injection, and experimental subjects were divided into normal, diabetic peripheral neuropathy, and alirocumab groups. The results showed that Alirocumab improved nerve conduction, morphological changes, and small fiber deficits in rats with DPN, possibly related to its amelioration of oxidative stress and the inflammatory response.
Dyslipidemia has been considered a risk factor for diabetic peripheral neuropathy. Proprotein convertase subtilisin-like/Kexin 9 inhibitor (PCSK9) inhibitors are a new type of lipid-lowering drug currently in clinical use. The role of PCSK9 in diabetic peripheral neuropathy is still unclear. In this study, the effect of alirocumab, a PCSK9 inhibitor, on the sciatic nerve in rats with diabetic peripheral neuropathy and its underlying mechanisms were investigated. The diabetic peripheral neuropathy rat model was established by using a high-fat diet combined with streptozotocin injection, and experimental subjects were divided into normal, diabetic peripheral neuropathy, and alirocumab groups. The results showed that Alirocumab improved nerve conduction, morphological changes, and small fiber deficits in rats with DPN, possibly related to its amelioration of oxidative stress and the inflammatory response.Dyslipidemia has been considered a risk factor for diabetic peripheral neuropathy. Proprotein convertase subtilisin-like/Kexin 9 inhibitor (PCSK9) inhibitors are a new type of lipid-lowering drug currently in clinical use. The role of PCSK9 in diabetic peripheral neuropathy is still unclear. In this study, the effect of alirocumab, a PCSK9 inhibitor, on the sciatic nerve in rats with diabetic peripheral neuropathy and its underlying mechanisms were investigated. The diabetic peripheral neuropathy rat model was established by using a high-fat diet combined with streptozotocin injection, and experimental subjects were divided into normal, diabetic peripheral neuropathy, and alirocumab groups. The results showed that Alirocumab improved nerve conduction, morphological changes, and small fiber deficits in rats with DPN, possibly related to its amelioration of oxidative stress and the inflammatory response.
ArticleNumber EJ23-0359
Author Lu, Xiuyan
Cui, Na
Feng, Yonghao
Chen, Yinghui
Huang, Yongmei
Shi, Xiaohong
Wang, Ming
Author_xml – sequence: 1
  fullname: Lu, Xiuyan
  organization: Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
– sequence: 1
  fullname: Chen, Yinghui
  organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
– sequence: 1
  fullname: Cui, Na
  organization: Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
– sequence: 1
  fullname: Feng, Yonghao
  organization: Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
– sequence: 1
  fullname: Shi, Xiaohong
  organization: Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
– sequence: 1
  fullname: Wang, Ming
  organization: Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
– sequence: 1
  fullname: Huang, Yongmei
  organization: Department of Electromyography, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38233122$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv3CAQgK0qVbNJ-wN6qZB66SFOwRgDx2qVpkkjNVLbMxrDOGblNVuMU-Xfl-0-DjmEAyD4vhkec1acjGHEonjP6CUTVH7G0QUbV5dXtxUvKRf6VbFgvFZlLWp6UiyoZqpUWujT4myaVpRyLmr-pjjlquKcVdWiSPcxJLTJPyLBrsszEjoCg4_BzmtoLwiQ--XP75r4sfetTyFekDCS1COZrIfkLRkxZjtrEdJE_vrUE-ehxe3eBqPf9BhhyNgcwwZS__S2eN3BMOG7_Xhe_P569Wv5rbz7cX2z_HJXWqGrVEreNq1lQqGjVNa6U07bmnWCg1MaG8s5Us2BOlpVwkJb2aZm1OW-okIiPy9udnFdgJXZRL-G-GQCePN_IcQHAzGfckAjBCiQtoWO17nZVjohcyrrJAqUTY71aRdrE8OfGadk1n6yOAwwYpgnU2nW1DTnVxn9-AxdhTmO-aaGU1E3WlVKZ-rDnprbNbrj8Q5_kwG5A2wM0xSxM9an_OBhTBH8YBg12yow-yow2yow2yrIJntmHoK_5FzvnNWU4AGPxuGBDoZkhm-7o3kkbA8xY_wftu_Qkg
