Compressive Covariance Sensing-Based Power Spectrum Estimation of Real-Valued Signals Subject to Sub-Nyquist Sampling
In this work, an estimate of the power spectrum of a real-valued wide-sense stationary autoregressive signal is computed from sub-Nyquist or compressed measurements in additive white Gaussian noise. The problem is formulated using the concepts of compressive covariance sensing and Blackman-Tukey non...
Saved in:
Published in | Modelling and Simulation in Engineering Vol. 2021; pp. 1 - 9 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
2021
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, an estimate of the power spectrum of a real-valued wide-sense stationary autoregressive signal is computed from sub-Nyquist or compressed measurements in additive white Gaussian noise. The problem is formulated using the concepts of compressive covariance sensing and Blackman-Tukey nonparametric spectrum estimation. Only the second-order statistics of the original signal, rather than the signal itself, need to be recovered from the compressed signal. This is achieved by solving the resulting overdetermined system of equations by application of least squares, thereby circumventing the need for applying the complicated ℓ1-minimization otherwise required for the reconstruction of the original signal. Moreover, the signal need not be spectrally sparse. A study of the performance of the power spectral estimator is conducted taking into account the properties of the different bases of the covariance subspace needed for compressive covariance sensing, as well as different linear sparse rulers by which compression is achieved. A method is proposed to benefit from the possible computational efficiency resulting from the use of the Fourier basis of the covariance subspace without considerably affecting the spectrum estimation performance. |
---|---|
AbstractList | In this work, an estimate of the power spectrum of a real-valued wide-sense stationary autoregressive signal is computed from sub-Nyquist or compressed measurements in additive white Gaussian noise. The problem is formulated using the concepts of compressive covariance sensing and Blackman-Tukey nonparametric spectrum estimation. Only the second-order statistics of the original signal, rather than the signal itself, need to be recovered from the compressed signal. This is achieved by solving the resulting overdetermined system of equations by application of least squares, thereby circumventing the need for applying the complicated ℓ1-minimization otherwise required for the reconstruction of the original signal. Moreover, the signal need not be spectrally sparse. A study of the performance of the power spectral estimator is conducted taking into account the properties of the different bases of the covariance subspace needed for compressive covariance sensing, as well as different linear sparse rulers by which compression is achieved. A method is proposed to benefit from the possible computational efficiency resulting from the use of the Fourier basis of the covariance subspace without considerably affecting the spectrum estimation performance. In this work, an estimate of the power spectrum of a real-valued wide-sense stationary autoregressive signal is computed from sub-Nyquist or compressed measurements in additive white Gaussian noise. The problem is formulated using the concepts of compressive covariance sensing and Blackman-Tukey