Enhanced cell-surface display and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae Sed1 signal peptide
ABSTRACT Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzy...
Saved in:
Published in | Biotechnology and bioengineering Vol. 113; no. 11; pp. 2358 - 2366 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.11.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell‐surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae α‐mating pheromone (MFα1SP) were constructed for cell‐surface display of Aspergillus aculeatus β‐glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell‐surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MFα1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3‐ and 1.9‐fold higher than the GLUASP and MFα1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell‐surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016;113: 2358–2366. © 2016 Wiley Periodicals, Inc.
The effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene (SED1SP) for cell‐surface display and secretory production of heterologous enzymes is described. High secretion efficiency of the novel SP sequence was applicable for both cell‐surface display and secretory production of cellulolytic enzymes (BGL and EG) in S. cerevisiae. In addition, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. |
---|---|
AbstractList | Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell-surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae α-mating pheromone (MFα1SP) were constructed for cell-surface display of Aspergillus aculeatus β-glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell-surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MFα1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3- and 1.9-fold higher than the GLUASP and MFα1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell-surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016;113: 2358-2366. © 2016 Wiley Periodicals, Inc. ABSTRACT Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell‐surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae α‐mating pheromone (MFα1SP) were constructed for cell‐surface display of Aspergillus aculeatus β‐glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell‐surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MFα1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3‐ and 1.9‐fold higher than the GLUASP and MFα1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell‐surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016;113: 2358–2366. © 2016 Wiley Periodicals, Inc. The effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene (SED1SP) for cell‐surface display and secretory production of heterologous enzymes is described. High secretion efficiency of the novel SP sequence was applicable for both cell‐surface display and secretory production of cellulolytic enzymes (BGL and EG) in S. cerevisiae. In addition, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell-surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae [alpha]-mating pheromone (MF[alpha]1SP) were constructed for cell-surface display of Aspergillus aculeatus [beta]-glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell-surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MF[alpha]1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3- and 1.9-fold higher than the GLUASP and MF[alpha]1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell-surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016;113: 2358-2366. © 2016 Wiley Periodicals, Inc. Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell-surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae α-mating pheromone (MFα1SP) were constructed for cell-surface display of Aspergillus aculeatus β-glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell-surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MFα1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3- and 1.9-fold higher than the GLUASP and MFα1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell-surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016;113: 2358-2366. © 2016 Wiley Periodicals, Inc.Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell-surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae α-mating pheromone (MFα1SP) were constructed for cell-surface display of Aspergillus aculeatus β-glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell-surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MFα1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3- and 1.9-fold higher than the GLUASP and MFα1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell-surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016;113: 2358-2366. © 2016 Wiley Periodicals, Inc. Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell-surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae alpha -mating pheromone (MF alpha 1SP) were constructed for cell-surface display of Aspergillus aculeatus beta -glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell-surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MF alpha 1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3- and 1.9-fold higher than the GLUASP and MF alpha 1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell-surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016; 113: 2358-2366. The effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene (SED1SP) for cell-surface display and secretory production of heterologous enzymes is described. High secretion efficiency of the novel SP sequence was applicable for both cell-surface display and secretory production of cellulolytic enzymes (BGL and EG) in S. cerevisiae. In addition, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. |
