Compressive Covariance Sensing-Based Power Spectrum Estimation of Real-Valued Signals Subject to Sub-Nyquist Sampling

In this work, an estimate of the power spectrum of a real-valued wide-sense stationary autoregressive signal is computed from sub-Nyquist or compressed measurements in additive white Gaussian noise. The problem is formulated using the concepts of compressive covariance sensing and Blackman-Tukey non...

Full description

Saved in:
Bibliographic Details
Published inModelling and Simulation in Engineering Vol. 2021; pp. 1 - 9
Main Author Alwan, Nuha A. S.
Format Journal Article
LanguageEnglish
Published New York Hindawi 2021
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, an estimate of the power spectrum of a real-valued wide-sense stationary autoregressive signal is computed from sub-Nyquist or compressed measurements in additive white Gaussian noise. The problem is formulated using the concepts of compressive covariance sensing and Blackman-Tukey nonparametric spectrum estimation. Only the second-order statistics of the original signal, rather than the signal itself, need to be recovered from the compressed signal. This is achieved by solving the resulting overdetermined system of equations by application of least squares, thereby circumventing the need for applying the complicated ℓ1-minimization otherwise required for the reconstruction of the original signal. Moreover, the signal need not be spectrally sparse. A study of the performance of the power spectral estimator is conducted taking into account the properties of the different bases of the covariance subspace needed for compressive covariance sensing, as well as different linear sparse rulers by which compression is achieved. A method is proposed to benefit from the possible computational efficiency resulting from the use of the Fourier basis of the covariance subspace without considerably affecting the spectrum estimation performance.
AbstractList In this work, an estimate of the power spectrum of a real-valued wide-sense stationary autoregressive signal is computed from sub-Nyquist or compressed measurements in additive white Gaussian noise. The problem is formulated using the concepts of compressive covariance sensing and Blackman-Tukey nonparametric spectrum estimation. Only the second-order statistics of the original signal, rather than the signal itself, need to be recovered from the compressed signal. This is achieved by solving the resulting overdetermined system of equations by application of least squares, thereby circumventing the need for applying the complicated ℓ1-minimization otherwise required for the reconstruction of the original signal. Moreover, the signal need not be spectrally sparse. A study of the performance of the power spectral estimator is conducted taking into account the properties of the different bases of the covariance subspace needed for compressive covariance sensing, as well as different linear sparse rulers by which compression is achieved. A method is proposed to benefit from the possible computational efficiency resulting from the use of the Fourier basis of the covariance subspace without considerably affecting the spectrum estimation performance.
In this work, an estimate of the power spectrum of a real-valued wide-sense stationary autoregressive signal is computed from sub-Nyquist or compressed measurements in additive white Gaussian noise. The problem is formulated using the concepts of compressive covariance sensing and Blackman-Tukey nonparametric spectrum estimation. Only the second-order statistics of the original signal, rather than the signal itself, need to be recovered from the compressed signal. This is achieved by solving the resulting overdetermined system of equations by application of least squares, thereby circumventing the need for applying the complicated ℓ[sub.1]-minimization otherwise required for the reconstruction of the original signal. Moreover, the signal need not be spectrally sparse. A study of the performance of the power spectral estimator is conducted taking into account the properties of the different bases of the covariance subspace needed for compressive covariance sensing, as well as different linear sparse rulers by which compression is achieved. A method is proposed to benefit from the possible computational efficiency resulting from the use of the Fourier basis of the covariance subspace without considerably affecting the spectrum estimation performance.
In this work, an estimate of the power spectrum of a real-valued wide-sense stationary autoregressive signal is computed from sub-Nyquist or compressed measurements in additive white Gaussian noise. The problem is formulated using the concepts of compressive covariance sensing and Blackman-Tukey nonparametric spectrum estimation. Only the second-order statistics of the original signal, rather than the signal itself, need to be recovered from the compressed signal. This is achieved by solving the resulting overdetermined system of equations by application of least squares, thereby circumventing the need for applying the complicated ℓ 1 -minimization otherwise required for the reconstruction of the original signal. Moreover, the signal need not be spectrally sparse. A study of the performance of the power spectral estimator is conducted taking into account the properties of the different bases of the covariance subspace needed for compressive covariance sensing, as well as different linear sparse rulers by which compression is achieved. A method is proposed to benefit from the possible computational efficiency resulting from the use of the Fourier basis of the covariance subspace without considerably affecting the spectrum estimation performance.
Audience Academic
Author Alwan, Nuha A. S.