nonparametric spectrum estimation. Only the second-order statistics of the original signal, rather than the signal itself, need to be recovered from the compressed signal. This is achieved by solving the resulting overdetermined system of equations by application of least squares, thereby circumventing the need for applying the complicated ℓ[sub.1]-minimization otherwise required for the reconstruction of the original signal. Moreover, the signal need not be spectrally sparse. A study of the performance of the power spectral estimator is conducted taking into account the properties of the different bases of the covariance subspace needed for compressive covariance sensing, as well as different linear sparse rulers by which compression is achieved. A method is proposed to benefit from the possible computational efficiency resulting from the use of the Fourier basis of the covariance subspace without considerably affecting the spectrum estimation performance. In this work, an estimate of the power spectrum of a real-valued wide-sense stationary autoregressive signal is computed from sub-Nyquist or compressed measurements in additive white Gaussian noise. The problem is formulated using the concepts of compressive covariance sensing and Blackman-Tukey nonparametric spectrum estimation. Only the second-order statistics of the original signal, rather than the signal itself, need to be recovered from the compressed signal. This is achieved by solving the resulting overdetermined system of equations by application of least squares, thereby circumventing the need for applying the complicated ℓ 1 -minimization otherwise required for the reconstruction of the original signal. Moreover, the signal need not be spectrally sparse. A study of the performance of the power spectral estimator is conducted taking into account the properties of the different bases of the covariance subspace needed for compressive covariance sensing, as well as different linear sparse rulers by which compression is achieved. A method is proposed to benefit from the possible computational efficiency resulting from the use of the Fourier basis of the covariance subspace without considerably affecting the spectrum estimation performance. |
Audience | Academic |
Author | Alwan, Nuha A. S. |
Author_xml | – sequence: 1 givenname: Nuha A. S. orcidid: 0000-0002-4040-9973 surname: Alwan fullname: Alwan, Nuha A. S. organization: College of EngineeringUniversity of BaghdadBaghdad 10011Iraquobaghdad.edu.iq |
BookMark | eNqNkt1q3DAQhU1JoWmauz6AoVelcSLZkmxdpkuaLoS2xG1vxVgeu1psayPJSfP20cYJNIX-IJCG4TuHGc28TPYmO2GSvKbkmFLOT3KS0xPOKWWVeJbsU1GVGReE7z3GXNIXyaH3piGMlbwoBNlP5pUdtw5j9hrTlb0GZ2DSmNY4eTP12Xvw2KZf7A26tN6iDm4e0zMfzAjB2Cm1XXqJMGTfYZgjWJt-gsGn9dxsIpwGuwuzT7dXs_EhrWHcDtH2VfK8ixgePrwHybcPZ19XH7OLz-fr1elFprnMQ5YzKXhOm7bpABnTglSl6Fi8mKSiaDRlWjLNAAElpVUboShh2LJWd1VRHCTrxbe1sFFbF6t2t8qCUfcJ63oFLhg9oGKaYAGNlggFoxoaDljKjjZESsg5iV5vFq-ts1cz-qA2dna7blXOc0ZyzlkZqeOF6iGamqmzwYGOp8XR6DixzsT8qZBC0oIW7L8FFSu4LAmNgrdPBJEJ-DP0MHuv1vXlU_N_sr_45gurnfXeYae0CfdDjgWZQVGidnumdnumHvYsio5-Ez1-8h_wdwv-w0wt3Ji_03fy3t-H |
CitedBy_id | crossref_primary_10_1109_TIP_2022_3187285 crossref_primary_10_1007_s13349_024_00802_z |