Author | Ishii, Jun Ito, Yoichiro Kondo, Akihiko Bamba, Takahiro Hasunuma, Tomohisa Inokuma, Kentaro |
Author_xml | – sequence: 1 givenname: Kentaro surname: Inokuma fullname: Inokuma, Kentaro organization: Organization of Advanced Science and Technology, Kobe University, Kobe, Japan – sequence: 2 givenname: Takahiro surname: Bamba fullname: Bamba, Takahiro organization: Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, 657-8501, Kobe, Japan – sequence: 3 givenname: Jun surname: Ishii fullname: Ishii, Jun organization: Organization of Advanced Science and Technology, Kobe University, Kobe, Japan – sequence: 4 givenname: Yoichiro surname: Ito fullname: Ito, Yoichiro organization: Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, 657-8501, Kobe, Japan – sequence: 5 givenname: Tomohisa surname: Hasunuma fullname: Hasunuma, Tomohisa organization: Organization of Advanced Science and Technology, Kobe University, Kobe, Japan – sequence: 6 givenname: Akihiko surname: Kondo fullname: Kondo, Akihiko email: akondo@kobe-u.ac.jp organization: Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, 657-8501, Kobe, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27183011$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAURi1URKeFBX8AWWIDi7R-JI69hKrTqWhh0SKWluPcMC6ZJLUdSljx0_F0ZlhUgLqybJ3zyfdxgPa6vgOEXlJyRAlhx5WLR0wQIp-gGSWqzAhTZA_NCCEi44Vi--gghJt0LaUQz9A-K6nkhNIZ-nXaLU1nocYW2jYLo2-MBVy7MLRmwqarcQDrIfZ-woPv69FG13e4b-6Fse3bKTqLofs5rSDgOxeX-MpYuzS-X002PVnw8N0FZwBfQU1xcF870-IBhuhqeI6eNqYN8GJ7HqLP89Prk0V28ens_OTdRWbT_2VWWp5XwESTQy0F1NCUZU6LCgyxtGACFKtoLa0lipqiEgWlhDIrZUGgkQb4IXqzyU1F3I4Qol65sC7BdNCPQVOZF5JRpcQjUFYqziVXj0FzxoSgLKGvH6A3_ehTJxKlSE5YrnjxX0oynpekoHmiXm2psVpBrQfvVsZPejfXBBxvAOv7EDw02rpo1pOL3rhWU6LXm6PT5uj7zUnG2wfGLvRv7Db9zrUw_RvU78-vd0a2MVyI8OOPYfw3LUpeFvrLxzN9SRfzD4v5pZb8N16N4L0 |
CODEN | BIBIAU |
CitedBy_id | crossref_primary_10_1002_mbo3_1300 crossref_primary_10_1080_10826068_2023_2238290 crossref_primary_10_3389_fbioe_2021_794742 crossref_primary_10_1007_s00253_023_12729_4 crossref_primary_10_1038_s41467_024_52282_w crossref_primary_10_3390_catal9090728 crossref_primary_10_3390_microorganisms10102005 crossref_primary_10_1111_1751_7915_14061 crossref_primary_10_1002_bit_28321 crossref_primary_10_1016_j_ijbiomac_2023_127915 crossref_primary_10_1007_s00253_021_11440_6 crossref_primary_10_1080_07388551_2024_2385996 crossref_primary_10_1016_j_bej_2021_108305 crossref_primary_10_1016_j_jbiosc_2017_09_013 crossref_primary_10_1021_acssynbio_7b00144 crossref_primary_10_1134_S0006297919120101 crossref_primary_10_1016_j_biortech_2021_125710 crossref_primary_10_1016_j_biotechadv_2021_107859 crossref_primary_10_1007_s43393_022_00109_4 crossref_primary_10_1016_j_ymben_2019_11_004 crossref_primary_10_1038_s41598_017_04815_1 crossref_primary_10_3390_microorganisms9051079 crossref_primary_10_3389_fbioe_2017_00081 crossref_primary_10_1016_j_procbio_2022_11_015 crossref_primary_10_1186_s13568_020_00983_y crossref_primary_10_3389_fbioe_2022_1056804 crossref_primary_10_1016_j_copbio_2023_103030 crossref_primary_10_1007_s00253_018_8827_6 crossref_primary_10_3389_fmicb_2020_01387 crossref_primary_10_1016_j_indcrop_2020_112607 crossref_primary_10_1186_s13068_017_0738_8 crossref_primary_10_1016_j_copbio_2020_12_002 crossref_primary_10_1007_s43393_021_00045_9 crossref_primary_10_1093_nar_gkaa1066 crossref_primary_10_1186_s12934_024_02361_w crossref_primary_10_3390_molecules24162879 crossref_primary_10_1016_j_biortech_2022_127105 crossref_primary_10_1016_j_biotechadv_2022_107925 crossref_primary_10_1038_s42003_022_03475_w crossref_primary_10_1080_07388551_2018_1452891 crossref_primary_10_1016_j_biortech_2017_05_066 crossref_primary_10_1016_j_bej_2017_09_016 crossref_primary_10_1016_j_nbt_2025_02_003 crossref_primary_10_5650_oleoscience_22_99 crossref_primary_10_1039_C8GC03864C crossref_primary_10_1111_1541_4337_13094 crossref_primary_10_1186_s12934_021_01644_w crossref_primary_10_1186_s12934_017_0742_5 |
Cites_doi | 10.1186/s13068-015-0344-6 10.7150/ijbs.5.578 10.1016/j.jbiotec.2012.10.017 10.1016/j.jbiotec.2010.02.007 10.1074/jbc.M808020200 10.1007/s00253-014-5732-5 10.1007/s00253-014-6250-1 10.1038/nmeth.1318 10.1007/s00253-003-1492-3 10.1016/S1389-1723(00)80099-7 10.1083/jcb.134.2.269 10.1073/pnas.1209856109 10.1128/AEM.70.2.1207-1212.2004 10.1186/1754-6834-7-8 10.1186/s12934-015-0203-y 10.1016/S0962-8924(98)01360-9 10.1016/j.enzmictec.2012.03.005 10.1016/0092-8674(82)90298-7 10.1002/bit.22338 10.1038/emm.2002.40 10.1271/bbb.63.1977 10.1534/genetics.112.144485 10.1016/j.ab.2009.03.013 10.1263/jbb.105.622 10.2217/fmb.12.133 10.1007/BF00318659 10.1007/s00253-010-2447-0 10.1007/s00253-010-2784-z 10.1016/j.jbiosc.2015.03.003 10.1186/1754-6834-4-8 10.1016/j.jbiotec.2005.06.013 10.1186/1475-2859-12-14 10.1371/journal.pone.0039720 10.1016/S0092-8674(00)81738-9 10.1186/1475-2859-9-32 10.1016/j.enzmictec.2010.10.008 10.1371/journal.pone.0072986 10.1093/jb/mvp028 10.1016/j.bbrc.2005.08.195 10.1093/nar/gkm259 10.1128/JB.180.13.3381-3387.1998 10.1186/1475-2859-10-89 10.1128/AEM.01687-09 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 M7N |
DOI | 10.1002/bit.26008 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic Materials Research Database Engineering Research Database Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 2366 |
ExternalDocumentID | 4195431681 27183011 10_1002_bit_26008 BIT26008 ark_67375_WNG_M1HFKHFM_8 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Education, Culture, Sports, Science and Technology – fundername: Ministry of Economy, Trade and Industry (METI), Japan |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 M7N |
ID | FETCH-LOGICAL-c5928-7c34be26f4ed86edef77415bea0c1526e92b1d8cc091a5b6511012c8850ef8ae3 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 1097-0290 |
IngestDate | Fri Jul 11 13:03:55 EDT 2025 Fri Jul 11 05:44:50 EDT 2025 Fri Jul 11 15:36:09 EDT 2025 Fri Jul 25 19:16:05 EDT 2025 Sun Jul 13 02:59:27 EDT 2025 Wed Feb 19 02:41:41 EST 2025 Thu Apr 24 23:00:06 EDT 2025 Tue Jul 01 01:08:57 EDT 2025 Wed Jan 22 16:27:15 EST 2025 Wed Oct 30 09:52:58 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Pichia pastoris β-glucosidase endo-glucanase Saccharomyces cerevisiae secretion signal sequence cell surface display |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5928-7c34be26f4ed86edef77415bea0c1526e92b1d8cc091a5b6511012c8850ef8ae3 |
Notes | Ministry of Education, Culture, Sports, Science and Technology istex:27F5AED3B008B120FF8B0EB49EA253E407B923B2 Ministry of Economy, Trade and Industry (METI), Japan ArticleID:BIT26008 ark:/67375/WNG-M1HFKHFM-8 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27183011 |
PQID | 1823470514 |
PQPubID | 48814 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1845821996 proquest_miscellaneous_1827933839 proquest_miscellaneous_1824226612 proquest_journals_1904024935 proquest_journals_1823470514 pubmed_primary_27183011 crossref_citationtrail_10_1002_bit_26008 crossref_primary_10_1002_bit_26008 wiley_primary_10_1002_bit_26008_BIT26008 istex_primary_ark_67375_WNG_M1HFKHFM_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2016 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol. Bioeng |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Van Rooyen R, Hahn-Hägerdal B, La Grange DC, Van Zyl WH. 2005. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120(3):284-295. Li J, Qian B, Yin J, Wu S, Zhuan F, Xu S, Li J, Salazar JK, Zhang W, Wang H. 2013. Surface display of recombinant Drosophila melanogaster acetylcholinesterase for detection of organic phosphorus and carbamate pesticides. PLoS ONE 8(9):e72986. Kjærulff S, Jensen MR. 2005. Comparison of different signal peptides for secretion of heterologous proteins in fission yeast. Biochem Biophys Res Commun 336(3):974-982. Wen F, Sun J, Zhao H. 2010. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76(4):1251-1260. Kida Y, Morimoto F, Sakaguchi M. 2009. Signal anchor sequence provides motive force for polypeptide chain translocation through the endoplasmic reticulum membrane. J Biol Chem 284(5):2861-2866. Ng DT, Brown JD, Walter P. 1996. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134(2):269-278. Orlean P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192(3):775-818. Chen J, Zhou J, Sanders CK, Nolan JP, Cai H. 2009. A surface display yeast two-hybrid screening system for high-throughput protein interactome mapping. Anal Biochem 390(1):29-37. Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA. 1998. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94(6):795-807. Liu Z, Inokuma K, Ho SH, Haan R, Hasunuma T, Van Zyl WH, Kondo A. 2015. Combined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiae. Biotechnol Biofuels 8:162. Kim S, Baek SH, Lee K, Hahn JS. 2013. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microb Cell Fact 12:14. Lee MA, Cheong KH, Shields D, Park SD, Hong SH. 2002. Intracellular trafficking and metabolic turnover of yeast prepro-α-factor-SRIF precursors in GH3 cells. Exp Mol Med 34(4):285-293. Kurjan J, Herskowitz I. 1982. Structure of a yeast pheromone gene (MFα): A putative α-factor precursor contains four tandem copies of mature α-factor. Cell 30(3):933-943 Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K. 2007. WoLF PSORT: Protein localization predictor. Nucleic Acids Res 35(Web Server issue):W585-W587. Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A. 2012. Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS ONE 7(6):e39720. Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW. 2012. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci USA 109(33):13260-13265. Rakestraw JA, Sazinsky SL, Piatesi A, Antipov E, Wittrup KD. 2009. Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol Bioeng 103(6):1192-1201. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343-345. Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, Puxbaum V, Sauer M, Mattanovich D. 2013. Pichia pastoris: Protein production host and model organism for biomedical research. Future Microbiol 8(2):191-208. Ismail KS, Sakamoto T, Hatanaka H, Hasunuma T, Kondo A. 2013. Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. J Biotechnol 163(1):50-60. Guo ZP, Qiu CY, Zhang L, Ding ZY, Wang ZX, Shi GY. 2011. Expression of aspartic protease from Neurospora crassa in industrial ethanol-producing yeast and its application in ethanol production. Enzyme Microb Technol 48(2):148-154. Yarimizu T, Nakamura M, Hoshida H, Akada R. 2015. Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus. Microb Cell Fact 14:20. Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. 2004. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70(2):1207-1212. Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A. 2012. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Enzyme Microb Technol 50(6-7):343-347. Chen DC, Yang BC, Kuo TT. 1992. One-step transformation of yeast in stationary phase. Curr Genet 21(1):83-84. Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A. 2010. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88(1):381-388. Ueda M, Tanaka A. 2000. Cell surface engineering of yeast: Construction of arming yeast with biocatalyst. J Biosci Bioeng 90(2):125-136. Kamiya T, Ojima T, Sugimoto K, Nakano H, Kawarasaki Y. 2010. Quantitative Y2H screening: Cloning and signal peptide engineering of a fungal secretory LacA gene and its application to yeast two-hybrid system as a quantitative reporter. J Biotechnol 146(4):151-159. Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. 2011. Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol Biofuels 4:8. Kondo A, Ueda M. 2004. Yeast cell-surface display-applications of molecular display. Appl Microbiol Biotechnol 64(1):28-40. Inokuma K, Hasunuma T, Kondo A. 2014. Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnol Biofuels 7(1):8. Ahmad M, Hirz M, Pichler H, Schwab H. 2014. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98(12):5301-5317. Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M. 2008. Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 105(6):622-627. Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W. 2011. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact 10:89. Oka C, Tanaka M, Muraki M, Harata K, Suzuki K, Jigami Y. 1999. Human lysozyme secretion increased by alpha-factor pro-sequence in Pichia pastoris. Biosci Biotechnol Biochem 63(11):1977-1983. Shimoi H, Kitagaki H, Ohmori H, Iimura Y, Ito K. 1998. Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180(13):3381-3387. Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. 2010. Cocktail δ-integration: A novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact 9:32. Martoglio B, Dobberstein B. 1998. Signal sequences: More than just greasy peptides. Trends Cell Biol 8(10):410-415. Inokuma K, Yoshida T, Ishii J, Hasunuma T, Kondo A. 2015. Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains. Appl Microbiol Biotechnol 99(4):1655-1663. Dashtban M, Schraft H, Qin W. 2009. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5(6):578-595. Mori A, Hara S, Sugahara T, Kojima T, Iwasaki Y, Kawarasaki Y, Sahara T, Ohgiya S, Nakano H. 2015. Signal peptide optimization tool for the secretion of recombinant protein from Saccharomyces cerevisiae. J Biosci Bioeng 120(5):518-525. Idiris A, Tohda H, Kumagai H, Takegawa K. 2010. Engineering of protein secretion in yeast: Strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403-417. Ishii J, Izawa K, Matsumura S, Wakamura K, Tanino T, Tanaka T, Ogino C, Fukuda H, Kondo A. 2009. A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast. J Biochem 145(6):701-708. 1998; 180 2010; 76 2004; 64 2015; 14 1982; 30 2002; 34 2015; 99 2005; 336 2015; 120 2010; 146 2011; 10 2013; 163 2008; 105 2000; 90 1999; 63 2011; 4 2013; 8 2015; 8 2007; 35 2012; 109 2012; 50 2010; 88 2010; 86 2004; 70 2005; 120 2009; 390 2013; 12 2012; 192 2009; 145 2009; 6 2009; 5 2011; 48 2009; 284 1998; 94 1992; 21 2012; 7 2014; 7 1996; 134 2009; 103 2014; 98 2010; 9 1998; 8 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Shimoi H (e_1_2_7_36_1) 1998; 180 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – reference: Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M. 2008. Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 105(6):622-627. – reference: Guo ZP, Qiu CY, Zhang L, Ding ZY, Wang ZX, Shi GY. 2011. Expression of aspartic protease from Neurospora crassa in industrial ethanol-producing yeast and its application in ethanol production. Enzyme Microb Technol 48(2):148-154. – reference: Lee MA, Cheong KH, Shields D, Park SD, Hong SH. 2002. Intracellular trafficking and metabolic turnover of yeast prepro-α-factor-SRIF precursors in GH3 cells. Exp Mol Med 34(4):285-293. – reference: Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A. 2010. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88(1):381-388. – reference: Wen F, Sun J, Zhao H. 2010. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76(4):1251-1260. – reference: Chen DC, Yang BC, Kuo TT. 1992. One-step transformation of yeast in stationary phase. Curr Genet 21(1):83-84. – reference: Orlean P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192(3):775-818. – reference: Ahmad M, Hirz M, Pichler H, Schwab H. 2014. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98(12):5301-5317. – reference: Martoglio B, Dobberstein B. 1998. Signal sequences: More than just greasy peptides. Trends Cell Biol 8(10):410-415. – reference: Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. 2004. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70(2):1207-1212. – reference: Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343-345. – reference: Idiris A, Tohda H, Kumagai H, Takegawa K. 2010. Engineering of protein secretion in yeast: Strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403-417. – reference: Oka C, Tanaka M, Muraki M, Harata K, Suzuki K, Jigami Y. 1999. Human lysozyme secretion increased by alpha-factor pro-sequence in Pichia pastoris. Biosci Biotechnol Biochem 63(11):1977-1983. – reference: Rakestraw JA, Sazinsky SL, Piatesi A, Antipov E, Wittrup KD. 2009. Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol Bioeng 103(6):1192-1201. – reference: Mori A, Hara S, Sugahara T, Kojima T, Iwasaki Y, Kawarasaki Y, Sahara T, Ohgiya S, Nakano H. 2015. Signal peptide optimization tool for the secretion of recombinant protein from Saccharomyces cerevisiae. J Biosci Bioeng 120(5):518-525. – reference: Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW. 2012. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci USA 109(33):13260-13265. – reference: Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K. 2007. WoLF PSORT: Protein localization predictor. Nucleic Acids Res 35(Web Server issue):W585-W587. – reference: Kurjan J, Herskowitz I. 1982. Structure of a yeast pheromone gene (MFα): A putative α-factor precursor contains four tandem copies of mature α-factor. Cell 30(3):933-943 – reference: Kamiya T, Ojima T, Sugimoto K, Nakano H, Kawarasaki Y. 2010. Quantitative Y2H screening: Cloning and signal peptide engineering of a fungal secretory LacA gene and its application to yeast two-hybrid system as a quantitative reporter. J Biotechnol 146(4):151-159. – reference: Kjærulff S, Jensen MR. 2005. Comparison of different signal peptides for secretion of heterologous proteins in fission yeast. Biochem Biophys Res Commun 336(3):974-982. – reference: Dashtban M, Schraft H, Qin W. 2009. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5(6):578-595. – reference: Kim S, Baek SH, Lee K, Hahn JS. 2013. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microb Cell Fact 12:14. – reference: Ishii J, Izawa K, Matsumura S, Wakamura K, Tanino T, Tanaka T, Ogino C, Fukuda H, Kondo A. 2009. A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast. J Biochem 145(6):701-708. – reference: Shimoi H, Kitagaki H, Ohmori H, Iimura Y, Ito K. 1998. Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180(13):3381-3387. – reference: Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A. 2012. Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS ONE 7(6):e39720. – reference: Liu Z, Inokuma K, Ho SH, Haan R, Hasunuma T, Van Zyl WH, Kondo A. 2015. Combined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiae. Biotechnol Biofuels 8:162. – reference: Inokuma K, Yoshida T, Ishii J, Hasunuma T, Kondo A. 2015. Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains. Appl Microbiol Biotechnol 99(4):1655-1663. – reference: Inokuma K, Hasunuma T, Kondo A. 2014. Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnol Biofuels 7(1):8. – reference: Ismail KS, Sakamoto T, Hatanaka H, Hasunuma T, Kondo A. 2013. Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. J Biotechnol 163(1):50-60. – reference: Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. 2010. Cocktail δ-integration: A novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact 9:32. – reference: Li J, Qian B, Yin J, Wu S, Zhuan F, Xu S, Li J, Salazar JK, Zhang W, Wang H. 2013. Surface display of recombinant Drosophila melanogaster acetylcholinesterase for detection of organic phosphorus and carbamate pesticides. PLoS ONE 8(9):e72986. – reference: Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. 2011. Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol Biofuels 4:8. – reference: Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, Puxbaum V, Sauer M, Mattanovich D. 2013. Pichia pastoris: Protein production host and model organism for biomedical research. Future Microbiol 8(2):191-208. – reference: Kondo A, Ueda M. 2004. Yeast cell-surface display-applications of molecular display. Appl Microbiol Biotechnol 64(1):28-40. – reference: Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA. 1998. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94(6):795-807. – reference: Ueda M, Tanaka A. 2000. Cell surface engineering of yeast: Construction of arming yeast with biocatalyst. J Biosci Bioeng 90(2):125-136. – reference: Van Rooyen R, Hahn-Hägerdal B, La Grange DC, Van Zyl WH. 2005. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120(3):284-295. – reference: Kida Y, Morimoto F, Sakaguchi M. 2009. Signal anchor sequence provides motive force for polypeptide chain translocation through the endoplasmic reticulum membrane. J Biol Chem 284(5):2861-2866. – reference: Yarimizu T, Nakamura M, Hoshida H, Akada R. 2015. Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus. Microb Cell Fact 14:20. – reference: Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A. 2012. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Enzyme Microb Technol 50(6-7):343-347. – reference: Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W. 2011. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact 10:89. – reference: Chen J, Zhou J, Sanders CK, Nolan JP, Cai H. 2009. A surface display yeast two-hybrid screening system for high-throughput protein interactome mapping. Anal Biochem 390(1):29-37. – reference: Ng DT, Brown JD, Walter P. 1996. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134(2):269-278. – volume: 163 start-page: 50 issue: 1 year: 2013 end-page: 60 article-title: Gene expression cross‐profiling in genetically modified industrial strains during high‐temperature ethanol production from xylose publication-title: J Biotechnol – volume: 34 start-page: 285 issue: 4 year: 2002 end-page: 293 article-title: Intracellular trafficking and metabolic turnover of yeast prepro‐α‐factor‐SRIF precursors in GH3 cells publication-title: Exp Mol Med – volume: 5 start-page: 578 issue: 6 year: 2009 end-page: 595 article-title: Fungal bioconversion of lignocellulosic residues; opportunities & perspectives publication-title: Int J Biol Sci – volume: 88 start-page: 381 issue: 1 year: 2010 end-page: 388 article-title: Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast displaying cellulolytic enzymes publication-title: Appl Microbiol Biotechnol – volume: 134 start-page: 269 issue: 2 year: 1996 end-page: 278 article-title: Signal sequences specify the targeting route to the endoplasmic reticulum membrane publication-title: J Cell Biol – volume: 8 start-page: 162 year: 2015 article-title: Combined cell‐surface display‐ and secretion‐based strategies for production of cellulosic ethanol with publication-title: Biotechnol Biofuels – volume: 8 start-page: 410 issue: 10 year: 1998 end-page: 415 article-title: Signal sequences: More than just greasy peptides publication-title: Trends Cell Biol – volume: 103 start-page: 1192 issue: 6 year: 2009 end-page: 1201 article-title: Directed evolution of a secretory leader for the improved expression of heterologous proteins and full‐length antibodies in publication-title: Biotechnol Bioeng – volume: 284 start-page: 2861 issue: 5 year: 2009 end-page: 2866 article-title: Signal anchor sequence provides motive force for polypeptide chain translocation through the endoplasmic reticulum membrane publication-title: J Biol Chem – volume: 180 start-page: 3381 issue: 13 year: 1998 end-page: 3387 article-title: Sed1p is a major cell wall protein of in the stationary phase and is involved in lytic enzyme resistance publication-title: J Bacteriol – volume: 105 start-page: 622 issue: 6 year: 2008 end-page: 627 article-title: Direct ethanol production from barley β‐glucan by sake yeast displaying β‐glucosidase and endoglucanase publication-title: J Biosci Bioeng – volume: 109 start-page: 13260 issue: 33 year: 2012 end-page: 13265 article-title: Self‐surface assembly of cellulosomes with two miniscaffoldins on for cellulosic ethanol production publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: 8 issue: 1 year: 2014 article-title: Efficient yeast cell‐surface display of exo‐ and endo‐cellulase using the anchoring region and its original promoter publication-title: Biotechnol Biofuels – volume: 99 start-page: 1655 issue: 4 year: 2015 end-page: 1663 article-title: Efficient co‐displaying and artificial ratio control of α‐amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains publication-title: Appl Microbiol Biotechnol – volume: 336 start-page: 974 issue: 3 year: 2005 end-page: 982 article-title: Comparison of different signal peptides for secretion of heterologous proteins in fission yeast publication-title: Biochem Biophys Res Commun – volume: 76 start-page: 1251 issue: 4 year: 2010 end-page: 1260 article-title: Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol publication-title: Appl Environ Microbiol – volume: 30 start-page: 933 issue: 3 year: 1982 end-page: 943 article-title: Structure of a yeast pheromone gene (MFα): A putative α‐factor precursor contains four tandem copies of mature α‐factor publication-title: Cell – volume: 50 start-page: 343 issue: 6–7 year: 2012 end-page: 347 article-title: Repeated fermentation from raw starch using displaying both glucoamylase and α‐amylase publication-title: Enzyme Microb Technol – volume: 64 start-page: 28 issue: 1 year: 2004 end-page: 40 article-title: Yeast cell‐surface display‐applications of molecular display publication-title: Appl Microbiol Biotechnol – volume: 192 start-page: 775 issue: 3 year: 2012 end-page: 818 article-title: Architecture and biosynthesis of the cell wall publication-title: Genetics – volume: 14 start-page: 20 year: 2015 article-title: Synthetic signal sequences that enable efficient secretory protein production in the yeast publication-title: Microb Cell Fact – volume: 8 start-page: e72986 issue: 9 year: 2013 article-title: Surface display of recombinant acetylcholinesterase for detection of organic phosphorus and carbamate pesticides publication-title: PLoS ONE – volume: 120 start-page: 518 issue: 5 year: 2015 end-page: 525 article-title: Signal peptide optimization tool for the secretion of recombinant protein from publication-title: J Biosci Bioeng – volume: 390 start-page: 29 issue: 1 year: 2009 end-page: 37 article-title: A surface display yeast two‐hybrid screening system for high‐throughput protein interactome mapping publication-title: Anal Biochem – volume: 4 start-page: 8 year: 2011 article-title: Direct ethanol production from cellulosic materials using a diploid strain of with optimized cellulase expression publication-title: Biotechnol Biofuels – volume: 86 start-page: 403 issue: 2 year: 2010 end-page: 417 article-title: Engineering of protein secretion in yeast: Strategies and impact on protein production publication-title: Appl Microbiol Biotechnol – volume: 7 start-page: e39720 issue: 6 year: 2012 article-title: Deletion of the KU70 homologue facilitates platform strain generation for gene expression and synthetic biology publication-title: PLoS ONE – volume: 90 start-page: 125 issue: 2 year: 2000 end-page: 136 article-title: Cell surface engineering of yeast: Construction of arming yeast with biocatalyst publication-title: J Biosci Bioeng – volume: 9 start-page: 32 year: 2010 article-title: Cocktail δ‐integration: A novel method to construct cellulolytic enzyme expression ratio‐optimized yeast strains publication-title: Microb Cell Fact – volume: 48 start-page: 148 issue: 2 year: 2011 end-page: 154 article-title: Expression of aspartic protease from in industrial ethanol‐producing yeast and its application in ethanol production publication-title: Enzyme Microb Technol – volume: 146 start-page: 151 issue: 4 year: 2010 end-page: 159 article-title: Quantitative Y2H screening: Cloning and signal peptide engineering of a fungal secretory LacA gene and its application to yeast two‐hybrid system as a quantitative reporter publication-title: J Biotechnol – volume: 63 start-page: 1977 issue: 11 year: 1999 end-page: 1983 article-title: Human lysozyme secretion increased by alpha‐factor pro‐sequence in publication-title: Biosci Biotechnol Biochem – volume: 8 start-page: 191 issue: 2 year: 2013 end-page: 208 article-title: : Protein production host and model organism for biomedical research publication-title: Future Microbiol – volume: 6 start-page: 343 issue: 5 year: 2009 end-page: 345 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases publication-title: Nat Methods – volume: 12 start-page: 14 year: 2013 article-title: Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β‐glucosidase publication-title: Microb Cell Fact – volume: 21 start-page: 83 issue: 1 year: 1992 end-page: 84 article-title: One‐step transformation of yeast in stationary phase publication-title: Curr Genet – volume: 35 start-page: W585 issue: Web Server issue year: 2007 end-page: W587 article-title: WoLF PSORT: Protein localization predictor publication-title: Nucleic Acids Res – volume: 10 start-page: 89 year: 2011 article-title: Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini‐cellulosome publication-title: Microb Cell Fact – volume: 94 start-page: 795 issue: 6 year: 1998 end-page: 807 article-title: Signal sequence recognition in posttranslational protein transport across the yeast ER membrane publication-title: Cell – volume: 98 start-page: 5301 issue: 12 year: 2014 end-page: 5317 article-title: Protein expression in : Recent achievements and perspectives for heterologous protein production publication-title: Appl Microbiol Biotechnol – volume: 145 start-page: 701 issue: 6 year: 2009 end-page: 708 article-title: A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast publication-title: J Biochem – volume: 70 start-page: 1207 issue: 2 year: 2004 end-page: 1212 article-title: Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme publication-title: Appl Environ Microbiol – volume: 120 start-page: 284 issue: 3 year: 2005 end-page: 295 article-title: Construction of cellobiose‐growing and fermenting strains publication-title: J Biotechnol – ident: e_1_2_7_27_1 doi: 10.1186/s13068-015-0344-6 – ident: e_1_2_7_5_1 doi: 10.7150/ijbs.5.578 – ident: e_1_2_7_17_1 doi: 10.1016/j.jbiotec.2012.10.017 – ident: e_1_2_7_18_1 doi: 10.1016/j.jbiotec.2010.02.007 – ident: e_1_2_7_19_1 doi: 10.1074/jbc.M808020200 – ident: e_1_2_7_2_1 doi: 10.1007/s00253-014-5732-5 – ident: e_1_2_7_15_1 doi: 10.1007/s00253-014-6250-1 – ident: e_1_2_7_9_1 doi: 10.1038/nmeth.1318 – ident: e_1_2_7_22_1 doi: 10.1007/s00253-003-1492-3 – ident: e_1_2_7_37_1 doi: 10.1016/S1389-1723(00)80099-7 – ident: e_1_2_7_31_1 doi: 10.1083/jcb.134.2.269 – ident: e_1_2_7_6_1 doi: 10.1073/pnas.1209856109 – ident: e_1_2_7_7_1 doi: 10.1128/AEM.70.2.1207-1212.2004 – ident: e_1_2_7_14_1 doi: 10.1186/1754-6834-7-8 – ident: e_1_2_7_44_1 doi: 10.1186/s12934-015-0203-y – ident: e_1_2_7_28_1 doi: 10.1016/S0962-8924(98)01360-9 – ident: e_1_2_7_42_1 doi: 10.1016/j.enzmictec.2012.03.005 – ident: e_1_2_7_24_1 doi: 10.1016/0092-8674(82)90298-7 – ident: e_1_2_7_35_1 doi: 10.1002/bit.22338 – ident: e_1_2_7_25_1 doi: 10.1038/emm.2002.40 – ident: e_1_2_7_32_1 doi: 10.1271/bbb.63.1977 – ident: e_1_2_7_33_1 doi: 10.1534/genetics.112.144485 – ident: e_1_2_7_4_1 doi: 10.1016/j.ab.2009.03.013 – ident: e_1_2_7_23_1 doi: 10.1263/jbb.105.622 – ident: e_1_2_7_8_1 doi: 10.2217/fmb.12.133 – ident: e_1_2_7_3_1 doi: 10.1007/BF00318659 – ident: e_1_2_7_13_1 doi: 10.1007/s00253-010-2447-0 – ident: e_1_2_7_43_1 doi: 10.1007/s00253-010-2784-z – ident: e_1_2_7_29_1 doi: 10.1016/j.jbiosc.2015.03.003 – ident: e_1_2_7_41_1 doi: 10.1186/1754-6834-4-8 – ident: e_1_2_7_38_1 doi: 10.1016/j.jbiotec.2005.06.013 – ident: e_1_2_7_20_1 doi: 10.1186/1475-2859-12-14 – ident: e_1_2_7_30_1 doi: 10.1371/journal.pone.0039720 – ident: e_1_2_7_34_1 doi: 10.1016/S0092-8674(00)81738-9 – ident: e_1_2_7_40_1 doi: 10.1186/1475-2859-9-32 – ident: e_1_2_7_11_1 doi: 10.1016/j.enzmictec.2010.10.008 – ident: e_1_2_7_26_1 doi: 10.1371/journal.pone.0072986 – ident: e_1_2_7_16_1 doi: 10.1093/jb/mvp028 – ident: e_1_2_7_21_1 doi: 10.1016/j.bbrc.2005.08.195 – ident: e_1_2_7_12_1 doi: 10.1093/nar/gkm259 – volume: 180 start-page: 3381 issue: 13 year: 1998 ident: e_1_2_7_36_1 article-title: Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance publication-title: J Bacteriol doi: 10.1128/JB.180.13.3381-3387.1998 – ident: e_1_2_7_10_1 doi: 10.1186/1475-2859-10-89 – ident: e_1_2_7_39_1 doi: 10.1128/AEM.01687-09 |