Author_xml – sequence: 1
  givenname: Nuha A. S.
  orcidid: 0000-0002-4040-9973
  surname: Alwan
  fullname: Alwan, Nuha A. S.
  organization: College of EngineeringUniversity of BaghdadBaghdad 10011Iraquobaghdad.edu.iq
BookMark eNqNkt1q3DAQhU1JoWmauz6AoVelcSLZkmxdpkuaLoS2xG1vxVgeu1psayPJSfP20cYJNIX-IJCG4TuHGc28TPYmO2GSvKbkmFLOT3KS0xPOKWWVeJbsU1GVGReE7z3GXNIXyaH3piGMlbwoBNlP5pUdtw5j9hrTlb0GZ2DSmNY4eTP12Xvw2KZf7A26tN6iDm4e0zMfzAjB2Cm1XXqJMGTfYZgjWJt-gsGn9dxsIpwGuwuzT7dXs_EhrWHcDtH2VfK8ixgePrwHybcPZ19XH7OLz-fr1elFprnMQ5YzKXhOm7bpABnTglSl6Fi8mKSiaDRlWjLNAAElpVUboShh2LJWd1VRHCTrxbe1sFFbF6t2t8qCUfcJ63oFLhg9oGKaYAGNlggFoxoaDljKjjZESsg5iV5vFq-ts1cz-qA2dna7blXOc0ZyzlkZqeOF6iGamqmzwYGOp8XR6DixzsT8qZBC0oIW7L8FFSu4LAmNgrdPBJEJ-DP0MHuv1vXlU_N_sr_45gurnfXeYae0CfdDjgWZQVGidnumdnumHvYsio5-Ez1-8h_wdwv-w0wt3Ji_03fy3t-H
CitedBy_id crossref_primary_10_1109_TIP_2022_3187285
crossref_primary_10_1007_s13349_024_00802_z
Cites_doi 10.1109/tsp.2012.2201153
10.1016/j.sigpro.2014.11.017
10.1109/tsp.2013.2283473
10.1109/TIP.2009.2025089
10.1109/JSTSP.2010.2055037
10.1109/msp.2015.2486805
10.1016/j.sigpro.2019.04.006
10.1109/TIT.2009.2034811
10.1049/iet-spr.2016.0169
10.1006/dspr.1998.0316
10.1109/msp.2007.914731
10.1109/tsp.2013.2251342
10.1016/j.comcom.2020.11.015
10.1109/TSP.2010.2089682
10.1109/tit.2015.2394784
ContentType Journal Article
Copyright Copyright © 2021 Nuha A. S. Alwan.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Nuha A. S. Alwan. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Nuha A. S. Alwan.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Nuha A. S. Alwan. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
ISR
7SC
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1155/2021/5511486
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Gale In Context: Science
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
Middle East & Africa Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-5605
Editor Markopoulos, Angelos
Editor_xml – sequence: 1
  givenname: Angelos
  surname: Markopoulos
  fullname: Markopoulos, Angelos
EndPage 9
ExternalDocumentID oai_doaj_org_article_4c0e3abc9ea341cab5ae79f1b099a250
A696913134
A684359701
10_1155_2021_5511486
GroupedDBID 123
188
29M
2WC
3V.
