Recent Progress in Our Understanding of Phase Stability, Atomic Structures and Mechanical and Functional Properties of High-Entropy Alloys

This paper reviews a current trend and recent progress in research on phase stability, atomic structures, mechanical and functional properties of high-entropy alloys. The survey is carried out based partly on the special issue published in April, 2020, in Materials Transactions (Vol. 61, No. 4). Res...

Full description

Saved in:
Bibliographic Details
Published inMATERIALS TRANSACTIONS Vol. 63; no. 3; pp. 394 - 401
Main Authors Inui, Haruyuki, Kishida, Kyosuke, Chen, Zhenghao
Format Journal Article
LanguageEnglish
Published Sendai The Japan Institute of Metals and Materials 01.03.2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper reviews a current trend and recent progress in research on phase stability, atomic structures, mechanical and functional properties of high-entropy alloys. The survey is carried out based partly on the special issue published in April, 2020, in Materials Transactions (Vol. 61, No. 4). Research on high-entropy alloys has spread worldwide since the year of 2004, as many of them exhibit attractive properties for structural and functional applications, which have never been achieved in conventional alloys. Significant progress has been made in recent years in our understanding of high-entropy alloys in terms of processing, characterization, modeling and simulation, and so on. Some of them are briefly described in this paper.
AbstractList This paper reviews a current trend and recent progress in research on phase stability, atomic structures, mechanical and functional properties of high-entropy alloys. The survey is carried out based partly on the special issue published in April, 2020, in Materials Transactions (Vol. 61, No. 4). Research on high-entropy alloys has spread worldwide since the year of 2004, as many of them exhibit attractive properties for structural and functional applications, which have never been achieved in conventional alloys. Significant progress has been made in recent years in our understanding of high-entropy alloys in terms of processing, characterization, modeling and simulation, and so on. Some of them are briefly described in this paper.
ArticleNumber MT-M2021234
Author Chen, Zhenghao
Inui, Haruyuki
Kishida, Kyosuke
Author_xml – sequence: 1
  fullname: Inui, Haruyuki
  organization: Department of Materials Science and Engineering, Kyoto University
– sequence: 2
  fullname: Kishida, Kyosuke
  organization: Department of Materials Science and Engineering, Kyoto University
– sequence: 3
  fullname: Chen, Zhenghao
  organization: Department of Materials Science and Engineering, Kyoto University
BookMark eNqFkc9OGzEQxi2USgTKKyBLXLvUa--udyUuURRKpUSgNpwtxzubONrYqe095BX61J2QliIuXGzP6PvNn88XZOS8A0Kuc3bLBWdfdzpBSEG7eLtYZgvOeM5FcUbGuShkVqJk9PIus6aS9Tm5iHHLmJAl52Py-wcYcIk-Bb8OECO1jj4OgT67FkJM2rXWranv6NNGR6A_k17Z3qbDFzpJfmcNZsJg0oAsRTFdgNloZ43uX8L7wZlkvcMQO-xxTotCLPdg15ts5hImD3TS9_4QP5NPne4jXP29L8nz_Ww5fcjmj9--TyfzzJQNT1lpWllLJnlZS9EUsisAirbCtcuu0qJewco0rKu6PAcjBa-NlKztWNUU2qxMKS7JzanuPvhfA8Sktn4IOGJUvBJFLXkuclTdnVQm-BgDdMrYpI-7oNW2VzlTR_fVf_fVYqn-uY949Q7fB7vT4fAxOD-BW3R_Da-YRutMD2-xSihxPN7grzL8haDAiT_SBa5W
CitedBy_id crossref_primary_10_1007_s44210_023_00025_9
crossref_primary_10_2320_matertrans_MT_M2024076
crossref_primary_10_1016_j_mtphys_2023_101019
crossref_primary_10_1016_j_jallcom_2023_169896
crossref_primary_10_1016_j_mtla_2023_101744
crossref_primary_10_1016_j_ijplas_2025_104257
crossref_primary_10_3390_met13101655
crossref_primary_10_1080_02670836_2023_2187973
crossref_primary_10_2472_jsms_73_101
crossref_primary_10_1007_s44210_024_00052_0
crossref_primary_10_3390_ma16020587
crossref_primary_10_5940_jcrsj_65_172
crossref_primary_10_2320_matertrans_MT_M2023057
crossref_primary_10_2320_matertrans_MT_MF2022008
crossref_primary_10_1016_j_corsci_2023_111097
crossref_primary_10_2320_matertrans_MT_M2023071
crossref_primary_10_1016_j_msea_2023_144917
crossref_primary_10_2320_jinstmet_JD202407
crossref_primary_10_2320_matertrans_MT_MC2024001
crossref_primary_10_1063_5_0231343
crossref_primary_10_1016_j_jallcom_2024_177873
crossref_primary_10_2320_matertrans_MT_M2023105
crossref_primary_10_1016_j_mtcomm_2024_109232
crossref_primary_10_3390_photochem4020016
crossref_primary_10_1016_j_ijplas_2023_103732
crossref_primary_10_7566_JPSJ_92_114702
crossref_primary_10_1016_j_actamat_2024_119775
crossref_primary_10_2320_matertrans_MT_MA2024010
crossref_primary_10_1016_j_mser_2024_100853
crossref_primary_10_2320_matertrans_MT_MA2024006
crossref_primary_10_2320_matertrans_MT_MA2024005
crossref_primary_10_2320_matertrans_MT_MA2024008
crossref_primary_10_2320_matertrans_MT_MA2024007
crossref_primary_10_2320_matertrans_MT_MA2024001
crossref_primary_10_2320_matertrans_MT_MA2024004
crossref_primary_10_2320_matertrans_MT_MA2024003
crossref_primary_10_5940_jcrsj_65_192
crossref_primary_10_2320_matertrans_MT_M2022021
crossref_primary_10_2320_matertrans_MT_MA2024009
crossref_primary_10_1016_j_actamat_2025_120879
crossref_primary_10_1103_PhysRevMaterials_7_123606
crossref_primary_10_1080_14686996_2024_2376524
crossref_primary_10_1016_j_scriptamat_2023_115459
crossref_primary_10_1016_j_actamat_2024_120498
crossref_primary_10_1016_j_jallcom_2022_166013
crossref_primary_10_2320_materia_62_658
crossref_primary_10_1016_j_jallcom_2024_173656
crossref_primary_10_5940_jcrsj_65_188
crossref_primary_10_1016_j_actamat_2022_118537
crossref_primary_10_1007_s12598_023_02340_x
crossref_primary_10_1016_j_jallcom_2024_174667
crossref_primary_10_1021_acscatal_4c02191
crossref_primary_10_2320_materia_63_321
crossref_primary_10_5940_jcrsj_65_183
crossref_primary_10_2320_matertrans_MT_M2023043
Cites_doi 10.2320/matertrans.MT-M2019212
10.1016/j.matlet.2021.130368
10.1016/j.actamat.2014.11.014
10.1016/j.jallcom.2019.151685
10.1126/sciadv.aat8712
10.7566/JPSJ.89.084802
10.1073/pnas.1517193112
10.1038/169180a0
10.1038/s41467-021-24093-w
10.1002/adem.200700240
10.2320/matertrans.F-M2020825
10.2320/matertrans.MT-M2019378
10.1007/s11837-017-2540-2
10.1103/PhysRevLett.118.205501
10.1051/jphysrad:019620023010074901
10.1016/j.actamat.2020.10.073
10.1007/s11837-014-1085-x
10.1073/pnas.1808660115
10.1016/j.matdes.2021.109548
10.1039/C9TA12846H
10.2320/matertrans.MT-MA2020001
10.1016/j.scriptamat.2019.09.033
10.1016/j.actamat.2014.04.033
10.1016/j.msea.2019.138867
10.1080/21663831.2014.912690
10.1016/j.actamat.2017.04.033
10.7566/JPSJ.88.054803
10.7566/JPSJ.90.034801
10.1016/j.matlet.2020.129286
10.1016/j.actamat.2014.08.026
10.1007/978-981-13-8526-1
10.1080/09506608.2016.1180020
10.1016/j.actamat.2021.116714
10.1021/acs.jpcc.0c08871
10.1016/j.actamat.2019.12.020
10.1007/s10853-012-6260-2
10.2320/matertrans.M2019037
10.1088/1361-6528/ab9cf5
10.2320/matertrans.MT-MK2019007
10.1038/s41467-019-11464-7
10.1016/j.intermet.2017.10.004
10.1021/jacs.0c04807
10.1002/mawe.202000250
10.1039/C9TA05698J
10.1038/s41467-021-25264-5
10.1016/j.jmps.2021.104389
10.2320/matertrans.MT-M2020141
10.1063/1.4966659
10.1016/j.intermet.2021.107182
10.1016/j.pmatsci.2013.10.001
10.1016/j.scriptamat.2020.02.007
10.1038/s41578-019-0170-8
10.1016/j.actamat.2018.05.013
10.1038/ncomms10602
10.1016/S1359-6454(97)00367-4
10.1016/0001-6160(61)90242-5
10.1016/B978-0-12-800251-3.00002-X
10.1038/srep35863
10.1016/j.scriptamat.2019.04.012
10.1016/j.actamat.2020.09.052
10.1016/j.actamat.2019.10.015
10.1080/21663831.2019.1610105
10.1038/s41467-020-16083-1
10.1016/j.jallcom.2021.159024
10.2320/matertrans.MT-MK2019001
10.1093/acprof:oso/9780198516002.001.0001
10.1126/science.1254581
10.1016/j.commatsci.2019.109163