SSID | ssj0007866 |
Score | 2.4226635 |
Snippet | ABSTRACT
Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring... Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2358 |
SubjectTerms | Anchoring Aspergillus aculeatus Baking yeast Bioengineering Biofuels Cassettes Cell Membrane - metabolism Cell surface cell surface display Cell walls Cellular biology Cellulase - secretion Cellulolytic enzymes endo-glucanase Endoglucanase Enzymes Ethanol EXG1 protein Fungi Gene sequencing Genes Genetic Enhancement - methods Genomes Glucoamylase Glucosidase Glycosylphosphatidylinositol Hypocrea jecorina Lignocellulose Localization Mating Membrane Glycoproteins - genetics Membrane Glycoproteins - metabolism Peptides Pichia pastoris Protein Engineering - methods Protein Transport - genetics Proteins Recombinant Recombinant Proteins - biosynthesis Recombinant Proteins - genetics Rhizopus oryzae Saccharomyces cerevisiae Saccharomyces cerevisiae - physiology Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Secretion secretion signal sequence Surface chemistry Utilization Yeast Yeasts β-glucosidase |
Title | Enhanced cell-surface display and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae Sed1 signal peptide |
URI | https://api.istex.fr/ark:/67375/WNG-M1HFKHFM-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.26008 https://www.ncbi.nlm.nih.gov/pubmed/27183011 https://www.proquest.com/docview/1823470514 https://www.proquest.com/docview/1904024935 https://www.proquest.com/docview/1824226612 https://www.proquest.com/docview/1827933839 https://www.proquest.com/docview/1845821996 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQceGwpLBRkEKq4ZJuHkzji1FZdFlB7oK3oASnyYyKqbrOrza7E9oT4BfxGfgkzzialaKkQt0geR7ZnPP5sz3xm7BVoq7PAJp7OwHjCRsLL0sJ6fqiKQhrtJ8oFyB4kg2Px_iQ-WWFvmlyYmh-iPXCjmeH8NU1wpautS9JQfTrtEbs6JfpSrBYBoo-X1FGprO8pacccxVnYsAr54VZb88padIOG9esyoHkVt7qFp3-PfW6aXMebnPVmU90zF3-wOf5nn-6zuwtAyrdrC3rAVqDssLXtEjfj53O-yV2IqDt777CbO83Xrd3mobgOu_Mbp-Ea-75XfnFRBZzuBH5--1HNJoUywO1pNR6qOVel5RWBVbre5-OacRatg48KV2U2HA3n2BgO5cX8HCpOR8X8UBlKEMM2oWNDuYnLilfAD8EGnKJQsBNjCtGx8JAd9_eOdgfe4qEHz6BmpJeaSGgIk0KAlQlYKFICOhqUbxBfJJCFOrDSGAQ3KtYJgkRcV42UsQ-FVBCts9VyVMJjxqWJgzQthLC-EWiImRUy04WUIKRQKXTZ60bluVmwoNNjHMO85m8Oc9RB7nTQZS9b0XFN_bFMaNPZTSuhJmcUK5fG-aeDt_l-MOh_GPT3cxTcaAwrX7iJKsfNXSRSoqBfXpyhi8X9cRR32Yu2GLVL2lAljGbuF5QMjUD1Whl0wxFi4etk6AaVYtK77FFt922fQgQwtBDg4Dnr_ftw5DvvjtzHk38XfcpuIwpN6gTPDbY6nczgGSK9qX7upvQvL8FROQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VVqhw4CflJ1BgQVBxcerYa3t94NC_kJCmB5qqvZn9s6iaOlGcCNIT4gl4EF6Fl-BJmFnHKUWh4tIDN0se2-uZnZ3Z3W--JeSlkVrGdR06MjbKYdpnThyl2nE9kaZcSTcUFiC7FzYP2Luj4GiBfC9rYQp-iNmCG3qGHa_RwXFBev2cNVQej2pIr86nkMq2mXyCCVv-prUN1n3leY2d7lbTmZ4p4Kgg9rgTKZ9J44UpM5qHRps0wpgqjXAVhLLQxJ6sa64UxFERyBDyERjCFeeBa1IujA_vvUaW8ARxZOrffn9OVhXxYmcU5-g-fKzkMXK99VlTL0S_JTTk53mp7cVM2Ya6xm3yo1RSgXA5qY1HsqbO_uCP_F-0eIfcmubcdKNwkrtkwWQVsrKRiVH_dELXqEXB2u2FCrm-WV4tb5Vn4VXIzd9oG1fI153sowVOUNz2-PnlWz4epkIZqo_zQU9MqMg0zTEfRwQDHRSkuuAAtJ_aR8a9fm8CjaEmO5ucmpziajjdFwpr4KBNMHaD3NAW_gtD942uUwTawE8MEIWkzT1ycCUau08Ws35mHhLKVVCPopQx7SoGvhZrxmOZcm4YZyIyVfK67GOJmhK943kjvaSgqPYSsHlibV4lL2aig4LdZJ7Qmu2oMwkxPEE4YBQkh3tvk0692Wg3G50EBFfLnpxMR8I8gfmrzyJk2Z9_O4Yo4rHYD6rk-ew2WBetITLTH9tXYL035OKXykCk8SHdv0wGN4kRdl8lDwpHm_2TBzkaxjpQnnWXv6sj2Wx17cWjfxd9Rpab3c5ustvaaz8mNyDpDot61lWyOBqOzRNIbEfyqR1PKPlw1a73CxV9r5k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVrwOPFIegQILgoqLU8de2-sDh7ZpSAiNUB-iN7OPsaiaOlGcCNIT4hfwP_gr_Ap-CbPrOKUoVFx64GbJE2c9szPzrXfmW0Keg9QyruvQkTEoh2mfOXGUasf1RJpyJd1Q2ALZbtjaZ28OgoMF8r3shSn4IWYf3Ixn2HhtHHyg07VT0lB5OKoZdnU-rajswOQTrtfyV-0GGveF5zW39jZbzvRIAUcFscedSPlMghemDDQPQUMamZQqQbgKM1kIsSfrmiuFaVQEMkQ4ghFccR64kHIBPj73EllioRubcyIaO6dcVREvNkbNEt3HPytpjFxvbTbUM8lvydjx8zxkexYo20zXvEl-lDoqClyOauORrKmTP-gj_xMl3iI3poibrhcucpssQFYhy-uZGPWPJ3SV2hpYu7lQIZc3yqurm-VJeBVy_TfSxmXydSv7aMsmqNn0-PnlWz4epkIB1Yf5oCcmVGSa5gaNm_oFOigodXH6035qfzLu9XsTHAyF7GRyDDk138LprlCmAw7HhJEb5Ya27V8A3QVdp6bMBl9iYGqQNNwh-xeisbtkMetncJ9QroJ6FKWMaVcx9LRYMx7LlHNgnIkIquRlOcUSNaV5N6eN9JKCoNpL0OaJtXmVPJuJDgpuk3lCq3aeziTE8MgUA0ZB8r77Otmut5qdVnM7QcGVciIn0ziYJ7h69VlkOPbn344xh3gs9oMqeTq7jdY11hAZ9Mf2EabbG5H4uTKYZ3wE--fJmC1iU3RfJfcKP5u9k4cIzWQ6VJ71lr-rI9lo79mLB_8u-oRceddoJm_b3c5Dcg0Rd1g0s66QxdFwDI8Q1Y7kYxtNKPlw0Z73C1MRrkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+cell-surface+display+and+secretory+production+of+cellulolytic+enzymes+with+Saccharomyces+cerevisiae+Sed1+signal+peptide&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Inokuma%2C+Kentaro&rft.au=Bamba%2C+Takahiro&rft.au=Ishii%2C+Jun&rft.au=Ito%2C+Yoichiro&rft.date=2016-11-01&rft.eissn=1097-0290&rft.volume=113&rft.issue=11&rft.spage=2358&rft_id=info:doi/10.1002%2Fbit.26008&rft_id=info%3Apmid%2F27183011&rft.externalDocID=27183011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |