基于深度置信网络的云应用负载预测方法

为了准确预测云应用负载以便及时执行云应用自适应优化,从而保证云应用性能的稳定,根据云环境下应用负载预测问题的特点,提出了基于深度置信网络的云应用负载预测方法.首先给出能够有效描述负载数据的显式特征和隐式特征并定义了负载预测模型,进而给出基于深度置信网络的负载预测算法.对算法进行了分析并在真实数据集上与相关算法进行了比较,结果表明,本文提出的方法能够更加有效地解决云应用负载预测问题....

Full description

Saved in:
Bibliographic Details
Published in东北大学学报(自然科学版) Vol. 38; no. 2; pp. 209 - 213
Main Author 马安香 张长胜 张斌 张晓红
Format Journal Article
LanguageChinese
Published 东北大学 计算机科学与工程学院,辽宁 沈阳,110169 2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 为了准确预测云应用负载以便及时执行云应用自适应优化,从而保证云应用性能的稳定,根据云环境下应用负载预测问题的特点,提出了基于深度置信网络的云应用负载预测方法.首先给出能够有效描述负载数据的显式特征和隐式特征并定义了负载预测模型,进而给出基于深度置信网络的负载预测算法.对算法进行了分析并在真实数据集上与相关算法进行了比较,结果表明,本文提出的方法能够更加有效地解决云应用负载预测问题.
AbstractList 为了准确预测云应用负载以便及时执行云应用自适应优化,从而保证云应用性能的稳定,根据云环境下应用负载预测问题的特点,提出了基于深度置信网络的云应用负载预测方法.首先给出能够有效描述负载数据的显式特征和隐式特征并定义了负载预测模型,进而给出基于深度置信网络的负载预测算法.对算法进行了分析并在真实数据集上与相关算法进行了比较,结果表明,本文提出的方法能够更加有效地解决云应用负载预测问题.
TP393; 为了准确预测云应用负载以便及时执行云应用自适应优化,从而保证云应用性能的稳定,根据云环境下应用负载预测问题的特点,提出了基于深度置信网络的云应用负载预测方法.首先给出能够有效描述负载数据的显式特征和隐式特征并定义了负载预测模型,进而给出基于深度置信网络的负载预测算法.对算法进行了分析并在真实数据集上与相关算法进行了比较,结果表明,本文提出的方法能够更加有效地解决云应用负载预测问题.
Abstract_FL To implement the adaptive optimization to ensure the performance of cloud application, it is necessary to accurately predict the load for cloud application. According to the feature of load prediction in cloud application, an approach is proposed for load prediction based on deep belief networks. Explicit and implicit features for load data are given. Load prediction model is defined. Then, the algorithm of load prediction based on deep belief networks is designed and implemented. This approach is evaluated and compared with some related load prediction algorithms, which reveals very encouraging results in terms of the prediction quality.
Author 马安香 张长胜 张斌 张晓红
AuthorAffiliation 东北大学计算机科学与工程学院,辽宁沈阳110169
AuthorAffiliation_xml – name: 东北大学 计算机科学与工程学院,辽宁 沈阳,110169
Author_FL MA An-xiang
ZHANG Chang-sheng
ZHANG Bin
ZHANG Xiao-hong
Author_FL_xml – sequence: 1
  fullname: MA An-xiang
– sequence: 2
  fullname: ZHANG Chang-sheng
– sequence: 3
  fullname: ZHANG Bin
– sequence: 4
  fullname: ZHANG Xiao-hong
Author_xml – sequence: 1
  fullname: 马安香 张长胜 张斌 张晓红
BookMark eNo9j81Kw0AUhWdRwVr7EiK4Srzzk0lmKcU_KLjpPkwySU3RiSaIdd-dIBRaFyIUXYgrQVTESPBl2qS-hZGKm3vh8p17zllBNR3rAKF1DCYVXGz2zChNtYkBLIMC4SYBbJtATMCkhur_92XUTNPIAwDBbIuIOuKzSTbNror351n2UOZP06-7Mh-Wn7flzWCaDWfZqBw9zl8n8zz_vh8Ub5fF9UfxMl5FS6E8SoPm326gzs52p7VntA9291tbbcO3BDEEUwJTSn3f8URgScE8x6eC2pKHWAbUUdSRjNkhr3IqzCwcKO5T6ngQKFxJG2hj8fZc6lDqrtuLzxJdGbrKU_2-91sTqkEqcm1B-oex7p5GFXuSRMcyuXC5jQlh3AH6AxM0auM
ClassificationCodes TP393
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1005-3026.2017.02.012
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Load Prediction Approach for Cloud Application Based on DeepBelief Networks
DocumentTitle_FL Load Prediction Approach for Cloud Application Based on Deep Belief Networks
EndPage 213
ExternalDocumentID dbdxxb201702012
671224680
GrantInformation_xml – fundername: 国家科技支撑计划项目; 国家自然科学基金资助项目
  funderid: (2014BAI17B00); (61572116,61572117,61502089)
GroupedDBID -03
2B.
2C.
2RA
5XA
5XD
92E
92I
92L
ABDBF
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CQIGP
CW9
EAD
EAP
EAS
EOJEC
ESX
OBODZ
TCJ
TGP
U1G
U5M
~WA
4A8
93N
ABJNI
ACUHS
PSX
ID FETCH-LOGICAL-c592-94d91333cc8b9e5a94b8c3937a6f1ae38d38a447f6012d1451ed6c338b0ed1913
ISSN 1005-3026
IngestDate Thu May 29 03:59:14 EDT 2025
Wed Feb 14 10:04:02 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords cloud application
负载预测
自适应优化
云应用
deep belief network
深度置信网络
load prediction
cloud computing
云计算
adaptive optimization