CitedBy_id crossref_primary_10_1155_jdr_3661739
Cites_doi 10.1016/j.jdiacomp.2013.04.003
10.1080/13813455.2020.1788605
10.1093/eurheartj/ehy357
10.1016/j.jacc.2022.05.041
10.1186/s12974-022-02409-x
10.1161/CIR.0000000000000698
10.1038/s41572-019-0092-1
10.7150/thno.54072
10.1016/j.atherosclerosis.2022.11.003
10.1016/j.numecd.2013.03.007
10.1007/s12035-023-03342-7
10.1093/eurheartj/ehu095
10.1161/STROKEAHA.121.034576
10.1016/S2213-8587(19)30081-6
10.1093/cvr/cvy128
10.1111/dom.13235
10.1111/dom.13599
10.1002/14651858.CD007543.pub2
10.1523/JNEUROSCI.0219-10.2010
10.1016/j.nano.2019.01.007
10.1053/meta.2001.24914
10.1016/j.metabol.2017.03.016
10.1093/cvr/cvz313
10.1016/S2213-8587(16)30396-5
10.1016/j.clinthera.2018.04.001
10.1016/j.exger.2022.112064
10.1007/s00125-019-4959-1
10.1007/s11011-022-00956-z
10.1111/bcpt.13320
10.1016/j.biopha.2020.110147
10.1093/cvr/cvab034
10.1186/1742-2094-10-69
10.1016/S2213-8587(19)30158-5
10.3390/biom11020165
10.1016/j.neulet.2012.06.038
10.7150/thno.80289
10.1007/s001250050131
10.1007/s00125-007-0919-2
10.3390/ijms23137378
10.1194/jlr.R026658
10.1016/j.clinthera.2022.03.013
10.1016/j.metabol.2015.11.002
10.3109/10520295.2010.506159
10.1016/j.phrs.2021.106014
10.3390/cells10102688
10.1016/S1474-4422(12)70065-0
10.2337/diacare.28.8.2082
10.1093/ehjcvp/pvz022
10.1016/j.dsx.2020.04.005
ContentType Journal Article
Copyright The Japan Endocrine Society
2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Japan Endocrine Society
– notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
7QP
7T5
7TK
8FD
FR3
H94
K9.
NAPCQ
P64
RC3
7X8
DOA
DOI 10.1507/endocrj.EJ23-0359
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1348-4540
EndPage 244
ExternalDocumentID oai_doaj_org_article_55a8a7cbaf34444cb7d571f5cd7e5e76
38233122
10_1507_endocrj_EJ23_0359
article_endocrj_71_3_71_EJ23_0359_article_char_en
Genre Journal Article
GroupedDBID ---
.55
.GJ
29G
2WC
3O-
53G
5GY
5RE
AAEJM
AAFWJ
ACPRK
ADBBV
AENEX
AFPKN
AJJEV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
JMI
JSF
JSH
KQ8
MOJWN
OK1
OVT
P2P
RJT
RNS
RPM
RZJ
SV3
TKC
TR2
X7M
XSB
ZGI
ZXP
AAYXX
CITATION
NPM
7QP
7T5
7TK
8FD
FR3
H94
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c592t-73b6bc158ed00749f8d9c41f53ad89e6c33e093a0d0225cab2c6410dc642057e3
IEDL.DBID DOA
ISSN 0918-8959
1348-4540
IngestDate Wed Aug 27 01:28:23 EDT 2025
Fri Jul 11 06:53:42 EDT 2025
Mon Jun 30 08:22:13 EDT 2025
Mon Jul 21 06:06:30 EDT 2025
Tue Jul 01 01:17:35 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Wed Sep 03 06:31:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Oxidative stress
Inflammatory response
Alirocumab
Diabetic peripheral neuropathy
Sciatic nerve
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c592t-73b6bc158ed00749f8d9c41f53ad89e6c33e093a0d0225cab2c6410dc642057e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/55a8a7cbaf34444cb7d571f5cd7e5e76
PMID 38233122
PQID 3054698289
PQPubID 2048504
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_55a8a7cbaf34444cb7d571f5cd7e5e76
proquest_miscellaneous_2916406418
proquest_journals_3054698289
pubmed_primary_38233122
crossref_citationtrail_10_1507_endocrj_EJ23_0359
crossref_primary_10_1507_endocrj_EJ23_0359
jstage_primary_article_endocrj_71_3_71_EJ23_0359_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Kyoto
PublicationTitle Endocrine Journal
PublicationTitleAlternate Endocr J
PublicationYear 2024
Publisher The Japan Endocrine Society
Japan Science and Technology Agency
Publisher_xml – name: The Japan Endocrine Society
– name: Japan Science and Technology Agency
References 7 Eid S, Sas KM, Abcouwer SF, Feldman EL, Gardner TW, et al. (2019) New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia 62: 1539–1549.