10.1039/D0SC02351E
10.1016/j.msec.2020.110908
10.1038/ncomms9485
10.1016/j.actamat.2016.08.081
10.2320/matertrans.MT-MK2019006
10.1002/adem.200300567
10.1016/j.intermet.2011.01.004
10.1016/0079-6425(94)00007-7
10.3390/cryst10111020
10.1016/j.matchemphys.2011.11.021
10.1002/9781118808412
10.2320/matertrans.MT-M2021022
10.1016/j.jallcom.2021.159668
10.2320/matertrans.MT-MK2019002
10.1016/j.scriptamat.2016.11.014
10.1016/j.ijplas.2021.103144
10.1007/s11669-021-00900-1
10.1126/science.aas8815
10.1016/j.actamat.2021.117113
10.1016/j.msea.2003.10.257
10.1039/D1TA03861C
10.1038/s41586-021-03428-z
10.1016/0001-6160(58)90002-6
10.1016/j.jallcom.2019.152028
10.1016/j.jnucmat.2020.152642
10.1038/nature17981
10.1016/j.actamat.2015.08.015
10.1016/j.calphad.2021.102269
10.2320/matertrans.MT-MK2019009
10.1038/ncomms14390
10.1038/s41524-021-00577-7
10.1016/j.mattod.2015.11.026
10.1016/j.actamat.2016.07.038
10.1016/j.actamat.2013.06.018
10.7566/JPSJ.89.094803
10.1016/j.msea.2020.139290
10.1016/j.intermet.2013.03.018
10.1038/s41467-018-03846-0
10.2320/matertrans.MT-MK2019003
10.1016/j.jnucmat.2020.152324
10.1016/j.mtla.2021.101172
10.1016/j.mser.2021.100644
10.2320/matertrans.MT-MK2019004
10.1016/j.scriptamat.2015.03.023
10.1016/j.jallcom.2011.02.171
10.1016/j.intermet.2020.106994
10.1016/j.actamat.2017.02.036
10.1016/j.scriptamat.2019.12.009
10.1038/s41578-019-0121-4
10.1016/j.intermet.2010.05.014
10.1016/j.scriptamat.2021.113895
10.1016/j.actamat.2021.116843
10.1063/1.4971371
10.1007/BF01115776
10.2320/matertrans.MT-MK2019008
10.1179/1743280412Y.0000000015
10.7566/JPSJ.88.104803
10.1016/j.actamat.2019.12.015
10.1016/j.actamat.2021.116800
10.1016/j.actamat.2016.09.046
10.1038/s41598-019-49529-8
10.1002/adma.201906160
10.1016/j.actamat.2019.11.001
10.1016/j.jallcom.2020.155726
10.1016/j.mattod.2017.02.003
10.1038/s41524-020-0339-0
10.2320/matertrans.MT-M2020274
10.1007/s11661-020-06091-7
10.1016/j.scriptamat.2020.07.013
10.2320/matertrans.MT-M2020049
10.1007/s10853-020-04583-w
10.2320/matertrans.MF201936
10.1007/978-3-319-27013-5
10.1016/j.actamat.2017.05.001
10.1038/s41467-021-25807-w
10.2320/matertrans.MT-M2020259
10.1002/pssb.19700410221
10.1007/BF02664806
10.1016/j.matchemphys.2021.125163
10.1016/j.scriptamat.2021.114069
10.2320/matertrans.Z-M2020819
10.1038/s41586-020-2275-z
10.1063/1.3587228
10.2320/matertrans.MT-M2020144
10.1016/j.commatsci.2021.110670
10.1016/j.scriptamat.2020.09.039
10.1016/j.msec.2019.110322
10.1016/j.msea.2018.08.077
10.2320/matertrans.M2018216
10.1007/BF00360729
10.1002/adma.202005206
10.1016/j.actamat.2021.117217
10.1134/S0031918X0912014X
ContentType Journal Article
Copyright 2022 The Japan Institute of Metals and Materials
Copyright Japan Science and Technology Agency 2022
Copyright_xml – notice: 2022 The Japan Institute of Metals and Materials
– notice: Copyright Japan Science and Technology Agency 2022
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.2320/matertrans.MT-M2021234
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-5320
EndPage 401
ExternalDocumentID 10_2320_matertrans_MT_M2021234
article_matertrans_63_3_63_MT_M2021234_article_char_en
GroupedDBID -~X
.L7
.LE
08R
5GY
6XO
93D
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
JSI
JSP
RJT
RZJ
SJN
AAYXX
ABJNI
ADMLS
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c592t-5cd7870725873947f4ee4d62025f6a38bebc90f6f11ec7328c770df0694acbc53
ISSN 1345-9678
IngestDate Mon Jun 30 09:54:19 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Tue Jul 01 04:27:41 EDT 2025
Wed Apr 05 07:40:03 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c592t-5cd7870725873947f4ee4d62025f6a38bebc90f6f11ec7328c770df0694acbc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/matertrans/63/3/63_MT-M2021234/_article/-char/en
PQID 2634872131
PQPubID 1976393
PageCount 8
ParticipantIDs proquest_journals_2634872131
crossref_citationtrail_10_2320_matertrans_MT_M2021234
crossref_primary_10_2320_matertrans_MT_M2021234
jstage_primary_article_matertrans_63_3_63_MT_M2021234_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220300
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace Sendai
PublicationPlace_xml – name: Sendai
PublicationTitle MATERIALS TRANSACTIONS
PublicationTitleAlternate Mater. Trans.
PublicationYear 2022
Publisher The Japan Institute of Metals and Materials
Japan Science and Technology Agency
Publisher_xml – name: The Japan Institute of Metals and Materials
– name: Japan Science and Technology Agency
References 155) D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, I. Gueye, O. Seo, J. Kim, S. Hiroi, O. Sakata, S. Kawaguchi, Y. Kubota and H. Kitagawa: Chem. Sci. 11 (2020) 12731–12736. doi:10.1039/D0SC02351E
27) Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen and P.K. Liaw: Adv. Eng. Mater. 10 (2008) 534–538. doi:10.1002/adem.200700240
78) J.W. Christian and S. Mahajan: Prog. Mater. Sci. 39 (1995) 1–157. doi:10.1016/0079-6425(94)00007-7
104) T. Abe: Mater. Trans. 62 (2021) 711–718. doi:10.2320/matertrans.MT-M2021022
11) B. Sharma, S. Kumar Vajpai, M. Kawabata, T. Nakano and K. Ameyama: Mater. Trans. 61 (2020) 562–566. doi:10.2320/matertrans.MT-MK2019001
40) A. Takeuchi, T. Wada and H. Kato: Mater. Trans. 60 (2019) 2267–2276. doi:10.2320/matertrans.MT-M2019212
79) J.W. Christian: Metall. Trans. A 14 (1983) 1237–1256. doi:10.1007/BF02664806
99) K. Yuge and S. Ohta: J. Phys. Soc. Jpn. 88 (2019) 054803. doi:10.7566/JPSJ.88.054803
47) R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie and A.M. Minor: Nature 581 (2020) 283–287. doi:10.1038/s41586-020-2275-z
67) C. Niu, C.R. LaRosa, J. Miao, M.J. Mills and M. Ghazisaeidi: Nat. Commun. 9 (2018) 1363. doi:10.1038/s41467-018-03846-0
128) A.S. Tirunilai, T. Hanemann, K.-P. Weiss, J. Freudenberger, M. Heilmaier and A. Kauffmann: Acta Mater. 200 (2020) 980–991. doi:10.1016/j.actamat.2020.09.052
34) O.N. Senkov, J.M. Scott, S. Senkova, D. Miracle and C. Woodward: J. Alloy. Compd. 509 (2011) 6043–6048. doi:10.1016/j.jallcom.2011.02.171
143) F. Thiel, D. Utt, A. Kauffmann, K. Nielsch, K. Albe, M. Heilmaier and J. Freudenberger: Scr. Mater. 181 (2020) 15–18. doi:10.1016/j.scriptamat.2020.02.007
146) Y.-J. Hu, A. Sundar, S. Ogata and L. Qi: Acta Mater. 210 (2021) 116800. doi:10.1016/j.actamat.2021.116800
89) P.S. Follansbee: Fundamentals of Strength, (John Wiley & Son, New York, 2014).
116) Y. Zhao, J.-M. Park, K. Murakami, S. Komazaki, M. Kawasaki, K. Tsuchiya, J.-Y. Suh, U. Ramamurty and J.-I. Jang: Scr. Mater. 203 (2021) 114069. doi:10.1016/j.scriptamat.2021.114069
148) Z. Li, K.G. Pradeep, Y. Deng, D. Raabe and C.C. Tasan: Nature 534 (2016) 227–230. doi:10.1038/nature17981
74) S. Zhao, G.M. Stocks and Y. Zhang: Acta Mater. 134 (2017) 334–345. doi:10.1016/j.actamat.2017.05.001
73) S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang and Z.P. Lu: Intermetallics 93 (2018) 269–273. doi:10.1016/j.intermet.2017.10.004
123) P. Edalati, R. Floriano, Y. Tang, A. Mohammadi, K. Danielle Pereira, A. Ducati Luchessi and K. Edalati: Mater. Sci. Eng. C 112 (2020) 110908. doi:10.1016/j.msec.2020.110908
158) K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, K. Sato, K. Nagaoka, K. Terada, Y. Ikeda, Y. Hirai and H. Kitagawa: J. Phys. Chem. C 125 (2021) 458–463. doi:10.1021/acs.jpcc.0c08871
81) C.R. Weinberger, B.L. Boyce and C.C. Battaile: Int. Mater. Rev. 58 (2013) 296–314. doi:10.1179/1743280412Y.0000000015
162) R.-Z. Zhang and M.J. Reece: J. Mater. Chem. A 7 (2019) 22148–22162. doi:10.1039/C9TA05698J
77) J.A. Venables: Deformation Twinning, ed. by R.E. Reed-Hill, J.P. Hirth and H.C. Rogers, (Gordon & Breach Science Pub., New York, 1964) pp. 77–116.
29) Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw and Z.P. Lu: Prog. Mater. Sci. 61 (2014) 1–93. doi:10.1016/j.pmatsci.2013.10.001
97) H. Tanimoto, K. Takeuchi, T. Ikegami and T. Okazaki: Mater. Trans. 61 (2020) 878–883. doi:10.2320/matertrans.MT-M2019378
48) X.F. Chen, Q. Wang, Z.Y. Chen, M.L. Zhu, H. Zhou, P. Jiang, L.L. Zhou, Q.Q. Xue, F.P. Yuang, J. Zhu, X.L. Wu and E. Ma: Nature 592 (2021) 712–716. doi:10.1038/s41586-021-03428-z
164) A.J. Wright and J. Luo: J. Mater. Sci. 55 (2020) 9812–9827. doi:10.1007/s10853-020-04583-w
86) S. Sheikh, S. Shafeie, Q. Hu, J. Ahlström, C. Persson, J. Veselý, J. Zýka, U. Klement and S. Guo: J. Appl. Phys. 120 (2016) 164902. doi:10.1063/1.4966659
120) F. Müller, B. Gorr, H.-J. Christ, H. Chen, A. Kauffmann, S. Laube and M. Heilmaier: J. Alloy. Compd. 842 (2020) 155726. doi:10.1016/j.jallcom.2020.155726
107) N. Hashimoto and Y. Ono: Intermetallics 133 (2021) 107182. doi:10.1016/j.intermet.2021.107182
25) O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang and P.K. Liaw: Intermetallics 18 (2010) 1758–1765. doi:10.1016/j.intermet.2010.05.014
84) R.E. Kubilay, A. Ghafarollahi, F. Maresca and W.A. Curtin: npj Comput. Mater. 7 (2021) 112. doi:10.1038/s41524-021-00577-7
156) K. Kusada et al.: Adv. Mater. 33 (2021) 2005206. doi:10.1002/adma.202005206
12) T. Nagase, M. Todai and T. Nakano: Mater. Trans. 61 (2020) 567–576. doi:10.2320/matertrans.MT-MK2019002
138) S. Haas, A.M. Manzoni, M. Holzinger and U. Glatzel: Mater. Chem. Phys. 274 (2021) 125163. doi:10.1016/j.matchemphys.2021.125163
50) J. Ding, Q. Yu, M. Asta and R.O. Ritchie: Proc. Natl. Acad. Sci. USA 115 (2018) 8919–8924. doi:10.1073/pnas.1808660115
71) L. Li, Z.H. Chen, S. Kuroiwa, M. Ito, K. Kishida, H. Inui and E.P. George: Int. J. Plast. 148 (2022) 103144. doi:10.1016/j.ijplas.2021.103144
15) K. Nakano, T. Narumi, K. Morishita and H. Yasuda: Mater. Trans. 61 (2020) 596–604. doi:10.2320/matertrans.MT-MK2019006
110) N. Tsuji, R. Gholizadeh, R. Ueji, N. Kamikawa, L. Zhao, Y. Tian, Y. Bai and A. Shibata: Mater. Trans. 60 (2019) 1518–1532. doi:10.2320/matertrans.MF201936
132) T. Mineta, K. Kumatani, H. Adachi and H. Sato: Mater. Sci. Eng. Tech. 52 (2021) 339–345. doi:10.1002/mawe.202000250
119) S. Taheriniya, F.A. Davani, S. Hilke, M. Hepp, C. Gadelmeier, M.R. Chellali, T. Boll, H. Rösner, M. Peterlechner, C. Gammer, S.V. Divinski, B. Butz, U. Glatzel, H. Hahn and G. Wilde: Acta Mater. 208 (2021) 116714. doi:10.1016/j.actamat.2021.116714
39) A. Takeuchi, T. Wada and H. Kato: Mater. Trans. 60 (2019) 1666–1673. doi:10.2320/matertrans.M2019037
83) F. Maresca and W.A. Curtin: Acta Mater. 182 (2020) 235–249. doi:10.1016/j.actamat.2019.10.015
153) T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu and C.T. Liu: Science 362 (2018) 933–937. doi:10.1126/science.aas8815
61) C. Varvenne, G.P.M. Leyson, M. Ghazisaeidi and W.A. Curtin: Acta Mater. 124 (2017) 660–683. doi:10.1016/j.actamat.2016.09.046
96) A. Takeuchi: Mater. Trans. 61 (2020) 1717–1726. doi:10.2320/matertrans.MT-M2020141
109) T. Mineta and H. Sato: Mater. Sci. Eng. A 735 (2018) 418–422. doi:10.1016/j.msea.2018.08.077
42) A. Marucco: J. Mater. Sci. 30 (1995) 4188–4194. doi:10.1007/BF00360729
88) W.F. Hosford: Mechanical Behavior of Materials, 2nd edn., (Cambridge University Press, Cambridge, 2010).
70) M. Kawamura, M. Asakura, N.L. Okamoto, K. Kishida, H. Inui and E.P. George: Acta Mater. 203 (2021) 116454. doi:10.1016/j.actamat.2020.10.073
137) W.Y. Chen, M.A. Kirk, N. Hashimoto, J.W. Yeh, X. Liu and Y. Chen: J. Nucl. Mater. 539 (2020) 152324. doi:10.1016/j.jnucmat.2020.152324
64) W.G. Nöhring and W.A. Curtin: Scr. Mater. 168 (2019) 119–123. doi:10.1016/j.scriptamat.2019.04.012
20) Z. Wu, H. Bei, G.M. Pharr and E.P. George: Acta Mater. 81 (2014) 428–441. doi:10.1016/j.actamat.2014.08.026
80) M.S. Duesbery and V. Vitek: Acta Mater. 46 (1998) 1481–1492. doi:10.1016/S1359-6454(97)00367-4
8) D.B. Miracle and O.N. Senkov: Acta Mater. 122 (2017) 448–511. doi:10.1016/j.actamat.2016.08.081
154) P. Edalati, R. Floriano, A. Mohammadi, Y. Li, G. Zepon, H.W. Li and K. Edalati: Scr. Mater. 178 (2020) 387–390. doi:10.1016/j.scriptamat.2019.12.009
22) G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler and E.P. George: Acta Mater. 128 (2017) 292–303. doi:10.1016/j.actamat.2017.02.036
82) X.G. Li, C. Chen, H. Zheng, Y.X. Zuo and S.P. Ong: npj Comput. Mater. 6 (2020) 70. doi:10.1038/s41524-020-0339-0
23) B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie: Science 345 (2014) 1153–1158. doi:10.1126/science.1254581
60) I. Toda-Caraballo and P.E. Rivera-Díaz-del-Castillo: Acta Mater. 85 (2015) 14–23. doi:10.1016/j.actamat.2014.11.014
90) K.K. Sankaran and R.S. Mishra: Metallurgy and Design of Alloys with Hierarchical Microstructures, (Elsevier, Amsterdam, 2017).
52) S. Chen, Z.H. Aitken, S. Pattamatta, Z.X. Wu, Z.G. Yu, D.J. Srolovitz, P.K. Liaw and Y.-W. Zhang: Nat. Commun. 12 (2021) 4953. doi:10.1038/s41467-021-25264-5
21) G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler and E.P. George: Acta Mater. 118 (2016) 152–163. doi:10.1016/j.actamat.2016.07.038
105) K. Sugita, N. Matsuoka, M. Mizuno and H. Araki: Scr. Mater. 176 (2020) 32–35. doi:10.1016/j.scriptamat.2019.09.033
41) A. Marucco and B. Nath: J. Mater. Sci. 23 (1988) 2107–2114. doi:10.1007/BF01115776
4) Y. Zhang: High-Entropy Materials; A Brief Introduction, (Springer, Cham, 2019).
76) H. Suzuki and C.S. Barrett: Acta Metall. 6 (1958) 156–165. doi:10.1016/0001-6160(58)90002-6
24) B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H.B. Bei, Z.G. Wu, E.P. George and R.O. Ritchie: Nat. Commun. 7 (2016) 10602. doi:10.1038/ncomms10602
69) A.S. Tirunilai, T. Hanemann, C. Reinhart, V. Tschan, K.-P. Weiss, G. Laplanche, J. Freudenberger, M. Heilmaier and A. Kauffmann: Mater. Sci. Eng. A 783 (2020) 139290. doi:10.1016/j.msea.2020.139290
157) D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, S. Kawaguchi, Y. Kubota and H. Kitagawa: J. Am. Chem. Soc. 142 (2020) 13833–13838. doi:10.1021/jacs.0c04807
18) J.M. Shi, Y. Lei, N. Hashimoto and S. Isobe: Mater. Trans. 61 (2020) 616–621. doi:10.2320/matertrans.MT-MK2019009
59) H. Inui, K. Kishida, L. Li, A.M. Manzoni, S. Haas and U. Glatzel: MRS Bull. (2022), in press.
