Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers

Phosphorus (P) is a macronutrient required for the proper functioning of plants. Because P plays a vital role in every aspect of plant growth and development, deficiencies can reduce plant growth and development. Though soil possesses total P in the form of organic and inorganic compounds, most of t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of agronomy Vol. 2019; no. 2019; pp. 1 - 7
Main Author Kalayu, Girmay
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phosphorus (P) is a macronutrient required for the proper functioning of plants. Because P plays a vital role in every aspect of plant growth and development, deficiencies can reduce plant growth and development. Though soil possesses total P in the form of organic and inorganic compounds, most of them remain inactive and thus unavailable to plants. Since many farmers cannot afford to use P fertilizers to reduce P deficits, alternative techniques to provide P are needed. Phosphate solubilizing microbes (PSMs) are a group of beneficial microorganisms capable of hydrolyzing organic and inorganic insoluble phosphorus compounds to soluble P form that can easily be assimilated by plants. PSM provides an ecofriendly and economically sound approach to overcome the P scarcity and its subsequent uptake by plants. Though PSMs have been a subject of research for decades, manipulation of PSMs for making use of increasing fixed P in the soil and improving crop production at the field level has not yet been adequately commercialized. The purpose of this review is to widen the understanding of the role of PSMs in crop production as biofertilizers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1687-8159
1687-8167
1687-8167
DOI:10.1155/2019/4917256