48 Huang HC, Hsu SJ, Chang CC, Chuang CL, Hou MC, et al. (2022) Effects of PCSK-9 inhibition by alirocumab treatments on biliary cirrhotic rats. Int J Mol Sci 23: 7378.
50 Rosoff DB, Bell AS, Jung J, Wagner J, Mavromatis LA, et al. (2022) Mendelian randomization study of PCSK9 and HMG-CoA reductase inhibition and cognitive function. J Am Coll Cardiol 80: 653–662.
28 Zhan C, Huang M, Yang X, Hou J (2021) MLKL: Functions beyond serving as the Executioner of Necroptosis. Theranostics 11: 4759–4769.
9 Syed AA, Reza MI, Yadav H, Gayen JR (2023) Hesperidin inhibits NOX4 mediated oxidative stress and inflammation by upregulating SIRT1 in experimental diabetic neuropathy. Exp Gerontol 172: 112064.
6 Callaghan BC, Little AA, Feldman EL, Hughes RAC (2012) Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev 6: CD007543.
1 Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, et al. (2019) Diabetic neuropathy. Nat Rev Dis Primers 5: 42.
26 Patel S, Khan H, Majumdar A (2022) Crosstalk between sirtuins and Nrf2: SIRT1 activators as emerging treatment for diabetic neuropathy. Metab Brain Dis 37: 2181–2195.
44 Schmid JA (2022) PCSK9 inhibition might increase endothelial inflammation. Atherosclerosis 362: 26–28.
47 Shi X, Chen Y, Nadeem L, Xu G (2013) Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J Neuroinflammation 10: 69.
2 Rogers MA, Hutcheson JD, Okui T, Goettsch C, Singh SA, et al. (2021) Dynamin-related protein 1 inhibition reduces hepatic PCSK9 secretion. Cardiovasc Res 117: 2340–2353.
33 Cao YX, Liu HH, Dong QT, Li S, Li JJ (2018) Effect of proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies on new-onset diabetes mellitus and glucose metabolism: a systematic review and meta-analysis. Diabetes Obes Metab 20: 1391–1398.
3 Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, et al. (2018) Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clin Ther 40: 828–849.
34 Monami M, Sesti G, Mannucci E (2019) PCSK9 inhibitor therapy: a systematic review and meta-analysis of metabolic and cardiovascular outcomes in patients with diabetes. Diabetes Obes Metab 21: 903–908.
23 Baum P, Kosacka J, Estrela-Lopis I, Woidt K, Serke H, et al. (2016) The role of nerve inflammation and exogenous iron load in experimental peripheral diabetic neuropathy (PDN). Metabolism 65: 391–405.
30 Schmidt AF, Swerdlow DI, Holmes MV, Patel RS, Fairhurst-Hunter Z, et al. (2017) PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol 5: 97–105.
14 Lambert G, Sjouke B, Choque B, Kastelein JJP, Hovingh GK (2012) The PCSK9 decade. J Lipid Res 53: 2515–2524.
8 Smith AG, Singleton JR (2013) Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J Diabetes Complications 27: 436–442.
40 Alrafiah A (2021) Thymoquinone protects neurons in the cerebellum of rats through mitigating oxidative stress and inflammation following high-fat diet supplementation. Biomolecules 11: 165.
20 Shi X, Chen Y, Nadeem L, Xu G (2013) Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J Neuroinflammation 10: 69.
27 Miranda MX, van Tits LJ, Lohmann C, Arsiwala T, Winnik S, et al. (2015) The Sirt1 activator SRT3025 provides atheroprotection in Apoe–/– mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur Heart J 36: 51–59.
21 Goebbels S, Oltrogge JH, Kemper R, Heilmann I, Bormuth I, et al. (2010) Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci 30: 8953–8964.
41 Pek SLT, Sum CF, Yeoh LY, Lee SBM, Tang WE, et al. (2017) Association of apolipoprotein-CIII (apoC-III), endothelium-dependent vasodilation and peripheral neuropathy in a multi-ethnic population with type 2 diabetes. Metabolism 72: 75–82.
12 Lin Q, Li K, Chen Y, Xie J, Wu C, et al. (2023) Oxidative stress in diabetic peripheral neuropathy: pathway and mechanism-based treatment. Mol Neurobiol 60: 4574–4594.
49 Sanz-Cuesta BE, Saver JL (2021) Lipid-lowering therapy and hemorrhagic stroke risk: comparative meta-analysis of statins and PCSK9 inhibitors. Stroke 52: 3142–3150.
