Recent Progress in Our Understanding of Phase Stability, Atomic Structures and Mechanical and Functional Properties of High-Entropy Alloys
This paper reviews a current trend and recent progress in research on phase stability, atomic structures, mechanical and functional properties of high-entropy alloys. The survey is carried out based partly on the special issue published in April, 2020, in Materials Transactions (Vol. 61, No. 4). Res...
Saved in:
Published in | MATERIALS TRANSACTIONS Vol. 63; no. 3; pp. 394 - 401 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Sendai
The Japan Institute of Metals and Materials
01.03.2022
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper reviews a current trend and recent progress in research on phase stability, atomic structures, mechanical and functional properties of high-entropy alloys. The survey is carried out based partly on the special issue published in April, 2020, in Materials Transactions (Vol. 61, No. 4). Research on high-entropy alloys has spread worldwide since the year of 2004, as many of them exhibit attractive properties for structural and functional applications, which have never been achieved in conventional alloys. Significant progress has been made in recent years in our understanding of high-entropy alloys in terms of processing, characterization, modeling and simulation, and so on. Some of them are briefly described in this paper. |
---|---|
AbstractList | This paper reviews a current trend and recent progress in research on phase stability, atomic structures, mechanical and functional properties of high-entropy alloys. The survey is carried out based partly on the special issue published in April, 2020, in Materials Transactions (Vol. 61, No. 4). Research on high-entropy alloys has spread worldwide since the year of 2004, as many of them exhibit attractive properties for structural and functional applications, which have never been achieved in conventional alloys. Significant progress has been made in recent years in our understanding of high-entropy alloys in terms of processing, characterization, modeling and simulation, and so on. Some of them are briefly described in this paper. |
ArticleNumber | MT-M2021234 |
Author | Chen, Zhenghao Inui, Haruyuki Kishida, Kyosuke |
Author_xml | – sequence: 1 fullname: Inui, Haruyuki organization: Department of Materials Science and Engineering, Kyoto University – sequence: 2 fullname: Kishida, Kyosuke organization: Department of Materials Science and Engineering, Kyoto University – sequence: 3 fullname: Chen, Zhenghao organization: Department of Materials Science and Engineering, Kyoto University |
BookMark | eNqFkc9OGzEQxi2USgTKKyBLXLvUa--udyUuURRKpUSgNpwtxzubONrYqe095BX61J2QliIuXGzP6PvNn88XZOS8A0Kuc3bLBWdfdzpBSEG7eLtYZgvOeM5FcUbGuShkVqJk9PIus6aS9Tm5iHHLmJAl52Py-wcYcIk-Bb8OECO1jj4OgT67FkJM2rXWranv6NNGR6A_k17Z3qbDFzpJfmcNZsJg0oAsRTFdgNloZ43uX8L7wZlkvcMQO-xxTotCLPdg15ts5hImD3TS9_4QP5NPne4jXP29L8nz_Ww5fcjmj9--TyfzzJQNT1lpWllLJnlZS9EUsisAirbCtcuu0qJewco0rKu6PAcjBa-NlKztWNUU2qxMKS7JzanuPvhfA8Sktn4IOGJUvBJFLXkuclTdnVQm-BgDdMrYpI-7oNW2VzlTR_fVf_fVYqn-uY949Q7fB7vT4fAxOD-BW3R_Da-YRutMD2-xSihxPN7grzL8haDAiT_SBa5W |
CitedBy_id | crossref_primary_10_1007_s44210_023_00025_9 crossref_primary_10_2320_matertrans_MT_M2024076 crossref_primary_10_1016_j_mtphys_2023_101019 crossref_primary_10_1016_j_jallcom_2023_169896 crossref_primary_10_1016_j_mtla_2023_101744 crossref_primary_10_1016_j_ijplas_2025_104257 crossref_primary_10_3390_met13101655 crossref_primary_10_1080_02670836_2023_2187973 crossref_primary_10_2472_jsms_73_101 crossref_primary_10_1007_s44210_024_00052_0 crossref_primary_10_3390_ma16020587 crossref_primary_10_5940_jcrsj_65_172 crossref_primary_10_2320_matertrans_MT_M2023057 crossref_primary_10_2320_matertrans_MT_MF2022008 crossref_primary_10_1016_j_corsci_2023_111097 crossref_primary_10_2320_matertrans_MT_M2023071 crossref_primary_10_1016_j_msea_2023_144917 crossref_primary_10_2320_jinstmet_JD202407 crossref_primary_10_2320_matertrans_MT_MC2024001 crossref_primary_10_1063_5_0231343 crossref_primary_10_1016_j_jallcom_2024_177873 crossref_primary_10_2320_matertrans_MT_M2023105 crossref_primary_10_1016_j_mtcomm_2024_109232 crossref_primary_10_3390_photochem4020016 crossref_primary_10_1016_j_ijplas_2023_103732 crossref_primary_10_7566_JPSJ_92_114702 crossref_primary_10_1016_j_actamat_2024_119775 crossref_primary_10_2320_matertrans_MT_MA2024010 crossref_primary_10_1016_j_mser_2024_100853 crossref_primary_10_2320_matertrans_MT_MA2024006 crossref_primary_10_2320_matertrans_MT_MA2024005 crossref_primary_10_2320_matertrans_MT_MA2024008 crossref_primary_10_2320_matertrans_MT_MA2024007 crossref_primary_10_2320_matertrans_MT_MA2024001 crossref_primary_10_2320_matertrans_MT_MA2024004 crossref_primary_10_2320_matertrans_MT_MA2024003 crossref_primary_10_5940_jcrsj_65_192 crossref_primary_10_2320_matertrans_MT_M2022021 crossref_primary_10_2320_matertrans_MT_MA2024009 crossref_primary_10_1016_j_actamat_2025_120879 crossref_primary_10_1103_PhysRevMaterials_7_123606 crossref_primary_10_1080_14686996_2024_2376524 crossref_primary_10_1016_j_scriptamat_2023_115459 crossref_primary_10_1016_j_actamat_2024_120498 crossref_primary_10_1016_j_jallcom_2022_166013 crossref_primary_10_2320_materia_62_658 crossref_primary_10_1016_j_jallcom_2024_173656 crossref_primary_10_5940_jcrsj_65_188 crossref_primary_10_1016_j_actamat_2022_118537 crossref_primary_10_1007_s12598_023_02340_x crossref_primary_10_1016_j_jallcom_2024_174667 crossref_primary_10_1021_acscatal_4c02191 crossref_primary_10_2320_materia_63_321 crossref_primary_10_5940_jcrsj_65_183 crossref_primary_10_2320_matertrans_MT_M2023043 |
Cites_doi | 10.2320/matertrans.MT-M2019212 10.1016/j.matlet.2021.130368 10.1016/j.actamat.2014.11.014 10.1016/j.jallcom.2019.151685 10.1126/sciadv.aat8712 10.7566/JPSJ.89.084802 10.1073/pnas.1517193112 10.1038/169180a0 10.1038/s41467-021-24093-w 10.1002/adem.200700240 10.2320/matertrans.F-M2020825 10.2320/matertrans.MT-M2019378 10.1007/s11837-017-2540-2 10.1103/PhysRevLett.118.205501 10.1051/jphysrad:019620023010074901 10.1016/j.actamat.2020.10.073 10.1007/s11837-014-1085-x 10.1073/pnas.1808660115 10.1016/j.matdes.2021.109548 10.1039/C9TA12846H 10.2320/matertrans.MT-MA2020001 10.1016/j.scriptamat.2019.09.033 10.1016/j.actamat.2014.04.033 10.1016/j.msea.2019.138867 10.1080/21663831.2014.912690 10.1016/j.actamat.2017.04.033 10.7566/JPSJ.88.054803 10.7566/JPSJ.90.034801 10.1016/j.matlet.2020.129286 10.1016/j.actamat.2014.08.026 10.1007/978-981-13-8526-1 10.1080/09506608.2016.1180020 10.1016/j.actamat.2021.116714 10.1021/acs.jpcc.0c08871 10.1016/j.actamat.2019.12.020 10.1007/s10853-012-6260-2 10.2320/matertrans.M2019037 10.1088/1361-6528/ab9cf5 10.2320/matertrans.MT-MK2019007 10.1038/s41467-019-11464-7 10.1016/j.intermet.2017.10.004 10.1021/jacs.0c04807 10.1002/mawe.202000250 10.1039/C9TA05698J 10.1038/s41467-021-25264-5 10.1016/j.jmps.2021.104389 10.2320/matertrans.MT-M2020141 10.1063/1.4966659 10.1016/j.intermet.2021.107182 10.1016/j.pmatsci.2013.10.001 10.1016/j.scriptamat.2020.02.007 10.1038/s41578-019-0170-8 10.1016/j.actamat.2018.05.013 10.1038/ncomms10602 10.1016/S1359-6454(97)00367-4 10.1016/0001-6160(61)90242-5 10.1016/B978-0-12-800251-3.00002-X 10.1038/srep35863 10.1016/j.scriptamat.2019.04.012 10.1016/j.actamat.2020.09.052 10.1016/j.actamat.2019.10.015 10.1080/21663831.2019.1610105 10.1038/s41467-020-16083-1 10.1016/j.jallcom.2021.159024 10.2320/matertrans.MT-MK2019001 10.1093/acprof:oso/9780198516002.001.0001 10.1126/science.1254581 10.1016/j.commatsci.2019.109163 10.1039/D0SC02351E 10.1016/j.msec.2020.110908 10.1038/ncomms9485 10.1016/j.actamat.2016.08.081 10.2320/matertrans.MT-MK2019006 10.1002/adem.200300567 10.1016/j.intermet.2011.01.004 10.1016/0079-6425(94)00007-7 10.3390/cryst10111020 10.1016/j.matchemphys.2011.11.021 10.1002/9781118808412 10.2320/matertrans.MT-M2021022 10.1016/j.jallcom.2021.159668 10.2320/matertrans.MT-MK2019002 10.1016/j.scriptamat.2016.11.014 10.1016/j.ijplas.2021.103144 10.1007/s11669-021-00900-1 10.1126/science.aas8815 10.1016/j.actamat.2021.117113 10.1016/j.msea.2003.10.257 10.1039/D1TA03861C 10.1038/s41586-021-03428-z 10.1016/0001-6160(58)90002-6 10.1016/j.jallcom.2019.152028 10.1016/j.jnucmat.2020.152642 10.1038/nature17981 10.1016/j.actamat.2015.08.015 10.1016/j.calphad.2021.102269 10.2320/matertrans.MT-MK2019009 10.1038/ncomms14390 10.1038/s41524-021-00577-7 10.1016/j.mattod.2015.11.026 10.1016/j.actamat.2016.07.038 10.1016/j.actamat.2013.06.018 10.7566/JPSJ.89.094803 10.1016/j.msea.2020.139290 10.1016/j.intermet.2013.03.018 10.1038/s41467-018-03846-0 10.2320/matertrans.MT-MK2019003 10.1016/j.jnucmat.2020.152324 10.1016/j.mtla.2021.101172 10.1016/j.mser.2021.100644 10.2320/matertrans.MT-MK2019004 10.1016/j.scriptamat.2015.03.023 10.1016/j.jallcom.2011.02.171 10.1016/j.intermet.2020.106994 10.1016/j.actamat.2017.02.036 10.1016/j.scriptamat.2019.12.009 10.1038/s41578-019-0121-4 10.1016/j.intermet.2010.05.014 10.1016/j.scriptamat.2021.113895 10.1016/j.actamat.2021.116843 10.1063/1.4971371 10.1007/BF01115776 10.2320/matertrans.MT-MK2019008 10.1179/1743280412Y.0000000015 10.7566/JPSJ.88.104803 10.1016/j.actamat.2019.12.015 10.1016/j.actamat.2021.116800 10.1016/j.actamat.2016.09.046 10.1038/s41598-019-49529-8 10.1002/adma.201906160 10.1016/j.actamat.2019.11.001 10.1016/j.jallcom.2020.155726 10.1016/j.mattod.2017.02.003 10.1038/s41524-020-0339-0 10.2320/matertrans.MT-M2020274 10.1007/s11661-020-06091-7 10.1016/j.scriptamat.2020.07.013 10.2320/matertrans.MT-M2020049 10.1007/s10853-020-04583-w 10.2320/matertrans.MF201936 10.1007/978-3-319-27013-5 10.1016/j.actamat.2017.05.001 10.1038/s41467-021-25807-w 10.2320/matertrans.MT-M2020259 10.1002/pssb.19700410221 10.1007/BF02664806 10.1016/j.matchemphys.2021.125163 10.1016/j.scriptamat.2021.114069 10.2320/matertrans.Z-M2020819 10.1038/s41586-020-2275-z 10.1063/1.3587228 10.2320/matertrans.MT-M2020144 10.1016/j.commatsci.2021.110670 10.1016/j.scriptamat.2020.09.039 10.1016/j.msec.2019.110322 10.1016/j.msea.2018.08.077 10.2320/matertrans.M2018216 10.1007/BF00360729 10.1002/adma.202005206 10.1016/j.actamat.2021.117217 10.1134/S0031918X0912014X |
ContentType | Journal Article |
Copyright | 2022 The Japan Institute of Metals and Materials Copyright Japan Science and Technology Agency 2022 |
Copyright_xml | – notice: 2022 The Japan Institute of Metals and Materials – notice: Copyright Japan Science and Technology Agency 2022 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.2320/matertrans.MT-M2021234 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-5320 |
EndPage | 401 |
ExternalDocumentID | 10_2320_matertrans_MT_M2021234 article_matertrans_63_3_63_MT_M2021234_article_char_en |
GroupedDBID | -~X .L7 .LE 08R 5GY 6XO 93D ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 JSI JSP RJT RZJ SJN AAYXX ABJNI ADMLS CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c592t-5cd7870725873947f4ee4d62025f6a38bebc90f6f11ec7328c770df0694acbc53 |
ISSN | 1345-9678 |
IngestDate | Mon Jun 30 09:54:19 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Tue Jul 01 04:27:41 EDT 2025 Wed Apr 05 07:40:03 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c592t-5cd7870725873947f4ee4d62025f6a38bebc90f6f11ec7328c770df0694acbc53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/matertrans/63/3/63_MT-M2021234/_article/-char/en |
PQID | 2634872131 |
PQPubID | 1976393 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2634872131 crossref_citationtrail_10_2320_matertrans_MT_M2021234 crossref_primary_10_2320_matertrans_MT_M2021234 jstage_primary_article_matertrans_63_3_63_MT_M2021234_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220300 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 20220300 |
PublicationDecade | 2020 |
PublicationPlace | Sendai |
PublicationPlace_xml | – name: Sendai |
PublicationTitle | MATERIALS TRANSACTIONS |
PublicationTitleAlternate | Mater. Trans. |
PublicationYear | 2022 |
Publisher | The Japan Institute of Metals and Materials Japan Science and Technology Agency |
Publisher_xml | – name: The Japan Institute of Metals and Materials – name: Japan Science and Technology Agency |
References | 155) D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, I. Gueye, O. Seo, J. Kim, S. Hiroi, O. Sakata, S. Kawaguchi, Y. Kubota and H. Kitagawa: Chem. Sci. 11 (2020) 12731–12736. doi:10.1039/D0SC02351E 27) Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen and P.K. Liaw: Adv. Eng. Mater. 10 (2008) 534–538. doi:10.1002/adem.200700240 78) J.W. Christian and S. Mahajan: Prog. Mater. Sci. 39 (1995) 1–157. doi:10.1016/0079-6425(94)00007-7 104) T. Abe: Mater. Trans. 62 (2021) 711–718. doi:10.2320/matertrans.MT-M2021022 11) B. Sharma, S. Kumar Vajpai, M. Kawabata, T. Nakano and K. Ameyama: Mater. Trans. 61 (2020) 562–566. doi:10.2320/matertrans.MT-MK2019001 40) A. Takeuchi, T. Wada and H. Kato: Mater. Trans. 60 (2019) 2267–2276. doi:10.2320/matertrans.MT-M2019212 79) J.W. Christian: Metall. Trans. A 14 (1983) 1237–1256. doi:10.1007/BF02664806 99) K. Yuge and S. Ohta: J. Phys. Soc. Jpn. 88 (2019) 054803. doi:10.7566/JPSJ.88.054803 47) R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie and A.M. Minor: Nature 581 (2020) 283–287. doi:10.1038/s41586-020-2275-z 67) C. Niu, C.R. LaRosa, J. Miao, M.J. Mills and M. Ghazisaeidi: Nat. Commun. 9 (2018) 1363. doi:10.1038/s41467-018-03846-0 128) A.S. Tirunilai, T. Hanemann, K.-P. Weiss, J. Freudenberger, M. Heilmaier and A. Kauffmann: Acta Mater. 200 (2020) 980–991. doi:10.1016/j.actamat.2020.09.052 34) O.N. Senkov, J.M. Scott, S. Senkova, D. Miracle and C. Woodward: J. Alloy. Compd. 509 (2011) 6043–6048. doi:10.1016/j.jallcom.2011.02.171 143) F. Thiel, D. Utt, A. Kauffmann, K. Nielsch, K. Albe, M. Heilmaier and J. Freudenberger: Scr. Mater. 181 (2020) 15–18. doi:10.1016/j.scriptamat.2020.02.007 146) Y.-J. Hu, A. Sundar, S. Ogata and L. Qi: Acta Mater. 210 (2021) 116800. doi:10.1016/j.actamat.2021.116800 89) P.S. Follansbee: Fundamentals of Strength, (John Wiley & Son, New York, 2014). 116) Y. Zhao, J.-M. Park, K. Murakami, S. Komazaki, M. Kawasaki, K. Tsuchiya, J.-Y. Suh, U. Ramamurty and J.-I. Jang: Scr. Mater. 203 (2021) 114069. doi:10.1016/j.scriptamat.2021.114069 148) Z. Li, K.G. Pradeep, Y. Deng, D. Raabe and C.C. Tasan: Nature 534 (2016) 227–230. doi:10.1038/nature17981 74) S. Zhao, G.M. Stocks and Y. Zhang: Acta Mater. 134 (2017) 334–345. doi:10.1016/j.actamat.2017.05.001 73) S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang and Z.P. Lu: Intermetallics 93 (2018) 269–273. doi:10.1016/j.intermet.2017.10.004 123) P. Edalati, R. Floriano, Y. Tang, A. Mohammadi, K. Danielle Pereira, A. Ducati Luchessi and K. Edalati: Mater. Sci. Eng. C 112 (2020) 110908. doi:10.1016/j.msec.2020.110908 158) K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, K. Sato, K. Nagaoka, K. Terada, Y. Ikeda, Y. Hirai and H. Kitagawa: J. Phys. Chem. C 125 (2021) 458–463. doi:10.1021/acs.jpcc.0c08871 81) C.R. Weinberger, B.L. Boyce and C.C. Battaile: Int. Mater. Rev. 58 (2013) 296–314. doi:10.1179/1743280412Y.0000000015 162) R.-Z. Zhang and M.J. Reece: J. Mater. Chem. A 7 (2019) 22148–22162. doi:10.1039/C9TA05698J 77) J.A. Venables: Deformation Twinning, ed. by R.E. Reed-Hill, J.P. Hirth and H.C. Rogers, (Gordon & Breach Science Pub., New York, 1964) pp. 77–116. 29) Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw and Z.P. Lu: Prog. Mater. Sci. 61 (2014) 1–93. doi:10.1016/j.pmatsci.2013.10.001 97) H. Tanimoto, K. Takeuchi, T. Ikegami and T. Okazaki: Mater. Trans. 61 (2020) 878–883. doi:10.2320/matertrans.MT-M2019378 48) X.F. Chen, Q. Wang, Z.Y. Chen, M.L. Zhu, H. Zhou, P. Jiang, L.L. Zhou, Q.Q. Xue, F.P. Yuang, J. Zhu, X.L. Wu and E. Ma: Nature 592 (2021) 712–716. doi:10.1038/s41586-021-03428-z 164) A.J. Wright and J. Luo: J. Mater. Sci. 55 (2020) 9812–9827. doi:10.1007/s10853-020-04583-w 86) S. Sheikh, S. Shafeie, Q. Hu, J. Ahlström, C. Persson, J. Veselý, J. Zýka, U. Klement and S. Guo: J. Appl. Phys. 120 (2016) 164902. doi:10.1063/1.4966659 120) F. Müller, B. Gorr, H.-J. Christ, H. Chen, A. Kauffmann, S. Laube and M. Heilmaier: J. Alloy. Compd. 842 (2020) 155726. doi:10.1016/j.jallcom.2020.155726 107) N. Hashimoto and Y. Ono: Intermetallics 133 (2021) 107182. doi:10.1016/j.intermet.2021.107182 25) O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang and P.K. Liaw: Intermetallics 18 (2010) 1758–1765. doi:10.1016/j.intermet.2010.05.014 84) R.E. Kubilay, A. Ghafarollahi, F. Maresca and W.A. Curtin: npj Comput. Mater. 7 (2021) 112. doi:10.1038/s41524-021-00577-7 156) K. Kusada et al.: Adv. Mater. 33 (2021) 2005206. doi:10.1002/adma.202005206 12) T. Nagase, M. Todai and T. Nakano: Mater. Trans. 61 (2020) 567–576. doi:10.2320/matertrans.MT-MK2019002 138) S. Haas, A.M. Manzoni, M. Holzinger and U. Glatzel: Mater. Chem. Phys. 274 (2021) 125163. doi:10.1016/j.matchemphys.2021.125163 50) J. Ding, Q. Yu, M. Asta and R.O. Ritchie: Proc. Natl. Acad. Sci. USA 115 (2018) 8919–8924. doi:10.1073/pnas.1808660115 71) L. Li, Z.H. Chen, S. Kuroiwa, M. Ito, K. Kishida, H. Inui and E.P. George: Int. J. Plast. 148 (2022) 103144. doi:10.1016/j.ijplas.2021.103144 15) K. Nakano, T. Narumi, K. Morishita and H. Yasuda: Mater. Trans. 61 (2020) 596–604. doi:10.2320/matertrans.MT-MK2019006 110) N. Tsuji, R. Gholizadeh, R. Ueji, N. Kamikawa, L. Zhao, Y. Tian, Y. Bai and A. Shibata: Mater. Trans. 60 (2019) 1518–1532. doi:10.2320/matertrans.MF201936 132) T. Mineta, K. Kumatani, H. Adachi and H. Sato: Mater. Sci. Eng. Tech. 52 (2021) 339–345. doi:10.1002/mawe.202000250 119) S. Taheriniya, F.A. Davani, S. Hilke, M. Hepp, C. Gadelmeier, M.R. Chellali, T. Boll, H. Rösner, M. Peterlechner, C. Gammer, S.V. Divinski, B. Butz, U. Glatzel, H. Hahn and G. Wilde: Acta Mater. 208 (2021) 116714. doi:10.1016/j.actamat.2021.116714 39) A. Takeuchi, T. Wada and H. Kato: Mater. Trans. 60 (2019) 1666–1673. doi:10.2320/matertrans.M2019037 83) F. Maresca and W.A. Curtin: Acta Mater. 182 (2020) 235–249. doi:10.1016/j.actamat.2019.10.015 153) T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu and C.T. Liu: Science 362 (2018) 933–937. doi:10.1126/science.aas8815 61) C. Varvenne, G.P.M. Leyson, M. Ghazisaeidi and W.A. Curtin: Acta Mater. 124 (2017) 660–683. doi:10.1016/j.actamat.2016.09.046 96) A. Takeuchi: Mater. Trans. 61 (2020) 1717–1726. doi:10.2320/matertrans.MT-M2020141 109) T. Mineta and H. Sato: Mater. Sci. Eng. A 735 (2018) 418–422. doi:10.1016/j.msea.2018.08.077 42) A. Marucco: J. Mater. Sci. 30 (1995) 4188–4194. doi:10.1007/BF00360729 88) W.F. Hosford: Mechanical Behavior of Materials, 2nd edn., (Cambridge University Press, Cambridge, 2010). 70) M. Kawamura, M. Asakura, N.L. Okamoto, K. Kishida, H. Inui and E.P. George: Acta Mater. 203 (2021) 116454. doi:10.1016/j.actamat.2020.10.073 137) W.Y. Chen, M.A. Kirk, N. Hashimoto, J.W. Yeh, X. Liu and Y. Chen: J. Nucl. Mater. 539 (2020) 152324. doi:10.1016/j.jnucmat.2020.152324 64) W.G. Nöhring and W.A. Curtin: Scr. Mater. 168 (2019) 119–123. doi:10.1016/j.scriptamat.2019.04.012 20) Z. Wu, H. Bei, G.M. Pharr and E.P. George: Acta Mater. 81 (2014) 428–441. doi:10.1016/j.actamat.2014.08.026 80) M.S. Duesbery and V. Vitek: Acta Mater. 46 (1998) 1481–1492. doi:10.1016/S1359-6454(97)00367-4 8) D.B. Miracle and O.N. Senkov: Acta Mater. 122 (2017) 448–511. doi:10.1016/j.actamat.2016.08.081 154) P. Edalati, R. Floriano, A. Mohammadi, Y. Li, G. Zepon, H.W. Li and K. Edalati: Scr. Mater. 178 (2020) 387–390. doi:10.1016/j.scriptamat.2019.12.009 22) G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler and E.P. George: Acta Mater. 128 (2017) 292–303. doi:10.1016/j.actamat.2017.02.036 82) X.G. Li, C. Chen, H. Zheng, Y.X. Zuo and S.P. Ong: npj Comput. Mater. 6 (2020) 70. doi:10.1038/s41524-020-0339-0 23) B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie: Science 345 (2014) 1153–1158. doi:10.1126/science.1254581 60) I. Toda-Caraballo and P.E. Rivera-Díaz-del-Castillo: Acta Mater. 85 (2015) 14–23. doi:10.1016/j.actamat.2014.11.014 90) K.K. Sankaran and R.S. Mishra: Metallurgy and Design of Alloys with Hierarchical Microstructures, (Elsevier, Amsterdam, 2017). 52) S. Chen, Z.H. Aitken, S. Pattamatta, Z.X. Wu, Z.G. Yu, D.J. Srolovitz, P.K. Liaw and Y.-W. Zhang: Nat. Commun. 12 (2021) 4953. doi:10.1038/s41467-021-25264-5 21) G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler and E.P. George: Acta Mater. 118 (2016) 152–163. doi:10.1016/j.actamat.2016.07.038 105) K. Sugita, N. Matsuoka, M. Mizuno and H. Araki: Scr. Mater. 176 (2020) 32–35. doi:10.1016/j.scriptamat.2019.09.033 41) A. Marucco and B. Nath: J. Mater. Sci. 23 (1988) 2107–2114. doi:10.1007/BF01115776 4) Y. Zhang: High-Entropy Materials; A Brief Introduction, (Springer, Cham, 2019). 76) H. Suzuki and C.S. Barrett: Acta Metall. 6 (1958) 156–165. doi:10.1016/0001-6160(58)90002-6 24) B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H.B. Bei, Z.G. Wu, E.P. George and R.O. Ritchie: Nat. Commun. 7 (2016) 10602. doi:10.1038/ncomms10602 69) A.S. Tirunilai, T. Hanemann, C. Reinhart, V. Tschan, K.-P. Weiss, G. Laplanche, J. Freudenberger, M. Heilmaier and A. Kauffmann: Mater. Sci. Eng. A 783 (2020) 139290. doi:10.1016/j.msea.2020.139290 157) D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, S. Kawaguchi, Y. Kubota and H. Kitagawa: J. Am. Chem. Soc. 142 (2020) 13833–13838. doi:10.1021/jacs.0c04807 18) J.M. Shi, Y. Lei, N. Hashimoto and S. Isobe: Mater. Trans. 61 (2020) 616–621. doi:10.2320/matertrans.MT-MK2019009 59) H. Inui, K. Kishida, L. Li, A.M. Manzoni, S. Haas and U. Glatzel: MRS Bull. (2022), in press. 98) K. Yuge and S. Ohta: J. Phys. Soc. Jpn. 88 (2019) 104803. doi:10.7566/JPSJ.88.104803 112) T. Nagase, Y. Iijima, A. Matsugaki, K. Ameyama and T. Nakano: Mater. Sci. Eng. C 107 (2020) 110322. doi:10.1016/j.msec.2019.110322 134) Y. Lei, N. Hashimoto and S. Isobe: Mater. Trans. 61 (2020) 1247–1251. doi:10.2320/matertrans.MT-M2020049 106) M. Mizuno, K. Sugita and H. Araki: Comput. Mater. Sci. 170 (2019) 109163. doi:10.1016/j.commatsci.2019.109163 152) Z.Q. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H.M. Weng, W. Xiong, D.L. Zhang, Y.Z. Zhou, T.J. Rupert, W.P. Chen and E.J. Lavernia: Sci. Adv. 4 88 89 110 111 112 113 114 115 116 90 117 91 118 92 119 93 94 95 96 97 10 98 11 99 12 13 14 15 16 17 18 19 120 121 1 122 2 123 3 124 4 125 5 126 6 127 7 128 8 129 9 20 21 22 23 24 25 26 27 28 29 130 131 132 133 134 135 136 137 138 139 30 31 32 33 34 35 36 37 38 39 140 141 142 143 144 145 146 147 148 149 40 41 42 43 44 45 46 47 48 49 150 151 152 153 154 155 156 157 158 159 50 51 52 53 54 55 56 57 58 59 160 161 162 163 164 165 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 100 101 102 103 104 105 106 80 107 81 108 82 109 83 84 85 86 87 |
References_xml | – reference: 28) X. Yang and Y. Zhang: Mater. Chem. Phys. 132 (2012) 233–238. doi:10.1016/j.matchemphys.2011.11.021 – reference: 69) A.S. Tirunilai, T. Hanemann, C. Reinhart, V. Tschan, K.-P. Weiss, G. Laplanche, J. Freudenberger, M. Heilmaier and A. Kauffmann: Mater. Sci. Eng. A 783 (2020) 139290. doi:10.1016/j.msea.2020.139290 – reference: 145) Y.G. Li, R. Li, Q. Peng and S. Ogata: Nanotechnology 31 (2020) 425701. doi:10.1088/1361-6528/ab9cf5 – reference: 154) P. Edalati, R. Floriano, A. Mohammadi, Y. Li, G. Zepon, H.W. Li and K. Edalati: Scr. Mater. 178 (2020) 387–390. doi:10.1016/j.scriptamat.2019.12.009 – reference: 158) K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, K. Sato, K. Nagaoka, K. Terada, Y. Ikeda, Y. Hirai and H. Kitagawa: J. Phys. Chem. C 125 (2021) 458–463. doi:10.1021/acs.jpcc.0c08871 – reference: 5) M.-H. Tsai and J.W. Yeh: Mater. Res. Lett. 2 (2014) 107–123. doi:10.1080/21663831.2014.912690 – reference: 6) Y.F. Ye, Q. Wang, J. Lu, C.T. Liu and Y. Yang: Mater. Today 19 (2016) 349–362. doi:10.1016/j.mattod.2015.11.026 – reference: 31) S. Guo, C. Ng, J. Lu and C.T. Liu: J. Appl. Phys. 109 (2011) 103505. doi:10.1063/1.3587228 – reference: 137) W.Y. Chen, M.A. Kirk, N. Hashimoto, J.W. Yeh, X. Liu and Y. Chen: J. Nucl. Mater. 539 (2020) 152324. doi:10.1016/j.jnucmat.2020.152324 – reference: 86) S. Sheikh, S. Shafeie, Q. Hu, J. Ahlström, C. Persson, J. Veselý, J. Zýka, U. Klement and S. Guo: J. Appl. Phys. 120 (2016) 164902. doi:10.1063/1.4966659 – reference: 124) H. Watanabe, T. Murata, N. Ikeo, T. Mukai, K. Han and K. Tsuchiya: Materialia 18 (2021) 101172. doi:10.1016/j.mtla.2021.101172 – reference: 26) O.N. Senkov, G.B. Wilks, J. Scott and D.B. Miracle: Intermetallics 19 (2011) 698–706. doi:10.1016/j.intermet.2011.01.004 – reference: 82) X.G. Li, C. Chen, H. Zheng, Y.X. Zuo and S.P. Ong: npj Comput. Mater. 6 (2020) 70. doi:10.1038/s41524-020-0339-0 – reference: 106) M. Mizuno, K. Sugita and H. Araki: Comput. Mater. Sci. 170 (2019) 109163. doi:10.1016/j.commatsci.2019.109163 – reference: 159) P. Edalati, X.F. Shen, M. Watanabe, T. Ishihara, M. Arita, M. Fuji and K. Edalati: J. Mater. Chem. A 9 (2021) 15076–15086. doi:10.1039/D1TA03861C – reference: 44) N.R. Dudova, R.O. Kaibyshev and V.A. Valitov: Phys. Met. Metallogr. 108 (2009) 625–633. doi:10.1134/S0031918X0912014X – reference: 81) C.R. Weinberger, B.L. Boyce and C.C. Battaile: Int. Mater. Rev. 58 (2013) 296–314. doi:10.1179/1743280412Y.0000000015 – reference: 126) S. Wolff-Goodrich, S. Haas, U. Glatzel and C.H. Liebscher: Acta Mater. 216 (2021) 117113. doi:10.1016/j.actamat.2021.117113 – reference: 107) N. Hashimoto and Y. Ono: Intermetallics 133 (2021) 107182. doi:10.1016/j.intermet.2021.107182 – reference: 142) H.G. Li, J.J. Ruan, N. Ueshima and K. Oikawa: J. Alloy. Compd. 867 (2021) 159024. doi:10.1016/j.jallcom.2021.159024 – reference: 64) W.G. Nöhring and W.A. Curtin: Scr. Mater. 168 (2019) 119–123. doi:10.1016/j.scriptamat.2019.04.012 – reference: 24) B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H.B. Bei, Z.G. Wu, E.P. George and R.O. Ritchie: Nat. Commun. 7 (2016) 10602. doi:10.1038/ncomms10602 – reference: 103) N.-D. Tran, A. Saengdeejing, K. Suzuki, H. Miura and Y. Chen: J. Phase Equilibria Diffus. 42 (2021) 606–616. doi:10.1007/s11669-021-00900-1 – reference: 94) J. Jiang, Z. Lu, J. Shen, T. Wada, H. Kato and M.-W. Chen: Nat. Commun. 12 (2021) 3843. doi:10.1038/s41467-021-24093-w – reference: 136) N. Hashimoto, T. Fukushi, E. Wada and W.Y. Chen: J. Nucl. Mater. 545 (2021) 152642. doi:10.1016/j.jnucmat.2020.152642 – reference: 8) D.B. Miracle and O.N. Senkov: Acta Mater. 122 (2017) 448–511. doi:10.1016/j.actamat.2016.08.081 – reference: 12) T. Nagase, M. Todai and T. Nakano: Mater. Trans. 61 (2020) 567–576. doi:10.2320/matertrans.MT-MK2019002 – reference: 55) A.S. Argon: Strengthening Mechanisms in Crystal Plasticity, (Oxford University Press, Oxford, 2008). – reference: 147) W.T. Lin, D. Chen, C.Q. Dang, P.J. Yu, F.L. Meng, T. Yang, Y.L. Zhao, S.F. Liu, J.P. Du, G. Yeli, C.T. Liu, Y. Lu, S. Ogata and J.-J. Kai: Acta Mater. 210 (2021) 116843. doi:10.1016/j.actamat.2021.116843 – reference: 10) E.P. George, W.A. Curtin and C.C. Tasan: Acta Mater. 188 (2020) 435–474. doi:10.1016/j.actamat.2019.12.015 – reference: 111) B. Sharma, K. Nagano, K.K. Saxena, H. Fujiwara and K. Ameyama: Crystal 10 (2020) 1020. doi:10.3390/cryst10111020 – reference: 41) A. Marucco and B. Nath: J. Mater. Sci. 23 (1988) 2107–2114. doi:10.1007/BF01115776 – reference: 67) C. Niu, C.R. LaRosa, J. Miao, M.J. Mills and M. Ghazisaeidi: Nat. Commun. 9 (2018) 1363. doi:10.1038/s41467-018-03846-0 – reference: 62) Y.Y. Zhao, Z.F. Lei, Z.P. Lu, J.C. Huang and T.G. Nieh: Mater. Res. Lett. 7 (2019) 340–346. doi:10.1080/21663831.2019.1610105 – reference: 40) A. Takeuchi, T. Wada and H. Kato: Mater. Trans. 60 (2019) 2267–2276. doi:10.2320/matertrans.MT-M2019212 – reference: 105) K. Sugita, N. Matsuoka, M. Mizuno and H. Araki: Scr. Mater. 176 (2020) 32–35. doi:10.1016/j.scriptamat.2019.09.033 – reference: 22) G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler and E.P. George: Acta Mater. 128 (2017) 292–303. doi:10.1016/j.actamat.2017.02.036 – reference: 148) Z. Li, K.G. Pradeep, Y. Deng, D. Raabe and C.C. Tasan: Nature 534 (2016) 227–230. doi:10.1038/nature17981 – reference: 60) I. Toda-Caraballo and P.E. Rivera-Díaz-del-Castillo: Acta Mater. 85 (2015) 14–23. doi:10.1016/j.actamat.2014.11.014 – reference: 4) Y. Zhang: High-Entropy Materials; A Brief Introduction, (Springer, Cham, 2019). – reference: 66) Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao and R.O. Ritchie: Nat. Commun. 8 (2017) 14390. doi:10.1038/ncomms14390 – reference: 80) M.S. Duesbery and V. Vitek: Acta Mater. 46 (1998) 1481–1492. doi:10.1016/S1359-6454(97)00367-4 – reference: 35) O.N. Senkov, J.M. Scott, S. Senkova, D. Miracle and C. Woodward: J. Mater. Sci. 47 (2012) 4062–4074. doi:10.1007/s10853-012-6260-2 – reference: 90) K.K. Sankaran and R.S. Mishra: Metallurgy and Design of Alloys with Hierarchical Microstructures, (Elsevier, Amsterdam, 2017). – reference: 101) K. Yuge, R. Miyake and S. Ohta: J. Phys. Soc. Jpn. 89 (2020) 094803. doi:10.7566/JPSJ.89.094803 – reference: 118) A. Takeuchi: Mater. Trans. 62 (2021) 469–478. doi:10.2320/matertrans.MT-M2020274 – reference: 85) C.H. Lee, F. Maresca, R. Feng, Y. Chou, T. Ungar, M. Widom, K. An, J.D. Poplawsky, Y.-C. Chou, P.K. Liaw and W.A. Curtin: Nat. Commun. 12 (2021) 5474. doi:10.1038/s41467-021-25807-w – reference: 9) E.P. George, D. Raabe and R.O. Ritchie: Nature Rev. Mater. 4 (2019) 515–534. doi:10.1038/s41578-019-0121-4 – reference: 74) S. Zhao, G.M. Stocks and Y. Zhang: Acta Mater. 134 (2017) 334–345. doi:10.1016/j.actamat.2017.05.001 – reference: 100) K. Yuge and S. Ohta: J. Phys. Soc. Jpn. 89 (2020) 084802. doi:10.7566/JPSJ.89.084802 – reference: 120) F. Müller, B. Gorr, H.-J. Christ, H. Chen, A. Kauffmann, S. Laube and M. Heilmaier: J. Alloy. Compd. 842 (2020) 155726. doi:10.1016/j.jallcom.2020.155726 – reference: 84) R.E. Kubilay, A. Ghafarollahi, F. Maresca and W.A. Curtin: npj Comput. Mater. 7 (2021) 112. doi:10.1038/s41524-021-00577-7 – reference: 164) A.J. Wright and J. Luo: J. Mater. Sci. 55 (2020) 9812–9827. doi:10.1007/s10853-020-04583-w – reference: 36) O.N. Senkov, S. Rao, T. Butler and K. Chaput: J. Alloy. Compd. 808 (2019) 151685. doi:10.1016/j.jallcom.2019.151685 – reference: 51) Q. Li, H. Sheng and E. Ma: Nat. Commun. 10 (2019) 3563. doi:10.1038/s41467-019-11464-7 – reference: 59) H. Inui, K. Kishida, L. Li, A.M. Manzoni, S. Haas and U. Glatzel: MRS Bull. (2022), in press. – reference: 141) H.G. Li, J.J. Ruan, N. Ueshima and K. Oikawa: Intermetallics 127 (2020) 106994. doi:10.1016/j.intermet.2020.106994 – reference: 1) J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang: Adv. Eng. Mater. 6 (2004) 299–303. doi:10.1002/adem.200300567 – reference: 115) P. Edalati, A. Mohammadi, Y. Tang, R. Floriano, M. Fuji and K. Edalati: Mater. Lett. 302 (2021) 130368. doi:10.1016/j.matlet.2021.130368 – reference: 83) F. Maresca and W.A. Curtin: Acta Mater. 182 (2020) 235–249. doi:10.1016/j.actamat.2019.10.015 – reference: 52) S. Chen, Z.H. Aitken, S. Pattamatta, Z.X. Wu, Z.G. Yu, D.J. Srolovitz, P.K. Liaw and Y.-W. Zhang: Nat. Commun. 12 (2021) 4953. doi:10.1038/s41467-021-25264-5 – reference: 17) T. Abe: Mater. Trans. 61 (2020) 610–615. doi:10.2320/matertrans.MT-MK2019008 – reference: 102) S. Ohta, R. Miyake and K. Yuge: J. Phys. Soc. Jpn. 90 (2021) 034801. doi:10.7566/JPSJ.90.034801 – reference: 14) S. Yoshida, T. Ikeuchi, Y. Bai and N. Tsuji: Mater. Trans. 61 (2020) 587–595. doi:10.2320/matertrans.MT-MK2019004 – reference: 112) T. Nagase, Y. Iijima, A. Matsugaki, K. Ameyama and T. Nakano: Mater. Sci. Eng. C 107 (2020) 110322. doi:10.1016/j.msec.2019.110322 – reference: 93) T. Nagase, A. Terayama, T. Nagaoka, N. Fuyama and T. Sakamoto: Mater. Trans. 61 (2020) 1369–1380. doi:10.2320/matertrans.F-M2020825 – reference: 128) A.S. Tirunilai, T. Hanemann, K.-P. Weiss, J. Freudenberger, M. Heilmaier and A. Kauffmann: Acta Mater. 200 (2020) 980–991. doi:10.1016/j.actamat.2020.09.052 – reference: 37) K. Niitsu, M. Asakura, K. Yuge and H. Inui: Mater. Trans. 61 (2020) 1874–1880. doi:10.2320/matertrans.MT-M2020144 – reference: 151) E. Ma and T. Zhu: Mater. Today 20 (2017) 323–331. doi:10.1016/j.mattod.2017.02.003 – reference: 95) A. Takeuchi, K. Yubuta and T. Wada: Mater. Trans. 60 (2019) 330–337. doi:10.2320/matertrans.M2018216 – reference: 117) H. Watanabe, T. Murata, S. Nakamura, N. Ikeo, T. Mukai and K. Tsuchiya: J. Alloy. Compd. 872 (2021) 159668. doi:10.1016/j.jallcom.2021.159668 – reference: 48) X.F. Chen, Q. Wang, Z.Y. Chen, M.L. Zhu, H. Zhou, P. Jiang, L.L. Zhou, Q.Q. Xue, F.P. Yuang, J. Zhu, X.L. Wu and E. Ma: Nature 592 (2021) 712–716. doi:10.1038/s41586-021-03428-z – reference: 87) E. Mak, B.L. Yin and W.A. Curtin: J. Mechan. Phys. Solids 152 (2021) 104389. doi:10.1016/j.jmps.2021.104389 – reference: 43) A. Taylor and G. Hinton: J. Inst. Met. 81 (1952) 169–180. – reference: 96) A. Takeuchi: Mater. Trans. 61 (2020) 1717–1726. doi:10.2320/matertrans.MT-M2020141 – reference: 133) M. Tanaka, S. Okajo, S. Yamasaki and T. Morikawa: Scr. Mater. 200 (2021) 113895. doi:10.1016/j.scriptamat.2021.113895 – reference: 63) N.L. Okamoto, K. Yuge, K. Tanaka, H. Inui and E.P. George: AIP Adv. 6 (2016) 125008. doi:10.1063/1.4971371 – reference: 75) Y.H. Zhang, Y. Zhuang, A. Hu, J. Kai and C.T. Liu: Scr. Mater. 130 (2017) 96–99. doi:10.1016/j.scriptamat.2016.11.014 – reference: 135) N. Hashimoto, Y. Al-Zain, A. Yamamoto, T. Koyano, H.Y. Kim and S. Miyazaki: Mater. Lett. 287 (2021) 129286. doi:10.1016/j.matlet.2020.129286 – reference: 2) B.S. Murty, J.W. Yeh and S. Ranganathan: High-Entropy Alloys, (Elsevier, Amsterdam, 2014). – reference: 16) Md. Lokman Ali, S. Shinzato, V. Wang, Z. Shen, J.-P. Du and S. Ogata: Mater. Trans. 61 (2020) 605–609. doi:10.2320/matertrans.MT-MK2019007 – reference: 155) D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, I. Gueye, O. Seo, J. Kim, S. Hiroi, O. Sakata, S. Kawaguchi, Y. Kubota and H. Kitagawa: Chem. Sci. 11 (2020) 12731–12736. doi:10.1039/D0SC02351E – reference: 152) Z.Q. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H.M. Weng, W. Xiong, D.L. Zhang, Y.Z. Zhou, T.J. Rupert, W.P. Chen and E.J. Lavernia: Sci. Adv. 4 (2018) eaat8712. doi:10.1126/sciadv.aat8712 – reference: 73) S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang and Z.P. Lu: Intermetallics 93 (2018) 269–273. doi:10.1016/j.intermet.2017.10.004 – reference: 30) Y.F. Ye, Q. Wang, J. Lu, C.T. Liu and Y. Yang: Scr. Mater. 104 (2015) 53–55. doi:10.1016/j.scriptamat.2015.03.023 – reference: 99) K. Yuge and S. Ohta: J. Phys. Soc. Jpn. 88 (2019) 054803. doi:10.7566/JPSJ.88.054803 – reference: 45) J.B. Cohen and M.E. Fine: J. Phys. Radium 23 (1962) 749–762. doi:10.1051/jphysrad:019620023010074901 – reference: 138) S. Haas, A.M. Manzoni, M. Holzinger and U. Glatzel: Mater. Chem. Phys. 274 (2021) 125163. doi:10.1016/j.matchemphys.2021.125163 – reference: 131) T. Mineta, K. Hasegawa and H. Sato: Mater. Sci. Eng. A 773 (2020) 138867. doi:10.1016/j.msea.2019.138867 – reference: 47) R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie and A.M. Minor: Nature 581 (2020) 283–287. doi:10.1038/s41586-020-2275-z – reference: 65) J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr and M.J. Mills: Acta Mater. 132 (2017) 35–48. doi:10.1016/j.actamat.2017.04.033 – reference: 68) Y.Q. Wang, B. Liu, K. Yan, M.S. Wang, S. Kabra, Y.-L. Chiu, D. Dye, P.D. Lee, Y. Liu and B. Cai: Acta Mater. 154 (2018) 79–89. doi:10.1016/j.actamat.2018.05.013 – reference: 123) P. Edalati, R. Floriano, Y. Tang, A. Mohammadi, K. Danielle Pereira, A. Ducati Luchessi and K. Edalati: Mater. Sci. Eng. C 112 (2020) 110908. doi:10.1016/j.msec.2020.110908 – reference: 70) M. Kawamura, M. Asakura, N.L. Okamoto, K. Kishida, H. Inui and E.P. George: Acta Mater. 203 (2021) 116454. doi:10.1016/j.actamat.2020.10.073 – reference: 98) K. Yuge and S. Ohta: J. Phys. Soc. Jpn. 88 (2019) 104803. doi:10.7566/JPSJ.88.104803 – reference: 53) B. Yin, S. Yoshida, N. Tsuji and W.A. Curtin: Nat. Commun. 11 (2020) 2507. doi:10.1038/s41467-020-16083-1 – reference: 161) C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo and J.P. Maria: Nat. Commun. 6 (2015) 8485. doi:10.1038/ncomms9485 – reference: 104) T. Abe: Mater. Trans. 62 (2021) 711–718. doi:10.2320/matertrans.MT-M2021022 – reference: 89) P.S. Follansbee: Fundamentals of Strength, (John Wiley & Son, New York, 2014). – reference: 146) Y.-J. Hu, A. Sundar, S. Ogata and L. Qi: Acta Mater. 210 (2021) 116800. doi:10.1016/j.actamat.2021.116800 – reference: 108) Z.Q. Shen, J.-P. Du, S. Shinzato, Y. Sato, P.J. Yu and S. Ogata: Comput. Mater. Sci. 198 (2021) 110670. doi:10.1016/j.commatsci.2021.110670 – reference: 92) S.-H. Joo, J.-W. Bae, W.-Y. Park, Y. Shimada, T. Wada, H.-S. Kim, A. Takeuchi, T.J. Konno, H. Kato and I.V. Okulov: Adv. Mater. 32 (2020) 1906160. doi:10.1002/adma.201906160 – reference: 7) E.J. Pickering and N.G. Jones: Int. Mater. Rev. 61 (2016) 183–202. doi:10.1080/09506608.2016.1180020 – reference: 153) T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu and C.T. Liu: Science 362 (2018) 933–937. doi:10.1126/science.aas8815 – reference: 121) A.M. Manzoni, S. Haas, H. Kropf, J. Duarte, C.T. Cakir, F. Dubois, D. Többens and U. Glatzel: Scr. Mater. 188 (2020) 74–79. doi:10.1016/j.scriptamat.2020.07.013 – reference: 130) R.R. Eleti, A.H. Chokshi, A. Shibata and N. Tsuji: Acta Mater. 183 (2020) 64–77. doi:10.1016/j.actamat.2019.11.001 – reference: 140) T. Koyama and Y. Tsukada: Calphad 73 (2021) 102269. doi:10.1016/j.calphad.2021.102269 – reference: 134) Y. Lei, N. Hashimoto and S. Isobe: Mater. Trans. 61 (2020) 1247–1251. doi:10.2320/matertrans.MT-M2020049 – reference: 144) K. Shiotani, T. Niiyama and T. Shimokawa: Mater. Trans. 61 (2020) 1272–1279. doi:10.2320/matertrans.Z-M2020819 – reference: 20) Z. Wu, H. Bei, G.M. Pharr and E.P. George: Acta Mater. 81 (2014) 428–441. doi:10.1016/j.actamat.2014.08.026 – reference: 119) S. Taheriniya, F.A. Davani, S. Hilke, M. Hepp, C. Gadelmeier, M.R. Chellali, T. Boll, H. Rösner, M. Peterlechner, C. Gammer, S.V. Divinski, B. Butz, U. Glatzel, H. Hahn and G. Wilde: Acta Mater. 208 (2021) 116714. doi:10.1016/j.actamat.2021.116714 – reference: 129) F. Thiel, D. Geissler, K. Nielsch, A. Kauffmann, S. Seils, M. Heilmaier, D. Utt, K. Albe, M. Motylenko, D. Rafaja and J. Freudenberger: Acta Mater. 185 (2020) 400–411. doi:10.1016/j.actamat.2019.12.020 – reference: 88) W.F. Hosford: Mechanical Behavior of Materials, 2nd edn., (Cambridge University Press, Cambridge, 2010). – reference: 116) Y. Zhao, J.-M. Park, K. Murakami, S. Komazaki, M. Kawasaki, K. Tsuchiya, J.-Y. Suh, U. Ramamurty and J.-I. Jang: Scr. Mater. 203 (2021) 114069. doi:10.1016/j.scriptamat.2021.114069 – reference: 160) P. Edalati, Q. Wang, H. Razavi-Khosroshahi, M. Fuji, T. Ishihara and K. Edalati: J. Mater. Chem. A 8 (2020) 3814–3821. doi:10.1039/C9TA12846H – reference: 3) M.C. Gao, J.W. Yeh, P.K. Liaw and Y. Zhang: High-Entropy Alloys; Fundamentals and Applications, (Springer, Cham, 2016). – reference: 157) D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, S. Kawaguchi, Y. Kubota and H. Kitagawa: J. Am. Chem. Soc. 142 (2020) 13833–13838. doi:10.1021/jacs.0c04807 – reference: 114) T. Nagase, A. Shibata, M. Matsumuro, M. Takemura and S. Semboshi: Mater. Trans. 62 (2021) 856–863. doi:10.2320/matertrans.MT-M2020259 – reference: 162) R.-Z. Zhang and M.J. Reece: J. Mater. Chem. A 7 (2019) 22148–22162. doi:10.1039/C9TA05698J – reference: 110) N. Tsuji, R. Gholizadeh, R. Ueji, N. Kamikawa, L. Zhao, Y. Tian, Y. Bai and A. Shibata: Mater. Trans. 60 (2019) 1518–1532. doi:10.2320/matertrans.MF201936 – reference: 156) K. Kusada et al.: Adv. Mater. 33 (2021) 2005206. doi:10.1002/adma.202005206 – reference: 19) A. Gali and E.P. George: Intermetallics 39 (2013) 74–78. doi:10.1016/j.intermet.2013.03.018 – reference: 143) F. Thiel, D. Utt, A. Kauffmann, K. Nielsch, K. Albe, M. Heilmaier and J. Freudenberger: Scr. Mater. 181 (2020) 15–18. doi:10.1016/j.scriptamat.2020.02.007 – reference: 50) J. Ding, Q. Yu, M. Asta and R.O. Ritchie: Proc. Natl. Acad. Sci. USA 115 (2018) 8919–8924. doi:10.1073/pnas.1808660115 – reference: 32) M.G. Poletti and L. Battezzati: Acta Mater. 75 (2014) 297–306. doi:10.1016/j.actamat.2014.04.033 – reference: 79) J.W. Christian: Metall. Trans. A 14 (1983) 1237–1256. doi:10.1007/BF02664806 – reference: 57) R. Labusch: Phys. Status Solidi 41 (1970) 659–669. doi:10.1002/pssb.19700410221 – reference: 77) J.A. Venables: Deformation Twinning, ed. by R.E. Reed-Hill, J.P. Hirth and H.C. Rogers, (Gordon & Breach Science Pub., New York, 1964) pp. 77–116. – reference: 18) J.M. Shi, Y. Lei, N. Hashimoto and S. Isobe: Mater. Trans. 61 (2020) 616–621. doi:10.2320/matertrans.MT-MK2019009 – reference: 25) O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang and P.K. Liaw: Intermetallics 18 (2010) 1758–1765. doi:10.1016/j.intermet.2010.05.014 – reference: 21) G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler and E.P. George: Acta Mater. 118 (2016) 152–163. doi:10.1016/j.actamat.2016.07.038 – reference: 97) H. Tanimoto, K. Takeuchi, T. Ikegami and T. Okazaki: Mater. Trans. 61 (2020) 878–883. doi:10.2320/matertrans.MT-M2019378 – reference: 139) T. Koyama, M. Ohno, A. Yamanaka, T. Kasuya and S. Tsukamoto: Mater. Trans. 61 (2020) 2047–2051. doi:10.2320/matertrans.MT-MA2020001 – reference: 27) Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen and P.K. Liaw: Adv. Eng. Mater. 10 (2008) 534–538. doi:10.1002/adem.200700240 – reference: 72) N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M. Chen, H. Matsunoshita, K. Tanaka, H. Inui and E.P. George: Sci. Rep. 6 (2016) 35863. doi:10.1038/srep35863 – reference: 125) S. Laube, S. Schellert, A.S. Tirunilai, D. Schliephake, B. Gorr, H.-J. Christ, A. Kauffmann and M. Heilmaier: Acta Mater. 218 (2021) 117217. doi:10.1016/j.actamat.2021.117217 – reference: 71) L. Li, Z.H. Chen, S. Kuroiwa, M. Ito, K. Kishida, H. Inui and E.P. George: Int. J. Plast. 148 (2022) 103144. doi:10.1016/j.ijplas.2021.103144 – reference: 46) F.X. Zhang, S. Zhao, K. Jin, H. Xue, G. Velisa, H. Bei, R. Huang, J.Y.P. Ko, D.C. Pagan, J.C. Neuefeind, W.J. Weber and Y. Zhang: Phys. Rev. Lett. 118 (2017) 205501. doi:10.1103/PhysRevLett.118.205501 – reference: 56) R.L. Fleischer: Acta Metall. 9 (1961) 996–1000. doi:10.1016/0001-6160(61)90242-5 – reference: 150) X.L. Wu, M.X. Yang, F.P. Yuang, G.L. Wu, Y.J. Wei, X.X. Huang and Y.T. Zhu: Proc. Natl. Acad. Sci. USA 112 (2015) 14501–14505. doi:10.1073/pnas.1517193112 – reference: 23) B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie: Science 345 (2014) 1153–1158. doi:10.1126/science.1254581 – reference: 11) B. Sharma, S. Kumar Vajpai, M. Kawabata, T. Nakano and K. Ameyama: Mater. Trans. 61 (2020) 562–566. doi:10.2320/matertrans.MT-MK2019001 – reference: 38) A. Takeuchi, K. Amiya, T. Wada, K. Yubuta and W. Zhang: JOM 66 (2014) 1984–1992. doi:10.1007/s11837-014-1085-x – reference: 13) Q. He, S. Yoshida, H. Yasuda and N. Tsuji: Mater. Trans. 61 (2020) 577–586. doi:10.2320/matertrans.MT-MK2019003 – reference: 54) D.S. Zhou, Z.H. Chen, K. Ehara, K. Niitsu, K. Tanaka and H. Inui: Scr. Mater. 191 (2021) 173–178. doi:10.1016/j.scriptamat.2020.09.039 – reference: 127) A.M. Manzoni, F. Dubois, M.S. Mousa, C. von Schlippenbach, D. Többens, Y. Yesilcicek, E. Zaiser, R. Hesse, S. Haas and U. Glatzel: Metall. Mater. Trans. A 52 (2021) 143–150. doi:10.1007/s11661-020-06091-7 – reference: 58) F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler and E.P. George: Acta Mater. 61 (2013) 5743–5755. doi:10.1016/j.actamat.2013.06.018 – reference: 29) Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw and Z.P. Lu: Prog. Mater. Sci. 61 (2014) 1–93. doi:10.1016/j.pmatsci.2013.10.001 – reference: 33) B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent: Mater. Sci. Eng. A 375–377 (2004) 213–218. doi:10.1016/j.msea.2003.10.257 – reference: 78) J.W. Christian and S. Mahajan: Prog. Mater. Sci. 39 (1995) 1–157. doi:10.1016/0079-6425(94)00007-7 – reference: 91) J. Lee, K. Tsuchiya, W. Tasaki, H.S. Oh, T. Sawaguchi, H. Murakami, T. Hiroto, Y. Matsushita and E.S. Park: Sci. Rep. 9 (2019) 13140. doi:10.1038/s41598-019-49529-8 – reference: 163) C. Oses, C. Toher and S. Curtarolo: Nature Rev. Mater. 5 (2020) 295–309. doi:10.1038/s41578-019-0170-8 – reference: 15) K. Nakano, T. Narumi, K. Morishita and H. Yasuda: Mater. Trans. 61 (2020) 596–604. doi:10.2320/matertrans.MT-MK2019006 – reference: 132) T. Mineta, K. Kumatani, H. Adachi and H. Sato: Mater. Sci. Eng. Tech. 52 (2021) 339–345. doi:10.1002/mawe.202000250 – reference: 39) A. Takeuchi, T. Wada and H. Kato: Mater. Trans. 60 (2019) 1666–1673. doi:10.2320/matertrans.M2019037 – reference: 42) A. Marucco: J. Mater. Sci. 30 (1995) 4188–4194. doi:10.1007/BF00360729 – reference: 76) H. Suzuki and C.S. Barrett: Acta Metall. 6 (1958) 156–165. doi:10.1016/0001-6160(58)90002-6 – reference: 61) C. Varvenne, G.P.M. Leyson, M. Ghazisaeidi and W.A. Curtin: Acta Mater. 124 (2017) 660–683. doi:10.1016/j.actamat.2016.09.046 – reference: 122) A. Singh, D.A. Basha, Yo. Matsushita, K. Tsuchiya, Z.P. Lu, T.G. Nieh and T. Mukai: J. Alloy. Compd. 812 (2020) 152028. doi:10.1016/j.jallcom.2019.152028 – reference: 109) T. Mineta and H. Sato: Mater. Sci. Eng. A 735 (2018) 418–422. doi:10.1016/j.msea.2018.08.077 – reference: 34) O.N. Senkov, J.M. Scott, S. Senkova, D. Miracle and C. Woodward: J. Alloy. Compd. 509 (2011) 6043–6048. doi:10.1016/j.jallcom.2011.02.171 – reference: 49) A. Tamm, A. Aabloo, M. Klintenberg, M. Stocks and A. Caro: Acta Mater. 99 (2015) 307–312. doi:10.1016/j.actamat.2015.08.015 – reference: 165) S. Akrami, P. Edalati, M. Fuji and K. Edalati: Mater. Sci. Eng. Rep. 146 (2021) 100644. doi:10.1016/j.mser.2021.100644 – reference: 113) Y. Iijima, T. Nagase, A. Matsugaki, P. Wang, K. Ameyama and T. Nakano: Mater. Des. 202 (2021) 109548. doi:10.1016/j.matdes.2021.109548 – reference: 149) Z. Li and D. Raabe: JOM 69 (2017) 2099–2106. doi:10.1007/s11837-017-2540-2 – ident: 40 doi: 10.2320/matertrans.MT-M2019212 – ident: 115 doi: 10.1016/j.matlet.2021.130368 – ident: 60 doi: 10.1016/j.actamat.2014.11.014 – ident: 36 doi: 10.1016/j.jallcom.2019.151685 – ident: 152 doi: 10.1126/sciadv.aat8712 – ident: 100 doi: 10.7566/JPSJ.89.084802 – ident: 150 doi: 10.1073/pnas.1517193112 – ident: 43 doi: 10.1038/169180a0 – ident: 94 doi: 10.1038/s41467-021-24093-w – ident: 27 doi: 10.1002/adem.200700240 – ident: 93 doi: 10.2320/matertrans.F-M2020825 – ident: 97 doi: 10.2320/matertrans.MT-M2019378 – ident: 149 doi: 10.1007/s11837-017-2540-2 – ident: 46 doi: 10.1103/PhysRevLett.118.205501 – ident: 45 doi: 10.1051/jphysrad:019620023010074901 – ident: 70 doi: 10.1016/j.actamat.2020.10.073 – ident: 38 doi: 10.1007/s11837-014-1085-x – ident: 50 doi: 10.1073/pnas.1808660115 – ident: 113 doi: 10.1016/j.matdes.2021.109548 – ident: 160 doi: 10.1039/C9TA12846H – ident: 139 doi: 10.2320/matertrans.MT-MA2020001 – ident: 105 doi: 10.1016/j.scriptamat.2019.09.033 – ident: 32 doi: 10.1016/j.actamat.2014.04.033 – ident: 131 doi: 10.1016/j.msea.2019.138867 – ident: 5 doi: 10.1080/21663831.2014.912690 – ident: 65 doi: 10.1016/j.actamat.2017.04.033 – ident: 99 doi: 10.7566/JPSJ.88.054803 – ident: 102 doi: 10.7566/JPSJ.90.034801 – ident: 59 – ident: 135 doi: 10.1016/j.matlet.2020.129286 – ident: 20 doi: 10.1016/j.actamat.2014.08.026 – ident: 4 doi: 10.1007/978-981-13-8526-1 – ident: 7 doi: 10.1080/09506608.2016.1180020 – ident: 119 doi: 10.1016/j.actamat.2021.116714 – ident: 158 doi: 10.1021/acs.jpcc.0c08871 – ident: 129 doi: 10.1016/j.actamat.2019.12.020 – ident: 35 doi: 10.1007/s10853-012-6260-2 – ident: 39 doi: 10.2320/matertrans.M2019037 – ident: 145 doi: 10.1088/1361-6528/ab9cf5 – ident: 16 doi: 10.2320/matertrans.MT-MK2019007 – ident: 51 doi: 10.1038/s41467-019-11464-7 – ident: 73 doi: 10.1016/j.intermet.2017.10.004 – ident: 157 doi: 10.1021/jacs.0c04807 – ident: 132 doi: 10.1002/mawe.202000250 – ident: 162 doi: 10.1039/C9TA05698J – ident: 52 doi: 10.1038/s41467-021-25264-5 – ident: 87 doi: 10.1016/j.jmps.2021.104389 – ident: 96 doi: 10.2320/matertrans.MT-M2020141 – ident: 86 doi: 10.1063/1.4966659 – ident: 107 doi: 10.1016/j.intermet.2021.107182 – ident: 29 doi: 10.1016/j.pmatsci.2013.10.001 – ident: 143 doi: 10.1016/j.scriptamat.2020.02.007 – ident: 163 doi: 10.1038/s41578-019-0170-8 – ident: 68 doi: 10.1016/j.actamat.2018.05.013 – ident: 24 doi: 10.1038/ncomms10602 – ident: 80 doi: 10.1016/S1359-6454(97)00367-4 – ident: 56 doi: 10.1016/0001-6160(61)90242-5 – ident: 2 doi: 10.1016/B978-0-12-800251-3.00002-X – ident: 72 doi: 10.1038/srep35863 – ident: 64 doi: 10.1016/j.scriptamat.2019.04.012 – ident: 128 doi: 10.1016/j.actamat.2020.09.052 – ident: 83 doi: 10.1016/j.actamat.2019.10.015 – ident: 62 doi: 10.1080/21663831.2019.1610105 – ident: 53 doi: 10.1038/s41467-020-16083-1 – ident: 88 – ident: 142 doi: 10.1016/j.jallcom.2021.159024 – ident: 11 doi: 10.2320/matertrans.MT-MK2019001 – ident: 55 doi: 10.1093/acprof:oso/9780198516002.001.0001 – ident: 23 doi: 10.1126/science.1254581 – ident: 106 doi: 10.1016/j.commatsci.2019.109163 – ident: 155 doi: 10.1039/D0SC02351E – ident: 123 doi: 10.1016/j.msec.2020.110908 – ident: 77 – ident: 161 doi: 10.1038/ncomms9485 – ident: 8 doi: 10.1016/j.actamat.2016.08.081 – ident: 15 doi: 10.2320/matertrans.MT-MK2019006 – ident: 1 doi: 10.1002/adem.200300567 – ident: 26 doi: 10.1016/j.intermet.2011.01.004 – ident: 78 doi: 10.1016/0079-6425(94)00007-7 – ident: 111 doi: 10.3390/cryst10111020 – ident: 28 doi: 10.1016/j.matchemphys.2011.11.021 – ident: 89 doi: 10.1002/9781118808412 – ident: 104 doi: 10.2320/matertrans.MT-M2021022 – ident: 117 doi: 10.1016/j.jallcom.2021.159668 – ident: 12 doi: 10.2320/matertrans.MT-MK2019002 – ident: 75 doi: 10.1016/j.scriptamat.2016.11.014 – ident: 71 doi: 10.1016/j.ijplas.2021.103144 – ident: 103 doi: 10.1007/s11669-021-00900-1 – ident: 153 doi: 10.1126/science.aas8815 – ident: 126 doi: 10.1016/j.actamat.2021.117113 – ident: 33 doi: 10.1016/j.msea.2003.10.257 – ident: 159 doi: 10.1039/D1TA03861C – ident: 48 doi: 10.1038/s41586-021-03428-z – ident: 76 doi: 10.1016/0001-6160(58)90002-6 – ident: 122 doi: 10.1016/j.jallcom.2019.152028 – ident: 136 doi: 10.1016/j.jnucmat.2020.152642 – ident: 148 doi: 10.1038/nature17981 – ident: 49 doi: 10.1016/j.actamat.2015.08.015 – ident: 140 doi: 10.1016/j.calphad.2021.102269 – ident: 18 doi: 10.2320/matertrans.MT-MK2019009 – ident: 66 doi: 10.1038/ncomms14390 – ident: 84 doi: 10.1038/s41524-021-00577-7 – ident: 6 doi: 10.1016/j.mattod.2015.11.026 – ident: 21 doi: 10.1016/j.actamat.2016.07.038 – ident: 58 doi: 10.1016/j.actamat.2013.06.018 – ident: 101 doi: 10.7566/JPSJ.89.094803 – ident: 69 doi: 10.1016/j.msea.2020.139290 – ident: 19 doi: 10.1016/j.intermet.2013.03.018 – ident: 67 doi: 10.1038/s41467-018-03846-0 – ident: 13 doi: 10.2320/matertrans.MT-MK2019003 – ident: 137 doi: 10.1016/j.jnucmat.2020.152324 – ident: 124 doi: 10.1016/j.mtla.2021.101172 – ident: 165 doi: 10.1016/j.mser.2021.100644 – ident: 14 doi: 10.2320/matertrans.MT-MK2019004 – ident: 30 doi: 10.1016/j.scriptamat.2015.03.023 – ident: 34 doi: 10.1016/j.jallcom.2011.02.171 – ident: 141 doi: 10.1016/j.intermet.2020.106994 – ident: 22 doi: 10.1016/j.actamat.2017.02.036 – ident: 154 doi: 10.1016/j.scriptamat.2019.12.009 – ident: 9 doi: 10.1038/s41578-019-0121-4 – ident: 25 doi: 10.1016/j.intermet.2010.05.014 – ident: 133 doi: 10.1016/j.scriptamat.2021.113895 – ident: 147 doi: 10.1016/j.actamat.2021.116843 – ident: 63 doi: 10.1063/1.4971371 – ident: 41 doi: 10.1007/BF01115776 – ident: 17 doi: 10.2320/matertrans.MT-MK2019008 – ident: 81 doi: 10.1179/1743280412Y.0000000015 – ident: 98 doi: 10.7566/JPSJ.88.104803 – ident: 10 doi: 10.1016/j.actamat.2019.12.015 – ident: 146 doi: 10.1016/j.actamat.2021.116800 – ident: 61 doi: 10.1016/j.actamat.2016.09.046 – ident: 91 doi: 10.1038/s41598-019-49529-8 – ident: 92 doi: 10.1002/adma.201906160 – ident: 130 doi: 10.1016/j.actamat.2019.11.001 – ident: 120 doi: 10.1016/j.jallcom.2020.155726 – ident: 151 doi: 10.1016/j.mattod.2017.02.003 – ident: 82 doi: 10.1038/s41524-020-0339-0 – ident: 118 doi: 10.2320/matertrans.MT-M2020274 – ident: 127 doi: 10.1007/s11661-020-06091-7 – ident: 121 doi: 10.1016/j.scriptamat.2020.07.013 – ident: 134 doi: 10.2320/matertrans.MT-M2020049 – ident: 164 doi: 10.1007/s10853-020-04583-w – ident: 110 doi: 10.2320/matertrans.MF201936 – ident: 3 doi: 10.1007/978-3-319-27013-5 – ident: 74 doi: 10.1016/j.actamat.2017.05.001 – ident: 85 doi: 10.1038/s41467-021-25807-w – ident: 90 – ident: 114 doi: 10.2320/matertrans.MT-M2020259 – ident: 57 doi: 10.1002/pssb.19700410221 – ident: 79 doi: 10.1007/BF02664806 – ident: 138 doi: 10.1016/j.matchemphys.2021.125163 – ident: 116 doi: 10.1016/j.scriptamat.2021.114069 – ident: 144 doi: 10.2320/matertrans.Z-M2020819 – ident: 47 doi: 10.1038/s41586-020-2275-z – ident: 31 doi: 10.1063/1.3587228 – ident: 37 doi: 10.2320/matertrans.MT-M2020144 – ident: 108 doi: 10.1016/j.commatsci.2021.110670 – ident: 54 doi: 10.1016/j.scriptamat.2020.09.039 – ident: 112 doi: 10.1016/j.msec.2019.110322 – ident: 109 doi: 10.1016/j.msea.2018.08.077 – ident: 95 doi: 10.2320/matertrans.M2018216 – ident: 42 doi: 10.1007/BF00360729 – ident: 156 doi: 10.1002/adma.202005206 – ident: 125 doi: 10.1016/j.actamat.2021.117217 – ident: 44 doi: 10.1134/S0031918X0912014X |
SSID | ssj0037522 |
Score | 2.523219 |
SecondaryResourceType | review_article |
Snippet | This paper reviews a current trend and recent progress in research on phase stability, atomic structures, mechanical and functional properties of high-entropy... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 394 |
SubjectTerms | atomic structure critical shear stress for yielding and twinning Entropy High entropy alloys Phase stability temperature dependence tensile and compressive mechanical properties |
Title | Recent Progress in Our Understanding of Phase Stability, Atomic Structures and Mechanical and Functional Properties of High-Entropy Alloys |
URI | https://www.jstage.jst.go.jp/article/matertrans/63/3/63_MT-M2021234/_article/-char/en https://www.proquest.com/docview/2634872131 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | MATERIALS TRANSACTIONS, 2022/03/01, Vol.63(3), pp.394-401 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6FlgMcEE81UNAeuAW3sdfPo1VStaguFUmkiou1Xu82ocGpEvsQfgI_lN_BjNevQCWg4uIkltdZ-_s8-816ZpaQt45IwEuWviG5AgclGMIjxZRvJGnKTDtxlSrz1qJz92Rqf7h0Lnu9H52opSJPDsS3W_NK7oIq7ANcMUv2H5BtTgo74DvgC1tAGLZ_hTFoPnyVf4ExVmix5tngY7EaTLcSVjDIbQZjFerKMhK2vK1hjunI-FK6KF8i6FLNkcRE4KaAwDEMetVc4QVO2q-w-mo59Q8uvTHCIPebzSBcLJabdVflRiGI5NPwbDyYfArPxzpQpVGdp1mhl8rmq2JTXM_bMID1bJ7qFLXNcl1cN5w7qlJIPsPn1Ywvu1MV4OU2sVoHTbIbSIBsOxAikjlWitZxJblGp2ORme0YgavX-TmQ9T7PwBUtuma8spPzrpdf2mSmV1Guhndbd-jXkQOEJYZafsUO5KVKiCZGZGEB_Gqydbsqd4V53DaIXRYz3ESTuG4Y14dhCh0w9h7ZtcCdAXu8G76Pzsa1ZmCermvfXKzOZcdOHd7epS0Zdf8LcOrqdzlRaqTJY_Kocm5oqLvzhPRk9pQ87JS8fEa-a87SmrN0nlHgLN3iLF0qWnKWNpx9RzVjactYCgfTlrHlz5axtGUsnq7LWKoZ-5xMj0eToxOjWg_EEE5g5YYjUhxePMvxPQDVU7aUdurCHXGUy5mfyEQEQ-Uq05QCi1AJzxumClO7uUiEw16QnWyZyT1CA1953Hccy-fM9oece4p5nHFTBC4XqegTp769saiK5eOaLYsYnGaEpQt8B_A-OWza3ehyMX9sMdLoNcffjVp9sl-DH1cmah1bLlydZ5nMfPmf_uYVedA-2ftkBzCXr0GW58mbitM_Ablr8Qs |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Our+Understanding+of+Phase+Stability%2C+Atomic+Structures+and+Mechanical+and+Functional+Properties+of+High-Entropy+Alloys&rft.jtitle=MATERIALS+TRANSACTIONS&rft.au=Inui%2C+Haruyuki&rft.au=Kishida%2C+Kyosuke&rft.au=Chen%2C+Zhenghao&rft.date=2022-03-01&rft.pub=The+Japan+Institute+of+Metals+and+Materials&rft.issn=1345-9678&rft.eissn=1347-5320&rft.volume=63&rft.issue=3&rft.spage=394&rft.epage=401&rft_id=info:doi/10.2320%2Fmatertrans.MT-M2021234&rft.externalDocID=article_matertrans_63_3_63_MT_M2021234_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-9678&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-9678&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-9678&client=summon |