Enhanced cell-surface display and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae Sed1 signal peptide

ABSTRACT Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzy...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 113; no. 11; pp. 2358 - 2366
Main Authors Inokuma, Kentaro, Bamba, Takahiro, Ishii, Jun, Ito, Yoichiro, Hasunuma, Tomohisa, Kondo, Akihiko
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.11.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell‐surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae α‐mating pheromone (MFα1SP) were constructed for cell‐surface display of Aspergillus aculeatus β‐glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell‐surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MFα1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3‐ and 1.9‐fold higher than the GLUASP and MFα1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell‐surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016;113: 2358–2366. © 2016 Wiley Periodicals, Inc. The effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene (SED1SP) for cell‐surface display and secretory production of heterologous enzymes is described. High secretion efficiency of the novel SP sequence was applicable for both cell‐surface display and secretory production of cellulolytic enzymes (BGL and EG) in S. cerevisiae. In addition, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris.
AbstractList Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell-surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae α-mating pheromone (MFα1SP) were constructed for cell-surface display of Aspergillus aculeatus β-glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell-surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MFα1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3- and 1.9-fold higher than the GLUASP and MFα1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell-surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016;113: 2358-2366. © 2016 Wiley Periodicals, Inc.
ABSTRACT Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell‐surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae α‐mating pheromone (MFα1SP) were constructed for cell‐surface display of Aspergillus aculeatus β‐glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell‐surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MFα1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3‐ and 1.9‐fold higher than the GLUASP and MFα1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell‐surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016;113: 2358–2366. © 2016 Wiley Periodicals, Inc. The effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene (SED1SP) for cell‐surface display and secretory production of heterologous enzymes is described. High secretion efficiency of the novel SP sequence was applicable for both cell‐surface display and secretory production of cellulolytic enzymes (BGL and EG) in S. cerevisiae. In addition, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris.
Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell-surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae [alpha]-mating pheromone (MF[alpha]1SP) were constructed for cell-surface display of Aspergillus aculeatus [beta]-glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell-surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MF[alpha]1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3- and 1.9-fold higher than the GLUASP and MF[alpha]1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell-surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016;113: 2358-2366. © 2016 Wiley Periodicals, Inc.
Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell-surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae α-mating pheromone (MFα1SP) were constructed for cell-surface display of Aspergillus aculeatus β-glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell-surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MFα1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3- and 1.9-fold higher than the GLUASP and MFα1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell-surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016;113: 2358-2366. © 2016 Wiley Periodicals, Inc.Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell-surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae α-mating pheromone (MFα1SP) were constructed for cell-surface display of Aspergillus aculeatus β-glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell-surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MFα1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3- and 1.9-fold higher than the GLUASP and MFα1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell-surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016;113: 2358-2366. © 2016 Wiley Periodicals, Inc.
Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are a promising strategy for bioethanol production from lignocellulosic materials. A crucial step for cell wall localization of the enzymes is the intracellular transport of proteins in yeast cells. Therefore, the addition of a highly efficient secretion signal sequence is important to increase the amount of the enzymes on the yeast cell surface. In this study, we demonstrated the effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene for cell-surface display and secretory production of cellulolytic enzymes. Gene cassettes with SP sequences derived from S. cerevisiae SED1 (SED1SP), Rhizopus oryzae glucoamylase (GLUASP), and S. cerevisiae alpha -mating pheromone (MF alpha 1SP) were constructed for cell-surface display of Aspergillus aculeatus beta -glucosidase (BGL1) and Trichoderma reesei endoglucanase II (EGII). These gene cassettes were integrated into the S. cerevisiae genome. The recombinant strains with the SED1SP showed higher cell-surface BGL and EG activities than those with the conventional SP sequences (GLUASP and MF alpha 1SP). The novel SP sequence also improved the secretory production of BGL and EG in S. cerevisiae. The extracellular BGL activity of the recombinant strains with the SED1SP was 1.3- and 1.9-fold higher than the GLUASP and MF alpha 1SP strains, respectively. Moreover, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris. The utilization of the novel SP sequence is a promising option for highly efficient cell-surface display and secretory production of heterologous proteins in various yeast species. Biotechnol. Bioeng. 2016; 113: 2358-2366. The effectiveness of a novel signal peptide (SP) sequence derived from the Saccharomyces cerevisiae SED1 gene (SED1SP) for cell-surface display and secretory production of heterologous enzymes is described. High secretion efficiency of the novel SP sequence was applicable for both cell-surface display and secretory production of cellulolytic enzymes (BGL and EG) in S. cerevisiae. In addition, the utilization of SED1SP successfully enhanced the secretory production of BGL in Pichia pastoris.