29 Monami M, Adalsteinsson JE, Desideri CM, Ragghianti B, Dicembrini I, et al. (2013) Fasting and post-prandial glucose and diabetic complication. A meta-analysis. Nutr Metab Cardiovasc Dis 23: 591–598.
31 Da Dalt L, Ruscica M, Bonacina F, Balzarotti G, Dhyani A, et al. (2019) PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. Eur Heart J 40: 357–368.
45 Vigne S, Duc D, Peter B, Rebeaud J, Yersin Y, et al. (2022) Lowering blood cholesterol does not affect neuroinflammation in experimental autoimmune encephalomyelitis. J Neuroinflammation 19: 42.
15 Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, et al. (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the american college of cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139: e1082–e1143.
39 Vaughan TB, Bell DSH (2005) Statin Neuropathy Masquerading as Diabetic Autoimmune Polyneuropathy. Diabetes Care 28: 2082.
36 Gürpinar T, Ekerbiçer N, Harzadin NU, Barut T, Tarakçi F, et al. (2011) Statin treatment reduces oxidative stress-associated apoptosis of sciatic nerve in diabetes mellitus. Biotech Histochem 86: 373–378.
13 Cameron NE, Cotter MA, Archibald V, Dines KC, Maxfield EK (1994) Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and streptozotocin-diabetic rats. Diabetologia 37: 449–459.
37 Svendsen TK, Krøigård T, Wirenfeldt M, Schrøder HD, Bak S, et al. (2020) Statin use and peripheral nerve function—a prospective follow-up study. Basic Clin Pharmacol Toxicol 126: 203–211.
4 Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL (2012) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11: 521–534.
17 Ding Z, Wang X, Liu S, Shahanawaz J, Theus S, et al. (2018) PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovasc Res 114: 1738–1751.
35 Davis TME, Yeap BB, Davis WA, Bruce DG (2008) Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia 51: 562–566.
22 Cheng YC, Chiu YM, Dai ZK, Wu BN (2021) Loganin ameliorates painful diabetic neuropathy by modulating oxidative stress, inflammation and insulin sensitivity in streptozotocin-nicotinamide-induced diabetic rats. Cells 10: 2688.
32 Ray KK, Colhoun HM, Szarek M, Baccara-Dinet M, Bhatt DL, et al. (2019) Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol 7: 618–628.
16 Momtazi-Borojeni AA, Sabouri-Rad S, Gotto AM, Pirro M, Banach M, et al. (2019) PCSK9 and inflammation: a review of experimental and clinical evidence. Eur Heart J Cardiovasc Pharmacother 5: 237–245.
42 Pasha R, Azmi S, Ferdousi M, Kalteniece A, Bashir B, et al. (2022) Lipids, lipid-lowering therapy, and neuropathy: a narrative review. Clin Ther 44: 1012–1025.
18 D’Onofrio N, Prattichizzo F, Marfella R, Sardu C, Martino E, et al. (2023) SIRT3 mediates the effects of PCSK9 inhibitors on inflammation, autophagy, and oxidative stress in endothelial cells. Theranostics 13: 531–542.
5 Selvarajah D, Kar D, Khunti K, Davies MJ, Scott AR, et al. (2019) Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol 7: 938–948.
46 Ford I, Cotter MA, Cameron NE, Greaves M (2001) The effects of treatment with alpha-lipoic acid or evening primrose oil on vascular hemostatic and lipid risk factors, blood flow, and peripheral nerve conduction in the streptozotocin-diabetic rat. Metabolism 50: 868–875.
43 Ding Z, Pothineni NVK, Goel A, Lüscher TF, Mehta JL (2020) PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovasc Res 116: 908–915.
19 Safaeian L, Mirian M, Bahrizadeh S (2022) Evolocumab, a PCSK9 inhibitor, protects human endothelial cells against H2O2-induced oxidative stress. Arch Physiol Biochem 128: 1681–1686.
24 Luo Q, Feng Y, Xie Y, Shao Y, Wu M, et al. (2019) Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomedicine 17: 188–197.
38 Hammad MA, Syed Sulaiman SA, Alghamdi S, Mangi AA, Aziz NA, et al. (2020) Statins-related peripheral neuropathy among diabetic patients. Diabetes Metab Syndr 14: 341–346.
10 Xie J, Song W, Liang X, Zhang Q, Shi Y, et al. (2020) Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level. Biomed Pharmacother 127: 110147.
