基于深度置信网络的云应用负载预测方法
为了准确预测云应用负载以便及时执行云应用自适应优化,从而保证云应用性能的稳定,根据云环境下应用负载预测问题的特点,提出了基于深度置信网络的云应用负载预测方法.首先给出能够有效描述负载数据的显式特征和隐式特征并定义了负载预测模型,进而给出基于深度置信网络的负载预测算法.对算法进行了分析并在真实数据集上与相关算法进行了比较,结果表明,本文提出的方法能够更加有效地解决云应用负载预测问题....
Saved in:
Published in | 东北大学学报(自然科学版) Vol. 38; no. 2; pp. 209 - 213 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
东北大学 计算机科学与工程学院,辽宁 沈阳,110169
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 为了准确预测云应用负载以便及时执行云应用自适应优化,从而保证云应用性能的稳定,根据云环境下应用负载预测问题的特点,提出了基于深度置信网络的云应用负载预测方法.首先给出能够有效描述负载数据的显式特征和隐式特征并定义了负载预测模型,进而给出基于深度置信网络的负载预测算法.对算法进行了分析并在真实数据集上与相关算法进行了比较,结果表明,本文提出的方法能够更加有效地解决云应用负载预测问题. |
---|---|
AbstractList | 为了准确预测云应用负载以便及时执行云应用自适应优化,从而保证云应用性能的稳定,根据云环境下应用负载预测问题的特点,提出了基于深度置信网络的云应用负载预测方法.首先给出能够有效描述负载数据的显式特征和隐式特征并定义了负载预测模型,进而给出基于深度置信网络的负载预测算法.对算法进行了分析并在真实数据集上与相关算法进行了比较,结果表明,本文提出的方法能够更加有效地解决云应用负载预测问题. TP393; 为了准确预测云应用负载以便及时执行云应用自适应优化,从而保证云应用性能的稳定,根据云环境下应用负载预测问题的特点,提出了基于深度置信网络的云应用负载预测方法.首先给出能够有效描述负载数据的显式特征和隐式特征并定义了负载预测模型,进而给出基于深度置信网络的负载预测算法.对算法进行了分析并在真实数据集上与相关算法进行了比较,结果表明,本文提出的方法能够更加有效地解决云应用负载预测问题. |
Abstract_FL | To implement the adaptive optimization to ensure the performance of cloud application, it is necessary to accurately predict the load for cloud application. According to the feature of load prediction in cloud application, an approach is proposed for load prediction based on deep belief networks. Explicit and implicit features for load data are given. Load prediction model is defined. Then, the algorithm of load prediction based on deep belief networks is designed and implemented. This approach is evaluated and compared with some related load prediction algorithms, which reveals very encouraging results in terms of the prediction quality. |
Author | 马安香 张长胜 张斌 张晓红 |
AuthorAffiliation | 东北大学计算机科学与工程学院,辽宁沈阳110169 |
AuthorAffiliation_xml | – name: 东北大学 计算机科学与工程学院,辽宁 沈阳,110169 |
Author_FL | MA An-xiang ZHANG Chang-sheng ZHANG Bin ZHANG Xiao-hong |
Author_FL_xml | – sequence: 1 fullname: MA An-xiang – sequence: 2 fullname: ZHANG Chang-sheng – sequence: 3 fullname: ZHANG Bin – sequence: 4 fullname: ZHANG Xiao-hong |
Author_xml | – sequence: 1 fullname: 马安香 张长胜 张斌 张晓红 |
BookMark | eNo9j81Kw0AUhWdRwVr7EiK4Srzzk0lmKcU_KLjpPkwySU3RiSaIdd-dIBRaFyIUXYgrQVTESPBl2qS-hZGKm3vh8p17zllBNR3rAKF1DCYVXGz2zChNtYkBLIMC4SYBbJtATMCkhur_92XUTNPIAwDBbIuIOuKzSTbNror351n2UOZP06-7Mh-Wn7flzWCaDWfZqBw9zl8n8zz_vh8Ub5fF9UfxMl5FS6E8SoPm326gzs52p7VntA9291tbbcO3BDEEUwJTSn3f8URgScE8x6eC2pKHWAbUUdSRjNkhr3IqzCwcKO5T6ngQKFxJG2hj8fZc6lDqrtuLzxJdGbrKU_2-91sTqkEqcm1B-oex7p5GFXuSRMcyuXC5jQlh3AH6AxM0auM |
ClassificationCodes | TP393 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1005-3026.2017.02.012 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Load Prediction Approach for Cloud Application Based on DeepBelief Networks |
DocumentTitle_FL | Load Prediction Approach for Cloud Application Based on Deep Belief Networks |
EndPage | 213 |
ExternalDocumentID | dbdxxb201702012 671224680 |
GrantInformation_xml | – fundername: 国家科技支撑计划项目; 国家自然科学基金资助项目 funderid: (2014BAI17B00); (61572116,61572117,61502089) |
GroupedDBID | -03 2B. 2C. 2RA 5XA 5XD 92E 92I 92L ABDBF ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CQIGP CW9 EAD EAP EAS EOJEC ESX OBODZ TCJ TGP U1G U5M ~WA 4A8 93N ABJNI ACUHS PSX |
ID | FETCH-LOGICAL-c592-94d91333cc8b9e5a94b8c3937a6f1ae38d38a447f6012d1451ed6c338b0ed1913 |
ISSN | 1005-3026 |
IngestDate | Thu May 29 03:59:14 EDT 2025 Wed Feb 14 10:04:02 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | cloud application 负载预测 自适应优化 云应用 deep belief network 深度置信网络 load prediction cloud computing 云计算 adaptive optimization |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c592-94d91333cc8b9e5a94b8c3937a6f1ae38d38a447f6012d1451ed6c338b0ed1913 |
Notes | 21-1344/T MA An-xiang,ZHANG Chang-sheng,ZHANG Bin,ZHANG Xiao-hong(School of Computer Science & Engineering,Northeastern University,Shenyang 110169,China. ) To implement the adaptive optimization to ensure the performance of cloud application, it is necessary to accurately predict the load for cloud application. According to the feature of load prediction in cloud application,an approach is proposed for load prediction based on deep belief networks. Explicit and implicit features for load data are given. Load prediction model is defined. Then, the algorithm of load prediction based on deep belief networks is designed and implemented. This approach is evaluated and compared with some related load prediction algorithms,which reveals very encouraging results in terms of the prediction quality. cloud computing; cloud application; deep belief network; load prediction; adaptive optimization |
PageCount | 5 |
ParticipantIDs | wanfang_journals_dbdxxb201702012 chongqing_primary_671224680 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 东北大学学报(自然科学版) |
PublicationTitleAlternate | Journal of Northeastern University(Natural Science) |
PublicationTitle_FL | Journal of Northeastern University(Natural Science) |
PublicationYear | 2017 |
Publisher | 东北大学 计算机科学与工程学院,辽宁 沈阳,110169 |
Publisher_xml | – name: 东北大学 计算机科学与工程学院,辽宁 沈阳,110169 |
SSID | ssib000947529 ssib051368049 ssib023167010 ssj0040330 ssib002039846 ssib004675270 ssib006703041 ssib002263414 ssib008679651 ssib001128993 |
Score | 2.104354 |
Snippet | ... TP393;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 209 |
SubjectTerms | 云应用 云计算 深度置信网络 自适应优化 负载预测 |
Title | 基于深度置信网络的云应用负载预测方法 |
URI | http://lib.cqvip.com/qk/90188A/201702/671224680.html https://d.wanfangdata.com.cn/periodical/dbdxxb201702012 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9RAcO0HiD6In1ir0ofuk1xNspvNzmOSy1EEfarQtyNf1z5d_Wih9LlvglCoPohQ9EF8EkRFPDn8M9e7-i-c2eSua5GiQghzs5mdmZ3c7GyyM2FsUYH0XBV4jVR1oCHTPG-AyjCQ00oWUBa58Cnf-f4DtfxQ3lv1V6emz1i7lrY2s6V85495Jf9jVcShXSlL9h8sO-kUEQijffGMFsbzX9mYJz6HFo9Cnkg664QnikcBj1xqQkyoeII_mzxMzDUtHro1Biog4hATAEgu635gTA7SNEkeap5oHkliR0CTjgR46BkqZOpzHREACIPBCF592HIc-5rOtWGHF8ccAgJC7LwCmkbaCaC4Rvl9nqCCMYmHfHXAw5BEQqaRUQ1pK2lrKmwCrif7c42MeBieOAbYSBgUE-4YHWMeOoQCnwaHWKDYsd1mVNInUUghzPihjJ796KTKEa39PBVgFU6VrD-eCIS2bnjP9uoOWAGCVyXPnpx7BCgwcw8xWJowoN2DgSkLW28X_726twro1abSzjSb9XClg3PLbBg1o5YVA8vAt2JYDJBxjWzFWI4AbdeI8xRGJnbyMZJbTlmRj7diYFNx8fjVsEelEZzjmNB3BUpHa_QqvJGOEFWJj1rBs2yx1v7uabpT7ZL1je7aY4zITIJct5N216xYbuUiu1AvwhbC6h91iU3trF9m563SnFeYOjzoDXrPh18_HvbejfofBj_ejPp7o--vR692B729w97-aP_90eeDo37_59vd4Zdnw5ffhp9eXGUrrWQlXm7U3xhp5D54DUCH5Aoh8lxnUPopyEznVCMSXZeblkIXQqdSBh2FKhT0VeuyULkQOnPKwkXSa2ymu9Etr7OF3NHSxflS0xK9KINUF3kR6EwHpQuZn86x-ckAtB9VpWTaE_PPsYV6SNq1g3naLrJiezujMUQju96NUzuYZ-foyurp4E02s_lkq7yF8fJmdru-o34BN4yNLw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E7%BD%AE%E4%BF%A1%E7%BD%91%E7%BB%9C%E7%9A%84%E4%BA%91%E5%BA%94%E7%94%A8%E8%B4%9F%E8%BD%BD%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E4%B8%9C%E5%8C%97%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88&rft.au=%E9%A9%AC%E5%AE%89%E9%A6%99+%E5%BC%A0%E9%95%BF%E8%83%9C+%E5%BC%A0%E6%96%8C+%E5%BC%A0%E6%99%93%E7%BA%A2&rft.date=2017&rft.issn=1005-3026&rft.volume=38&rft.issue=2&rft.spage=209&rft.epage=213&rft_id=info:doi/10.3969%2Fj.issn.1005-3026.2017.02.012&rft.externalDocID=671224680 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90188A%2F90188A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdbdxxb%2Fdbdxxb.jpg |