Author Ishii, Jun
Ito, Yoichiro
Kondo, Akihiko
Bamba, Takahiro
Hasunuma, Tomohisa
Inokuma, Kentaro
Author_xml – sequence: 1
  givenname: Kentaro
  surname: Inokuma
  fullname: Inokuma, Kentaro
  organization: Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
– sequence: 2
  givenname: Takahiro
  surname: Bamba
  fullname: Bamba, Takahiro
  organization: Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, 657-8501, Kobe, Japan
– sequence: 3
  givenname: Jun
  surname: Ishii
  fullname: Ishii, Jun
  organization: Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
– sequence: 4
  givenname: Yoichiro
  surname: Ito
  fullname: Ito, Yoichiro
  organization: Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, 657-8501, Kobe, Japan
– sequence: 5
  givenname: Tomohisa
  surname: Hasunuma
  fullname: Hasunuma, Tomohisa
  organization: Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
– sequence: 6
  givenname: Akihiko
  surname: Kondo
  fullname: Kondo, Akihiko
  email: akondo@kobe-u.ac.jp
  organization: Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, 657-8501, Kobe, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27183011$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAURi1URKeFBX8AWWIDi7R-JI69hKrTqWhh0SKWluPcMC6ZJLUdSljx0_F0ZlhUgLqybJ3zyfdxgPa6vgOEXlJyRAlhx5WLR0wQIp-gGSWqzAhTZA_NCCEi44Vi--gghJt0LaUQz9A-K6nkhNIZ-nXaLU1nocYW2jYLo2-MBVy7MLRmwqarcQDrIfZ-woPv69FG13e4b-6Fse3bKTqLofs5rSDgOxeX-MpYuzS-X002PVnw8N0FZwBfQU1xcF870-IBhuhqeI6eNqYN8GJ7HqLP89Prk0V28ens_OTdRWbT_2VWWp5XwESTQy0F1NCUZU6LCgyxtGACFKtoLa0lipqiEgWlhDIrZUGgkQb4IXqzyU1F3I4Qol65sC7BdNCPQVOZF5JRpcQjUFYqziVXj0FzxoSgLKGvH6A3_ehTJxKlSE5YrnjxX0oynpekoHmiXm2psVpBrQfvVsZPejfXBBxvAOv7EDw02rpo1pOL3rhWU6LXm6PT5uj7zUnG2wfGLvRv7Db9zrUw_RvU78-vd0a2MVyI8OOPYfw3LUpeFvrLxzN9SRfzD4v5pZb8N16N4L0
CODEN BIBIAU
CitedBy_id crossref_primary_10_1002_mbo3_1300
crossref_primary_10_1080_10826068_2023_2238290
crossref_primary_10_3389_fbioe_2021_794742
crossref_primary_10_1007_s00253_023_12729_4
crossref_primary_10_1038_s41467_024_52282_w
crossref_primary_10_3390_catal9090728
crossref_primary_10_3390_microorganisms10102005
crossref_primary_10_1111_1751_7915_14061
crossref_primary_10_1002_bit_28321
crossref_primary_10_1016_j_ijbiomac_2023_127915
crossref_primary_10_1007_s00253_021_11440_6
crossref_primary_10_1080_07388551_2024_2385996
crossref_primary_10_1016_j_bej_2021_108305
crossref_primary_10_1016_j_jbiosc_2017_09_013
crossref_primary_10_1021_acssynbio_7b00144
crossref_primary_10_1134_S0006297919120101
crossref_primary_10_1016_j_biortech_2021_125710
crossref_primary_10_1016_j_biotechadv_2021_107859
crossref_primary_10_1007_s43393_022_00109_4
crossref_primary_10_1016_j_ymben_2019_11_004
crossref_primary_10_1038_s41598_017_04815_1
crossref_primary_10_3390_microorganisms9051079
crossref_primary_10_3389_fbioe_2017_00081
crossref_primary_10_1016_j_procbio_2022_11_015
crossref_primary_10_1186_s13568_020_00983_y
crossref_primary_10_3389_fbioe_2022_1056804
crossref_primary_10_1016_j_copbio_2023_103030
crossref_primary_10_1007_s00253_018_8827_6
crossref_primary_10_3389_fmicb_2020_01387
crossref_primary_10_1016_j_indcrop_2020_112607
crossref_primary_10_1186_s13068_017_0738_8
crossref_primary_10_1016_j_copbio_2020_12_002
crossref_primary_10_1007_s43393_021_00045_9
crossref_primary_10_1093_nar_gkaa1066
crossref_primary_10_1186_s12934_024_02361_w
crossref_primary_10_3390_molecules24162879
crossref_primary_10_1016_j_biortech_2022_127105
crossref_primary_10_1016_j_biotechadv_2022_107925
crossref_primary_10_1038_s42003_022_03475_w
crossref_primary_10_1080_07388551_2018_1452891
crossref_primary_10_1016_j_biortech_2017_05_066
crossref_primary_10_1016_j_bej_2017_09_016
crossref_primary_10_1016_j_nbt_2025_02_003
crossref_primary_10_5650_oleoscience_22_99
crossref_primary_10_1039_C8GC03864C
crossref_primary_10_1111_1541_4337_13094
crossref_primary_10_1186_s12934_021_01644_w
crossref_primary_10_1186_s12934_017_0742_5
Cites_doi 10.1186/s13068-015-0344-6
10.7150/ijbs.5.578
10.1016/j.jbiotec.2012.10.017
10.1016/j.jbiotec.2010.02.007
10.1074/jbc.M808020200
10.1007/s00253-014-5732-5
10.1007/s00253-014-6250-1
10.1038/nmeth.1318
10.1007/s00253-003-1492-3
10.1016/S1389-1723(00)80099-7
10.1083/jcb.134.2.269
10.1073/pnas.1209856109
10.1128/AEM.70.2.1207-1212.2004
10.1186/1754-6834-7-8
10.1186/s12934-015-0203-y
10.1016/S0962-8924(98)01360-9
10.1016/j.enzmictec.2012.03.005
10.1016/0092-8674(82)90298-7
10.1002/bit.22338
10.1038/emm.2002.40
10.1271/bbb.63.1977
10.1534/genetics.112.144485
10.1016/j.ab.2009.03.013
10.1263/jbb.105.622
10.2217/fmb.12.133
10.1007/BF00318659
10.1007/s00253-010-2447-0
10.1007/s00253-010-2784-z
10.1016/j.jbiosc.2015.03.003
10.1186/1754-6834-4-8
10.1016/j.jbiotec.2005.06.013
10.1186/1475-2859-12-14
10.1371/journal.pone.0039720
10.1016/S0092-8674(00)81738-9
10.1186/1475-2859-9-32
10.1016/j.enzmictec.2010.10.008
10.1371/journal.pone.0072986
10.1093/jb/mvp028
10.1016/j.bbrc.2005.08.195
10.1093/nar/gkm259
10.1128/JB.180.13.3381-3387.1998
10.1186/1475-2859-10-89
10.1128/AEM.01687-09
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
M7N
DOI 10.1002/bit.26008
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList MEDLINE

Materials Research Database
MEDLINE - Academic
Materials Research Database
Engineering Research Database
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 2366
ExternalDocumentID 4195431681
27183011
10_1002_bit_26008
BIT26008
ark_67375_WNG_M1HFKHFM_8
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Education, Culture, Sports, Science and Technology
– fundername: Ministry of Economy, Trade and Industry (METI), Japan
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
M7N
ID FETCH-LOGICAL-c5928-7c34be26f4ed86edef77415bea0c1526e92b1d8cc091a5b6511012c8850ef8ae3
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Fri Jul 11 13:03:55 EDT 2025