Cites_doi | 10.1109/tsp.2012.2201153 10.1016/j.sigpro.2014.11.017 10.1109/tsp.2013.2283473 10.1109/TIP.2009.2025089 10.1109/JSTSP.2010.2055037 10.1109/msp.2015.2486805 10.1016/j.sigpro.2019.04.006 10.1109/TIT.2009.2034811 10.1049/iet-spr.2016.0169 10.1006/dspr.1998.0316 10.1109/msp.2007.914731 10.1109/tsp.2013.2251342 10.1016/j.comcom.2020.11.015 10.1109/TSP.2010.2089682 10.1109/tit.2015.2394784 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Nuha A. S. Alwan. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Nuha A. S. Alwan. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2021 Nuha A. S. Alwan. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Nuha A. S. Alwan. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION ISR 7SC 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1155/2021/5511486 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Gale In Context: Science Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Middle East & Africa Database ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-5605 |
Editor | Markopoulos, Angelos |
Editor_xml | – sequence: 1 givenname: Angelos surname: Markopoulos fullname: Markopoulos, Angelos |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_4c0e3abc9ea341cab5ae79f1b099a250 A696913134 A684359701 10_1155_2021_5511486 |
GroupedDBID | 123 188 29M 2WC 3V. 4.4 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY ABDBF ABJCF ABUWG ACGFO ACIWK ADBBV AFKRA AFPKN AGJBV AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 CWDGH E3Z EBS ESX GROUPED_DOAJ HCIFZ I-F IAO ISR ITC K6V K7- KQ8 L6V M7S MK~ M~E OK1 P62 PIMPY PQQKQ PROAC PTHSS Q2X RHU RHW RHX RNS TR2 TUS UNMZH ~8M 0R~ 24P AAYXX ACCMX ACUHS ADMLS CITATION H13 OVT PHGZM PHGZT 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 GNUQQ JQ2 KR7 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c592t-2496521bdbfae44c60876f487649163bc14c94c4aeae9118de444964ed4dcf833 |
IEDL.DBID | DOA |
ISSN | 1687-5591 |
IngestDate | Wed Aug 27 01:29:02 EDT 2025 Fri Jul 25 12:22:15 EDT 2025 Tue Oct 15 04:47:30 EDT 2024 Tue Oct 15 04:48:01 EDT 2024 Sat Oct 12 03:45:39 EDT 2024 Sat Oct 12 03:45:35 EDT 2024 Thu Apr 24 22:51:24 EDT 2025 Tue Jul 01 01:25:17 EDT 2025 Sun Jun 02 18:54:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c592t-2496521bdbfae44c60876f487649163bc14c94c4aeae9118de444964ed4dcf833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4040-9973 |
OpenAccessLink | https://doaj.org/article/4c0e3abc9ea341cab5ae79f1b099a250 |
PQID | 2524025547 |
PQPubID | 237773 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4c0e3abc9ea341cab5ae79f1b099a250 proquest_journals_2524025547 gale_infotracacademiconefile_A696913134 gale_infotracacademiconefile_A684359701 gale_incontextgauss_ISR_A696913134 gale_incontextgauss_ISR_A684359701 crossref_citationtrail_10_1155_2021_5511486 crossref_primary_10_1155_2021_5511486 hindawi_primary_10_1155_2021_5511486 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Modelling and Simulation in Engineering |
PublicationYear | 2021 |
Publisher | Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 11 13 J. Monsalve (15) 2021 14 16 D. D. Ariananda (19) M. A. Lexa (10) 18 P. M. T. Broersen (24) 2006 1 V. Ingle (12) 2005 2 3 4 5 6 S. Shakeri (7) 8 9 P. M. Djuric (23) 1999 N. A. S. Alwan (22) 2020; 332 H. Qi (17) 20 21 |
