Mbius环并苯的分子对称性

一般来说,点群理论认为Mbius带环分子最高的对称性只能是C2.本文讨论了由18个苯环组成的环并苯的异构体分子,包括柱面的Hückel型分子(HC-[18])和扭转180°的Mbius带环分子(MC-[18]).结果表明除了点对称性外,Mbius带环分子还存在一种可称为环面螺旋旋转(TSR)变换的对称性,为此还引用了环面正交曲线坐标系.此外,还讨论了这些分子关于TSR对称性匹配的原子集和原子轨道(AO)集.根据TSR对称性的循环群特征,可以建立此类群的不可约表示及有关特征标.这类分子的分子轨道(MO)关于TSR群的不可约表示是纯的,然而所含的相应的原子轨道对称性匹配的线性组合(SALC-...

Full description

Saved in:
Bibliographic Details
Published inWuli huaxue xuebao Vol. 27; no. 5; pp. 1000 - 1004
Main Author 邢生凯 李云 赵学庄 蔡遵生 尚贞锋 王贵昌
Format Journal Article
LanguageChinese
Published 南开大学化学学院,天津,300071 2011
Subjects
Online AccessGet full text
ISSN1000-6818

Cover

Abstract 一般来说,点群理论认为Mbius带环分子最高的对称性只能是C2.本文讨论了由18个苯环组成的环并苯的异构体分子,包括柱面的Hückel型分子(HC-[18])和扭转180°的Mbius带环分子(MC-[18]).结果表明除了点对称性外,Mbius带环分子还存在一种可称为环面螺旋旋转(TSR)变换的对称性,为此还引用了环面正交曲线坐标系.此外,还讨论了这些分子关于TSR对称性匹配的原子集和原子轨道(AO)集.根据TSR对称性的循环群特征,可以建立此类群的不可约表示及有关特征标.这类分子的分子轨道(MO)关于TSR群的不可约表示是纯的,然而所含的相应的原子轨道对称性匹配的线性组合(SALC-AO)成分可以是多种的.
AbstractList O641; 一般来说,点群理论认为M(o)bius带环分子最高的对称性只能是C2.本文讨论了由18个苯环组成的环并苯的异构体分子,包括柱面的Hückel型分子(HC-[18])和扭转180°的M(o)bius带环分子(MC-[18]).结果表明除了点对称性外,M(o)bius带环分子还存在一种可称为环面螺旋旋转(TSR)变换的对称性,为此还引用了环面正交曲线坐标系.此外,还讨论了这些分子关于TSR对称性匹配的原子集和原子轨道(AO)集.根据TSR对称性的循环群特征,可以建立此类群的不可约表示及有关特征标.这类分子的分子轨道(MO)关于TSR群的不可约表示是纯的,然而所含的相应的原子轨道对称性匹配的线性组合(SALC-AO)成分可以是多种的.
一般来说,点群理论认为Mbius带环分子最高的对称性只能是C2.本文讨论了由18个苯环组成的环并苯的异构体分子,包括柱面的Hückel型分子(HC-[18])和扭转180°的Mbius带环分子(MC-[18]).结果表明除了点对称性外,Mbius带环分子还存在一种可称为环面螺旋旋转(TSR)变换的对称性,为此还引用了环面正交曲线坐标系.此外,还讨论了这些分子关于TSR对称性匹配的原子集和原子轨道(AO)集.根据TSR对称性的循环群特征,可以建立此类群的不可约表示及有关特征标.这类分子的分子轨道(MO)关于TSR群的不可约表示是纯的,然而所含的相应的原子轨道对称性匹配的线性组合(SALC-AO)成分可以是多种的.
Abstract_FL Generally speaking, the highest symmetry of a Mobius cyclacene molecule is C2 group based on the point group theory. We here investigated two isomers of cyclacene that were composed of 18 benzene units, i.e., a hoop-like Huckel [18]-cyclacene (HC-[18]) and a Mobius strip-like Mobius [18]-cyclacene (MC-[18]). We found that in addition to being described by C2 point group transformation, the molecular symmetry of Mobius cyclacene may also be characterized by the so-called torus screw rotation (TSR) symmetrical transformation, which is a symmetry operation of the torus group introduced here. The torus orthogonal curvilinear coordinates were also introduced to express the TSR transformation. Furthermore, both the symmetry adapted atom set and the atomic orbital set that refers to the TSR transformation are discussed. Because the TSR symmetry has cyclic group characteristics, we can establish the irreducible representations and related characteristics for this cyclic group. In addition, for these cyclacenes the irreducible representation of their molecular orbitals (MOs) may be pure while their corresponding symmetry adaptive linear combination of atomic orbital (SALC-AO) components can be numerous.
Author 邢生凯 李云 赵学庄 蔡遵生 尚贞锋 王贵昌
AuthorAffiliation 南开大学化学学院,天津300071
AuthorAffiliation_xml – name: 南开大学化学学院,天津,300071
Author_FL XING Sheng-Kai
LI Yun
WANG Gui-Chang
ZHAO Xue-Zhuang
CAI Zun-Sheng
SHANG Zhen-Feng
Author_FL_xml – sequence: 1
  fullname: XING Sheng-Kai
– sequence: 2
  fullname: LI Yun
– sequence: 3
  fullname: ZHAO Xue-Zhuang
– sequence: 4
  fullname: CAI Zun-Sheng
– sequence: 5
  fullname: SHANG Zhen-Feng
– sequence: 6
  fullname: WANG Gui-Chang
Author_xml – sequence: 1
  fullname: 邢生凯 李云 赵学庄 蔡遵生 尚贞锋 王贵昌
BookMark eNotzr9Kw1AYBfA7VLDWvoQOToHv-25zkztK8R9UXLqH-y9tNNygobSjoIggFGdfoJOkU6EPFOPkMxis01l-nHMOWMcX3nVYFwEgEDHG-6xflpkGQISQRNxlx9c_yyedzcpmWdXbzfdb1Xw8168v9ed7XW2b1frrcXXI9lKVl67_nz02Pj8bDy-D0c3F1fB0FJhQUoDcElmlIoyUA0I74A55GELswJKRTgtCGaIiqQfOcgDJuTDSOomxlIb32Mmudq58qvwkuS1mD74dTOb5dLHQ9PcagFp5tJNmWvjJfdZarcxdmuUu4ZFAEiT5L1I6Ud4
ClassificationCodes O641
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
2B.
4A8
92I
93N
PSX
TCJ
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Molecular Symmetry of Mbius Cyclacenes
DocumentTitle_FL Molecular Symmetry of M(o)bius Cyclacenes
EndPage 1004
ExternalDocumentID wlhxxb201105002
37612629
GroupedDBID -02
2B.
2C.
2RA
5XA
5XC
92E
92I
92L
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
CDYEO
CLXHM
CQIGP
CW9
EBS
EJD
FIJ
OK1
P2P
RIG
TCJ
TGP
U1G
U5L
W94
~WA
4A8
93N
AAXUO
AAYWO
ADMLS
FDB
M41
PSX
ROL
UY8
ID FETCH-LOGICAL-c592-13d22daa717ae021d43e135508e0d2c9eb621951a29b4ed3009336c9de91899c3
ISSN 1000-6818
IngestDate Thu May 29 03:54:35 EDT 2025
Fri Nov 25 18:21:04 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 分子对称性
Molecular symmetry
Torus screw rotation transformation
Mobius cyclacene
环面群
环面螺旋旋转变换
环并苯
环面正交曲线坐标系
Cyclacene
Torus group
M(o)bius环并苯
Torus orthogonal curvilinear coordinates
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c592-13d22daa717ae021d43e135508e0d2c9eb621951a29b4ed3009336c9de91899c3
Notes 11-1892/06
O641
Molecular symmetry
Torus screw rotation transformation
Cyclacene
Torus group
Mbius cyclacene
Mbius cyclacene; Molecular symmetry; Cyclacene; Torus screw rotation transformation; Torus orthogonal curvilinear coordinates; Torus group
Torus orthogonal curvilinear coordinates
PageCount 5
ParticipantIDs wanfang_journals_wlhxxb201105002
chongqing_backfile_37612629
PublicationCentury 2000
PublicationDate 2011
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationTitle Wuli huaxue xuebao
PublicationTitleAlternate Acta Physico-Chimica Sinica
PublicationTitle_FL ACTA PHYSICO-CHIMICA SINICA
PublicationYear 2011
Publisher 南开大学化学学院,天津,300071
Publisher_xml – name: 南开大学化学学院,天津,300071
SSID ssib001105268
ssj0030168
ssib024507715
ssib002258135
ssib057925156
ssib051374152
Score 1.8923061
Snippet ...
O641;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1000
SubjectTerms Mbius环并苯
分子对称性
环并苯
环面正交曲线坐标系
环面群
环面螺旋旋转变换
Title Mbius环并苯的分子对称性
URI http://lib.cqvip.com/qk/92644X/20115/37612629.html
https://d.wanfangdata.com.cn/periodical/wlhxxb201105002
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLeqXeCC-CvGAFUCn6KgOHES-5h0qcakcipityqJ3XViajXWiGonJBBCQpo48wV2QuWEtA9UyonPwHuO2-aAECC5kfvsPL-X5zz_bPk5hDwewpwD3jHPLTkPXJ4X2pWlB7MUzqXyCk_FCuOde8-ived8_yA8aLWGjV1L1bR4Up79Nq7kf6wKNLArRsn-g2XXTIEAebAvXMHCcP0rG_dollEBKSiOqlOaxfgn6dIspKmkaUQzQUVqKDGVCRUciwQQI8wku1R6JtPF-lAniWkKlAj3PyRxE7i-qI6PnFGVzyrtwK_IJytT0UxS4dPEN41wKk37Aph1HWQld1GqjNM0oZI5KFMaYqolSIwoKQpnyoBDwgxPZipZno6p5aEWyABIGVaCMpE6VnNQtS7D-6Bh0LPTXNWw_rZ2wRjrHgnrla2Prs8PsH0xbDhcrN0YvPH8u83Itt5vCF6U-ZGPcZ4AyHDnX_fp_gY1MnPoTQPVhIJtUKTPATPHbD2rApdoIyytoHgsx2gyPjwBsGFiv8bDfHzYgCn96-SanV-0k7qz3CCts9FNcqWz-qzfLfKo9_P8LXaX5fl8cfntx8f58vO7xYf3iy-fFvPL5cXX728ubpN-N-t39lz7pQy3DKXvskD5vspzmJrnGkCb4oEGBQB7a0_5pdRFBANTyHJfFlyrwCxjRaVUWjKYb5fBHbI1noz1XdLmKi_wkDeGW04BQAmtCxWI4VCVMfDxtsnOWlcAWuVLPD5ssHq-26RttR_Y1-R08Pp4NJsVBmeG8Gzv_ZHBDrlaL9pjuk-2pq8q_QBQ37R4aGz2C-C3PnQ
linkProvider Ingenta
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M%EE%8E%83bius%E7%8E%AF%E5%B9%B6%E8%8B%AF%E7%9A%84%E5%88%86%E5%AD%90%E5%AF%B9%E7%A7%B0%E6%80%A7&rft.jtitle=Wuli+huaxue+xuebao&rft.au=%E9%82%A2%E7%94%9F%E5%87%AF+%E6%9D%8E%E4%BA%91+%E8%B5%B5%E5%AD%A6%E5%BA%84+%E8%94%A1%E9%81%B5%E7%94%9F+%E5%B0%9A%E8%B4%9E%E9%94%8B+%E7%8E%8B%E8%B4%B5%E6%98%8C&rft.date=2011&rft.issn=1000-6818&rft.volume=27&rft.issue=5&rft.spage=1000&rft.epage=1004&rft.externalDocID=37612629
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F92644X%2F92644X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fwlhxxb%2Fwlhxxb.jpg