Fri Jul 11 05:44:50 EDT 2025
Fri Jul 11 15:36:09 EDT 2025
Fri Jul 25 19:16:05 EDT 2025
Sun Jul 13 02:59:27 EDT 2025
Wed Feb 19 02:41:41 EST 2025
Thu Apr 24 23:00:06 EDT 2025
Tue Jul 01 01:08:57 EDT 2025
Wed Jan 22 16:27:15 EST 2025
Wed Oct 30 09:52:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Pichia pastoris
β-glucosidase
endo-glucanase
Saccharomyces cerevisiae
secretion signal sequence
cell surface display
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5928-7c34be26f4ed86edef77415bea0c1526e92b1d8cc091a5b6511012c8850ef8ae3
Notes Ministry of Education, Culture, Sports, Science and Technology
istex:27F5AED3B008B120FF8B0EB49EA253E407B923B2
Ministry of Economy, Trade and Industry (METI), Japan
ArticleID:BIT26008
ark:/67375/WNG-M1HFKHFM-8
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27183011
PQID 1823470514
PQPubID 48814
PageCount 9
ParticipantIDs proquest_miscellaneous_1845821996
proquest_miscellaneous_1827933839
proquest_miscellaneous_1824226612
proquest_journals_1904024935
proquest_journals_1823470514
pubmed_primary_27183011
crossref_citationtrail_10_1002_bit_26008
crossref_primary_10_1002_bit_26008
wiley_primary_10_1002_bit_26008_BIT26008
istex_primary_ark_67375_WNG_M1HFKHFM_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2016
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Van Rooyen R, Hahn-Hägerdal B, La Grange DC, Van Zyl WH. 2005. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120(3):284-295.
Li J, Qian B, Yin J, Wu S, Zhuan F, Xu S, Li J, Salazar JK, Zhang W, Wang H. 2013. Surface display of recombinant Drosophila melanogaster acetylcholinesterase for detection of organic phosphorus and carbamate pesticides. PLoS ONE 8(9):e72986.
Kjærulff S, Jensen MR. 2005. Comparison of different signal peptides for secretion of heterologous proteins in fission yeast. Biochem Biophys Res Commun 336(3):974-982.
Wen F, Sun J, Zhao H. 2010. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76(4):1251-1260.
Kida Y, Morimoto F, Sakaguchi M. 2009. Signal anchor sequence provides motive force for polypeptide chain translocation through the endoplasmic reticulum membrane. J Biol Chem 284(5):2861-2866.
Ng DT, Brown JD, Walter P. 1996. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134(2):269-278.
Orlean P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192(3):775-818.
Chen J, Zhou J, Sanders CK, Nolan JP, Cai H. 2009. A surface display yeast two-hybrid screening system for high-throughput protein interactome mapping. Anal Biochem 390(1):29-37.
Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA. 1998. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94(6):795-807.
Liu Z, Inokuma K, Ho SH, Haan R, Hasunuma T, Van Zyl WH, Kondo A. 2015. Combined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiae. Biotechnol Biofuels 8:162.
Kim S, Baek SH, Lee K, Hahn JS. 2013. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microb Cell Fact 12:14.
Lee MA, Cheong KH, Shields D, Park SD, Hong SH. 2002. Intracellular trafficking and metabolic turnover of yeast prepro-α-factor-SRIF precursors in GH3 cells. Exp Mol Med 34(4):285-293.
Kurjan J, Herskowitz I. 1982. Structure of a yeast pheromone gene (MFα): A putative α-factor precursor contains four tandem copies of mature α-factor. Cell 30(3):933-943
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K. 2007. WoLF PSORT: Protein localization predictor. Nucleic Acids Res 35(Web Server issue):W585-W587.
Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A. 2012. Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS ONE 7(6):e39720.
Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW. 2012. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci USA 109(33):13260-13265.
Rakestraw JA, Sazinsky SL, Piatesi A, Antipov E, Wittrup KD. 2009. Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol Bioeng 103(6):1192-1201.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343-345.
Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, Puxbaum V, Sauer M, Mattanovich D. 2013. Pichia pastoris: Protein production host and model organism for biomedical research. Future Microbiol 8(2):191-208.
Ismail KS, Sakamoto T, Hatanaka H, Hasunuma T, Kondo A. 2013. Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. J Biotechnol 163(1):50-60.
Guo ZP, Qiu CY, Zhang L, Ding ZY, Wang ZX, Shi GY. 2011. Expression of aspartic protease from Neurospora crassa in industrial ethanol-producing yeast and its application in ethanol production. Enzyme Microb Technol 48(2):148-154.
Yarimizu T, Nakamura M, Hoshida H, Akada R. 2015. Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus. Microb Cell Fact 14:20.
Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. 2004. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70(2):1207-1212.
Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A. 2012. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Enzyme Microb Technol 50(6-7):343-347.
Chen DC, Yang BC, Kuo TT. 1992. One-step transformation of yeast in stationary phase. Curr Genet 21(1):83-84.
Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A. 2010. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88(1):381-388.
Ueda M, Tanaka A. 2000. Cell surface engineering of yeast: Construction of arming yeast with biocatalyst. J Biosci Bioeng 90(2):125-136.
Kamiya T, Ojima T, Sugimoto K, Nakano H, Kawarasaki Y. 2010. Quantitative Y2H screening: Cloning and signal peptide engineering of a fungal secretory LacA gene and its application to yeast two-hybrid system as a quantitative reporter. J Biotechnol 146(4):151-159.
Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. 2011. Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol Biofuels 4:8.
Kondo A, Ueda M. 2004. Yeast cell-surface display-applications of molecular display. Appl Microbiol Biotechnol 64(1):28-40.
Inokuma K, Hasunuma T, Kondo A. 2014. Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnol Biofuels 7(1):8.
Ahmad M, Hirz M, Pichler H, Schwab H. 2014. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98(12):5301-5317.
Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M. 2008. Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 105(6):622-627.
Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W. 2011. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact 10:89.
Oka C, Tanaka M, Muraki M, Harata K, Suzuki K, Jigami Y. 1999. Human lysozyme secretion increased by alpha-factor pro-sequence in Pichia pastoris. Biosci Biotechnol Biochem 63(11):1977-1983.
Shimoi H, Kitagaki H, Ohmori H, Iimura Y, Ito K. 1998. Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180(13):3381-3387.
Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. 2010. Cocktail δ-integration: A novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact 9:32.
Martoglio B, Dobberstein B. 1998. Signal sequences: More than just greasy peptides. Trends Cell Biol 8(10):410-415.
Inokuma K, Yoshida T, Ishii J, Hasunuma T, Kondo A. 2015. Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains. Appl Microbiol Biotechnol 99(4):1655-1663.
Dashtban M, Schraft H, Qin W. 2009. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5(6):578-595.
Mori A, Hara S, Sugahara T, Kojima T, Iwasaki Y, Kawarasaki Y, Sahara T, Ohgiya S, Nakano H. 2015. Signal peptide optimization tool for the secretion of recombinant protein from Saccharomyces cerevisiae. J Biosci Bioeng 120(5):518-525.
Idiris A, Tohda H, Kumagai H, Takegawa K. 2010. Engineering of protein secretion in yeast: Strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403-417.
Ishii J, Izawa K, Matsumura S, Wakamura K, Tanino T, Tanaka T, Ogino C, Fukuda H, Kondo A. 2009. A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast. J Biochem 145(6):701-708.
1998; 180
2010; 76
2004; 64
2015; 14
1982; 30
2002; 34
2015; 99
2005; 336
2015; 120
2010; 146
2011; 10
2013; 163
2008; 105
2000; 90
1999; 63
2011; 4
2013; 8
2015; 8
2007; 35
2012; 109
2012; 50
2010; 88
2010; 86
2004; 70
2005; 120
2009; 390
2013; 12
2012; 192
2009; 145
2009; 6
2009; 5
2011; 48
2009; 284
1998; 94
1992; 21
2012; 7
2014; 7
1996; 134
2009; 103
2014; 98
2010; 9
1998; 8
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Shimoi H (e_1_2_7_36_1) 1998; 180
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – reference: Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M. 2008. Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 105(6):622-627.
– reference: Guo ZP, Qiu CY, Zhang L, Ding ZY, Wang ZX, Shi GY. 2011. Expression of aspartic protease from Neurospora crassa in industrial ethanol-producing yeast and its application in ethanol production. Enzyme Microb Technol 48(2):148-154.
– reference: Lee MA, Cheong KH, Shields D, Park SD, Hong SH. 2002. Intracellular trafficking and metabolic turnover of yeast prepro-α-factor-SRIF precursors in GH3 cells. Exp Mol Med 34(4):285-293.
– reference: Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A. 2010. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88(1):381-388.
– reference: Wen F, Sun J, Zhao H. 2010. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76(4):1251-1260.
– reference: Chen DC, Yang BC, Kuo TT. 1992. One-step transformation of yeast in stationary phase. Curr Genet 21(1):83-84.
– reference: Orlean P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192(3):775-818.
– reference: Ahmad M, Hirz M, Pichler H, Schwab H. 2014. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98(12):5301-5317.
– reference: Martoglio B, Dobberstein B. 1998. Signal sequences: More than just greasy peptides. Trends Cell Biol 8(10):410-415.
– reference: Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. 2004. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70(2):1207-1212.
– reference: Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343-345.
– reference: Idiris A, Tohda H, Kumagai H, Takegawa K. 2010. Engineering of protein secretion in yeast: Strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403-417.
– reference: Oka C, Tanaka M, Muraki M, Harata K, Suzuki K, Jigami Y. 1999. Human lysozyme secretion increased by alpha-factor pro-sequence in Pichia pastoris. Biosci Biotechnol Biochem 63(11):1977-1983.
– reference: Rakestraw JA, Sazinsky SL, Piatesi A, Antipov E, Wittrup KD. 2009. Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol Bioeng 103(6):1192-1201.
– reference: Mori A, Hara S, Sugahara T, Kojima T, Iwasaki Y, Kawarasaki Y, Sahara T, Ohgiya S, Nakano H. 2015. Signal peptide optimization tool for the secretion of recombinant protein from Saccharomyces cerevisiae. J Biosci Bioeng 120(5):518-525.
– reference: Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW. 2012. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci USA 109(33):13260-13265.
– reference: Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K. 2007. WoLF PSORT: Protein localization predictor. Nucleic Acids Res 35(Web Server issue):W585-W587.
– reference: Kurjan J, Herskowitz I. 1982. Structure of a yeast pheromone gene (MFα): A putative α-factor precursor contains four tandem copies of mature α-factor. Cell 30(3):933-943
– reference: Kamiya T, Ojima T, Sugimoto K, Nakano H, Kawarasaki Y. 2010. Quantitative Y2H screening: Cloning and signal peptide engineering of a fungal secretory LacA gene and its application to yeast two-hybrid system as a quantitative reporter. J Biotechnol 146(4):151-159.
– reference: Kjærulff S, Jensen MR. 2005. Comparison of different signal peptides for secretion of heterologous proteins in fission yeast. Biochem Biophys Res Commun 336(3):974-982.
– reference: Dashtban M, Schraft H, Qin W. 2009. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5(6):578-595.
– reference: Kim S, Baek SH, Lee K, Hahn JS. 2013. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microb Cell Fact 12:14.
– reference: Ishii J, Izawa K, Matsumura S, Wakamura K, Tanino T, Tanaka T, Ogino C, Fukuda H, Kondo A. 2009. A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast. J Biochem 145(6):701-708.
– reference: Shimoi H, Kitagaki H, Ohmori H, Iimura Y, Ito K. 1998. Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180(13):3381-3387.
– reference: Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A. 2012. Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS ONE 7(6):e39720.
– reference: Liu Z, Inokuma K, Ho SH, Haan R, Hasunuma T, Van Zyl WH, Kondo A. 2015. Combined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiae. Biotechnol Biofuels 8:162.
– reference: Inokuma K, Yoshida T, Ishii J, Hasunuma T, Kondo A. 2015. Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains. Appl Microbiol Biotechnol 99(4):1655-1663.
– reference: Inokuma K, Hasunuma T, Kondo A. 2014. Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnol Biofuels 7(1):8.
– reference: Ismail KS, Sakamoto T, Hatanaka H, Hasunuma T, Kondo A. 2013. Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. J Biotechnol 163(1):50-60.
– reference: Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. 2010. Cocktail δ-integration: A novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact 9:32.
– reference: Li J, Qian B, Yin J, Wu S, Zhuan F, Xu S, Li J, Salazar JK, Zhang W, Wang H. 2013. Surface display of recombinant Drosophila melanogaster acetylcholinesterase for detection of organic phosphorus and carbamate pesticides. PLoS ONE 8(9):e72986.
– reference: Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. 2011. Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol Biofuels 4:8.
– reference: Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, Puxbaum V, Sauer M, Mattanovich D. 2013. Pichia pastoris: Protein production host and model organism for biomedical research. Future Microbiol 8(2):191-208.
– reference: Kondo A, Ueda M. 2004. Yeast cell-surface display-applications of molecular display. Appl Microbiol Biotechnol 64(1):28-40.
– reference: Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA. 1998. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94(6):795-807.
– reference: Ueda M, Tanaka A. 2000. Cell surface engineering of yeast: Construction of arming yeast with biocatalyst. J Biosci Bioeng 90(2):125-136.
– reference: Van Rooyen R, Hahn-Hägerdal B, La Grange DC, Van Zyl WH. 2005. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120(3):284-295.
– reference: Kida Y, Morimoto F, Sakaguchi M. 2009. Signal anchor sequence provides motive force for polypeptide chain translocation through the endoplasmic reticulum membrane. J Biol Chem 284(5):2861-2866.
– reference: Yarimizu T, Nakamura M, Hoshida H, Akada R. 2015. Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus. Microb Cell Fact 14:20.
– reference: Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A. 2012. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Enzyme Microb Technol 50(6-7):343-347.
– reference: Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W. 2011. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact 10:89.
– reference: Chen J, Zhou J, Sanders CK, Nolan JP, Cai H. 2009. A surface display yeast two-hybrid screening system for high-throughput protein interactome mapping. Anal Biochem 390(1):29-37.
– reference: Ng DT, Brown JD, Walter P. 1996. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134(2):269-278.
– volume: 163
  start-page: 50
  issue: 1
  year: 2013
  end-page: 60
  article-title: Gene expression cross‐profiling in genetically modified industrial strains during high‐temperature ethanol production from xylose
  publication-title: J Biotechnol
– volume: 34
  start-page: 285
  issue: 4
  year: 2002
  end-page: 293
  article-title: Intracellular trafficking and metabolic turnover of yeast prepro‐α‐factor‐SRIF precursors in GH3 cells
  publication-title: Exp Mol Med
– volume: 5
  start-page: 578
  issue: 6
  year: 2009
  end-page: 595
  article-title: Fungal bioconversion of lignocellulosic residues; opportunities & perspectives
  publication-title: Int J Biol Sci
– volume: 88
  start-page: 381
  issue: 1
  year: 2010
  end-page: 388
  article-title: Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast displaying cellulolytic enzymes
  publication-title: Appl Microbiol Biotechnol
– volume: 134
  start-page: 269
  issue: 2
  year: 1996
  end-page: 278
  article-title: Signal sequences specify the targeting route to the endoplasmic reticulum membrane
  publication-title: J Cell Biol
– volume: 8
  start-page: 162
  year: 2015
  article-title: Combined cell‐surface display‐ and secretion‐based strategies for production of cellulosic ethanol with
  publication-title: Biotechnol Biofuels
– volume: 8
  start-page: 410
  issue: 10
  year: 1998
  end-page: 415
  article-title: Signal sequences: More than just greasy peptides
  publication-title: Trends Cell Biol
– volume: 103
  start-page: 1192
  issue: 6
  year: 2009
  end-page: 1201
  article-title: Directed evolution of a secretory leader for the improved expression of heterologous proteins and full‐length antibodies in
  publication-title: Biotechnol Bioeng
– volume: 284
  start-page: 2861
  issue: 5
  year: 2009
  end-page: 2866
  article-title: Signal anchor sequence provides motive force for polypeptide chain translocation through the endoplasmic reticulum membrane
  publication-title: J Biol Chem
– volume: 180
  start-page: 3381
  issue: 13
  year: 1998
  end-page: 3387
  article-title: Sed1p is a major cell wall protein of in the stationary phase and is involved in lytic enzyme resistance
  publication-title: J Bacteriol
– volume: 105
  start-page: 622
  issue: 6
  year: 2008
  end-page: 627
  article-title: Direct ethanol production from barley β‐glucan by sake yeast displaying β‐glucosidase and endoglucanase
  publication-title: J Biosci Bioeng
– volume: 109
  start-page: 13260
  issue: 33
  year: 2012
  end-page: 13265
  article-title: Self‐surface assembly of cellulosomes with two miniscaffoldins on for cellulosic ethanol production
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: 8
  issue: 1
  year: 2014
  article-title: Efficient yeast cell‐surface display of exo‐ and endo‐cellulase using the anchoring region and its original promoter
  publication-title: Biotechnol Biofuels
– volume: 99
  start-page: 1655
  issue: 4
  year: 2015
  end-page: 1663
  article-title: Efficient co‐displaying and artificial ratio control of α‐amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains
  publication-title: Appl Microbiol Biotechnol
– volume: 336
  start-page: 974
  issue: 3
  year: 2005
  end-page: 982
  article-title: Comparison of different signal peptides for secretion of heterologous proteins in fission yeast
  publication-title: Biochem Biophys Res Commun
– volume: 76
  start-page: 1251
  issue: 4
  year: 2010
  end-page: 1260
  article-title: Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol
  publication-title: Appl Environ Microbiol
– volume: 30
  start-page: 933
  issue: 3
  year: 1982
  end-page: 943
  article-title: Structure of a yeast pheromone gene (MFα): A putative α‐factor precursor contains four tandem copies of mature α‐factor
  publication-title: Cell
– volume: 50
  start-page: 343
  issue: 6–7
  year: 2012
  end-page: 347
  article-title: Repeated fermentation from raw starch using displaying both glucoamylase and α‐amylase
  publication-title: Enzyme Microb Technol
– volume: 64
  start-page: 28
  issue: 1
  year: 2004
  end-page: 40
  article-title: Yeast cell‐surface display‐applications of molecular display
  publication-title: Appl Microbiol Biotechnol
– volume: 192
  start-page: 775
  issue: 3
  year: 2012
  end-page: 818
  article-title: Architecture and biosynthesis of the cell wall
  publication-title: Genetics
– volume: 14
  start-page: 20
  year: 2015
  article-title: Synthetic signal sequences that enable efficient secretory protein production in the yeast
  publication-title: Microb Cell Fact
– volume: 8
  start-page: e72986
  issue: 9
  year: 2013
  article-title: Surface display of recombinant acetylcholinesterase for detection of organic phosphorus and carbamate pesticides
  publication-title: PLoS ONE
– volume: 120
  start-page: 518
  issue: 5
  year: 2015
  end-page: 525
  article-title: Signal peptide optimization tool for the secretion of recombinant protein from
  publication-title: J Biosci Bioeng
– volume: 390
  start-page: 29
  issue: 1
  year: 2009
  end-page: 37
  article-title: A surface display yeast two‐hybrid screening system for high‐throughput protein interactome mapping
  publication-title: Anal Biochem
– volume: 4
  start-page: 8
  year: 2011
  article-title: Direct ethanol production from cellulosic materials using a diploid strain of with optimized cellulase expression
  publication-title: Biotechnol Biofuels
– volume: 86
  start-page: 403
  issue: 2
  year: 2010
  end-page: 417
  article-title: Engineering of protein secretion in yeast: Strategies and impact on protein production
  publication-title: Appl Microbiol Biotechnol
– volume: 7
  start-page: e39720
  issue: 6
  year: 2012
  article-title: Deletion of the KU70 homologue facilitates platform strain generation for gene expression and synthetic biology
  publication-title: PLoS ONE
– volume: 90
  start-page: 125
  issue: 2
  year: 2000
  end-page: 136
  article-title: Cell surface engineering of yeast: Construction of arming yeast with biocatalyst
  publication-title: J Biosci Bioeng
– volume: 9
  start-page: 32
  year: 2010
  article-title: Cocktail δ‐integration: A novel method to construct cellulolytic enzyme expression ratio‐optimized yeast strains
  publication-title: Microb Cell Fact
– volume: 48
  start-page: 148
  issue: 2
  year: 2011
  end-page: 154
  article-title: Expression of aspartic protease from in industrial ethanol‐producing yeast and its application in ethanol production
  publication-title: Enzyme Microb Technol
– volume: 146
  start-page: 151
  issue: 4
  year: 2010
  end-page: 159
  article-title: Quantitative Y2H screening: Cloning and signal peptide engineering of a fungal secretory LacA gene and its application to yeast two‐hybrid system as a quantitative reporter
  publication-title: J Biotechnol
– volume: 63
  start-page: 1977
  issue: 11
  year: 1999
  end-page: 1983
  article-title: Human lysozyme secretion increased by alpha‐factor pro‐sequence in
  publication-title: Biosci Biotechnol Biochem
– volume: 8
  start-page: 191
  issue: 2
  year: 2013
  end-page: 208
  article-title: : Protein production host and model organism for biomedical research
  publication-title: Future Microbiol
– volume: 6
  start-page: 343
  issue: 5
  year: 2009
  end-page: 345
  article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases
  publication-title: Nat Methods
– volume: 12
  start-page: 14
  year: 2013
  article-title: Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β‐glucosidase
  publication-title: Microb Cell Fact
– volume: 21
  start-page: 83
  issue: 1
  year: 1992
  end-page: 84
  article-title: One‐step transformation of yeast in stationary phase
  publication-title: Curr Genet
– volume: 35
  start-page: W585
  issue: Web Server issue
  year: 2007
  end-page: W587
  article-title: WoLF PSORT: Protein localization predictor
  publication-title: Nucleic Acids Res
– volume: 10
  start-page: 89
  year: 2011
  article-title: Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini‐cellulosome
  publication-title: Microb Cell Fact
– volume: 94
  start-page: 795
  issue: 6
  year: 1998
  end-page: 807
  article-title: Signal sequence recognition in posttranslational protein transport across the yeast ER membrane
  publication-title: Cell
– volume: 98
  start-page: 5301
  issue: 12
  year: 2014
  end-page: 5317
  article-title: Protein expression in : Recent achievements and perspectives for heterologous protein production
  publication-title: Appl Microbiol Biotechnol
– volume: 145
  start-page: 701
  issue: 6
  year: 2009
  end-page: 708
  article-title: A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast
  publication-title: J Biochem
– volume: 70
  start-page: 1207
  issue: 2
  year: 2004
  end-page: 1212
  article-title: Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme
  publication-title: Appl Environ Microbiol
– volume: 120
  start-page: 284
  issue: 3
  year: 2005
  end-page: 295
  article-title: Construction of cellobiose‐growing and fermenting strains
  publication-title: J Biotechnol
– ident: e_1_2_7_27_1
  doi: 10.1186/s13068-015-0344-6
– ident: e_1_2_7_5_1
  doi: 10.7150/ijbs.5.578
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jbiotec.2012.10.017
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jbiotec.2010.02.007
– ident: e_1_2_7_19_1
  doi: 10.1074/jbc.M808020200
– ident: e_1_2_7_2_1
  doi: 10.1007/s00253-014-5732-5
– ident: e_1_2_7_15_1
  doi: 10.1007/s00253-014-6250-1
– ident: e_1_2_7_9_1
  doi: 10.1038/nmeth.1318
– ident: e_1_2_7_22_1
  doi: 10.1007/s00253-003-1492-3
– ident: e_1_2_7_37_1
  doi: 10.1016/S1389-1723(00)80099-7
– ident: e_1_2_7_31_1
  doi: 10.1083/jcb.134.2.269
– ident: e_1_2_7_6_1
  doi: 10.1073/pnas.1209856109
– ident: e_1_2_7_7_1
  doi: 10.1128/AEM.70.2.1207-1212.2004
– ident: e_1_2_7_14_1
  doi: 10.1186/1754-6834-7-8
– ident: e_1_2_7_44_1
  doi: 10.1186/s12934-015-0203-y
– ident: e_1_2_7_28_1
  doi: 10.1016/S0962-8924(98)01360-9
– ident: e_1_2_7_42_1
  doi: 10.1016/j.enzmictec.2012.03.005
– ident: e_1_2_7_24_1
  doi: 10.1016/0092-8674(82)90298-7
– ident: e_1_2_7_35_1
  doi: 10.1002/bit.22338
– ident: e_1_2_7_25_1
  doi: 10.1038/emm.2002.40
– ident: e_1_2_7_32_1
  doi: 10.1271/bbb.63.1977
– ident: e_1_2_7_33_1
  doi: 10.1534/genetics.112.144485
– ident: e_1_2_7_4_1
  doi: 10.1016/j.ab.2009.03.013
– ident: e_1_2_7_23_1
  doi: 10.1263/jbb.105.622
– ident: e_1_2_7_8_1
  doi: 10.2217/fmb.12.133
– ident: e_1_2_7_3_1
  doi: 10.1007/BF00318659
– ident: e_1_2_7_13_1
  doi: 10.1007/s00253-010-2447-0
– ident: e_1_2_7_43_1
  doi: 10.1007/s00253-010-2784-z
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jbiosc.2015.03.003
– ident: e_1_2_7_41_1
  doi: 10.1186/1754-6834-4-8
– ident: e_1_2_7_38_1
  doi: 10.1016/j.jbiotec.2005.06.013
– ident: e_1_2_7_20_1
  doi: 10.1186/1475-2859-12-14
– ident: e_1_2_7_30_1
  doi: 10.1371/journal.pone.0039720
– ident: e_1_2_7_34_1
  doi: 10.1016/S0092-8674(00)81738-9
– ident: e_1_2_7_40_1
  doi: 10.1186/1475-2859-9-32
– ident: e_1_2_7_11_1
  doi: 10.1016/j.enzmictec.2010.10.008
– ident: e_1_2_7_26_1
  doi: 10.1371/journal.pone.0072986
– ident: e_1_2_7_16_1
  doi: 10.1093/jb/mvp028
– ident: e_1_2_7_21_1
  doi: 10.1016/j.bbrc.2005.08.195
– ident: e_1_2_7_12_1
  doi: 10.1093/nar/gkm259
– volume: 180
  start-page: 3381
  issue: 13
  year: 1998
  ident: e_1_2_7_36_1
  article-title: Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance
  publication-title: J Bacteriol
  doi: 10.1128/JB.180.13.3381-3387.1998
– ident: e_1_2_7_10_1
  doi: 10.1186/1475-2859-10-89
– ident: e_1_2_7_39_1
  doi: 10.1128/AEM.01687-09
SSID ssj0007866
Score 2.4226635
Snippet ABSTRACT Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring...
Recombinant yeast strains displaying aheterologous cellulolytic enzymes on their cell surfaces using a glycosylphosphatidylinositol (GPI) anchoring system are...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2358
SubjectTerms Anchoring
Aspergillus aculeatus
Baking yeast
Bioengineering
Biofuels
Cassettes
Cell Membrane - metabolism
Cell surface
cell surface display
Cell walls
Cellular biology
Cellulase - secretion
Cellulolytic enzymes
endo-glucanase
Endoglucanase
Enzymes
Ethanol
EXG1 protein
Fungi
Gene sequencing
Genes
Genetic Enhancement - methods
Genomes
Glucoamylase
Glucosidase
Glycosylphosphatidylinositol
Hypocrea jecorina
Lignocellulose
Localization
Mating
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
Peptides
Pichia pastoris
Protein Engineering - methods
Protein Transport - genetics
Proteins
Recombinant
Recombinant Proteins - biosynthesis
Recombinant Proteins - genetics
Rhizopus oryzae
Saccharomyces cerevisiae
Saccharomyces cerevisiae - physiology
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Secretion
secretion signal sequence
Surface chemistry
Utilization
Yeast
Yeasts
β-glucosidase
Title Enhanced cell-surface display and secretory production of cellulolytic enzymes with Saccharomyces cerevisiae Sed1 signal peptide
URI https://api.istex.fr/ark:/67375/WNG-M1HFKHFM-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.26008
https://www.ncbi.nlm.nih.gov/pubmed/27183011
https://www.proquest.com/docview/1823470514
https://www.proquest.com/docview/1904024935
https://www.proquest.com/docview/1824226612
https://www.proquest.com/docview/1827933839
https://www.proquest.com/docview/1845821996
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQceGwpLBRkEKq4ZJuHkzji1FZdFlB7oK3oASnyYyKqbrOrza7E9oT4BfxGfgkzzialaKkQt0geR7ZnPP5sz3xm7BVoq7PAJp7OwHjCRsLL0sJ6fqiKQhrtJ8oFyB4kg2Px_iQ-WWFvmlyYmh-iPXCjmeH8NU1wpautS9JQfTrtEbs6JfpSrBYBoo-X1FGprO8pacccxVnYsAr54VZb88padIOG9esyoHkVt7qFp3-PfW6aXMebnPVmU90zF3-wOf5nn-6zuwtAyrdrC3rAVqDssLXtEjfj53O-yV2IqDt777CbO83Xrd3mobgOu_Mbp-Ea-75XfnFRBZzuBH5--1HNJoUywO1pNR6qOVel5RWBVbre5-OacRatg48KV2U2HA3n2BgO5cX8HCpOR8X8UBlKEMM2oWNDuYnLilfAD8EGnKJQsBNjCtGx8JAd9_eOdgfe4qEHz6BmpJeaSGgIk0KAlQlYKFICOhqUbxBfJJCFOrDSGAQ3KtYJgkRcV42UsQ-FVBCts9VyVMJjxqWJgzQthLC-EWiImRUy04WUIKRQKXTZ60bluVmwoNNjHMO85m8Oc9RB7nTQZS9b0XFN_bFMaNPZTSuhJmcUK5fG-aeDt_l-MOh_GPT3cxTcaAwrX7iJKsfNXSRSoqBfXpyhi8X9cRR32Yu2GLVL2lAljGbuF5QMjUD1Whl0wxFi4etk6AaVYtK77FFt922fQgQwtBDg4Dnr_ftw5DvvjtzHk38XfcpuIwpN6gTPDbY6nczgGSK9qX7upvQvL8FROQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VVqhw4CflJ1BgQVBxcerYa3t94NC_kJCmB5qqvZn9s6iaOlGcCNIT4gl4EF6Fl-BJmFnHKUWh4tIDN0se2-uZnZ3Z3W--JeSlkVrGdR06MjbKYdpnThyl2nE9kaZcSTcUFiC7FzYP2Luj4GiBfC9rYQp-iNmCG3qGHa_RwXFBev2cNVQej2pIr86nkMq2mXyCCVv-prUN1n3leY2d7lbTmZ4p4Kgg9rgTKZ9J44UpM5qHRps0wpgqjXAVhLLQxJ6sa64UxFERyBDyERjCFeeBa1IujA_vvUaW8ARxZOrffn9OVhXxYmcU5-g-fKzkMXK99VlTL0S_JTTk53mp7cVM2Ya6xm3yo1RSgXA5qY1HsqbO_uCP_F-0eIfcmubcdKNwkrtkwWQVsrKRiVH_dELXqEXB2u2FCrm-WV4tb5Vn4VXIzd9oG1fI153sowVOUNz2-PnlWz4epkIZqo_zQU9MqMg0zTEfRwQDHRSkuuAAtJ_aR8a9fm8CjaEmO5ucmpziajjdFwpr4KBNMHaD3NAW_gtD942uUwTawE8MEIWkzT1ycCUau08Ws35mHhLKVVCPopQx7SoGvhZrxmOZcm4YZyIyVfK67GOJmhK943kjvaSgqPYSsHlibV4lL2aig4LdZJ7Qmu2oMwkxPEE4YBQkh3tvk0692Wg3G50EBFfLnpxMR8I8gfmrzyJk2Z9_O4Yo4rHYD6rk-ew2WBetITLTH9tXYL035OKXykCk8SHdv0wGN4kRdl8lDwpHm_2TBzkaxjpQnnWXv6sj2Wx17cWjfxd9Rpab3c5ustvaaz8mNyDpDot61lWyOBqOzRNIbEfyqR1PKPlw1a73CxV9r5k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVrwOPFIegQILgoqLU8de2-sDh7ZpSAiNUB-iN7OPsaiaOlGcCNIT4hfwP_gr_Ap-CbPrOKUoVFx64GbJE2c9szPzrXfmW0Keg9QyruvQkTEoh2mfOXGUasf1RJpyJd1Q2ALZbtjaZ28OgoMF8r3shSn4IWYf3Ixn2HhtHHyg07VT0lB5OKoZdnU-rajswOQTrtfyV-0GGveF5zW39jZbzvRIAUcFscedSPlMghemDDQPQUMamZQqQbgKM1kIsSfrmiuFaVQEMkQ4ghFccR64kHIBPj73EllioRubcyIaO6dcVREvNkbNEt3HPytpjFxvbTbUM8lvydjx8zxkexYo20zXvEl-lDoqClyOauORrKmTP-gj_xMl3iI3poibrhcucpssQFYhy-uZGPWPJ3SV2hpYu7lQIZc3yqurm-VJeBVy_TfSxmXydSv7aMsmqNn0-PnlWz4epkIB1Yf5oCcmVGSa5gaNm_oFOigodXH6035qfzLu9XsTHAyF7GRyDDk138LprlCmAw7HhJEb5Ya27V8A3QVdp6bMBl9iYGqQNNwh-xeisbtkMetncJ9QroJ6FKWMaVcx9LRYMx7LlHNgnIkIquRlOcUSNaV5N6eN9JKCoNpL0OaJtXmVPJuJDgpuk3lCq3aeziTE8MgUA0ZB8r77Otmut5qdVnM7QcGVciIn0ziYJ7h69VlkOPbn344xh3gs9oMqeTq7jdY11hAZ9Mf2EabbG5H4uTKYZ3wE--fJmC1iU3RfJfcKP5u9k4cIzWQ6VJ71lr-rI9lo79mLB_8u-oRceddoJm_b3c5Dcg0Rd1g0s66QxdFwDI8Q1Y7kYxtNKPlw0Z73C1MRrkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+cell-surface+display+and+secretory+production+of+cellulolytic+enzymes+with+Saccharomyces+cerevisiae+Sed1+signal+peptide&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Inokuma%2C+Kentaro&rft.au=Bamba%2C+Takahiro&rft.au=Ishii%2C+Jun&rft.au=Ito%2C+Yoichiro&rft.date=2016-11-01&rft.eissn=1097-0290&rft.volume=113&rft.issue=11&rft.spage=2358&rft_id=info:doi/10.1002%2Fbit.26008&rft_id=info%3Apmid%2F27183011&rft.externalDocID=27183011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon