HDLBP-stabilized lncFAL inhibits ferroptosis vulnerability by diminishing Trim69-dependent FSP1 degradation in hepatocellular carcinoma

Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic efficacy in HCC. High-density lipoprotein-binding protein (HDLBP), the largest RNA-binding protein, is an important transporter that protect...

Full description

Saved in:
Bibliographic Details
Published inRedox biology Vol. 58; p. 102546
Main Authors Yuan, Jingsheng, Lv, Tao, Yang, Jian, Wu, Zhenru, Yan, Lvnan, Yang, Jiayin, Shi, Yujun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic efficacy in HCC. High-density lipoprotein-binding protein (HDLBP), the largest RNA-binding protein, is an important transporter that protects cells from overaccumulation of cholesterol, but few studies have elucidated the role of HDLBP in the regulation of ferroptosis vulnerability in HCC. Our study suggests that HDLBP was markedly elevated in HCC compared with noncancerous liver tissues and that this elevation inhibited the ferroptosis vulnerability of HCC. Further experiments revealed that HDLBP bound to and stabilized the long noncoding RNA lncFAL (ferroptosis-associated lncRNA), which is derived from the plexin B2 gene. Moreover, our study suggests that the splicing of lncFAL was increased by YTH N6-methyladenosine (m6A) RNA-binding protein 2 (YTHDF2) in a m6A-dependent manner. Although HDLBP or lncFAL could not regulate the GPX4 antioxidant signalling pathway, lncFAL reduced ferroptosis vulnerability by directly binding to ferroptosis suppressor protein 1 (FSP1) and competitively abolishing Trim69-dependent FSP1 polyubiquitination degradation. More importantly, FSP1 inhibition promoted the antitumour activity of ferroptosis inducers both in vitro and in vivo. Collectively, our results provide a clinically promising demonstration that HDLBP stabilizes lncFAL, which mediates a FSP1-dependent anti-ferroptosis mechanism in HCC. These results support the enormous potential of disrupting FSP1 as a promising therapeutic approach for HCC patients with high HDLBP or lncFAL expression. [Display omitted] •HDLBP inhibits the ferroptosis vulnerability of HCC by stabilizing LncFAL.•Splicing of LncFAL is increased by YTHDF2 in a m6A-dependent manner in HCC.•LncFAL inhibits FSP1 polyubiquitination by disrupting the FSP1-TRIM69 interaction.•FSP1 blockade is essential for the induction of ferroptosis in HCC.•LncFAL is positively related to FSP1 and as an independent prognostic biomarker.
AbstractList Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic efficacy in HCC. High-density lipoprotein-binding protein (HDLBP), the largest RNA-binding protein, is an important transporter that protects cells from overaccumulation of cholesterol, but few studies have elucidated the role of HDLBP in the regulation of ferroptosis vulnerability in HCC. Our study suggests that HDLBP was markedly elevated in HCC compared with noncancerous liver tissues and that this elevation inhibited the ferroptosis vulnerability of HCC. Further experiments revealed that HDLBP bound to and stabilized the long noncoding RNA lncFAL (ferroptosis-associated lncRNA), which is derived from the plexin B2 gene. Moreover, our study suggests that the splicing of lncFAL was increased by YTH N6-methyladenosine (m6A) RNA-binding protein 2 (YTHDF2) in a m6A-dependent manner. Although HDLBP or lncFAL could not regulate the GPX4 antioxidant signalling pathway, lncFAL reduced ferroptosis vulnerability by directly binding to ferroptosis suppressor protein 1 (FSP1) and competitively abolishing Trim69-dependent FSP1 polyubiquitination degradation. More importantly, FSP1 inhibition promoted the antitumour activity of ferroptosis inducers both in vitro and in vivo. Collectively, our results provide a clinically promising demonstration that HDLBP stabilizes lncFAL, which mediates a FSP1-dependent anti-ferroptosis mechanism in HCC. These results support the enormous potential of disrupting FSP1 as a promising therapeutic approach for HCC patients with high HDLBP or lncFAL expression.
Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic efficacy in HCC. High-density lipoprotein-binding protein (HDLBP), the largest RNA-binding protein, is an important transporter that protects cells from overaccumulation of cholesterol, but few studies have elucidated the role of HDLBP in the regulation of ferroptosis vulnerability in HCC. Our study suggests that HDLBP was markedly elevated in HCC compared with noncancerous liver tissues and that this elevation inhibited the ferroptosis vulnerability of HCC. Further experiments revealed that HDLBP bound to and stabilized the long noncoding RNA lncFAL (ferroptosis-associated lncRNA), which is derived from the plexin B2 gene. Moreover, our study suggests that the splicing of lncFAL was increased by YTH N6-methyladenosine (m6A) RNA-binding protein 2 (YTHDF2) in a m6A-dependent manner. Although HDLBP or lncFAL could not regulate the GPX4 antioxidant signalling pathway, lncFAL reduced ferroptosis vulnerability by directly binding to ferroptosis suppressor protein 1 (FSP1) and competitively abolishing Trim69-dependent FSP1 polyubiquitination degradation. More importantly, FSP1 inhibition promoted the antitumour activity of ferroptosis inducers both in vitro and in vivo. Collectively, our results provide a clinically promising demonstration that HDLBP stabilizes lncFAL, which mediates a FSP1-dependent anti-ferroptosis mechanism in HCC. These results support the enormous potential of disrupting FSP1 as a promising therapeutic approach for HCC patients with high HDLBP or lncFAL expression. [Display omitted] •HDLBP inhibits the ferroptosis vulnerability of HCC by stabilizing LncFAL.•Splicing of LncFAL is increased by YTHDF2 in a m6A-dependent manner in HCC.•LncFAL inhibits FSP1 polyubiquitination by disrupting the FSP1-TRIM69 interaction.•FSP1 blockade is essential for the induction of ferroptosis in HCC.•LncFAL is positively related to FSP1 and as an independent prognostic biomarker.
Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic efficacy in HCC. High-density lipoprotein-binding protein (HDLBP), the largest RNA-binding protein, is an important transporter that protects cells from overaccumulation of cholesterol, but few studies have elucidated the role of HDLBP in the regulation of ferroptosis vulnerability in HCC. Our study suggests that HDLBP was markedly elevated in HCC compared with noncancerous liver tissues and that this elevation inhibited the ferroptosis vulnerability of HCC. Further experiments revealed that HDLBP bound to and stabilized the long noncoding RNA lncFAL (ferroptosis-associated lncRNA), which is derived from the plexin B2 gene. Moreover, our study suggests that the splicing of lncFAL was increased by YTH N6-methyladenosine (m6A) RNA-binding protein 2 (YTHDF2) in a m6A-dependent manner. Although HDLBP or lncFAL could not regulate the GPX4 antioxidant signalling pathway, lncFAL reduced ferroptosis vulnerability by directly binding to ferroptosis suppressor protein 1 (FSP1) and competitively abolishing Trim69-dependent FSP1 polyubiquitination degradation. More importantly, FSP1 inhibition promoted the antitumour activity of ferroptosis inducers both in vitro and in vivo. Collectively, our results provide a clinically promising demonstration that HDLBP stabilizes lncFAL, which mediates a FSP1-dependent anti-ferroptosis mechanism in HCC. These results support the enormous potential of disrupting FSP1 as a promising therapeutic approach for HCC patients with high HDLBP or lncFAL expression.Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic efficacy in HCC. High-density lipoprotein-binding protein (HDLBP), the largest RNA-binding protein, is an important transporter that protects cells from overaccumulation of cholesterol, but few studies have elucidated the role of HDLBP in the regulation of ferroptosis vulnerability in HCC. Our study suggests that HDLBP was markedly elevated in HCC compared with noncancerous liver tissues and that this elevation inhibited the ferroptosis vulnerability of HCC. Further experiments revealed that HDLBP bound to and stabilized the long noncoding RNA lncFAL (ferroptosis-associated lncRNA), which is derived from the plexin B2 gene. Moreover, our study suggests that the splicing of lncFAL was increased by YTH N6-methyladenosine (m6A) RNA-binding protein 2 (YTHDF2) in a m6A-dependent manner. Although HDLBP or lncFAL could not regulate the GPX4 antioxidant signalling pathway, lncFAL reduced ferroptosis vulnerability by directly binding to ferroptosis suppressor protein 1 (FSP1) and competitively abolishing Trim69-dependent FSP1 polyubiquitination degradation. More importantly, FSP1 inhibition promoted the antitumour activity of ferroptosis inducers both in vitro and in vivo. Collectively, our results provide a clinically promising demonstration that HDLBP stabilizes lncFAL, which mediates a FSP1-dependent anti-ferroptosis mechanism in HCC. These results support the enormous potential of disrupting FSP1 as a promising therapeutic approach for HCC patients with high HDLBP or lncFAL expression.
Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic efficacy in HCC. High-density lipoprotein-binding protein (HDLBP), the largest RNA-binding protein, is an important transporter that protects cells from overaccumulation of cholesterol, but few studies have elucidated the role of HDLBP in the regulation of ferroptosis vulnerability in HCC. Our study suggests that HDLBP was markedly elevated in HCC compared with noncancerous liver tissues and that this elevation inhibited the ferroptosis vulnerability of HCC. Further experiments revealed that HDLBP bound to and stabilized the long noncoding RNA lncFAL (ferroptosis-associated lncRNA), which is derived from the plexin B2 gene. Moreover, our study suggests that the splicing of lncFAL was increased by YTH N6-methyladenosine (m6A) RNA-binding protein 2 (YTHDF2) in a m6A-dependent manner. Although HDLBP or lncFAL could not regulate the GPX4 antioxidant signalling pathway, lncFAL reduced ferroptosis vulnerability by directly binding to ferroptosis suppressor protein 1 (FSP1) and competitively abolishing Trim69-dependent FSP1 polyubiquitination degradation. More importantly, FSP1 inhibition promoted the antitumour activity of ferroptosis inducers both in vitro and in vivo . Collectively, our results provide a clinically promising demonstration that HDLBP stabilizes lncFAL, which mediates a FSP1-dependent anti-ferroptosis mechanism in HCC. These results support the enormous potential of disrupting FSP1 as a promising therapeutic approach for HCC patients with high HDLBP or lncFAL expression. Image 1 • HDLBP inhibits the ferroptosis vulnerability of HCC by stabilizing LncFAL. • Splicing of LncFAL is increased by YTHDF2 in a m6A-dependent manner in HCC. • LncFAL inhibits FSP1 polyubiquitination by disrupting the FSP1-TRIM69 interaction. • FSP1 blockade is essential for the induction of ferroptosis in HCC. • LncFAL is positively related to FSP1 and as an independent prognostic biomarker.
ArticleNumber 102546
Author Yuan, Jingsheng
Lv, Tao
Yang, Jian
Wu, Zhenru
Yang, Jiayin
Yan, Lvnan
Shi, Yujun
Author_xml – sequence: 1
  givenname: Jingsheng
  surname: Yuan
  fullname: Yuan, Jingsheng
  organization: Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China
– sequence: 2
  givenname: Tao
  surname: Lv
  fullname: Lv, Tao
  organization: Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China
– sequence: 3
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
  organization: Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China
– sequence: 4
  givenname: Zhenru
  surname: Wu
  fullname: Wu, Zhenru
  organization: Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China
– sequence: 5
  givenname: Lvnan
  surname: Yan
  fullname: Yan, Lvnan
  organization: Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China
– sequence: 6
  givenname: Jiayin
  surname: Yang
  fullname: Yang, Jiayin
  email: doctoryjy@scu.edu.cn
  organization: Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China
– sequence: 7
  givenname: Yujun
  surname: Shi
  fullname: Shi, Yujun
  email: shiyujun@scu.edu.cn
  organization: Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36423520$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFuEzEQhleoiJbSJ0BCPnLZYHud9foAUlsIrRSJSpSz5bUnyUQbO9hORHkBXhsnaVHLob7YGs__jf3PvK6OfPBQVW8ZHTHK2g_LUQQXfo045bxE-Fi0L6oTzllT84bJo0fn4-ospSUtq-sEZ_RVddy0gjdjTk-qP1efpxc3dcqmxwF_gyODt5PzKUG_wB5zIjOIMaxzSJjIdjN4iPvUfEf6O-JwhR7TAv2c3EZctap2sAbvwGcy-X7DiIN5NM5kDL4wyQLWJgcLw7AZTCTWRIs-rMyb6uXMDAnO7vfT6sfky-3lVT399vX68nxa27FiuQaAme0ayyUXtpMzJrhwqhNAnVGgOLfKgpNSUtGZXriuZa1TkjlVfOqpaU6r6wPXBbPU6_JkE-90MKj3gRDn2sSMdgDddIoLyZQreDE2fS87a7u27aXpqLSssD4dWOtNvwJny5-jGZ5An954XOh52GrVKk7FDvD-HhDDzw2krFeYdt4YD2GTNJeCjpmgDS2p7x7X-lfkoZMlQR0SbAwpRZhpi3lveymNg2ZU7wZHL_V-cPRucPRhcIq2-U_7gH9e9fGggtKvLULUySL44j9GsLkYis_q_wICjN92
CitedBy_id crossref_primary_10_1016_j_biopha_2023_115192
crossref_primary_10_1016_j_biopha_2024_116365
crossref_primary_10_1177_1934578X231220485
crossref_primary_10_1016_j_biopha_2024_116722
crossref_primary_10_3892_etm_2024_12768
crossref_primary_10_1007_s10142_024_01292_4
crossref_primary_10_1080_15476286_2024_2313881
crossref_primary_10_1007_s10238_024_01418_9
crossref_primary_10_1007_s10863_024_10024_z
crossref_primary_10_1016_j_tcb_2023_07_003
crossref_primary_10_1002_adbi_202300642
crossref_primary_10_1186_s13062_024_00530_w
crossref_primary_10_1038_s41420_023_01645_1
crossref_primary_10_3389_fimmu_2025_1568567
crossref_primary_10_3389_fimmu_2024_1424954
crossref_primary_10_1038_s41598_024_55050_4
crossref_primary_10_1016_j_intimp_2024_113804
crossref_primary_10_1016_j_molmed_2023_05_013
crossref_primary_10_1002_advs_202300824
crossref_primary_10_1016_j_bmc_2024_117922
crossref_primary_10_1038_s41467_024_49202_3
crossref_primary_10_3389_fonc_2025_1502673
crossref_primary_10_1016_j_critrevonc_2024_104440
crossref_primary_10_1016_j_biopha_2023_115538
crossref_primary_10_1016_j_cellsig_2024_111076
crossref_primary_10_1007_s10495_024_01966_1
crossref_primary_10_1007_s11427_023_2474_4
crossref_primary_10_1038_s44318_025_00369_5
crossref_primary_10_1016_j_lfs_2024_123011
crossref_primary_10_1152_physrev_00031_2024
crossref_primary_10_1016_j_metabol_2024_155953
crossref_primary_10_1016_j_biopha_2023_115053
crossref_primary_10_1038_s41392_023_01720_0
crossref_primary_10_1016_j_canlet_2023_216147
crossref_primary_10_1016_j_gendis_2025_101534
crossref_primary_10_3390_cancers15164187
crossref_primary_10_1038_s41420_024_02116_x
crossref_primary_10_1097_HEP_0000000000000390
crossref_primary_10_1111_jcmm_18335
crossref_primary_10_3389_fimmu_2024_1486229
crossref_primary_10_32948_auo_2023_01_20
crossref_primary_10_1186_s12935_024_03559_z
crossref_primary_10_1016_j_celrep_2024_114662
crossref_primary_10_3390_antiox12061218
crossref_primary_10_1016_j_apsb_2024_03_015
crossref_primary_10_1016_j_isci_2024_110622
crossref_primary_10_1007_s11010_023_04893_y
crossref_primary_10_1016_j_bbadis_2024_167481
crossref_primary_10_1016_j_jep_2023_117282
crossref_primary_10_1186_s12964_023_01357_0
crossref_primary_10_1093_procel_pwad045
crossref_primary_10_1016_j_ijbiomac_2024_137234
crossref_primary_10_3389_fonc_2024_1350011
crossref_primary_10_3892_or_2024_8764
crossref_primary_10_1007_s12672_023_00822_z
crossref_primary_10_1002_advs_202414141
crossref_primary_10_1016_j_heliyon_2024_e37225
Cites_doi 10.1016/j.molcel.2016.03.021
10.1038/s41586-019-1705-2
10.1016/j.tem.2020.11.005
10.1007/978-1-4939-6716-2_8
10.1016/j.jhep.2021.11.018
10.21037/jgo-21-274
10.15252/emmm.202114351
10.1038/nchembio.1416
10.1056/NEJMoa0708857
10.1093/bioinformatics/btr209
10.1111/brv.12693
10.3390/ijms21144908
10.3389/fphar.2018.01371
10.1016/j.jhep.2017.09.016
10.1016/j.cell.2011.02.013
10.1080/17474124.2021.1991792
10.1016/j.ccr.2008.05.005
10.1007/978-3-030-92034-0_9
10.2174/1566523220666200628014530
10.1111/apt.16563
10.1080/15548627.2020.1810918
10.1038/nprot.2012.086
10.1016/j.canlet.2020.02.015
10.1038/ng.848
10.3892/or.2014.3111
10.1093/nar/gkt1115
10.1038/s41418-020-00728-1
10.1016/j.jhep.2019.09.025
10.1002/JLB.3MA1220-815RRR
10.1016/j.canlet.2019.05.006
10.1016/j.ijbiomac.2017.11.109
10.3322/caac.21660
10.1007/s00018-022-04245-x
10.1038/s41586-019-1707-0
10.1158/0008-5472.CAN-15-2613
10.1093/nar/gkaa1046
10.1038/s41420-022-00994-7
10.7150/thno.49116
10.1186/s12943-022-01508-w
10.1016/j.bbagrm.2013.03.005
10.1093/nar/gkab1112
10.1038/cr.2017.155
10.1016/j.bbrc.2020.01.066
10.1002/pro.3978
10.1158/0008-5472.CAN-16-2634
10.1016/j.jhep.2017.03.007
10.1021/acs.biochem.0c00477
10.1016/j.canlet.2020.04.006
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.redox.2022.102546
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2213-2317
ExternalDocumentID oai_doaj_org_article_38924719d84e45abb78cc866b7a807c1
PMC9692041
36423520
10_1016_j_redox_2022_102546
S2213231722003184
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABGSF
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADUVX
ADVLN
AENEX
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
M48
MO0
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c591t-eeefc83c2724c87f1424d984e0da9e922c9ced777048ab4d8616d971d9022b0a3
IEDL.DBID DOA
ISSN 2213-2317
IngestDate Wed Aug 27 01:32:45 EDT 2025
Thu Aug 21 18:39:14 EDT 2025
Fri Jul 11 06:07:50 EDT 2025
Mon Jul 21 06:04:51 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
Tue Jul 01 00:47:09 EDT 2025
Mon Sep 30 11:37:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords HDLBP
Hepatocellular carcinoma
Ferroptosis
Ubiquitination
lncRNA
FSP1
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c591t-eeefc83c2724c87f1424d984e0da9e922c9ced777048ab4d8616d971d9022b0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://doaj.org/article/38924719d84e45abb78cc866b7a807c1
PMID 36423520
PQID 2740514030
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_38924719d84e45abb78cc866b7a807c1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9692041
proquest_miscellaneous_2740514030
pubmed_primary_36423520
crossref_citationtrail_10_1016_j_redox_2022_102546
crossref_primary_10_1016_j_redox_2022_102546
elsevier_sciencedirect_doi_10_1016_j_redox_2022_102546
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Redox biology
PublicationTitleAlternate Redox Biol
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Tang, Sheng, Peng, Zhang, Xu, Hu, Kang, Wu, Dang (bib16) 2022; 8
Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (bib3) 2021; 71
Su, Zhao, Zhou, Zhang, Shen, Lv, AlQudsy, Shang (bib15) 2020; 483
Yang, Wei, Huang, Li, Shen, Liu, Xu, Li, Qin (bib20) 2014; 31
Hanahan, Weinberg (bib40) 2011; 144
Yuan, Yin, Tan, Zhu, Tao, Wang, Shi, Gao (bib22) 2019; 457
Lin, Jungreis, Kellis (bib29) 2011; 27
Galle, Tovoli, Foerster, Wörns, Cucchetti, Bolondi (bib8) 2017; 67
Bagga, Tulsian, Mok, Kini, Sivaraman (bib39) 2022; 79
Sayers, Bolton, Brister, Canese, Chan, Comeau, Connor, Funk, Kelly, Kim, Madej, Marchler-Bauer, Lanczycki, Lathrop, Lu, Thibaud-Nissen, Murphy, Phan, Skripchenko, Tse, Wang, Williams, Trawick, Pruitt, Sherry (bib26) 2022; 50
Kong, Wang, Han, Bao, Lu (bib14) 2021; 110
Zhou, Ji H, Xu, Zhang, Cao, Chen, Shao, Wu, Zhang, Lu, Yang, Shi, Bu (bib21) 2021; 11
Porporato, Filigheddu, Pedro, Kroemer, Galluzzi (bib41) 2018; 28
Gao, Kalathur, Coto-Llerena, Ercan, Buechel, Shuang, Piscuoglio, Dill, Camargo, Christofori, Tang (bib23) 2021; 13
Hung, Wang, Lin, Koegel, Kotake Y, Grant GD, Horlings, Shah, Umbricht, Wang, Wang, Kong, Langerød, Børresen-Dale, Kim, van de Vijver, Sukumar, Whitfield, Kellis, Xiong, Wong, Chang (bib28) 2011; 43
Kong, Tao, Shen, Ju (bib45) 2020; 483
Kroemer, Pouyssegur (bib18) 2008; 13
Mann, Muppirala, Dobbs (bib24) 2017; 1543
Harding-Theobald, Louissaint, Maraj, Cuaresma, Townsend, Mendiratta-Lala, Singal, Su, Lok, Parikh (bib9) 2021; 54
Capelletti, Manceau, Puy, Peoc'h (bib11) 2020; 21
Orchard, Ammari, Aranda, Breuza, Briganti, Broackes-Carter, Campbell, Chavali, Chen, del-Toro, Duesbury, Dumousseau, Galeota, Hinz, Iannuccelli, Jagannathan, Jimenez, Khadake, Lagreid, Licata, Lovering, Meldal, Melidoni, Milagros, Peluso, Perfetto, Porras, Raghunath, Ricard-Blum, Roechert, Stutz, Tognolli, van Roey, Cesareni, Hermjakob (bib38) 2014; 42
Wu, Kersten, Qi (bib43) 2021; 32
Llovet, Ricci, Mazzaferro, Hilgard, Gane, Blanc, de Oliveira, Santoro A, Raoul, Forner, Schwartz, Porta, Zeuzem, Bolondi, Greten, Galle, Seitz, Borbath, Häussinger, Giannaris, Shan, Moscovici, Voliotis, Bruix (bib6) 2008; 359
Lin, Choe, Du, Triboulet, Gregory (bib33) 2016; 62
Liu, Li, Hu, Wang, Shao, Zhong, Yang, Liu, Zhang (bib32) 2022; 21
Pierce, Zhou, Simion, Feinberg (bib30) 2022; 1363
Konyn, Ahmed, Kim (bib2) 2021; 15
Fujiwara, Friedman, Goossens, Hoshida (bib1) 2018; 68
Chen, Li, Kang, Klionsky, Tang (bib46) 2021; 17
Zhao, Wang, Li, Song, Wu, Fang S, Bu, Li, Sun, Pei, Zheng, Huang, Xu, Chen, Zhao, He (bib25) 2021; 49
Zhang, Li, Lin, Gao (bib5) 2022; 20
Alannan, Fayyad-Kazan, Trézéguet, Merched (bib42) 2020; 59
Doll, Freitas, Shah, Aldrovandi, da Silva, Ingold, Goya Grocin, Xavier da Silva, Panzilius, Scheel, Mourão, Buday, Sato, Wanninger, Vignane, Mohana, Rehberg, Flatley, Schepers, Kurz, White, Sauer, Sattler, Tate, Schmitz, Schulze, O'Donnell, Proneth, Popowicz, Pratt, Angeli, Conrad (bib48) 2019; 575
Cheng, Jansen (bib19) 2017; vol. 8
Dixon, Stockwell (bib47) 2014; 10
Yu, Liu, He, Huang, Jiang, Xie, Liu, Chen, Wei, Qin (bib31) 2018; 108
Awosika, Sohal (bib7) 2022; 13
Nagarajan, Jones, Newbury, Green (bib35) 2013; 1829
Stuparević, Novačić, Rahmouni, Fernandez, Lamb, Primig (bib34) 2021; 96
Bersuker, Hendricks, Li, Magtanong, Ford, Tang, Roberts, Tong, Maimone, Zoncu, Bassik, Nomura, Dixon, Olzmann (bib36) 2019; 575
Kuzu, Noory, Robertson (bib17) 2016; 76
Dai, Zhang, Cong, Kang, Wang, Tang (bib49) 2020; 523
Bhan, Soleimani, Mandal (bib44) 2017; 77
Reig, Forner, Rimola, Ferrer-Fàbrega, Burrel, Á, Garcia-Criado, Kelley, Galle, Mazzaferro, Salem, Sangro, Singal, Vogel, Fuster, Ayuso, Bruix (bib4) 2022; 76
Chen, Fan, Hu, Lu, Xiang, Liao (bib13) 2022; 12
Cheng, Hsu, Chan, Choo, Kudo (bib10) 2020; 72
Sui, Zhang, Liu, Duan, Zhai, Zhang, Han, Xiang, Huang, Lin, Xie (bib50) 2018; 9
Chen, Yu, Kang, Kroemer, Tang (bib12) 2021; 28
Oughtred, Rust, Chang, Breitkreutz, Stark, Willems, Boucher, Leung, Kolas, Zhang, Dolma, Coulombe-Huntington, Chatr-Aryamontri, Dolinski, Tyers (bib37) 2021; 30
Ingolia, Brar, Rouskin, McGeachy, Weissman (bib27) 2012; 7
Sayers (10.1016/j.redox.2022.102546_bib26) 2022; 50
Bagga (10.1016/j.redox.2022.102546_bib39) 2022; 79
Capelletti (10.1016/j.redox.2022.102546_bib11) 2020; 21
Chen (10.1016/j.redox.2022.102546_bib13) 2022; 12
Llovet (10.1016/j.redox.2022.102546_bib6) 2008; 359
Wu (10.1016/j.redox.2022.102546_bib43) 2021; 32
Nagarajan (10.1016/j.redox.2022.102546_bib35) 2013; 1829
Alannan (10.1016/j.redox.2022.102546_bib42) 2020; 59
Dai (10.1016/j.redox.2022.102546_bib49) 2020; 523
Yang (10.1016/j.redox.2022.102546_bib20) 2014; 31
Bhan (10.1016/j.redox.2022.102546_bib44) 2017; 77
Zhou (10.1016/j.redox.2022.102546_bib21) 2021; 11
Dixon (10.1016/j.redox.2022.102546_bib47) 2014; 10
Kong (10.1016/j.redox.2022.102546_bib14) 2021; 110
Yuan (10.1016/j.redox.2022.102546_bib22) 2019; 457
Fujiwara (10.1016/j.redox.2022.102546_bib1) 2018; 68
Bersuker (10.1016/j.redox.2022.102546_bib36) 2019; 575
Yu (10.1016/j.redox.2022.102546_bib31) 2018; 108
Reig (10.1016/j.redox.2022.102546_bib4) 2022; 76
Tang (10.1016/j.redox.2022.102546_bib16) 2022; 8
Chen (10.1016/j.redox.2022.102546_bib12) 2021; 28
Su (10.1016/j.redox.2022.102546_bib15) 2020; 483
Gao (10.1016/j.redox.2022.102546_bib23) 2021; 13
Konyn (10.1016/j.redox.2022.102546_bib2) 2021; 15
Doll (10.1016/j.redox.2022.102546_bib48) 2019; 575
Stuparević (10.1016/j.redox.2022.102546_bib34) 2021; 96
Sung (10.1016/j.redox.2022.102546_bib3) 2021; 71
Awosika (10.1016/j.redox.2022.102546_bib7) 2022; 13
Kong (10.1016/j.redox.2022.102546_bib45) 2020; 483
Hanahan (10.1016/j.redox.2022.102546_bib40) 2011; 144
Kuzu (10.1016/j.redox.2022.102546_bib17) 2016; 76
Hung (10.1016/j.redox.2022.102546_bib28) 2011; 43
Lin (10.1016/j.redox.2022.102546_bib29) 2011; 27
Chen (10.1016/j.redox.2022.102546_bib46) 2021; 17
Porporato (10.1016/j.redox.2022.102546_bib41) 2018; 28
Pierce (10.1016/j.redox.2022.102546_bib30) 2022; 1363
Oughtred (10.1016/j.redox.2022.102546_bib37) 2021; 30
Galle (10.1016/j.redox.2022.102546_bib8) 2017; 67
Orchard (10.1016/j.redox.2022.102546_bib38) 2014; 42
Zhao (10.1016/j.redox.2022.102546_bib25) 2021; 49
Harding-Theobald (10.1016/j.redox.2022.102546_bib9) 2021; 54
Mann (10.1016/j.redox.2022.102546_bib24) 2017; 1543
Ingolia (10.1016/j.redox.2022.102546_bib27) 2012; 7
Cheng (10.1016/j.redox.2022.102546_bib10) 2020; 72
Liu (10.1016/j.redox.2022.102546_bib32) 2022; 21
Kroemer (10.1016/j.redox.2022.102546_bib18) 2008; 13
Cheng (10.1016/j.redox.2022.102546_bib19) 2017; vol. 8
Zhang (10.1016/j.redox.2022.102546_bib5) 2022; 20
Sui (10.1016/j.redox.2022.102546_bib50) 2018; 9
Lin (10.1016/j.redox.2022.102546_bib33) 2016; 62
References_xml – volume: 575
  start-page: 693
  year: 2019
  end-page: 698
  ident: bib48
  article-title: FSP1 is a glutathione-independent ferroptosis suppressor
  publication-title: Nature
– volume: vol. 8
  year: 2017
  ident: bib19
  publication-title: A Jack of All Trades: the RNA-Binding Protein Vigilin
– volume: 68
  start-page: 526
  year: 2018
  end-page: 549
  ident: bib1
  article-title: Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine
  publication-title: J. Hepatol.
– volume: 28
  start-page: 1135
  year: 2021
  end-page: 1148
  ident: bib12
  article-title: Cellular degradation systems in ferroptosis
  publication-title: Cell Death Differ.
– volume: 30
  start-page: 187
  year: 2021
  end-page: 200
  ident: bib37
  article-title: The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions
  publication-title: Protein Sci.
– volume: 1543
  start-page: 169
  year: 2017
  end-page: 185
  ident: bib24
  article-title: Computational prediction of RNA-protein interactions
  publication-title: Methods Mol. Biol.
– volume: 62
  start-page: 335
  year: 2016
  end-page: 345
  ident: bib33
  article-title: The m(6)A methyltransferase METTL3 promotes translation in human cancer cells
  publication-title: Mol. Cell
– volume: 575
  start-page: 688
  year: 2019
  end-page: 692
  ident: bib36
  article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis
  publication-title: Nature
– volume: 15
  start-page: 1295
  year: 2021
  end-page: 1307
  ident: bib2
  article-title: Current epidemiology in hepatocellular carcinoma
  publication-title: Expet Rev. Gastroenterol. Hepatol.
– volume: 72
  start-page: 307
  year: 2020
  end-page: 319
  ident: bib10
  article-title: Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma
  publication-title: J. Hepatol.
– volume: 76
  start-page: 681
  year: 2022
  end-page: 693
  ident: bib4
  article-title: BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update
  publication-title: J. Hepatol.
– volume: 110
  start-page: 301
  year: 2021
  end-page: 314
  ident: bib14
  article-title: IFNγ-mediated repression of system xc- drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells
  publication-title: J. Leukoc. Biol.
– volume: 79
  start-page: 233
  year: 2022
  ident: bib39
  article-title: Mapping of molecular interactions between human E3 ligase TRIM69 and Dengue virus NS3 protease using hydrogen-deuterium exchange mass spectrometry
  publication-title: Cell. Mol. Life Sci.
– volume: 359
  start-page: 378
  year: 2008
  end-page: 390
  ident: bib6
  article-title: Sorafenib in advanced hepatocellular carcinoma
  publication-title: N. Engl. J. Med.
– volume: 1829
  start-page: 590
  year: 2013
  end-page: 603
  ident: bib35
  article-title: XRN 5'→3' exoribonucleases: structure, mechanisms and functions
  publication-title: Biochim. Biophys. Acta
– volume: 13
  start-page: 472
  year: 2008
  end-page: 482
  ident: bib18
  article-title: Tumor cell metabolism: cancer's Achilles' heel
  publication-title: Cancer Cell
– volume: 59
  start-page: 3951
  year: 2020
  end-page: 3964
  ident: bib42
  article-title: Targeting lipid metabolism in liver cancer
  publication-title: Biochemistry
– volume: 9
  start-page: 1371
  year: 2018
  ident: bib50
  article-title: RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer
  publication-title: Front. Pharmacol.
– volume: 27
  start-page: i275
  year: 2011
  end-page: i282
  ident: bib29
  article-title: PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions
  publication-title: Bioinformatics
– volume: 457
  start-page: 28
  year: 2019
  end-page: 39
  ident: bib22
  article-title: Interferon regulatory factor-1 reverses chemoresistance by downregulating the expression of P-glycoprotein in gastric cancer
  publication-title: Cancer Lett.
– volume: 21
  start-page: 4908
  year: 2020
  ident: bib11
  article-title: Ferroptosis in liver diseases: an overview
  publication-title: Int. J. Mol. Sci.
– volume: 1363
  start-page: 161
  year: 2022
  end-page: 175
  ident: bib30
  article-title: Long noncoding RNAs as therapeutic targets
  publication-title: Adv. Exp. Med. Biol.
– volume: 7
  start-page: 1534
  year: 2012
  end-page: 1550
  ident: bib27
  article-title: The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments
  publication-title: Nat. Protoc.
– volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  ident: bib40
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
– volume: 483
  start-page: 59
  year: 2020
  end-page: 65
  ident: bib45
  article-title: Translatable circRNAs and lncRNAs: driving mechanisms and functions of their translation products
  publication-title: Cancer Lett.
– volume: 50
  start-page: D20
  year: 2022
  end-page: D26
  ident: bib26
  article-title: Database resources of the national center for biotechnology information
  publication-title: Nucleic Acids Res.
– volume: 43
  start-page: 621
  year: 2011
  end-page: 629
  ident: bib28
  article-title: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters
  publication-title: Nat. Genet.
– volume: 54
  start-page: 890
  year: 2021
  end-page: 901
  ident: bib9
  article-title: Systematic review: radiomics for the diagnosis and prognosis of hepatocellular carcinoma
  publication-title: Aliment. Pharmacol. Ther.
– volume: 10
  start-page: 9
  year: 2014
  end-page: 17
  ident: bib47
  article-title: The role of iron and reactive oxygen species in cell death
  publication-title: Nat. Chem. Biol.
– volume: 13
  start-page: 426
  year: 2022
  end-page: 437
  ident: bib7
  article-title: A narrative review of systemic treatment options for hepatocellular carcinoma: state of the art review
  publication-title: J. Gastrointest. Oncol.
– volume: 76
  start-page: 2063
  year: 2016
  end-page: 2070
  ident: bib17
  article-title: The role of cholesterol in cancer
  publication-title: Cancer Res.
– volume: 13
  year: 2021
  ident: bib23
  article-title: YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis
  publication-title: EMBO Mol. Med.
– volume: 11
  start-page: 7262
  year: 2021
  end-page: 7275
  ident: bib21
  article-title: Congenital biliary atresia is correlated with disrupted cell junctions and polarity caused by Cdc42 insufficiency in the liver
  publication-title: Theranostics
– volume: 32
  start-page: 48
  year: 2021
  end-page: 61
  ident: bib43
  article-title: Lipoprotein lipase and its regulators: an unfolding story
  publication-title: Trends Endocrinol. Metabol.
– volume: 77
  start-page: 3965
  year: 2017
  end-page: 3981
  ident: bib44
  article-title: Long noncoding RNA and cancer: a new paradigm
  publication-title: Cancer Res.
– volume: 20
  start-page: 84
  year: 2022
  end-page: 99
  ident: bib5
  article-title: Systemic therapy for hepatocellular carcinoma: advances and hopes
  publication-title: Curr. Gene Ther.
– volume: 523
  start-page: 966
  year: 2020
  end-page: 971
  ident: bib49
  article-title: AIFM2 blocks ferroptosis independent of ubiquinol metabolism
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 8
  start-page: 177
  year: 2022
  ident: bib16
  article-title: Targeting NOX4 disrupts the resistance of papillary thyroid carcinoma to chemotherapeutic drugs and lenvatinib
  publication-title: Cell Death Dis.
– volume: 17
  start-page: 2054
  year: 2021
  end-page: 2081
  ident: bib46
  article-title: Ferroptosis: machinery and regulation
  publication-title: Autophagy
– volume: 49
  start-page: D165
  year: 2021
  end-page: D171
  ident: bib25
  article-title: NONCODEV6: an updated database dedicated to long non-coding RNA annotation in both animals and plants
  publication-title: Nucleic Acids Res.
– volume: 31
  start-page: 2328
  year: 2014
  end-page: 2334
  ident: bib20
  article-title: Vigilin is overexpressed in hepatocellular carcinoma and is required for HCC cell proliferation and tumor growth
  publication-title: Oncol. Rep.
– volume: 108
  start-page: 515
  year: 2018
  end-page: 522
  ident: bib31
  article-title: Vigilin interacts with CTCF and is involved in the maintenance of imprinting of IGF2 through a novel RNA-mediated mechanism
  publication-title: Int. J. Biol. Macromol.
– volume: 42
  start-page: D358
  year: 2014
  end-page: D363
  ident: bib38
  article-title: The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases
  publication-title: Nucleic Acids Res.
– volume: 21
  start-page: 32
  year: 2022
  ident: bib32
  article-title: Insights into N6-methyladenosine and programmed cell death in cancer
  publication-title: Mol. Cancer
– volume: 96
  start-page: 1092
  year: 2021
  end-page: 1113
  ident: bib34
  article-title: Regulation of the conserved 3'-5' exoribonuclease EXOSC10/Rrp6 during cell division, development and cancer
  publication-title: Biol. Rev. Camb. Phil. Soc.
– volume: 71
  start-page: 209
  year: 2021
  end-page: 249
  ident: bib3
  article-title: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA
  publication-title: Cancer J. Clin.
– volume: 12
  year: 2022
  ident: bib13
  article-title: Ferroptosis: a new strategy for cancer therapy
  publication-title: Front. Oncol.
– volume: 483
  start-page: 127
  year: 2020
  end-page: 136
  ident: bib15
  article-title: Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs
  publication-title: Cancer Lett.
– volume: 28
  start-page: 265
  year: 2018
  end-page: 280
  ident: bib41
  article-title: Mitochondrial metabolism and cancer
  publication-title: Cell Res.
– volume: 67
  start-page: 173
  year: 2017
  end-page: 183
  ident: bib8
  article-title: The treatment of intermediate stage tumours beyond TACE: from surgery to systemic therapy
  publication-title: J. Hepatol.
– volume: 62
  start-page: 335
  year: 2016
  ident: 10.1016/j.redox.2022.102546_bib33
  article-title: The m(6)A methyltransferase METTL3 promotes translation in human cancer cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.03.021
– volume: 575
  start-page: 688
  year: 2019
  ident: 10.1016/j.redox.2022.102546_bib36
  article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis
  publication-title: Nature
  doi: 10.1038/s41586-019-1705-2
– volume: 32
  start-page: 48
  year: 2021
  ident: 10.1016/j.redox.2022.102546_bib43
  article-title: Lipoprotein lipase and its regulators: an unfolding story
  publication-title: Trends Endocrinol. Metabol.
  doi: 10.1016/j.tem.2020.11.005
– volume: 1543
  start-page: 169
  year: 2017
  ident: 10.1016/j.redox.2022.102546_bib24
  article-title: Computational prediction of RNA-protein interactions
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6716-2_8
– volume: 76
  start-page: 681
  year: 2022
  ident: 10.1016/j.redox.2022.102546_bib4
  article-title: BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2021.11.018
– volume: 13
  start-page: 426
  year: 2022
  ident: 10.1016/j.redox.2022.102546_bib7
  article-title: A narrative review of systemic treatment options for hepatocellular carcinoma: state of the art review
  publication-title: J. Gastrointest. Oncol.
  doi: 10.21037/jgo-21-274
– volume: 13
  year: 2021
  ident: 10.1016/j.redox.2022.102546_bib23
  article-title: YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.202114351
– volume: 10
  start-page: 9
  year: 2014
  ident: 10.1016/j.redox.2022.102546_bib47
  article-title: The role of iron and reactive oxygen species in cell death
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1416
– volume: 359
  start-page: 378
  year: 2008
  ident: 10.1016/j.redox.2022.102546_bib6
  article-title: Sorafenib in advanced hepatocellular carcinoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0708857
– volume: 27
  start-page: i275
  year: 2011
  ident: 10.1016/j.redox.2022.102546_bib29
  article-title: PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr209
– volume: 96
  start-page: 1092
  year: 2021
  ident: 10.1016/j.redox.2022.102546_bib34
  article-title: Regulation of the conserved 3'-5' exoribonuclease EXOSC10/Rrp6 during cell division, development and cancer
  publication-title: Biol. Rev. Camb. Phil. Soc.
  doi: 10.1111/brv.12693
– volume: 21
  start-page: 4908
  year: 2020
  ident: 10.1016/j.redox.2022.102546_bib11
  article-title: Ferroptosis in liver diseases: an overview
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21144908
– volume: 9
  start-page: 1371
  year: 2018
  ident: 10.1016/j.redox.2022.102546_bib50
  article-title: RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.01371
– volume: 68
  start-page: 526
  year: 2018
  ident: 10.1016/j.redox.2022.102546_bib1
  article-title: Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2017.09.016
– volume: 144
  start-page: 646
  year: 2011
  ident: 10.1016/j.redox.2022.102546_bib40
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 15
  start-page: 1295
  year: 2021
  ident: 10.1016/j.redox.2022.102546_bib2
  article-title: Current epidemiology in hepatocellular carcinoma
  publication-title: Expet Rev. Gastroenterol. Hepatol.
  doi: 10.1080/17474124.2021.1991792
– volume: 13
  start-page: 472
  year: 2008
  ident: 10.1016/j.redox.2022.102546_bib18
  article-title: Tumor cell metabolism: cancer's Achilles' heel
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.05.005
– volume: 1363
  start-page: 161
  year: 2022
  ident: 10.1016/j.redox.2022.102546_bib30
  article-title: Long noncoding RNAs as therapeutic targets
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-030-92034-0_9
– volume: 12
  year: 2022
  ident: 10.1016/j.redox.2022.102546_bib13
  article-title: Ferroptosis: a new strategy for cancer therapy
  publication-title: Front. Oncol.
– volume: 20
  start-page: 84
  year: 2022
  ident: 10.1016/j.redox.2022.102546_bib5
  article-title: Systemic therapy for hepatocellular carcinoma: advances and hopes
  publication-title: Curr. Gene Ther.
  doi: 10.2174/1566523220666200628014530
– volume: 54
  start-page: 890
  year: 2021
  ident: 10.1016/j.redox.2022.102546_bib9
  article-title: Systematic review: radiomics for the diagnosis and prognosis of hepatocellular carcinoma
  publication-title: Aliment. Pharmacol. Ther.
  doi: 10.1111/apt.16563
– volume: 17
  start-page: 2054
  year: 2021
  ident: 10.1016/j.redox.2022.102546_bib46
  article-title: Ferroptosis: machinery and regulation
  publication-title: Autophagy
  doi: 10.1080/15548627.2020.1810918
– volume: 7
  start-page: 1534
  year: 2012
  ident: 10.1016/j.redox.2022.102546_bib27
  article-title: The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.086
– volume: 483
  start-page: 127
  year: 2020
  ident: 10.1016/j.redox.2022.102546_bib15
  article-title: Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2020.02.015
– volume: 43
  start-page: 621
  year: 2011
  ident: 10.1016/j.redox.2022.102546_bib28
  article-title: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters
  publication-title: Nat. Genet.
  doi: 10.1038/ng.848
– volume: 31
  start-page: 2328
  year: 2014
  ident: 10.1016/j.redox.2022.102546_bib20
  article-title: Vigilin is overexpressed in hepatocellular carcinoma and is required for HCC cell proliferation and tumor growth
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2014.3111
– volume: 42
  start-page: D358
  year: 2014
  ident: 10.1016/j.redox.2022.102546_bib38
  article-title: The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1115
– volume: 28
  start-page: 1135
  year: 2021
  ident: 10.1016/j.redox.2022.102546_bib12
  article-title: Cellular degradation systems in ferroptosis
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-020-00728-1
– volume: vol. 8
  year: 2017
  ident: 10.1016/j.redox.2022.102546_bib19
– volume: 72
  start-page: 307
  year: 2020
  ident: 10.1016/j.redox.2022.102546_bib10
  article-title: Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2019.09.025
– volume: 110
  start-page: 301
  year: 2021
  ident: 10.1016/j.redox.2022.102546_bib14
  article-title: IFNγ-mediated repression of system xc- drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/JLB.3MA1220-815RRR
– volume: 457
  start-page: 28
  year: 2019
  ident: 10.1016/j.redox.2022.102546_bib22
  article-title: Interferon regulatory factor-1 reverses chemoresistance by downregulating the expression of P-glycoprotein in gastric cancer
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.05.006
– volume: 108
  start-page: 515
  year: 2018
  ident: 10.1016/j.redox.2022.102546_bib31
  article-title: Vigilin interacts with CTCF and is involved in the maintenance of imprinting of IGF2 through a novel RNA-mediated mechanism
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.11.109
– volume: 71
  start-page: 209
  year: 2021
  ident: 10.1016/j.redox.2022.102546_bib3
  article-title: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA
  publication-title: Cancer J. Clin.
  doi: 10.3322/caac.21660
– volume: 79
  start-page: 233
  year: 2022
  ident: 10.1016/j.redox.2022.102546_bib39
  article-title: Mapping of molecular interactions between human E3 ligase TRIM69 and Dengue virus NS3 protease using hydrogen-deuterium exchange mass spectrometry
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-022-04245-x
– volume: 575
  start-page: 693
  year: 2019
  ident: 10.1016/j.redox.2022.102546_bib48
  article-title: FSP1 is a glutathione-independent ferroptosis suppressor
  publication-title: Nature
  doi: 10.1038/s41586-019-1707-0
– volume: 76
  start-page: 2063
  year: 2016
  ident: 10.1016/j.redox.2022.102546_bib17
  article-title: The role of cholesterol in cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-2613
– volume: 49
  start-page: D165
  year: 2021
  ident: 10.1016/j.redox.2022.102546_bib25
  article-title: NONCODEV6: an updated database dedicated to long non-coding RNA annotation in both animals and plants
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1046
– volume: 8
  start-page: 177
  year: 2022
  ident: 10.1016/j.redox.2022.102546_bib16
  article-title: Targeting NOX4 disrupts the resistance of papillary thyroid carcinoma to chemotherapeutic drugs and lenvatinib
  publication-title: Cell Death Dis.
  doi: 10.1038/s41420-022-00994-7
– volume: 11
  start-page: 7262
  year: 2021
  ident: 10.1016/j.redox.2022.102546_bib21
  article-title: Congenital biliary atresia is correlated with disrupted cell junctions and polarity caused by Cdc42 insufficiency in the liver
  publication-title: Theranostics
  doi: 10.7150/thno.49116
– volume: 21
  start-page: 32
  year: 2022
  ident: 10.1016/j.redox.2022.102546_bib32
  article-title: Insights into N6-methyladenosine and programmed cell death in cancer
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-022-01508-w
– volume: 1829
  start-page: 590
  year: 2013
  ident: 10.1016/j.redox.2022.102546_bib35
  article-title: XRN 5'→3' exoribonucleases: structure, mechanisms and functions
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2013.03.005
– volume: 50
  start-page: D20
  year: 2022
  ident: 10.1016/j.redox.2022.102546_bib26
  article-title: Database resources of the national center for biotechnology information
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab1112
– volume: 28
  start-page: 265
  year: 2018
  ident: 10.1016/j.redox.2022.102546_bib41
  article-title: Mitochondrial metabolism and cancer
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.155
– volume: 523
  start-page: 966
  year: 2020
  ident: 10.1016/j.redox.2022.102546_bib49
  article-title: AIFM2 blocks ferroptosis independent of ubiquinol metabolism
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.01.066
– volume: 30
  start-page: 187
  year: 2021
  ident: 10.1016/j.redox.2022.102546_bib37
  article-title: The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions
  publication-title: Protein Sci.