25 Jalgaonkar MP, Parmar UM, Kulkarni YA, Oza MJ (2022) SIRT1-FOXOs activity regulates diabetic complications. Pharmacol Res 175: 106014.
11 Wu YB, Shi LL, Wu YJ, Xu WH, Wang L, et al. (2012) Protective effect of gliclazide on diabetic peripheral neuropathy through Drp-1 mediated-oxidative stress and apoptosis. Neurosci Lett 523: 45–49.
44
45
46
47
48
49
50
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
25
26
Q Luo (24) 2019; 17
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 15 Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, et al. (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the american college of cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139: e1082–e1143.
– reference: 17 Ding Z, Wang X, Liu S, Shahanawaz J, Theus S, et al. (2018) PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovasc Res 114: 1738–1751.
– reference: 39 Vaughan TB, Bell DSH (2005) Statin Neuropathy Masquerading as Diabetic Autoimmune Polyneuropathy. Diabetes Care 28: 2082.
– reference: 7 Eid S, Sas KM, Abcouwer SF, Feldman EL, Gardner TW, et al. (2019) New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia 62: 1539–1549.
– reference: 11 Wu YB, Shi LL, Wu YJ, Xu WH, Wang L, et al. (2012) Protective effect of gliclazide on diabetic peripheral neuropathy through Drp-1 mediated-oxidative stress and apoptosis. Neurosci Lett 523: 45–49.
– reference: 12 Lin Q, Li K, Chen Y, Xie J, Wu C, et al. (2023) Oxidative stress in diabetic peripheral neuropathy: pathway and mechanism-based treatment. Mol Neurobiol 60: 4574–4594.
– reference: 16 Momtazi-Borojeni AA, Sabouri-Rad S, Gotto AM, Pirro M, Banach M, et al. (2019) PCSK9 and inflammation: a review of experimental and clinical evidence. Eur Heart J Cardiovasc Pharmacother 5: 237–245.
– reference: 23 Baum P, Kosacka J, Estrela-Lopis I, Woidt K, Serke H, et al. (2016) The role of nerve inflammation and exogenous iron load in experimental peripheral diabetic neuropathy (PDN). Metabolism 65: 391–405.
– reference: 41 Pek SLT, Sum CF, Yeoh LY, Lee SBM, Tang WE, et al. (2017) Association of apolipoprotein-CIII (apoC-III), endothelium-dependent vasodilation and peripheral neuropathy in a multi-ethnic population with type 2 diabetes. Metabolism 72: 75–82.
– reference: 24 Luo Q, Feng Y, Xie Y, Shao Y, Wu M, et al. (2019) Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomedicine 17: 188–197.
– reference: 48 Huang HC, Hsu SJ, Chang CC, Chuang CL, Hou MC, et al. (2022) Effects of PCSK-9 inhibition by alirocumab treatments on biliary cirrhotic rats. Int J Mol Sci 23: 7378.
– reference: 1 Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, et al. (2019) Diabetic neuropathy. Nat Rev Dis Primers 5: 42.
– reference: 40 Alrafiah A (2021) Thymoquinone protects neurons in the cerebellum of rats through mitigating oxidative stress and inflammation following high-fat diet supplementation. Biomolecules 11: 165.
– reference: 4 Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL (2012) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11: 521–534.
– reference: 10 Xie J, Song W, Liang X, Zhang Q, Shi Y, et al. (2020) Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level. Biomed Pharmacother 127: 110147.
– reference: 14 Lambert G, Sjouke B, Choque B, Kastelein JJP, Hovingh GK (2012) The PCSK9 decade. J Lipid Res 53: 2515–2524.
– reference: 50 Rosoff DB, Bell AS, Jung J, Wagner J, Mavromatis LA, et al. (2022) Mendelian randomization study of PCSK9 and HMG-CoA reductase inhibition and cognitive function. J Am Coll Cardiol 80: 653–662.
– reference: 3 Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, et al. (2018) Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clin Ther 40: 828–849.
– reference: 46 Ford I, Cotter MA, Cameron NE, Greaves M (2001) The effects of treatment with alpha-lipoic acid or evening primrose oil on vascular hemostatic and lipid risk factors, blood flow, and peripheral nerve conduction in the streptozotocin-diabetic rat. Metabolism 50: 868–875.
– reference: 29 Monami M, Adalsteinsson JE, Desideri CM, Ragghianti B, Dicembrini I, et al. (2013) Fasting and post-prandial glucose and diabetic complication. A meta-analysis. Nutr Metab Cardiovasc Dis 23: 591–598.
– reference: 35 Davis TME, Yeap BB, Davis WA, Bruce DG (2008) Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia 51: 562–566.
– reference: 36 Gürpinar T, Ekerbiçer N, Harzadin NU, Barut T, Tarakçi F, et al. (2011) Statin treatment reduces oxidative stress-associated apoptosis of sciatic nerve in diabetes mellitus. Biotech Histochem 86: 373–378.
– reference: 42 Pasha R, Azmi S, Ferdousi M, Kalteniece A, Bashir B, et al. (2022) Lipids, lipid-lowering therapy, and neuropathy: a narrative review. Clin Ther 44: 1012–1025.
– reference: 6 Callaghan BC, Little AA, Feldman EL, Hughes RAC (2012) Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev 6: CD007543.
– reference: 31 Da Dalt L, Ruscica M, Bonacina F, Balzarotti G, Dhyani A, et al. (2019) PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. Eur Heart J 40: 357–368.
– reference: 32 Ray KK, Colhoun HM, Szarek M, Baccara-Dinet M, Bhatt DL, et al. (2019) Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol 7: 618–628.
– reference: 43 Ding Z, Pothineni NVK, Goel A, Lüscher TF, Mehta JL (2020) PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovasc Res 116: 908–915.
– reference: 8 Smith AG, Singleton JR (2013) Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J Diabetes Complications 27: 436–442.
– reference: 9 Syed AA, Reza MI, Yadav H, Gayen JR (2023) Hesperidin inhibits NOX4 mediated oxidative stress and inflammation by upregulating SIRT1 in experimental diabetic neuropathy. Exp Gerontol 172: 112064.
– reference: 26 Patel S, Khan H, Majumdar A (2022) Crosstalk between sirtuins and Nrf2: SIRT1 activators as emerging treatment for diabetic neuropathy. Metab Brain Dis 37: 2181–2195.
– reference: 22 Cheng YC, Chiu YM, Dai ZK, Wu BN (2021) Loganin ameliorates painful diabetic neuropathy by modulating oxidative stress, inflammation and insulin sensitivity in streptozotocin-nicotinamide-induced diabetic rats. Cells 10: 2688.
– reference: 27 Miranda MX, van Tits LJ, Lohmann C, Arsiwala T, Winnik S, et al. (2015) The Sirt1 activator SRT3025 provides atheroprotection in Apoe–/– mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur Heart J 36: 51–59.
– reference: 2 Rogers MA, Hutcheson JD, Okui T, Goettsch C, Singh SA, et al. (2021) Dynamin-related protein 1 inhibition reduces hepatic PCSK9 secretion. Cardiovasc Res 117: 2340–2353.
– reference: 5 Selvarajah D, Kar D, Khunti K, Davies MJ, Scott AR, et al. (2019) Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol 7: 938–948.
– reference: 13 Cameron NE, Cotter MA, Archibald V, Dines KC, Maxfield EK (1994) Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and streptozotocin-diabetic rats. Diabetologia 37: 449–459.
– reference: 30 Schmidt AF, Swerdlow DI, Holmes MV, Patel RS, Fairhurst-Hunter Z, et al. (2017) PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol 5: 97–105.
– reference: 37 Svendsen TK, Krøigård T, Wirenfeldt M, Schrøder HD, Bak S, et al. (2020) Statin use and peripheral nerve function—a prospective follow-up study. Basic Clin Pharmacol Toxicol 126: 203–211.
– reference: 20 Shi X, Chen Y, Nadeem L, Xu G (2013) Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J Neuroinflammation 10: 69.
– reference: 45 Vigne S, Duc D, Peter B, Rebeaud J, Yersin Y, et al. (2022) Lowering blood cholesterol does not affect neuroinflammation in experimental autoimmune encephalomyelitis. J Neuroinflammation 19: 42.
– reference: 44 Schmid JA (2022) PCSK9 inhibition might increase endothelial inflammation. Atherosclerosis 362: 26–28.
– reference: 47 Shi X, Chen Y, Nadeem L, Xu G (2013) Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J Neuroinflammation 10: 69.
– reference: 18 D’Onofrio N, Prattichizzo F, Marfella R, Sardu C, Martino E, et al. (2023) SIRT3 mediates the effects of PCSK9 inhibitors on inflammation, autophagy, and oxidative stress in endothelial cells. Theranostics 13: 531–542.