98) K. Yuge and S. Ohta: J. Phys. Soc. Jpn. 88 (2019) 104803. doi:10.7566/JPSJ.88.104803
112) T. Nagase, Y. Iijima, A. Matsugaki, K. Ameyama and T. Nakano: Mater. Sci. Eng. C 107 (2020) 110322. doi:10.1016/j.msec.2019.110322
134) Y. Lei, N. Hashimoto and S. Isobe: Mater. Trans. 61 (2020) 1247–1251. doi:10.2320/matertrans.MT-M2020049
106) M. Mizuno, K. Sugita and H. Araki: Comput. Mater. Sci. 170 (2019) 109163. doi:10.1016/j.commatsci.2019.109163
152) Z.Q. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H.M. Weng, W. Xiong, D.L. Zhang, Y.Z. Zhou, T.J. Rupert, W.P. Chen and E.J. Lavernia: Sci. Adv. 4
88
89
110
111
112
113
114
115
116
90
117
91
118
92
119
93
94
95
96
97
10
98
11
99
12
13
14
15
16
17
18
19
120
121
1
122
2
123
3
124
4
125
5
126
6
127
7
128
8
129
9
20
21
22
23
24
25
26
27
28
29
130
131
132
133
134
135
136
137
138
139
30
31
32
33
34
35
36
37
38
39
140
141
142
143
144
145
146
147
148
149
40
41
42
43
44
45
46
47
48
49
150
151
152
153
154
155
156
157
158
159
50
51
52
53
54
55
56
57
58
59
160
161
162
163
164
165
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
100
101
102
103
104
105
106
80
107
81
108
82
109
83
84
85
86
87
References_xml – reference: 28) X. Yang and Y. Zhang: Mater. Chem. Phys. 132 (2012) 233–238. doi:10.1016/j.matchemphys.2011.11.021
– reference: 69) A.S. Tirunilai, T. Hanemann, C. Reinhart, V. Tschan, K.-P. Weiss, G. Laplanche, J. Freudenberger, M. Heilmaier and A. Kauffmann: Mater. Sci. Eng. A 783 (2020) 139290. doi:10.1016/j.msea.2020.139290
– reference: 145) Y.G. Li, R. Li, Q. Peng and S. Ogata: Nanotechnology 31 (2020) 425701. doi:10.1088/1361-6528/ab9cf5
– reference: 154) P. Edalati, R. Floriano, A. Mohammadi, Y. Li, G. Zepon, H.W. Li and K. Edalati: Scr. Mater. 178 (2020) 387–390. doi:10.1016/j.scriptamat.2019.12.009
– reference: 158) K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, K. Sato, K. Nagaoka, K. Terada, Y. Ikeda, Y. Hirai and H. Kitagawa: J. Phys. Chem. C 125 (2021) 458–463. doi:10.1021/acs.jpcc.0c08871
– reference: 5) M.-H. Tsai and J.W. Yeh: Mater. Res. Lett. 2 (2014) 107–123. doi:10.1080/21663831.2014.912690
– reference: 6) Y.F. Ye, Q. Wang, J. Lu, C.T. Liu and Y. Yang: Mater. Today 19 (2016) 349–362. doi:10.1016/j.mattod.2015.11.026
– reference: 31) S. Guo, C. Ng, J. Lu and C.T. Liu: J. Appl. Phys. 109 (2011) 103505. doi:10.1063/1.3587228
– reference: 137) W.Y. Chen, M.A. Kirk, N. Hashimoto, J.W. Yeh, X. Liu and Y. Chen: J. Nucl. Mater. 539 (2020) 152324. doi:10.1016/j.jnucmat.2020.152324
– reference: 86) S. Sheikh, S. Shafeie, Q. Hu, J. Ahlström, C. Persson, J. Veselý, J. Zýka, U. Klement and S. Guo: J. Appl. Phys. 120 (2016) 164902. doi:10.1063/1.4966659
– reference: 124) H. Watanabe, T. Murata, N. Ikeo, T. Mukai, K. Han and K. Tsuchiya: Materialia 18 (2021) 101172. doi:10.1016/j.mtla.2021.101172
– reference: 26) O.N. Senkov, G.B. Wilks, J. Scott and D.B. Miracle: Intermetallics 19 (2011) 698–706. doi:10.1016/j.intermet.2011.01.004
– reference: 82) X.G. Li, C. Chen, H. Zheng, Y.X. Zuo and S.P. Ong: npj Comput. Mater. 6 (2020) 70. doi:10.1038/s41524-020-0339-0
– reference: 106) M. Mizuno, K. Sugita and H. Araki: Comput. Mater. Sci. 170 (2019) 109163. doi:10.1016/j.commatsci.2019.109163
– reference: 159) P. Edalati, X.F. Shen, M. Watanabe, T. Ishihara, M. Arita, M. Fuji and K. Edalati: J. Mater. Chem. A 9 (2021) 15076–15086. doi:10.1039/D1TA03861C
– reference: 44) N.R. Dudova, R.O. Kaibyshev and V.A. Valitov: Phys. Met. Metallogr. 108 (2009) 625–633. doi:10.1134/S0031918X0912014X
– reference: 81) C.R. Weinberger, B.L. Boyce and C.C. Battaile: Int. Mater. Rev. 58 (2013) 296–314. doi:10.1179/1743280412Y.0000000015
– reference: 126) S. Wolff-Goodrich, S. Haas, U. Glatzel and C.H. Liebscher: Acta Mater. 216 (2021) 117113. doi:10.1016/j.actamat.2021.117113
– reference: 107) N. Hashimoto and Y. Ono: Intermetallics 133 (2021) 107182. doi:10.1016/j.intermet.2021.107182
– reference: 142) H.G. Li, J.J. Ruan, N. Ueshima and K. Oikawa: J. Alloy. Compd. 867 (2021) 159024. doi:10.1016/j.jallcom.2021.159024
– reference: 64) W.G. Nöhring and W.A. Curtin: Scr. Mater. 168 (2019) 119–123. doi:10.1016/j.scriptamat.2019.04.012
– reference: 24) B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H.B. Bei, Z.G. Wu, E.P. George and R.O. Ritchie: Nat. Commun. 7 (2016) 10602. doi:10.1038/ncomms10602
– reference: 103) N.-D. Tran, A. Saengdeejing, K. Suzuki, H. Miura and Y. Chen: J. Phase Equilibria Diffus. 42 (2021) 606–616. doi:10.1007/s11669-021-00900-1
– reference: 94) J. Jiang, Z. Lu, J. Shen, T. Wada, H. Kato and M.-W. Chen: Nat. Commun. 12 (2021) 3843. doi:10.1038/s41467-021-24093-w
– reference: 136) N. Hashimoto, T. Fukushi, E. Wada and W.Y. Chen: J. Nucl. Mater. 545 (2021) 152642. doi:10.1016/j.jnucmat.2020.152642
– reference: 8) D.B. Miracle and O.N. Senkov: Acta Mater. 122 (2017) 448–511. doi:10.1016/j.actamat.2016.08.081
– reference: 12) T. Nagase, M. Todai and T. Nakano: Mater. Trans. 61 (2020) 567–576. doi:10.2320/matertrans.MT-MK2019002
– reference: 55) A.S. Argon: Strengthening Mechanisms in Crystal Plasticity, (Oxford University Press, Oxford, 2008).
– reference: 147) W.T. Lin, D. Chen, C.Q. Dang, P.J. Yu, F.L. Meng, T. Yang, Y.L. Zhao, S.F. Liu, J.P. Du, G. Yeli, C.T. Liu, Y. Lu, S. Ogata and J.-J. Kai: Acta Mater. 210 (2021) 116843. doi:10.1016/j.actamat.2021.116843
– reference: 10) E.P. George, W.A. Curtin and C.C. Tasan: Acta Mater. 188 (2020) 435–474. doi:10.1016/j.actamat.2019.12.015
– reference: 111) B. Sharma, K. Nagano, K.K. Saxena, H. Fujiwara and K. Ameyama: Crystal 10 (2020) 1020. doi:10.3390/cryst10111020
– reference: 41) A. Marucco and B. Nath: J. Mater. Sci. 23 (1988) 2107–2114. doi:10.1007/BF01115776
– reference: 67) C. Niu, C.R. LaRosa, J. Miao, M.J. Mills and M. Ghazisaeidi: Nat. Commun. 9 (2018) 1363. doi:10.1038/s41467-018-03846-0
– reference: 62) Y.Y. Zhao, Z.F. Lei, Z.P. Lu, J.C. Huang and T.G. Nieh: Mater. Res. Lett. 7 (2019) 340–346. doi:10.1080/21663831.2019.1610105
– reference: 40) A. Takeuchi, T. Wada and H. Kato: Mater. Trans. 60 (2019) 2267–2276. doi:10.2320/matertrans.MT-M2019212
– reference: 105) K. Sugita, N. Matsuoka, M. Mizuno and H. Araki: Scr. Mater. 176 (2020) 32–35. doi:10.1016/j.scriptamat.2019.09.033
– reference: 22) G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler and E.P. George: Acta Mater. 128 (2017) 292–303. doi:10.1016/j.actamat.2017.02.036
– reference: 148) Z. Li, K.G. Pradeep, Y. Deng, D. Raabe and C.C. Tasan: Nature 534 (2016) 227–230. doi:10.1038/nature17981
– reference: 60) I. Toda-Caraballo and P.E. Rivera-Díaz-del-Castillo: Acta Mater. 85 (2015) 14–23. doi:10.1016/j.actamat.2014.11.014
– reference: 4) Y. Zhang: High-Entropy Materials; A Brief Introduction, (Springer, Cham, 2019).
– reference: 66) Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao and R.O. Ritchie: Nat. Commun. 8 (2017) 14390. doi:10.1038/ncomms14390
– reference: 80) M.S. Duesbery and V. Vitek: Acta Mater. 46 (1998) 1481–1492. doi:10.1016/S1359-6454(97)00367-4
– reference: 35) O.N. Senkov, J.M. Scott, S. Senkova, D. Miracle and C. Woodward: J. Mater. Sci. 47 (2012) 4062–4074. doi:10.1007/s10853-012-6260-2
– reference: 90) K.K. Sankaran and R.S. Mishra: Metallurgy and Design of Alloys with Hierarchical Microstructures, (Elsevier, Amsterdam, 2017).