4.4
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ADBBV
AFKRA
AFPKN
AGJBV
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
CWDGH
E3Z
EBS
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
ISR
ITC
K6V
K7-
KQ8
L6V
M7S
MK~
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
RHU
RHW
RHX
RNS
TR2
TUS
UNMZH
~8M
0R~
24P
AAYXX
ACCMX
ACUHS
ADMLS
CITATION
H13
OVT
PHGZM
PHGZT
7SC
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c592t-2496521bdbfae44c60876f487649163bc14c94c4aeae9118de444964ed4dcf833
IEDL.DBID DOA
ISSN 1687-5591
IngestDate Wed Aug 27 01:29:02 EDT 2025
Fri Jul 25 12:22:15 EDT 2025
Tue Oct 15 04:47:30 EDT 2024
Tue Oct 15 04:48:01 EDT 2024
Sat Oct 12 03:45:39 EDT 2024
Sat Oct 12 03:45:35 EDT 2024
Thu Apr 24 22:51:24 EDT 2025
Tue Jul 01 01:25:17 EDT 2025
Sun Jun 02 18:54:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c592t-2496521bdbfae44c60876f487649163bc14c94c4aeae9118de444964ed4dcf833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4040-9973
OpenAccessLink https://doaj.org/article/4c0e3abc9ea341cab5ae79f1b099a250
PQID 2524025547
PQPubID 237773
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_4c0e3abc9ea341cab5ae79f1b099a250
proquest_journals_2524025547
gale_infotracacademiconefile_A696913134
gale_infotracacademiconefile_A684359701
gale_incontextgauss_ISR_A696913134
gale_incontextgauss_ISR_A684359701
crossref_citationtrail_10_1155_2021_5511486
crossref_primary_10_1155_2021_5511486
hindawi_primary_10_1155_2021_5511486
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Modelling and Simulation in Engineering
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 11
13
J. Monsalve (15) 2021
14
16
D. D. Ariananda (19)
M. A. Lexa (10)
18
P. M. T. Broersen (24) 2006
1
V. Ingle (12) 2005
2
3
4
5
6
S. Shakeri (7)
8
9
P. M. Djuric (23) 1999
N. A. S. Alwan (22) 2020; 332
H. Qi (17)
20
21
References_xml – ident: 4
  doi: 10.1109/tsp.2012.2201153
– ident: 11
  doi: 10.1016/j.sigpro.2014.11.017
– ident: 9
  doi: 10.1109/tsp.2013.2283473
– ident: 16
  doi: 10.1109/TIP.2009.2025089
– ident: 20
  doi: 10.1109/JSTSP.2010.2055037
– start-page: 3884
  ident: 10
  article-title: Compressive power spectral density estimation
– start-page: 525
  ident: 7
  article-title: Direction of arrival estimation using sparse ruler array design
– start-page: 937
  ident: 17
  article-title: Invariance of principal components under low-dimensional random projection of the data
– ident: 2
  doi: 10.1109/msp.2015.2486805
– ident: 3
  doi: 10.1016/j.sigpro.2019.04.006
– start-page: 97
  ident: 19
  article-title: Cooperative compressive power spectrum estimation
– year: 2021
  ident: 15
  article-title: Covariance estimation from compressive data partitions using a projected gradient-based algorithm
– volume-title: Automatic Autocorrelation and Spectral Analysis
  year: 2006
  ident: 24
– ident: 5
  doi: 10.1109/TIT.2009.2034811
– ident: 18
  doi: 10.1049/iet-spr.2016.0169
– ident: 14
  doi: 10.1006/dspr.1998.0316
– ident: 1
  doi: 10.1109/msp.2007.914731
– volume-title: Digital Signal Processing Handbook
  year: 1999
  ident: 23
  article-title: Spectrum estimation and modeling
– ident: 8
  doi: 10.1109/tsp.2013.2251342
– volume-title: Statistical and Adaptive Signal Processing
  year: 2005
  ident: 12
– ident: 21
  doi: 10.1016/j.comcom.2020.11.015
– volume: 332
  start-page: 363
  year: 2020
  ident: 22
  article-title: Investigation of the effect of different covariance estimation methods on the performance of least squares compressive covariance sensing
  publication-title: Frontiers in Artificial Intelligence and Applications
– ident: 6
  doi: 10.1109/TSP.2010.2089682
– ident: 13
  doi: 10.1109/tit.2015.2394784
SSID ssib044753360
ssj0063810
Score 2.1805148
Snippet In this work, an estimate of the power spectrum of a real-valued wide-sense stationary autoregressive signal is computed from sub-Nyquist or compressed...
SourceID doaj
proquest
gale
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Buildings
Covariance
Methods
Principal components analysis
Random noise
Remodeling, restoration, etc
Signal processing
Sparsity
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEF-qUGgfxNqWnh9lEUsfSuhtdrOXPKoo10KleLXc2zL7kVPQRL2L4n_vTLJ3rZXWviVhspCdr99sZn_L2E5eOi-VzROnvCRS7TyxoNDxMtABSswwQHuHvx3p4Yn6Os7GkSRp-vgXPmY7Ks_FZ0zsCNz1EltCA6OifDiemw1R1sl2K0IXgDWRVlGdpdF_EDCLeb_7H2M9yEQtYf8iLD8_pYL49uxRgG6zzuEqW4lwke92-n3FnoVqjb38jUTwNWvIpdtu1pvA9-sbLH5Jk3xErenVJNnDPOX5dzoNjdNp87Pr5oIfoGd3mxZ5XfJjRIvJTzhvUHB0NiFKZY4RhZZo-Kymy-To7qpBi-AjoBb0avKGnRwe_NgfJvEwhcRlRTpLUiKGT4X1toSglNPERVdiuaIVIkRpnVCuUE5BgIABMPcohK-o4JV3ZS7lW7Zc1VV4x3jhA9bUzgqihleptxCCHljZtzlk0qke-zSfWOMi0zgdeHFu2oojywypwUQ19NiHhfRlx7DxF7k90tFChnix2wdoKya6mVGuHyRYVwTA9OzAZhAGRSksAmFAtNdj26RhQ8wXFbXWTKCZTs2X0bHZ1TlCx2LQF_8UKnQhpJD4kR-jUFnjxzmI2xlwiohR68FwT0n-GnMnGt4TM7E5t0oTI87UpBn9J0NwOFj_v1E22Au67ZaTNtkyWl_YQoA1s-9b97oHNVkaLg
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS9xAEF9apdA-FPtFr9WyFEsfSvA2-3HJU_HkxBZ6yF0tvi37lSjYRL2Lpf99Z5LNWRH1LSSThex8T2Z_Q8h2VjjPhc0SJzxHUO0ssUaA4kmjginAwxg8O_xjqg6OxPdjeRwLbovYVtnbxNZQ-9phjXwnlfgfAJzf6Ov5RYJTo_Dvahyh8ZisgwnOIPlaH0-mh7NeohDNjrenFDrbrBDPClMwBaoFsTTrW-GlxCoA24H4AfIDdcNJtVj-K4v95ARz5T-nt2x365D2N8jzGEnS3Y71L8ijUL0kz_7DF3xFGtT2ttH1KtC9-gryYmQynWPXelUmY3Bhnh7ioDSKg-iXl81vOgGl784z0rqgMwgkk1_mrAHC-WmJaMsUjA1Wb-iyxstk-veiAWGhc4Pd6VX5mhztT37uHSRxzkLiZJ4ukxQx41NmvS1MEMIphKkrIJNRAoJHbh0TLhdOmGAC2MbMAxG8IoIX3hUZ52_IWlVX4S2huQ-QbjvLEDVepN6aENTI8qHNjORODMiXfmO1iyDkOAvjTLfJiJQa2aAjGwbk04r6vAPfuINujDxa0SBkdnujvix11EAt3DBwY10eDHhuZ6w0YZQXzEKMbCAQHJCPyGGNoBgVdt2Uplks9Lf5TO-qDKLKfDRk9xLlKmeccfjIz5GoqOHjnIknHWCLEGzrxnIPUV6vuR0F74Gd2OylUkdjtNDXqvPu_sfvyVNcrKswbZI1kLqwBTHX0n6IivUP3vEl0A
  priority: 102
  providerName: ProQuest
Title Compressive Covariance Sensing-Based Power Spectrum Estimation of Real-Valued Signals Subject to Sub-Nyquist Sampling
URI https://dx.doi.org/10.1155/2021/5511486
https://www.proquest.com/docview/2524025547
https://doaj.org/article/4c0e3abc9ea341cab5ae79f1b099a250
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BERIcEE81bYlWqIgDspr1PmIfm5A0IDWqEgq5rfblUKnYtImLeulvZ8Z2QisEuXBxomhix_P-nNlvCdlPMue5sEnkhOdIqp1E1ggIPGlUMBlUGINrh4_HanQqPs3k7NZWXzgTVtMD14o7EK4TuLEuDQYSrjNWmtBNM2ahtTFxjdah5q3AVJ2DFfJWIdRSEELQM7PVyLuUiPbZAfQJgAPUnWJUcfavM_PDb4iJf579kaOrwjN8Sp40HSM9rH_pM3Iv5M_J41s8gi9IiVFdDbReBdovrgD_ojHpFKfT83nUg1Ll6QluiEZxw_nlZfmdDiC463WLtMjoBBrG6Is5L0FwejZHVmUKSQWf0tBlgW-j8fVFCU5Bpwan0PP5S3I6HHzuj6JmP4XIyTReRjFyw8fMepuZIIRTSEeXAWJRAppEbh0TLhVOmGAC5MDEgxB8RQQvvMsSzl-RrbzIwzahqQ8Aq51lyA4vYm9NCKpreccmRnInWuT9SrHaNWTjuOfFua5Ah5QazaAbM7TI27X0j5pk4y9yPbTRWgapsasPwGF04zB6k8O0yBu0sEbyixyna-amXCz0x-lEH6oEuse022H_FEpVyjjjcJPvGqGsgJtzplnRACpCUq07p9sk-fuc-43jbdDE3sordZN0FjqW-FcZ9Ifdnf-hqF3yCC9ZP2_aI1vgm-E1dGBL2yb3k-FRmzzoDcYnE3jtf_1wNGpXIQjH45sBHCej2S_0ljDM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fT9RAEN8QiFEf_G88Rd0YiA-mcG1399oHH-AA7wQuhgPlbd3dbgsBW727QvCr-FX8cM6020M0whOJb5fedJPdmz-_mZv5LSELUWqSkOnIMywJkVQ78rRiYHhcCatSiDAKZ4e3B6K3x97v8_0Z8qOZhcG2ysYnVo46KQzWyJcDjv8DQPDruA7KTXt2CvnZ-G1_DX7MxSDYWN_t9jx3hYBneBxMvADp0ANfJzpVljEjkIEtBZAuGOCiUBufmZgZpqyyYPZRAkLwCrMJS0waYbUT_PscZBUczGeu-2ntXa9RV6TKC6sRiNrxCyTLwvxOgN0CUPebPnvOscTgLwM4geRDXIiA1UUB03Bw4wAT8dPDvwJDFe027pKfzTnVTS5HS-VEL5nvf1BI_qcHeY_ccSibrtRmcZ_M2PwBuf0b9-JDUqInrJqATyztFidqhOUdS4fY0Z9n3iqE94R-wEvk6BDHUUflF7oODrGe9aRFSncAZHsf1XEJgsPDDJmoKThirGzRSYEfvcHZtxIMiQ4Vdu7n2SOydy37fkxm8yK3TwiNEyvittE-MuqzINHKWtHRYVtHioeGtcibRi-kcQTteE_IsawSNc4lapF0WtQii1PprzUxyT_kVlHFpjJIJ149KEaZdN5JMtO2odImtgpQjVGaK9uJU19D_qAAJLfIK1RQiYQhOXYkZaocj2V_uCNXRASIO-60_UuFYhH7oR_CJl87obSAzRnlpkDgiJCI7MJyV0mer7ng7OaKk5hvDEI6Rz2W59bw9PKvX5Kbvd3tLbnVH2w-I7dw4boSN09mQQPtc8CmE_3C-QhKPl-3Nf0CuByV5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF5VqUBw4B8RKLBCrTggN7G93tgHhNqkIaEQVQ0tvS2767WpKHabxK3Ko_EqvAwz9jqlINpTD9yiZLLSrufn2_HMN4Qsh4mOfaZCR7PYR1Lt0FGSgeEFkhuZQISR2Dv8YcQHO-zdXrC3QH7UvTBYVln7xNJRx7nGHHnLC_A9AAS_TiuxZRFbvf6bwyMHJ0jhm9Z6nEalIpvm9ASub9PXwx486xXP62987A4cO2HA0UHkzRwP2dI9V8UqkYYxzZGgLQEMzxnAJl9pl-mIaSaNNOAVwhiE4C_MxCzWSYjJUHD_izjViTXIYvdT7-2g1mZk0vPLDokqLnDk0sLrHwezBhzv1mX4QYAZCLcF2AXuJvxcgCznCMyjxbUveE8_2f8rbpTBsH-b_KyPsaqB-bpazNSq_v4Hw-T_ec53yC2L0elaZVR3yYLJ7pGbvzE33icF-tGyhPjY0G5-LCeYHDJ0jP0AWeqsAziI6RaOoKNjbGadFN_oBrjTqlOU5gndBoju7MqDAgTH-ynyWFNw45gXo7McPzqj06MCzJCOJdb9Z-kDsnMl-35IGlmemUeERrEBLdPKRT5-5sVKGsM7ym-rUAa-Zk3yqlYboS29O04ZORDlNS8IBCqZsErWJCtz6cOK1uQfcuuogXMZJCMvv8gnqbC-TTDdNr5UOjISMJGWKpCmEyWugtuHBIjdJC9QfwXSjWSoUKksplMxHG-LNR4CXo86bfdCoYhHru_6sMmXVijJYXNa2h4SOCKkMTu33GWSZ2suW7O65CSWansR1s1PxZmxPL745-fkOliReD8cbT4hN3DdKo23RBqggOYpANuZemY9CCWfr9qYfgF94K21
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressive+Covariance+Sensing-Based+Power+Spectrum+Estimation+of+Real-Valued+Signals+Subject+to+Sub-Nyquist+Sampling&rft.jtitle=Modelling+and+Simulation+in+Engineering&rft.au=Alwan%2C+Nuha+A.+S&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-5591&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F5511486&rft.externalDocID=A684359701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5591&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5591&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5591&client=summon