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c592-94d91333cc8b9e5a94b8c3937a6f1ae38d38a447f6012d1451ed6c338b0ed1913
Notes 21-1344/T
MA An-xiang,ZHANG Chang-sheng,ZHANG Bin,ZHANG Xiao-hong(School of Computer Science & Engineering,Northeastern University,Shenyang 110169,China. )
To implement the adaptive optimization to ensure the performance of cloud application, it is necessary to accurately predict the load for cloud application. According to the feature of load prediction in cloud application,an approach is proposed for load prediction based on deep belief networks. Explicit and implicit features for load data are given. Load prediction model is defined. Then, the algorithm of load prediction based on deep belief networks is designed and implemented. This approach is evaluated and compared with some related load prediction algorithms,which reveals very encouraging results in terms of the prediction quality.
cloud computing; cloud application; deep belief network; load prediction; adaptive optimization
PageCount 5
ParticipantIDs wanfang_journals_dbdxxb201702012
chongqing_primary_671224680
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 东北大学学报(自然科学版)
PublicationTitleAlternate Journal of Northeastern University(Natural Science)
PublicationTitle_FL Journal of Northeastern University(Natural Science)
PublicationYear 2017
Publisher 东北大学 计算机科学与工程学院,辽宁 沈阳,110169
Publisher_xml – name: 东北大学 计算机科学与工程学院,辽宁 沈阳,110169
SSID ssib000947529
ssib051368049
ssib023167010
ssj0040330
ssib002039846
ssib004675270
ssib006703041
ssib002263414
ssib008679651
ssib001128993
Score 2.104354
Snippet ...
TP393;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 209
SubjectTerms 云应用
云计算
深度置信网络
自适应优化
负载预测
Title 基于深度置信网络的云应用负载预测方法
URI http://lib.cqvip.com/qk/90188A/201702/671224680.html
https://d.wanfangdata.com.cn/periodical/dbdxxb201702012
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9RAcO0HiD6In1ir0ofuk1xNspvNzmOSy1EEfarQtyNf1z5d_Wih9LlvglCoPohQ9EF8EkRFPDn8M9e7-i-c2eSua5GiQghzs5mdmZ3c7GyyM2FsUYH0XBV4jVR1oCHTPG-AyjCQ00oWUBa58Cnf-f4DtfxQ3lv1V6emz1i7lrY2s6V85495Jf9jVcShXSlL9h8sO-kUEQijffGMFsbzX9mYJz6HFo9Cnkg664QnikcBj1xqQkyoeII_mzxMzDUtHro1Biog4hATAEgu635gTA7SNEkeap5oHkliR0CTjgR46BkqZOpzHREACIPBCF592HIc-5rOtWGHF8ccAgJC7LwCmkbaCaC4Rvl9nqCCMYmHfHXAw5BEQqaRUQ1pK2lrKmwCrif7c42MeBieOAbYSBgUE-4YHWMeOoQCnwaHWKDYsd1mVNInUUghzPihjJ796KTKEa39PBVgFU6VrD-eCIS2bnjP9uoOWAGCVyXPnpx7BCgwcw8xWJowoN2DgSkLW28X_726twro1abSzjSb9XClg3PLbBg1o5YVA8vAt2JYDJBxjWzFWI4AbdeI8xRGJnbyMZJbTlmRj7diYFNx8fjVsEelEZzjmNB3BUpHa_QqvJGOEFWJj1rBs2yx1v7uabpT7ZL1je7aY4zITIJct5N216xYbuUiu1AvwhbC6h91iU3trF9m563SnFeYOjzoDXrPh18_HvbejfofBj_ejPp7o--vR692B729w97-aP_90eeDo37_59vd4Zdnw5ffhp9eXGUrrWQlXm7U3xhp5D54DUCH5Aoh8lxnUPopyEznVCMSXZeblkIXQqdSBh2FKhT0VeuyULkQOnPKwkXSa2ymu9Etr7OF3NHSxflS0xK9KINUF3kR6EwHpQuZn86x-ckAtB9VpWTaE_PPsYV6SNq1g3naLrJiezujMUQju96NUzuYZ-foyurp4E02s_lkq7yF8fJmdru-o34BN4yNLw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E7%BD%AE%E4%BF%A1%E7%BD%91%E7%BB%9C%E7%9A%84%E4%BA%91%E5%BA%94%E7%94%A8%E8%B4%9F%E8%BD%BD%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E4%B8%9C%E5%8C%97%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88&rft.au=%E9%A9%AC%E5%AE%89%E9%A6%99+%E5%BC%A0%E9%95%BF%E8%83%9C+%E5%BC%A0%E6%96%8C+%E5%BC%A0%E6%99%93%E7%BA%A2&rft.date=2017&rft.issn=1005-3026&rft.volume=38&rft.issue=2&rft.spage=209&rft.epage=213&rft_id=info:doi/10.3969%2Fj.issn.1005-3026.2017.02.012&rft.externalDocID=671224680
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90188A%2F90188A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdbdxxb%2Fdbdxxb.jpg