– reference: 101) K. Yuge, R. Miyake and S. Ohta: J. Phys. Soc. Jpn. 89 (2020) 094803. doi:10.7566/JPSJ.89.094803
– reference: 118) A. Takeuchi: Mater. Trans. 62 (2021) 469–478. doi:10.2320/matertrans.MT-M2020274
– reference: 85) C.H. Lee, F. Maresca, R. Feng, Y. Chou, T. Ungar, M. Widom, K. An, J.D. Poplawsky, Y.-C. Chou, P.K. Liaw and W.A. Curtin: Nat. Commun. 12 (2021) 5474. doi:10.1038/s41467-021-25807-w
– reference: 9) E.P. George, D. Raabe and R.O. Ritchie: Nature Rev. Mater. 4 (2019) 515–534. doi:10.1038/s41578-019-0121-4
– reference: 74) S. Zhao, G.M. Stocks and Y. Zhang: Acta Mater. 134 (2017) 334–345. doi:10.1016/j.actamat.2017.05.001
– reference: 100) K. Yuge and S. Ohta: J. Phys. Soc. Jpn. 89 (2020) 084802. doi:10.7566/JPSJ.89.084802
– reference: 120) F. Müller, B. Gorr, H.-J. Christ, H. Chen, A. Kauffmann, S. Laube and M. Heilmaier: J. Alloy. Compd. 842 (2020) 155726. doi:10.1016/j.jallcom.2020.155726
– reference: 84) R.E. Kubilay, A. Ghafarollahi, F. Maresca and W.A. Curtin: npj Comput. Mater. 7 (2021) 112. doi:10.1038/s41524-021-00577-7
– reference: 164) A.J. Wright and J. Luo: J. Mater. Sci. 55 (2020) 9812–9827. doi:10.1007/s10853-020-04583-w
– reference: 36) O.N. Senkov, S. Rao, T. Butler and K. Chaput: J. Alloy. Compd. 808 (2019) 151685. doi:10.1016/j.jallcom.2019.151685
– reference: 51) Q. Li, H. Sheng and E. Ma: Nat. Commun. 10 (2019) 3563. doi:10.1038/s41467-019-11464-7
– reference: 59) H. Inui, K. Kishida, L. Li, A.M. Manzoni, S. Haas and U. Glatzel: MRS Bull. (2022), in press.
– reference: 141) H.G. Li, J.J. Ruan, N. Ueshima and K. Oikawa: Intermetallics 127 (2020) 106994. doi:10.1016/j.intermet.2020.106994
– reference: 1) J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang: Adv. Eng. Mater. 6 (2004) 299–303. doi:10.1002/adem.200300567
– reference: 115) P. Edalati, A. Mohammadi, Y. Tang, R. Floriano, M. Fuji and K. Edalati: Mater. Lett. 302 (2021) 130368. doi:10.1016/j.matlet.2021.130368
– reference: 83) F. Maresca and W.A. Curtin: Acta Mater. 182 (2020) 235–249. doi:10.1016/j.actamat.2019.10.015
– reference: 52) S. Chen, Z.H. Aitken, S. Pattamatta, Z.X. Wu, Z.G. Yu, D.J. Srolovitz, P.K. Liaw and Y.-W. Zhang: Nat. Commun. 12 (2021) 4953. doi:10.1038/s41467-021-25264-5
– reference: 17) T. Abe: Mater. Trans. 61 (2020) 610–615. doi:10.2320/matertrans.MT-MK2019008
– reference: 102) S. Ohta, R. Miyake and K. Yuge: J. Phys. Soc. Jpn. 90 (2021) 034801. doi:10.7566/JPSJ.90.034801
– reference: 14) S. Yoshida, T. Ikeuchi, Y. Bai and N. Tsuji: Mater. Trans. 61 (2020) 587–595. doi:10.2320/matertrans.MT-MK2019004
– reference: 112) T. Nagase, Y. Iijima, A. Matsugaki, K. Ameyama and T. Nakano: Mater. Sci. Eng. C 107 (2020) 110322. doi:10.1016/j.msec.2019.110322
– reference: 93) T. Nagase, A. Terayama, T. Nagaoka, N. Fuyama and T. Sakamoto: Mater. Trans. 61 (2020) 1369–1380. doi:10.2320/matertrans.F-M2020825
– reference: 128) A.S. Tirunilai, T. Hanemann, K.-P. Weiss, J. Freudenberger, M. Heilmaier and A. Kauffmann: Acta Mater. 200 (2020) 980–991. doi:10.1016/j.actamat.2020.09.052
– reference: 37) K. Niitsu, M. Asakura, K. Yuge and H. Inui: Mater. Trans. 61 (2020) 1874–1880. doi:10.2320/matertrans.MT-M2020144
– reference: 151) E. Ma and T. Zhu: Mater. Today 20 (2017) 323–331. doi:10.1016/j.mattod.2017.02.003
– reference: 95) A. Takeuchi, K. Yubuta and T. Wada: Mater. Trans. 60 (2019) 330–337. doi:10.2320/matertrans.M2018216
– reference: 117) H. Watanabe, T. Murata, S. Nakamura, N. Ikeo, T. Mukai and K. Tsuchiya: J. Alloy. Compd. 872 (2021) 159668. doi:10.1016/j.jallcom.2021.159668
– reference: 48) X.F. Chen, Q. Wang, Z.Y. Chen, M.L. Zhu, H. Zhou, P. Jiang, L.L. Zhou, Q.Q. Xue, F.P. Yuang, J. Zhu, X.L. Wu and E. Ma: Nature 592 (2021) 712–716. doi:10.1038/s41586-021-03428-z
– reference: 87) E. Mak, B.L. Yin and W.A. Curtin: J. Mechan. Phys. Solids 152 (2021) 104389. doi:10.1016/j.jmps.2021.104389
– reference: 43) A. Taylor and G. Hinton: J. Inst. Met. 81 (1952) 169–180.
– reference: 96) A. Takeuchi: Mater. Trans. 61 (2020) 1717–1726. doi:10.2320/matertrans.MT-M2020141
– reference: 133) M. Tanaka, S. Okajo, S. Yamasaki and T. Morikawa: Scr. Mater. 200 (2021) 113895. doi:10.1016/j.scriptamat.2021.113895
– reference: 63) N.L. Okamoto, K. Yuge, K. Tanaka, H. Inui and E.P. George: AIP Adv. 6 (2016) 125008. doi:10.1063/1.4971371
– reference: 75) Y.H. Zhang, Y. Zhuang, A. Hu, J. Kai and C.T. Liu: Scr. Mater. 130 (2017) 96–99. doi:10.1016/j.scriptamat.2016.11.014
– reference: 135) N. Hashimoto, Y. Al-Zain, A. Yamamoto, T. Koyano, H.Y. Kim and S. Miyazaki: Mater. Lett. 287 (2021) 129286. doi:10.1016/j.matlet.2020.129286
– reference: 2) B.S. Murty, J.W. Yeh and S. Ranganathan: High-Entropy Alloys, (Elsevier, Amsterdam, 2014).
– reference: 16) Md. Lokman Ali, S. Shinzato, V. Wang, Z. Shen, J.-P. Du and S. Ogata: Mater. Trans. 61 (2020) 605–609. doi:10.2320/matertrans.MT-MK2019007
– reference: 155) D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, I. Gueye, O. Seo, J. Kim, S. Hiroi, O. Sakata, S. Kawaguchi, Y. Kubota and H. Kitagawa: Chem. Sci. 11 (2020) 12731–12736. doi:10.1039/D0SC02351E
– reference: 152) Z.Q. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H.M. Weng, W. Xiong, D.L. Zhang, Y.Z. Zhou, T.J. Rupert, W.P. Chen and E.J. Lavernia: Sci. Adv. 4 (2018) eaat8712. doi:10.1126/sciadv.aat8712
– reference: 73) S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang and Z.P. Lu: Intermetallics 93 (2018) 269–273. doi:10.1016/j.intermet.2017.10.004
– reference: 30) Y.F. Ye, Q. Wang, J. Lu, C.T. Liu and Y. Yang: Scr. Mater. 104 (2015) 53–55. doi:10.1016/j.scriptamat.2015.03.023
– reference: 99) K. Yuge and S. Ohta: J. Phys. Soc. Jpn. 88 (2019) 054803. doi:10.7566/JPSJ.88.054803
– reference: 45) J.B. Cohen and M.E. Fine: J. Phys. Radium 23 (1962) 749–762. doi:10.1051/jphysrad:019620023010074901
– reference: 138) S. Haas, A.M. Manzoni, M. Holzinger and U. Glatzel: Mater. Chem. Phys. 274 (2021) 125163. doi:10.1016/j.matchemphys.2021.125163
– reference: 131) T. Mineta, K. Hasegawa and H. Sato: Mater. Sci. Eng. A 773 (2020) 138867. doi:10.1016/j.msea.2019.138867
– reference: 47) R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie and A.M. Minor: Nature 581 (2020) 283–287. doi:10.1038/s41586-020-2275-z
– reference: 65) J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr and M.J. Mills: Acta Mater. 132 (2017) 35–48. doi:10.1016/j.actamat.2017.04.033
– reference: 68) Y.Q. Wang, B. Liu, K. Yan, M.S. Wang, S. Kabra, Y.-L. Chiu, D. Dye, P.D. Lee, Y. Liu and B. Cai: Acta Mater. 154 (2018) 79–89. doi:10.1016/j.actamat.2018.05.013
– reference: 123) P. Edalati, R. Floriano, Y. Tang, A. Mohammadi, K. Danielle Pereira, A. Ducati Luchessi and K. Edalati: Mater. Sci. Eng. C 112 (2020) 110908. doi:10.1016/j.msec.2020.110908
– reference: 70) M. Kawamura, M. Asakura, N.L. Okamoto, K. Kishida, H. Inui and E.P. George: Acta Mater. 203 (2021) 116454. doi:10.1016/j.actamat.2020.10.073
– reference: 98) K. Yuge and S. Ohta: J. Phys. Soc. Jpn. 88 (2019) 104803. doi:10.7566/JPSJ.88.104803
– reference: 53) B. Yin, S. Yoshida, N. Tsuji and W.A. Curtin: Nat. Commun. 11 (2020) 2507. doi:10.1038/s41467-020-16083-1
– reference: 161) C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo and J.P. Maria: Nat. Commun. 6 (2015) 8485. doi:10.1038/ncomms9485
– reference: 104) T. Abe: Mater. Trans. 62 (2021) 711–718. doi:10.2320/matertrans.MT-M2021022
– reference: 89) P.S. Follansbee: Fundamentals of Strength, (John Wiley & Son, New York, 2014).
– reference: 146) Y.-J. Hu, A. Sundar, S. Ogata and L. Qi: Acta Mater. 210 (2021) 116800. doi:10.1016/j.actamat.2021.116800
– reference: 108) Z.Q. Shen, J.-P. Du, S. Shinzato, Y. Sato, P.J. Yu and S. Ogata: Comput. Mater. Sci. 198 (2021) 110670. doi:10.1016/j.commatsci.2021.110670
– reference: 92) S.-H. Joo, J.-W. Bae, W.-Y. Park, Y. Shimada, T. Wada, H.-S. Kim, A. Takeuchi, T.J. Konno, H. Kato and I.V. Okulov: Adv. Mater. 32 (2020) 1906160. doi:10.1002/adma.201906160
– reference: 7) E.J. Pickering and N.G. Jones: Int. Mater. Rev. 61 (2016) 183–202. doi:10.1080/09506608.2016.1180020
– reference: 153) T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu and C.T. Liu: Science 362 (2018) 933–937. doi:10.1126/science.aas8815
– reference: 121) A.M. Manzoni, S. Haas, H. Kropf, J. Duarte, C.T. Cakir, F. Dubois, D. Többens and U. Glatzel: Scr. Mater. 188 (2020) 74–79. doi:10.1016/j.scriptamat.2020.07.013
– reference: 130) R.R. Eleti, A.H. Chokshi, A. Shibata and N. Tsuji: Acta Mater. 183 (2020) 64–77. doi:10.1016/j.actamat.2019.11.001
– reference: 140) T. Koyama and Y. Tsukada: Calphad 73 (2021) 102269. doi:10.1016/j.calphad.2021.102269
– reference: 134) Y. Lei, N. Hashimoto and S. Isobe: Mater. Trans. 61 (2020) 1247–1251. doi:10.2320/matertrans.MT-M2020049
– reference: 144) K. Shiotani, T. Niiyama and T. Shimokawa: Mater. Trans. 61 (2020) 1272–1279. doi:10.2320/matertrans.Z-M2020819
– reference: 20) Z. Wu, H. Bei, G.M. Pharr and E.P. George: Acta Mater. 81 (2014) 428–441. doi:10.1016/j.actamat.2014.08.026
– reference: 119) S. Taheriniya, F.A. Davani, S. Hilke, M. Hepp, C. Gadelmeier, M.R. Chellali, T. Boll, H. Rösner, M. Peterlechner, C. Gammer, S.V. Divinski, B. Butz, U. Glatzel, H. Hahn and G. Wilde: Acta Mater. 208 (2021) 116714. doi:10.1016/j.actamat.2021.116714
– reference: 129) F. Thiel, D. Geissler, K. Nielsch, A. Kauffmann, S. Seils, M. Heilmaier, D. Utt, K. Albe, M. Motylenko, D. Rafaja and J. Freudenberger: Acta Mater. 185 (2020) 400–411. doi:10.1016/j.actamat.2019.12.020
– reference: 88) W.F. Hosford: Mechanical Behavior of Materials, 2nd edn., (Cambridge University Press, Cambridge, 2010).
– reference: 116) Y. Zhao, J.-M. Park, K. Murakami, S. Komazaki, M. Kawasaki, K. Tsuchiya, J.-Y. Suh, U. Ramamurty and J.-I. Jang: Scr. Mater. 203 (2021) 114069. doi:10.1016/j.scriptamat.2021.114069
– reference: 160) P. Edalati, Q. Wang, H. Razavi-Khosroshahi, M. Fuji, T. Ishihara and K. Edalati: J. Mater. Chem. A 8 (2020) 3814–3821. doi:10.1039/C9TA12846H
– reference: 3) M.C. Gao, J.W. Yeh, P.K. Liaw and Y. Zhang: High-Entropy Alloys; Fundamentals and Applications, (Springer, Cham, 2016).
– reference: 157) D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, S. Kawaguchi, Y. Kubota and H. Kitagawa: J. Am. Chem. Soc. 142 (2020) 13833–13838. doi:10.1021/jacs.0c04807
– reference: 114) T. Nagase, A. Shibata, M. Matsumuro, M. Takemura and S. Semboshi: Mater. Trans. 62 (2021) 856–863. doi:10.2320/matertrans.MT-M2020259
– reference: 162) R.-Z. Zhang and M.J. Reece: J. Mater. Chem. A 7 (2019) 22148–22162. doi:10.1039/C9TA05698J
– reference: 110) N. Tsuji, R. Gholizadeh, R. Ueji, N. Kamikawa, L. Zhao, Y. Tian, Y. Bai and A. Shibata: Mater. Trans. 60 (2019) 1518–1532. doi:10.2320/matertrans.MF201936
– reference: 156) K. Kusada et al.: Adv. Mater. 33 (2021) 2005206. doi:10.1002/adma.202005206
– reference: 19) A. Gali and E.P. George: Intermetallics 39 (2013) 74–78. doi:10.1016/j.intermet.2013.03.018
– reference: 143) F. Thiel, D. Utt, A. Kauffmann, K. Nielsch, K. Albe, M. Heilmaier and J. Freudenberger: Scr. Mater. 181 (2020) 15–18. doi:10.1016/j.scriptamat.2020.02.007
– reference: 50) J. Ding, Q. Yu, M. Asta and R.O. Ritchie: Proc. Natl. Acad. Sci. USA 115 (2018) 8919–8924. doi:10.1073/pnas.1808660115
– reference: 32) M.G. Poletti and L. Battezzati: Acta Mater. 75 (2014) 297–306. doi:10.1016/j.actamat.2014.04.033
– reference: 79) J.W. Christian: Metall. Trans. A 14 (1983) 1237–1256. doi:10.1007/BF02664806
– reference: 57) R. Labusch: Phys. Status Solidi 41 (1970) 659–669. doi:10.1002/pssb.19700410221
– reference: 77) J.A. Venables: Deformation Twinning, ed. by R.E. Reed-Hill, J.P. Hirth and H.C. Rogers, (Gordon & Breach Science Pub., New York, 1964) pp. 77–116.
– reference: 18) J.M. Shi, Y. Lei, N. Hashimoto and S. Isobe: Mater. Trans. 61 (2020) 616–621. doi:10.2320/matertrans.MT-MK2019009
– reference: 25) O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang and P.K. Liaw: Intermetallics 18 (2010) 1758–1765. doi:10.1016/j.intermet.2010.05.014
– reference: 21) G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler and E.P. George: Acta Mater. 118 (2016) 152–163. doi:10.1016/j.actamat.2016.07.038
– reference: 97) H. Tanimoto, K. Takeuchi, T. Ikegami and T. Okazaki: Mater. Trans. 61 (2020) 878–883. doi:10.2320/matertrans.MT-M2019378
– reference: 139) T. Koyama, M. Ohno, A. Yamanaka, T. Kasuya and S. Tsukamoto: Mater. Trans. 61 (2020) 2047–2051. doi:10.2320/matertrans.MT-MA2020001
– reference: 27) Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen and P.K. Liaw: Adv. Eng. Mater. 10 (2008) 534–538. doi:10.1002/adem.200700240
– reference: 72) N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M. Chen, H. Matsunoshita, K. Tanaka, H. Inui and E.P. George: Sci. Rep. 6 (2016) 35863. doi:10.1038/srep35863
– reference: 125) S. Laube, S. Schellert, A.S. Tirunilai, D. Schliephake, B. Gorr, H.-J. Christ, A. Kauffmann and M. Heilmaier: Acta Mater. 218 (2021) 117217. doi:10.1016/j.actamat.2021.117217
– reference: 71) L. Li, Z.H. Chen, S. Kuroiwa, M. Ito, K. Kishida, H. Inui and E.P. George: Int. J. Plast. 148 (2022) 103144. doi:10.1016/j.ijplas.2021.103144
– reference: 46) F.X. Zhang, S. Zhao, K. Jin, H. Xue, G. Velisa, H. Bei, R. Huang, J.Y.P. Ko, D.C. Pagan, J.C. Neuefeind, W.J. Weber and Y. Zhang: Phys. Rev. Lett. 118 (2017) 205501. doi:10.1103/PhysRevLett.118.205501
– reference: 56) R.L. Fleischer: Acta Metall. 9 (1961) 996–1000. doi:10.1016/0001-6160(61)90242-5
– reference: 150) X.L. Wu, M.X. Yang, F.P. Yuang, G.L. Wu, Y.J. Wei, X.X. Huang and Y.T. Zhu: Proc. Natl. Acad. Sci. USA 112 (2015) 14501–14505. doi:10.1073/pnas.1517193112
– reference: 23) B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie: Science 345 (2014) 1153–1158. doi:10.1126/science.1254581
– reference: 11) B. Sharma, S. Kumar Vajpai, M. Kawabata, T. Nakano and K. Ameyama: Mater. Trans. 61 (2020) 562–566. doi:10.2320/matertrans.MT-MK2019001
– reference: 38) A. Takeuchi, K. Amiya, T. Wada, K. Yubuta and W. Zhang: JOM 66 (2014) 1984–1992. doi:10.1007/s11837-014-1085-x
– reference: 13) Q. He, S. Yoshida, H. Yasuda and N. Tsuji: Mater. Trans. 61 (2020) 577–586. doi:10.2320/matertrans.MT-MK2019003
– reference: 54) D.S. Zhou, Z.H. Chen, K. Ehara, K. Niitsu, K. Tanaka and H. Inui: Scr. Mater. 191 (2021) 173–178. doi:10.1016/j.scriptamat.2020.09.039
– reference: 127) A.M. Manzoni, F. Dubois, M.S. Mousa, C. von Schlippenbach, D. Többens, Y. Yesilcicek, E. Zaiser, R. Hesse, S. Haas and U. Glatzel: Metall. Mater. Trans. A 52 (2021) 143–150. doi:10.1007/s11661-020-06091-7
– reference: 58) F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler and E.P. George: Acta Mater. 61 (2013) 5743–5755. doi:10.1016/j.actamat.2013.06.018
– reference: 29) Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw and Z.P. Lu: Prog. Mater. Sci. 61 (2014) 1–93. doi:10.1016/j.pmatsci.2013.10.001
– reference: 33) B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent: Mater. Sci. Eng. A 375–377 (2004) 213–218. doi:10.1016/j.msea.2003.10.257
– reference: 78) J.W. Christian and S. Mahajan: Prog. Mater. Sci. 39 (1995) 1–157. doi:10.1016/0079-6425(94)00007-7
– reference: 91) J. Lee, K. Tsuchiya, W. Tasaki, H.S. Oh, T. Sawaguchi, H. Murakami, T. Hiroto, Y. Matsushita and E.S. Park: Sci. Rep. 9 (2019) 13140. doi:10.1038/s41598-019-49529-8
– reference: 163) C. Oses, C. Toher and S. Curtarolo: Nature Rev. Mater. 5 (2020) 295–309. doi:10.1038/s41578-019-0170-8
– reference: 15) K. Nakano, T. Narumi, K. Morishita and H. Yasuda: Mater. Trans. 61 (2020) 596–604. doi:10.2320/matertrans.MT-MK2019006
– reference: 132) T. Mineta, K. Kumatani, H. Adachi and H. Sato: Mater. Sci. Eng. Tech. 52 (2021) 339–345. doi:10.1002/mawe.202000250
– reference: 39) A. Takeuchi, T. Wada and H. Kato: Mater. Trans. 60 (2019) 1666–1673. doi:10.2320/matertrans.M2019037
– reference: 42) A. Marucco: J. Mater. Sci. 30 (1995) 4188–4194. doi:10.1007/BF00360729
– reference: 76) H. Suzuki and C.S. Barrett: Acta Metall. 6 (1958) 156–165. doi:10.1016/0001-6160(58)90002-6
– reference: 61) C. Varvenne, G.P.M. Leyson, M. Ghazisaeidi and W.A. Curtin: Acta Mater. 124 (2017) 660–683. doi:10.1016/j.actamat.2016.09.046
– reference: 122) A. Singh, D.A. Basha, Yo. Matsushita, K. Tsuchiya, Z.P. Lu, T.G. Nieh and T. Mukai: J. Alloy. Compd. 812 (2020) 152028. doi:10.1016/j.jallcom.2019.152028
– reference: 109) T. Mineta and H. Sato: Mater. Sci. Eng. A 735 (2018) 418–422. doi:10.1016/j.msea.2018.08.077
– reference: 34) O.N. Senkov, J.M. Scott, S. Senkova, D. Miracle and C. Woodward: J. Alloy. Compd. 509 (2011) 6043–6048. doi:10.1016/j.jallcom.2011.02.171
– reference: 49) A. Tamm, A. Aabloo, M. Klintenberg, M. Stocks and A. Caro: Acta Mater. 99 (2015) 307–312. doi:10.1016/j.actamat.2015.08.015
– reference: 165) S. Akrami, P. Edalati, M. Fuji and K. Edalati: Mater. Sci. Eng. Rep. 146 (2021) 100644. doi:10.1016/j.mser.2021.100644
– reference: 113) Y. Iijima, T. Nagase, A. Matsugaki, P. Wang, K. Ameyama and T. Nakano: Mater. Des. 202 (2021) 109548. doi:10.1016/j.matdes.2021.109548
– reference: 149) Z. Li and D. Raabe: JOM 69 (2017) 2099–2106. doi:10.1007/s11837-017-2540-2
– ident: 40
  doi: 10.2320/matertrans.MT-M2019212
– ident: 115
  doi: 10.1016/j.matlet.2021.130368
– ident: 60
  doi: 10.1016/j.actamat.2014.11.014
– ident: 36
  doi: 10.1016/j.jallcom.2019.151685
– ident: 152
  doi: 10.1126/sciadv.aat8712
– ident: 100
  doi: 10.7566/JPSJ.89.084802
– ident: 150
  doi: 10.1073/pnas.1517193112
– ident: 43
  doi: 10.1038/169180a0
– ident: 94
  doi: 10.1038/s41467-021-24093-w
– ident: 27
  doi: 10.1002/adem.200700240
– ident: 93
  doi: 10.2320/matertrans.F-M2020825
– ident: 97
  doi: 10.2320/matertrans.MT-M2019378
– ident: 149
  doi: 10.1007/s11837-017-2540-2
– ident: 46
  doi: 10.1103/PhysRevLett.118.205501
– ident: 45
  doi: 10.1051/jphysrad:019620023010074901
– ident: 70
  doi: 10.1016/j.actamat.2020.10.073
– ident: 38
  doi: 10.1007/s11837-014-1085-x
– ident: 50
  doi: 10.1073/pnas.1808660115
– ident: 113
  doi: 10.1016/j.matdes.2021.109548
– ident: 160
  doi: 10.1039/C9TA12846H
– ident: 139
  doi: 10.2320/matertrans.MT-MA2020001
– ident: 105
  doi: 10.1016/j.scriptamat.2019.09.033
– ident: 32
  doi: 10.1016/j.actamat.2014.04.033
– ident: 131
  doi: 10.1016/j.msea.2019.138867
– ident: 5
  doi: 10.1080/21663831.2014.912690
– ident: 65
  doi: 10.1016/j.actamat.2017.04.033
– ident: 99
  doi: 10.7566/JPSJ.88.054803
– ident: 102
  doi: 10.7566/JPSJ.90.034801
– ident: 59
– ident: 135
  doi: 10.1016/j.matlet.2020.129286
– ident: 20
  doi: 10.1016/j.actamat.2014.08.026
– ident: 4
  doi: 10.1007/978-981-13-8526-1
– ident: 7
  doi: 10.1080/09506608.2016.1180020
– ident: 119
  doi: 10.1016/j.actamat.2021.116714
– ident: 158
  doi: 10.1021/acs.jpcc.0c08871
– ident: 129
  doi: 10.1016/j.actamat.2019.12.020
– ident: 35
  doi: 10.1007/s10853-012-6260-2
– ident: 39
  doi: 10.2320/matertrans.M2019037
– ident: 145
  doi: 10.1088/1361-6528/ab9cf5
– ident: 16
  doi: 10.2320/matertrans.MT-MK2019007
– ident: 51
  doi: 10.1038/s41467-019-11464-7
– ident: 73
  doi: 10.1016/j.intermet.2017.10.004
– ident: 157
  doi: 10.1021/jacs.0c04807
– ident: 132
  doi: 10.1002/mawe.202000250
– ident: 162
  doi: 10.1039/C9TA05698J
– ident: 52
  doi: 10.1038/s41467-021-25264-5
– ident: 87
  doi: 10.1016/j.jmps.2021.104389
– ident: 96
  doi: 10.2320/matertrans.MT-M2020141
– ident: 86
  doi: 10.1063/1.4966659
– ident: 107
  doi: 10.1016/j.intermet.2021.107182
– ident: 29
  doi: 10.1016/j.pmatsci.2013.10.001
– ident: 143
  doi: 10.1016/j.scriptamat.2020.02.007
– ident: 163
  doi: 10.1038/s41578-019-0170-8
– ident: 68
  doi: 10.1016/j.actamat.2018.05.013
– ident: 24
  doi: 10.1038/ncomms10602
– ident: 80
  doi: 10.1016/S1359-6454(97)00367-4
– ident: 56
  doi: 10.1016/0001-6160(61)90242-5
– ident: 2
  doi: 10.1016/B978-0-12-800251-3.00002-X
– ident: 72
  doi: 10.1038/srep35863
– ident: 64
  doi: 10.1016/j.scriptamat.2019.04.012
– ident: 128
  doi: 10.1016/j.actamat.2020.09.052
– ident: 83
  doi: 10.1016/j.actamat.2019.10.015
– ident: 62
  doi: 10.1080/21663831.2019.1610105
– ident: 53
  doi: 10.1038/s41467-020-16083-1
– ident: 88
– ident: 142
  doi: 10.1016/j.jallcom.2021.159024
– ident: 11
  doi: 10.2320/matertrans.MT-MK2019001
– ident: 55
  doi: 10.1093/acprof:oso/9780198516002.001.0001
– ident: 23
  doi: 10.1126/science.1254581
– ident: 106
  doi: 10.1016/j.commatsci.2019.109163
– ident: 155
  doi: 10.1039/D0SC02351E
– ident: 123
  doi: 10.1016/j.msec.2020.110908
– ident: 77
– ident: 161
  doi: 10.1038/ncomms9485
– ident: 8
  doi: 10.1016/j.actamat.2016.08.081
– ident: 15
  doi: 10.2320/matertrans.MT-MK2019006
– ident: 1
  doi: 10.1002/adem.200300567
– ident: 26
  doi: 10.1016/j.intermet.2011.01.004
– ident: 78
  doi: 10.1016/0079-6425(94)00007-7
– ident: 111
  doi: 10.3390/cryst10111020
– ident: 28
  doi: 10.1016/j.matchemphys.2011.11.021
– ident: 89
  doi: 10.1002/9781118808412
– ident: 104
  doi: 10.2320/matertrans.MT-M2021022
– ident: 117
  doi: 10.1016/j.jallcom.2021.159668
– ident: 12
  doi: 10.2320/matertrans.MT-MK2019002
– ident: 75
  doi: 10.1016/j.scriptamat.2016.11.014
– ident: 71
  doi: 10.1016/j.ijplas.2021.103144
– ident: 103
  doi: 10.1007/s11669-021-00900-1
– ident: 153
  doi: 10.1126/science.aas8815
– ident: 126
  doi: 10.1016/j.actamat.2021.117113
– ident: 33
  doi: 10.1016/j.msea.2003.10.257
– ident: 159
  doi: 10.1039/D1TA03861C
– ident: 48
  doi: 10.1038/s41586-021-03428-z
– ident: 76
  doi: 10.1016/0001-6160(58)90002-6
– ident: 122
  doi: 10.1016/j.jallcom.2019.152028
– ident: 136
  doi: 10.1016/j.jnucmat.2020.152642
– ident: 148
  doi: 10.1038/nature17981
– ident: 49
  doi: 10.1016/j.actamat.2015.08.015
– ident: 140
  doi: 10.1016/j.calphad.2021.102269
– ident: 18
  doi: 10.2320/matertrans.MT-MK2019009
– ident: 66
  doi: 10.1038/ncomms14390
– ident: 84
  doi: 10.1038/s41524-021-00577-7
– ident: 6
  doi: 10.1016/j.mattod.2015.11.026
– ident: 21
  doi: 10.1016/j.actamat.2016.07.038
– ident: 58
  doi: 10.1016/j.actamat.2013.06.018
– ident: 101
  doi: 10.7566/JPSJ.89.094803
– ident: 69
  doi: 10.1016/j.msea.2020.139290
– ident: 19
  doi: 10.1016/j.intermet.2013.03.018
– ident: 67
  doi: 10.1038/s41467-018-03846-0
– ident: 13
  doi: 10.2320/matertrans.MT-MK2019003
– ident: 137
  doi: 10.1016/j.jnucmat.2020.152324
– ident: 124
  doi: 10.1016/j.mtla.2021.101172
– ident: 165
  doi: 10.1016/j.mser.2021.100644
– ident: 14
  doi: 10.2320/matertrans.MT-MK2019004
– ident: 30
  doi: 10.1016/j.scriptamat.2015.03.023
– ident: 34
  doi: 10.1016/j.jallcom.2011.02.171
– ident: 141
  doi: 10.1016/j.intermet.2020.106994
– ident: 22
  doi: 10.1016/j.actamat.2017.02.036
– ident: 154
  doi: 10.1016/j.scriptamat.2019.12.009
– ident: 9
  doi: 10.1038/s41578-019-0121-4
– ident: 25
  doi: 10.1016/j.intermet.2010.05.014
– ident: 133
  doi: 10.1016/j.scriptamat.2021.113895
– ident: 147
  doi: 10.1016/j.actamat.2021.116843
– ident: 63
  doi: 10.1063/1.4971371
– ident: 41
  doi: 10.1007/BF01115776
– ident: 17
  doi: 10.2320/matertrans.MT-MK2019008
– ident: 81
  doi: 10.1179/1743280412Y.0000000015
– ident: 98
  doi: 10.7566/JPSJ.88.104803
– ident: 10
  doi: 10.1016/j.actamat.2019.12.015
– ident: 146
  doi: 10.1016/j.actamat.2021.116800
– ident: 61
  doi: 10.1016/j.actamat.2016.09.046
– ident: 91
  doi: 10.1038/s41598-019-49529-8
– ident: 92
  doi: 10.1002/adma.201906160
– ident: 130
  doi: 10.1016/j.actamat.2019.11.001
– ident: 120
  doi: 10.1016/j.jallcom.2020.155726
– ident: 151
  doi: 10.1016/j.mattod.2017.02.003
– ident: 82
  doi: 10.1038/s41524-020-0339-0
– ident: 118
  doi: 10.2320/matertrans.MT-M2020274
– ident: 127
  doi: 10.1007/s11661-020-06091-7
– ident: 121
  doi: 10.1016/j.scriptamat.2020.07.013
– ident: 134
  doi: 10.2320/matertrans.MT-M2020049
– ident: 164
  doi: 10.1007/s10853-020-04583-w
– ident: 110
  doi: 10.2320/matertrans.MF201936
– ident: 3
  doi: 10.1007/978-3-319-27013-5
– ident: 74
  doi: 10.1016/j.actamat.2017.05.001
– ident: 85
  doi: 10.1038/s41467-021-25807-w
– ident: 90
– ident: 114
  doi: 10.2320/matertrans.MT-M2020259
– ident: 57
  doi: 10.1002/pssb.19700410221
– ident: 79
  doi: 10.1007/BF02664806
– ident: 138
  doi: 10.1016/j.matchemphys.2021.125163
– ident: 116
  doi: 10.1016/j.scriptamat.2021.114069
– ident: 144
  doi: 10.2320/matertrans.Z-M2020819
– ident: 47
  doi: 10.1038/s41586-020-2275-z
– ident: 31
  doi: 10.1063/1.3587228
– ident: 37
  doi: 10.2320/matertrans.MT-M2020144
– ident: 108
  doi: 10.1016/j.commatsci.2021.110670
– ident: 54
  doi: 10.1016/j.scriptamat.2020.09.039
– ident: 112
  doi: 10.1016/j.msec.2019.110322
– ident: 109
  doi: 10.1016/j.msea.2018.08.077
– ident: 95
  doi: 10.2320/matertrans.M2018216
– ident: 42
  doi: 10.1007/BF00360729
– ident: 156
  doi: 10.1002/adma.202005206
– ident: 125
  doi: 10.1016/j.actamat.2021.117217
– ident: 44
  doi: 10.1134/S0031918X0912014X
SSID ssj0037522
Score 2.523219
SecondaryResourceType review_article
Snippet This paper reviews a current trend and recent progress in research on phase stability, atomic structures, mechanical and functional properties of high-entropy...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 394
SubjectTerms atomic structure
critical shear stress for yielding and twinning
Entropy
High entropy alloys
Phase stability
temperature dependence
tensile and compressive mechanical properties
Title Recent Progress in Our Understanding of Phase Stability, Atomic Structures and Mechanical and Functional Properties of High-Entropy Alloys
URI https://www.jstage.jst.go.jp/article/matertrans/63/3/63_MT-M2021234/_article/-char/en
https://www.proquest.com/docview/2634872131
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX MATERIALS TRANSACTIONS, 2022/03/01, Vol.63(3), pp.394-401
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6FlgMcEE81UNAeuAW3sdfPo1VStaguFUmkiou1Xu82ocGpEvsQfgI_lN_BjNevQCWg4uIkltdZ-_s8-816ZpaQt45IwEuWviG5AgclGMIjxZRvJGnKTDtxlSrz1qJz92Rqf7h0Lnu9H52opSJPDsS3W_NK7oIq7ANcMUv2H5BtTgo74DvgC1tAGLZ_hTFoPnyVf4ExVmix5tngY7EaTLcSVjDIbQZjFerKMhK2vK1hjunI-FK6KF8i6FLNkcRE4KaAwDEMetVc4QVO2q-w-mo59Q8uvTHCIPebzSBcLJabdVflRiGI5NPwbDyYfArPxzpQpVGdp1mhl8rmq2JTXM_bMID1bJ7qFLXNcl1cN5w7qlJIPsPn1Ywvu1MV4OU2sVoHTbIbSIBsOxAikjlWitZxJblGp2ORme0YgavX-TmQ9T7PwBUtuma8spPzrpdf2mSmV1Guhndbd-jXkQOEJYZafsUO5KVKiCZGZGEB_Gqydbsqd4V53DaIXRYz3ESTuG4Y14dhCh0w9h7ZtcCdAXu8G76Pzsa1ZmCermvfXKzOZcdOHd7epS0Zdf8LcOrqdzlRaqTJY_Kocm5oqLvzhPRk9pQ87JS8fEa-a87SmrN0nlHgLN3iLF0qWnKWNpx9RzVjactYCgfTlrHlz5axtGUsnq7LWKoZ-5xMj0eToxOjWg_EEE5g5YYjUhxePMvxPQDVU7aUdurCHXGUy5mfyEQEQ-Uq05QCi1AJzxumClO7uUiEw16QnWyZyT1CA1953Hccy-fM9oece4p5nHFTBC4XqegTp769saiK5eOaLYsYnGaEpQt8B_A-OWza3ehyMX9sMdLoNcffjVp9sl-DH1cmah1bLlydZ5nMfPmf_uYVedA-2ftkBzCXr0GW58mbitM_Ablr8Qs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Our+Understanding+of+Phase+Stability%2C+Atomic+Structures+and+Mechanical+and+Functional+Properties+of+High-Entropy+Alloys&rft.jtitle=MATERIALS+TRANSACTIONS&rft.au=Inui%2C+Haruyuki&rft.au=Kishida%2C+Kyosuke&rft.au=Chen%2C+Zhenghao&rft.date=2022-03-01&rft.pub=The+Japan+Institute+of+Metals+and+Materials&rft.issn=1345-9678&rft.eissn=1347-5320&rft.volume=63&rft.issue=3&rft.spage=394&rft.epage=401&rft_id=info:doi/10.2320%2Fmatertrans.MT-M2021234&rft.externalDocID=article_matertrans_63_3_63_MT_M2021234_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-9678&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-9678&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-9678&client=summon