References_xml | – ident: 4 doi: 10.1109/tsp.2012.2201153 – ident: 11 doi: 10.1016/j.sigpro.2014.11.017 – ident: 9 doi: 10.1109/tsp.2013.2283473 – ident: 16 doi: 10.1109/TIP.2009.2025089 – ident: 20 doi: 10.1109/JSTSP.2010.2055037 – start-page: 3884 ident: 10 article-title: Compressive power spectral density estimation – start-page: 525 ident: 7 article-title: Direction of arrival estimation using sparse ruler array design – start-page: 937 ident: 17 article-title: Invariance of principal components under low-dimensional random projection of the data – ident: 2 doi: 10.1109/msp.2015.2486805 – ident: 3 doi: 10.1016/j.sigpro.2019.04.006 – start-page: 97 ident: 19 article-title: Cooperative compressive power spectrum estimation – year: 2021 ident: 15 article-title: Covariance estimation from compressive data partitions using a projected gradient-based algorithm – volume-title: Automatic Autocorrelation and Spectral Analysis year: 2006 ident: 24 – ident: 5 doi: 10.1109/TIT.2009.2034811 – ident: 18 doi: 10.1049/iet-spr.2016.0169 – ident: 14 doi: 10.1006/dspr.1998.0316 – ident: 1 doi: 10.1109/msp.2007.914731 – volume-title: Digital Signal Processing Handbook year: 1999 ident: 23 article-title: Spectrum estimation and modeling – ident: 8 doi: 10.1109/tsp.2013.2251342 – volume-title: Statistical and Adaptive Signal Processing year: 2005 ident: 12 – ident: 21 doi: 10.1016/j.comcom.2020.11.015 – volume: 332 start-page: 363 year: 2020 ident: 22 article-title: Investigation of the effect of different covariance estimation methods on the performance of least squares compressive covariance sensing publication-title: Frontiers in Artificial Intelligence and Applications – ident: 6 doi: 10.1109/TSP.2010.2089682 – ident: 13 doi: 10.1109/tit.2015.2394784 |
SSID | ssib044753360 ssj0063810 |
Score | 2.1805148 |
Snippet | In this work, an estimate of the power spectrum of a real-valued wide-sense stationary autoregressive signal is computed from sub-Nyquist or compressed... |
SourceID | doaj proquest gale crossref hindawi |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Buildings Covariance Methods Principal components analysis Random noise Remodeling, restoration, etc Signal processing Sparsity |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEF-qUGgfxNqWnh9lEUsfSuhtdrOXPKoo10KleLXc2zL7kVPQRL2L4n_vTLJ3rZXWviVhspCdr99sZn_L2E5eOi-VzROnvCRS7TyxoNDxMtABSswwQHuHvx3p4Yn6Os7GkSRp-vgXPmY7Ks_FZ0zsCNz1EltCA6OifDiemw1R1sl2K0IXgDWRVlGdpdF_EDCLeb_7H2M9yEQtYf8iLD8_pYL49uxRgG6zzuEqW4lwke92-n3FnoVqjb38jUTwNWvIpdtu1pvA9-sbLH5Jk3xErenVJNnDPOX5dzoNjdNp87Pr5oIfoGd3mxZ5XfJjRIvJTzhvUHB0NiFKZY4RhZZo-Kymy-To7qpBi-AjoBb0avKGnRwe_NgfJvEwhcRlRTpLUiKGT4X1toSglNPERVdiuaIVIkRpnVCuUE5BgIABMPcohK-o4JV3ZS7lW7Zc1VV4x3jhA9bUzgqihleptxCCHljZtzlk0qke-zSfWOMi0zgdeHFu2oojywypwUQ19NiHhfRlx7DxF7k90tFChnix2wdoKya6mVGuHyRYVwTA9OzAZhAGRSksAmFAtNdj26RhQ8wXFbXWTKCZTs2X0bHZ1TlCx2LQF_8UKnQhpJD4kR-jUFnjxzmI2xlwiohR68FwT0n-GnMnGt4TM7E5t0oTI87UpBn9J0NwOFj_v1E22Au67ZaTNtkyWl_YQoA1s-9b97oHNVkaLg priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS9xAEF9apdA-FPtFr9WyFEsfSvA2-3HJU_HkxBZ6yF0tvi37lSjYRL2Lpf99Z5LNWRH1LSSThex8T2Z_Q8h2VjjPhc0SJzxHUO0ssUaA4kmjginAwxg8O_xjqg6OxPdjeRwLbovYVtnbxNZQ-9phjXwnlfgfAJzf6Ov5RYJTo_Dvahyh8ZisgwnOIPlaH0-mh7NeohDNjrenFDrbrBDPClMwBaoFsTTrW-GlxCoA24H4AfIDdcNJtVj-K4v95ARz5T-nt2x365D2N8jzGEnS3Y71L8ijUL0kz_7DF3xFGtT2ttH1KtC9-gryYmQynWPXelUmY3Bhnh7ioDSKg-iXl81vOgGl784z0rqgMwgkk1_mrAHC-WmJaMsUjA1Wb-iyxstk-veiAWGhc4Pd6VX5mhztT37uHSRxzkLiZJ4ukxQx41NmvS1MEMIphKkrIJNRAoJHbh0TLhdOmGAC2MbMAxG8IoIX3hUZ52_IWlVX4S2huQ-QbjvLEDVepN6aENTI8qHNjORODMiXfmO1iyDkOAvjTLfJiJQa2aAjGwbk04r6vAPfuINujDxa0SBkdnujvix11EAt3DBwY10eDHhuZ6w0YZQXzEKMbCAQHJCPyGGNoBgVdt2Uplks9Lf5TO-qDKLKfDRk9xLlKmeccfjIz5GoqOHjnIknHWCLEGzrxnIPUV6vuR0F74Gd2OylUkdjtNDXqvPu_sfvyVNcrKswbZI1kLqwBTHX0n6IivUP3vEl0A priority: 102 providerName: ProQuest |
Title | Compressive Covariance Sensing-Based Power Spectrum Estimation of Real-Valued Signals Subject to Sub-Nyquist Sampling |
URI | https://dx.doi.org/10.1155/2021/5511486 https://www.proquest.com/docview/2524025547 https://doaj.org/article/4c0e3abc9ea341cab5ae79f1b099a250 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BERIcEE81bYlWqIgDspr1PmIfm5A0IDWqEgq5rfblUKnYtImLeulvZ8Z2QisEuXBxomhix_P-nNlvCdlPMue5sEnkhOdIqp1E1ggIPGlUMBlUGINrh4_HanQqPs3k7NZWXzgTVtMD14o7EK4TuLEuDQYSrjNWmtBNM2ahtTFxjdah5q3AVJ2DFfJWIdRSEELQM7PVyLuUiPbZAfQJgAPUnWJUcfavM_PDb4iJf579kaOrwjN8Sp40HSM9rH_pM3Iv5M_J41s8gi9IiVFdDbReBdovrgD_ojHpFKfT83nUg1Ll6QluiEZxw_nlZfmdDiC463WLtMjoBBrG6Is5L0FwejZHVmUKSQWf0tBlgW-j8fVFCU5Bpwan0PP5S3I6HHzuj6JmP4XIyTReRjFyw8fMepuZIIRTSEeXAWJRAppEbh0TLhVOmGAC5MDEgxB8RQQvvMsSzl-RrbzIwzahqQ8Aq51lyA4vYm9NCKpreccmRnInWuT9SrHaNWTjuOfFua5Ah5QazaAbM7TI27X0j5pk4y9yPbTRWgapsasPwGF04zB6k8O0yBu0sEbyixyna-amXCz0x-lEH6oEuse022H_FEpVyjjjcJPvGqGsgJtzplnRACpCUq07p9sk-fuc-43jbdDE3sordZN0FjqW-FcZ9Ifdnf-hqF3yCC9ZP2_aI1vgm-E1dGBL2yb3k-FRmzzoDcYnE3jtf_1wNGpXIQjH45sBHCej2S_0ljDM |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fT9RAEN8QiFEf_G88Rd0YiA-mcG1399oHH-AA7wQuhgPlbd3dbgsBW727QvCr-FX8cM6020M0whOJb5fedJPdmz-_mZv5LSELUWqSkOnIMywJkVQ78rRiYHhcCatSiDAKZ4e3B6K3x97v8_0Z8qOZhcG2ysYnVo46KQzWyJcDjv8DQPDruA7KTXt2CvnZ-G1_DX7MxSDYWN_t9jx3hYBneBxMvADp0ANfJzpVljEjkIEtBZAuGOCiUBufmZgZpqyyYPZRAkLwCrMJS0waYbUT_PscZBUczGeu-2ntXa9RV6TKC6sRiNrxCyTLwvxOgN0CUPebPnvOscTgLwM4geRDXIiA1UUB03Bw4wAT8dPDvwJDFe027pKfzTnVTS5HS-VEL5nvf1BI_qcHeY_ccSibrtRmcZ_M2PwBuf0b9-JDUqInrJqATyztFidqhOUdS4fY0Z9n3iqE94R-wEvk6BDHUUflF7oODrGe9aRFSncAZHsf1XEJgsPDDJmoKThirGzRSYEfvcHZtxIMiQ4Vdu7n2SOydy37fkxm8yK3TwiNEyvittE-MuqzINHKWtHRYVtHioeGtcibRi-kcQTteE_IsawSNc4lapF0WtQii1PprzUxyT_kVlHFpjJIJ149KEaZdN5JMtO2odImtgpQjVGaK9uJU19D_qAAJLfIK1RQiYQhOXYkZaocj2V_uCNXRASIO-60_UuFYhH7oR_CJl87obSAzRnlpkDgiJCI7MJyV0mer7ng7OaKk5hvDEI6Rz2W59bw9PKvX5Kbvd3tLbnVH2w-I7dw4boSN09mQQPtc8CmE_3C-QhKPl-3Nf0CuByV5Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF5VqUBw4B8RKLBCrTggN7G93tgHhNqkIaEQVQ0tvS2767WpKHabxK3Ko_EqvAwz9jqlINpTD9yiZLLSrufn2_HMN4Qsh4mOfaZCR7PYR1Lt0FGSgeEFkhuZQISR2Dv8YcQHO-zdXrC3QH7UvTBYVln7xNJRx7nGHHnLC_A9AAS_TiuxZRFbvf6bwyMHJ0jhm9Z6nEalIpvm9ASub9PXwx486xXP62987A4cO2HA0UHkzRwP2dI9V8UqkYYxzZGgLQEMzxnAJl9pl-mIaSaNNOAVwhiE4C_MxCzWSYjJUHD_izjViTXIYvdT7-2g1mZk0vPLDokqLnDk0sLrHwezBhzv1mX4QYAZCLcF2AXuJvxcgCznCMyjxbUveE8_2f8rbpTBsH-b_KyPsaqB-bpazNSq_v4Hw-T_ec53yC2L0elaZVR3yYLJ7pGbvzE33icF-tGyhPjY0G5-LCeYHDJ0jP0AWeqsAziI6RaOoKNjbGadFN_oBrjTqlOU5gndBoju7MqDAgTH-ynyWFNw45gXo7McPzqj06MCzJCOJdb9Z-kDsnMl-35IGlmemUeERrEBLdPKRT5-5sVKGsM7ym-rUAa-Zk3yqlYboS29O04ZORDlNS8IBCqZsErWJCtz6cOK1uQfcuuogXMZJCMvv8gnqbC-TTDdNr5UOjISMJGWKpCmEyWugtuHBIjdJC9QfwXSjWSoUKksplMxHG-LNR4CXo86bfdCoYhHru_6sMmXVijJYXNa2h4SOCKkMTu33GWSZ2suW7O65CSWansR1s1PxZmxPL745-fkOliReD8cbT4hN3DdKo23RBqggOYpANuZemY9CCWfr9qYfgF94K21 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressive+Covariance+Sensing-Based+Power+Spectrum+Estimation+of+Real-Valued+Signals+Subject+to+Sub-Nyquist+Sampling&rft.jtitle=Modelling+and+Simulation+in+Engineering&rft.au=Alwan%2C+Nuha+A.+S&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-5591&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F5511486&rft.externalDocID=A684359701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5591&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5591&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5591&client=summon |