– reference: 34 Monami M, Sesti G, Mannucci E (2019) PCSK9 inhibitor therapy: a systematic review and meta-analysis of metabolic and cardiovascular outcomes in patients with diabetes. Diabetes Obes Metab 21: 903–908.
– reference: 19 Safaeian L, Mirian M, Bahrizadeh S (2022) Evolocumab, a PCSK9 inhibitor, protects human endothelial cells against H2O2-induced oxidative stress. Arch Physiol Biochem 128: 1681–1686.
– reference: 25 Jalgaonkar MP, Parmar UM, Kulkarni YA, Oza MJ (2022) SIRT1-FOXOs activity regulates diabetic complications. Pharmacol Res 175: 106014.
– reference: 49 Sanz-Cuesta BE, Saver JL (2021) Lipid-lowering therapy and hemorrhagic stroke risk: comparative meta-analysis of statins and PCSK9 inhibitors. Stroke 52: 3142–3150.
– reference: 33 Cao YX, Liu HH, Dong QT, Li S, Li JJ (2018) Effect of proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies on new-onset diabetes mellitus and glucose metabolism: a systematic review and meta-analysis. Diabetes Obes Metab 20: 1391–1398.
– reference: 21 Goebbels S, Oltrogge JH, Kemper R, Heilmann I, Bormuth I, et al. (2010) Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci 30: 8953–8964.
– reference: 38 Hammad MA, Syed Sulaiman SA, Alghamdi S, Mangi AA, Aziz NA, et al. (2020) Statins-related peripheral neuropathy among diabetic patients. Diabetes Metab Syndr 14: 341–346.
– reference: 28 Zhan C, Huang M, Yang X, Hou J (2021) MLKL: Functions beyond serving as the Executioner of Necroptosis. Theranostics 11: 4759–4769.
– ident: 8
  doi: 10.1016/j.jdiacomp.2013.04.003
– ident: 19
  doi: 10.1080/13813455.2020.1788605
– ident: 31
  doi: 10.1093/eurheartj/ehy357
– ident: 50
  doi: 10.1016/j.jacc.2022.05.041
– ident: 45
  doi: 10.1186/s12974-022-02409-x
– ident: 15
  doi: 10.1161/CIR.0000000000000698
– ident: 1
  doi: 10.1038/s41572-019-0092-1
– ident: 28
  doi: 10.7150/thno.54072
– ident: 44
  doi: 10.1016/j.atherosclerosis.2022.11.003
– ident: 29
  doi: 10.1016/j.numecd.2013.03.007
– ident: 12
  doi: 10.1007/s12035-023-03342-7
– ident: 27
  doi: 10.1093/eurheartj/ehu095
– ident: 49
  doi: 10.1161/STROKEAHA.121.034576
– ident: 5
  doi: 10.1016/S2213-8587(19)30081-6
– ident: 17
  doi: 10.1093/cvr/cvy128
– ident: 33
  doi: 10.1111/dom.13235
– ident: 34
  doi: 10.1111/dom.13599
– ident: 6
  doi: 10.1002/14651858.CD007543.pub2
– ident: 21
  doi: 10.1523/JNEUROSCI.0219-10.2010
– volume: 17
  start-page: 188
  issn: 1743-5889
  year: 2019
  ident: 24
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2019.01.007
– ident: 46
  doi: 10.1053/meta.2001.24914
– ident: 41
  doi: 10.1016/j.metabol.2017.03.016
– ident: 43
  doi: 10.1093/cvr/cvz313
– ident: 30
  doi: 10.1016/S2213-8587(16)30396-5
– ident: 3
  doi: 10.1016/j.clinthera.2018.04.001
– ident: 9
  doi: 10.1016/j.exger.2022.112064
– ident: 7
  doi: 10.1007/s00125-019-4959-1
– ident: 26
  doi: 10.1007/s11011-022-00956-z
– ident: 37
  doi: 10.1111/bcpt.13320
– ident: 10
  doi: 10.1016/j.biopha.2020.110147
– ident: 2
  doi: 10.1093/cvr/cvab034
– ident: 20
  doi: 10.1186/1742-2094-10-69
– ident: 32
  doi: 10.1016/S2213-8587(19)30158-5
– ident: 40
  doi: 10.3390/biom11020165
– ident: 11
  doi: 10.1016/j.neulet.2012.06.038
– ident: 18
  doi: 10.7150/thno.80289
– ident: 13
  doi: 10.1007/s001250050131
– ident: 47
  doi: 10.1186/1742-2094-10-69
– ident: 35
  doi: 10.1007/s00125-007-0919-2
– ident: 48
  doi: 10.3390/ijms23137378
– ident: 14
  doi: 10.1194/jlr.R026658
– ident: 42
  doi: 10.1016/j.clinthera.2022.03.013
– ident: 23
  doi: 10.1016/j.metabol.2015.11.002
– ident: 36
  doi: 10.3109/10520295.2010.506159
– ident: 25
  doi: 10.1016/j.phrs.2021.106014
– ident: 22
  doi: 10.3390/cells10102688
– ident: 4
  doi: 10.1016/S1474-4422(12)70065-0
– ident: 39
  doi: 10.2337/diacare.28.8.2082
– ident: 16
  doi: 10.1093/ehjcvp/pvz022
– ident: 38
  doi: 10.1016/j.dsx.2020.04.005
SSID ssj0033543
Score 2.3790479
Snippet Dyslipidemia has been considered a risk factor for diabetic peripheral neuropathy. Proprotein convertase subtilisin-like/Kexin 9 inhibitor (PCSK9) inhibitors...
SourceID doaj
proquest
pubmed
crossref
jstage
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 233
SubjectTerms Alirocumab
Diabetes mellitus
Diabetic neuropathy
Diabetic peripheral neuropathy
Dyslipidemia
High fat diet
Inflammation
Inflammatory response
Kexin
Nerve conduction
Oxidative stress
Peripheral neuropathy
Proprotein convertases
Risk factors
Sciatic nerve
Streptozocin
Subtilisin
Title Protective effect of alirocumab, a PCSK9 inhibitor, on the sciatic nerve of rats with diabetic peripheral neuropathy
URI https://www.jstage.jst.go.jp/article/endocrj/71/3/71_EJ23-0359/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/38233122
https://www.proquest.com/docview/3054698289
https://www.proquest.com/docview/2916406418
https://doaj.org/article/55a8a7cbaf34444cb7d571f5cd7e5e76
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Endocrine Journal, 2024, Vol.71(3), pp.233-244
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27b9cwELZQB8SCeBMolZGYUEOT2M5jA6pWVVFRJajUzfKdHWhVEvR7DPz33NlJBAOwkMFDbMeJ7873-ZHvhHiFpsECCLkRFMdcA1k6QKtzV5sANSmYj3-lnX2sTy706aW5_CXUF58JS_TAqeMOjHGtaxBcrzRdCI03Tdkb9E0woYlk2-Tz5slUGoOVMlpNe5gEeA7C4EdcXb85Oq1UzqR1v3mhSNZPHuia8NiX8GeoGV3O8T1xd8KK8l16x_viVhgeiNtn0274Q7E5TyQLNGDJdC5Djr0kYE1OafvNwb508vzw04dOXg1fr4Bsd7Uvx0ES5pPrKBOUA5945GqkCWvJq7IyLcdSHpMgR9aBGxlpLzl68Y9H4uL46PPhST5FUcjRdNUmbxTUgKVpg2e80PWt71BTDyrn2y7UqFQoOuUKT-7coIMKa10WntKKwFxQj8XOMA7hqZAaECi7CXVA7Q1JVqMBgmR9B6Bqk4li7lWLE8U4R7q4sTzVIEHYSRCWBWFZEJl4vVT5nvg1_lb4PYtqKcjU2PEGKYydFMb-S2Ey8TYJennMXHNurymt4mRpdynBf8JRsUzszipiJ5NfW9JrjsZJE9hMvFyyyVh5B8YNYdyubUVgnBCULttMPEmqtbwFb8iqsqqe_Y-PfC7uVIS-0lrRrtjZrLbhBaGnDexFQ9mLy1o_AXjvHC8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protective+effect+of+alirocumab%2C+a+PCSK9+inhibitor%2C+on+the+sciatic+nerve+of+rats+with+diabetic+peripheral+neuropathy&rft.jtitle=Endocrine+journal&rft.au=Cui%2C+Na&rft.au=Feng%2C+Yonghao&rft.au=Wang%2C+Ming&rft.au=Lu%2C+Xiuyan&rft.date=2024-01-01&rft.eissn=1348-4540&rft.volume=71&rft.issue=3&rft.spage=233&rft_id=info:doi/10.1507%2Fendocrj.EJ23-0359&rft_id=info%3Apmid%2F38233122&rft.externalDocID=38233122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-8959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-8959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-8959&client=summon