  doi: 10.1002/pro.3978
– volume: 77
  start-page: 3965
  year: 2017
  ident: 10.1016/j.redox.2022.102546_bib44
  article-title: Long noncoding RNA and cancer: a new paradigm
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-2634
– volume: 67
  start-page: 173
  year: 2017
  ident: 10.1016/j.redox.2022.102546_bib8
  article-title: The treatment of intermediate stage tumours beyond TACE: from surgery to systemic therapy
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2017.03.007
– volume: 59
  start-page: 3951
  year: 2020
  ident: 10.1016/j.redox.2022.102546_bib42
  article-title: Targeting lipid metabolism in liver cancer
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.0c00477
– volume: 483
  start-page: 59
  year: 2020
  ident: 10.1016/j.redox.2022.102546_bib45
  article-title: Translatable circRNAs and lncRNAs: driving mechanisms and functions of their translation products
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2020.04.006
SSID ssj0000884210
Score 2.5283797
Snippet Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102546
SubjectTerms Carcinoma, Hepatocellular - metabolism
Ferroptosis
Ferroptosis - genetics
FSP1
HDLBP
Hepatocellular carcinoma
Humans
Liver Neoplasms - metabolism
lncRNA
Research Paper
RNA, Long Noncoding
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Tripartite Motif Proteins - metabolism
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelMNjL2PeydUODPc7ElmXJemy6hTC6UWgLeTPWhxeP1A6OM5r9A_u3dyfbod6gD3u0LNuS7nT3k3z6HSEfQpYnhUh4gFxYsECJkwBQaxJEQjNtEmGNzxn59ZtYXPMvy2R5RM6GszAYVtnb_s6me2vdl0z70ZxuynJ6yRispMD9MeY1EzlBY576Q3zL2WGfBWYRZ56UAOsH-MBAPuTDvJCW8xbWiYwhi0GCQPiOg_I8_iM_9S8O_Tuc8o5_mj8mj3pgSU-7tj8hR656Sh50qSb3z8jvxafz2UUAWBCjYX85S9eVmZ-e07Jalbpst7RwTVNv2npbbunP3RrZqH3g7J7qPbWl5yDB7Sp61ZQ3QgVD-tyWzi8vImqRdaJL0ATvpCtwc22NvwUwzpUaTFlU1Tf5c3I9_3x1tgj6JAyBSVTUBs65wqSxYZJxk8oCT8ZZlXIX2lw5xZhRICopJZiCXHObikhYJSOrYEh1mMcvyHFVV-4VoSzkYM1EwQD0cGstgD9hpbZ5WCS8MPGEsGHkM9MzlGOijHU2hKL9yLy4MhRX1olrQj4eHtp0BB33V5-hSA9VkV3bF9TN96xXrwxAHAOnrSx0kye51jI1JhVCyzwNpYkmRAwKkY2UFV5V3v_194P6ZDCNUQh55erdNmOSIxM9mNwJedmp06GNMawRASfDHTlStFEnxneqcuWpwpVQMOrR6_9t8BvyEK-6-J0Tctw2O_cWUFir3_lp9gdqszBs
  priority: 102
  providerName: Elsevier
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERIXxJvlJSNxJChx_IgPFWqB1Qq1qBJdqTcrfoQN2iYlyVZd_gB_m7GTLCxUPXGNEyf2zHg-J5PvQ-h1THJWcEYjz4UFG5SURYBaWZRwTbRh3JqgGXn0mc_m9NMpO91BoyrqMIHtlVs7ryc1b5ZvL7-v30HA7_2u1fLcmpew2SPEUxEwym-gm5CahI_UowHvh6U5yygJDAWEJGkE2EaMTERX97OVrQKp_1bS-heU_l1b-Ueymt5FdwaUifd7t7iHdlx1H93qdSfXD9DP2YfDg-MIgKEvjf3hLF5WZrp_iMtqUeqya3HhmqY-7-q2bPHFaumpqUMV7RrrNbZlICTx767wSVOecRmNWrodnn45TrD1FBS9WhP0iReQ87rafyPwRa_YeP2iqj7LH6L59OPJ-1k0KDJEhsmki5xzhclSQwShJhOF_03Oyoy62ObSSUKMNM4KIWBdyDW1GU-4lSKxEqZUx3n6CO1WdeWeIExiCksbLwggIGqtBSTIrdA2jwtGC5NOEBlnXpmBrtyrZizVWJf2TQVzKW8u1Ztrgt5sLjrv2TquP_3Am3RzqqfaDgfq5qsaIlcBoiOQwaWFYVKWay0yYzLOtcizWJhkgvjoEGpALT0aga7K6-_-anQfBTHtjZBXrl61igjqaelh_Z2gx707bZ4xhQ0jgGZoEVuOtjWI7ZaqXATecMklzHry9H-M-hm67YfSF_Y8R7tds3IvAJ51-mUIuV9zoThz
  priority: 102
  providerName: Scholars Portal
Title HDLBP-stabilized lncFAL inhibits ferroptosis vulnerability by diminishing Trim69-dependent FSP1 degradation in hepatocellular carcinoma
URI https://dx.doi.org/10.1016/j.redox.2022.102546
https://www.ncbi.nlm.nih.gov/pubmed/36423520
https://www.proquest.com/docview/2740514030
https://pubmed.ncbi.nlm.nih.gov/PMC9692041
https://doaj.org/article/38924719d84e45abb78cc866b7a807c1
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQIiQuiDflsTISRyISx89jC1SF3UUr2BW9WfEjalA3WbXpassf4G8zdpqqBWm5cMkhdpzYM575Jpl8g9CblBSs5IwmgQsLApScJYBaWZJxQ4xl3NlYM_LkC5-c089TNt0p9RVywjp64G7h3oFDJWBAlZPUU1YYI6S1knMjCpkKGwMf8Hk7wVS0wVJSEqkICMnyBECM6CmHYnJXIOO8huiQkMBdwAL83XFLkb1_zzv9jT7_TKLc8Urj--jeBk7iYTeNB-iWrx-iO12ByfUj9Gvy4Xh0mgACDDmwP73D89qOh8e4qmeVqdolLv1i0Vy2zbJa4qvVPHBQx3TZNTZr7KrIPBJeUuGzRXXBVdIXzW3x-Ntphl3gmujKMsGYeAbOrW3Cx4CQ3YptKFRUNxfFY3Q-_nj2fpJsSi8klqmsTbz3pZW5JYJQK0UZ_odzCkSQukJ5RYhV1jshBBiAwlAnecadEplTsKQmLfIn6KBuav8MYZJSsGG8JAB1qHMOIB93wrgiLRktbT5ApF95bTe85KE8xlz3CWg_dBSXDuLSnbgG6O32osuOluPm7qMg0m3XwKkdT4Cm6Y2m6X9p2gDxXiH0Bp50sAOGqm6---tefTRs3iCEovbNaqmJoIF_HgztAD3t1Gn7jDlEhoCOoUXsKdreJPZb6moWCcIVV7Dq2fP_MesX6G6YSpfB8xIdtIuVfwU4rDWH6Pbw6Ov3o8O49eD4aTqC4wmVvwEn3jLG
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEIIXxDfl00g8EjVxHTt-XAdVB900aZ3Utyj-yBrUJVWbIso_wL_NnZNUK0h74DWOE9t3vvudc_kdIR9DlsW5iHmAXFgQoAziAFBrHERCM21iYY2vGXl6JsaX_Ossnh2Q4-5fGEyrbG1_Y9O9tW6v9NvV7C-Lon_BGERS4P4Y85rJ75C7gAYk1m84mQ13By2wjTjzrATYIcAeHfuQz_NCXs6fECgyhjQGMSLhGx7KE_nvOap_gejf-ZQ3HNToEXnYIkt61Az-MTlw5RNyr6k1uX1Kfo8_T4bnAYBBTIf95SxdlGZ0NKFFOS90Ua9p7larallX62JNf2wWSEftM2e3VG-pLTwJCZ5X0emquBYq6Orn1nR0cR5Ri7QTTYUmeCadg5-rK_wugImu1GDNorK6zp6Ry9GX6fE4aKswBCZWUR0453KTDAyTjJtE5vhrnFUJd6HNlFOMGQWyklKCLcg0t4mIhFUysgqWVIfZ4Dk5LKvSvSSUhRzMmcgZoB5urQX0J6zUNgvzmOdm0COsW_nUtBTlWCljkXa5aN9TL64UxZU24uqRT7tOy4ah4_bbhyjS3a1Ir-0vVKurtNWvFFAcA6-tLEyTx5nWMjEmEULLLAmliXpEdAqR7mkrPKq4_e0fOvVJYR-jELLSVZt1yiRHKnqwuT3yolGn3RgHECQCUIYWuadoe5PYbymLuecKV0LBqkev_nfA78n98fR0kk5Ozr69Jg-wpUnmeUMO69XGvQVIVut3fsv9AawNM4s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HDLBP-stabilized+lncFAL+inhibits+ferroptosis+vulnerability+by+diminishing+Trim69-dependent+FSP1+degradation+in+hepatocellular+carcinoma&rft.jtitle=Redox+biology&rft.au=Jingsheng+Yuan&rft.au=Tao+Lv&rft.au=Jian+Yang&rft.au=Zhenru+Wu&rft.date=2022-12-01&rft.pub=Elsevier&rft.issn=2213-2317&rft.eissn=2213-2317&rft.volume=58&rft.spage=102546&rft_id=info:doi/10.1016%2Fj.redox.2022.102546&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_38924719d84e45abb78cc866b7a807c1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon