HDLBP-stabilized lncFAL inhibits ferroptosis vulnerability by diminishing Trim69-dependent FSP1 degradation in hepatocellular carcinoma
Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic efficacy in HCC. High-density lipoprotein-binding protein (HDLBP), the largest RNA-binding protein, is an important transporter that protect...
Saved in:
Published in | Redox biology Vol. 58; p. 102546 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic efficacy in HCC. High-density lipoprotein-binding protein (HDLBP), the largest RNA-binding protein, is an important transporter that protects cells from overaccumulation of cholesterol, but few studies have elucidated the role of HDLBP in the regulation of ferroptosis vulnerability in HCC. Our study suggests that HDLBP was markedly elevated in HCC compared with noncancerous liver tissues and that this elevation inhibited the ferroptosis vulnerability of HCC. Further experiments revealed that HDLBP bound to and stabilized the long noncoding RNA lncFAL (ferroptosis-associated lncRNA), which is derived from the plexin B2 gene. Moreover, our study suggests that the splicing of lncFAL was increased by YTH N6-methyladenosine (m6A) RNA-binding protein 2 (YTHDF2) in a m6A-dependent manner. Although HDLBP or lncFAL could not regulate the GPX4 antioxidant signalling pathway, lncFAL reduced ferroptosis vulnerability by directly binding to ferroptosis suppressor protein 1 (FSP1) and competitively abolishing Trim69-dependent FSP1 polyubiquitination degradation. More importantly, FSP1 inhibition promoted the antitumour activity of ferroptosis inducers both in vitro and in vivo. Collectively, our results provide a clinically promising demonstration that HDLBP stabilizes lncFAL, which mediates a FSP1-dependent anti-ferroptosis mechanism in HCC. These results support the enormous potential of disrupting FSP1 as a promising therapeutic approach for HCC patients with high HDLBP or lncFAL expression.
[Display omitted]
•HDLBP inhibits the ferroptosis vulnerability of HCC by stabilizing LncFAL.•Splicing of LncFAL is increased by YTHDF2 in a m6A-dependent manner in HCC.•LncFAL inhibits FSP1 polyubiquitination by disrupting the FSP1-TRIM69 interaction.•FSP1 blockade is essential for the induction of ferroptosis in HCC.•LncFAL is positively related to FSP1 and as an independent prognostic biomarker. |
---|---|
AbstractList | Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic efficacy in HCC. High-density lipoprotein-binding protein (HDLBP), the largest RNA-binding protein, is an important transporter that protects cells from overaccumulation of cholesterol, but few studies have elucidated the role of HDLBP in the regulation of ferroptosis vulnerability in HCC. Our study suggests that HDLBP was markedly elevated in HCC compared with noncancerous liver tissues and that this elevation inhibited the ferroptosis vulnerability of HCC. Further experiments revealed that HDLBP bound to and stabilized the long noncoding RNA lncFAL (ferroptosis-associated lncRNA), which is derived from the plexin B2 gene. Moreover, our study suggests that the splicing of lncFAL was increased by YTH N6-methyladenosine (m6A) RNA-binding protein 2 (YTHDF2) in a m6A-dependent manner. Although HDLBP or lncFAL could not regulate the GPX4 antioxidant signalling pathway, lncFAL reduced ferroptosis vulnerability by directly binding to ferroptosis suppressor protein 1 (FSP1) and competitively abolishing Trim69-dependent FSP1 polyubiquitination degradation. More importantly, FSP1 inhibition promoted the antitumour activity of ferroptosis inducers both in vitro and in vivo. Collectively, our results provide a clinically promising demonstration that HDLBP stabilizes lncFAL, which mediates a FSP1-dependent anti-ferroptosis mechanism in HCC. These results support the enormous potential of disrupting FSP1 as a promising therapeutic approach for HCC patients with high HDLBP or lncFAL expression. Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic efficacy in HCC. High-density lipoprotein-binding protein (HDLBP), the largest RNA-binding protein, is an important transporter that protects cells from overaccumulation of cholesterol, but few studies have elucidated the role of HDLBP in the regulation of ferroptosis vulnerability in HCC. Our study suggests that HDLBP was markedly elevated in HCC compared with noncancerous liver tissues and that this elevation inhibited the ferroptosis vulnerability of HCC. Further experiments revealed that HDLBP bound to and stabilized the long noncoding RNA lncFAL (ferroptosis-associated lncRNA), which is derived from the plexin B2 gene. Moreover, our study suggests that the splicing of lncFAL was increased by YTH N6-methyladenosine (m6A) RNA-binding protein 2 (YTHDF2) in a m6A-dependent manner. Although HDLBP or lncFAL could not regulate the GPX4 antioxidant signalling pathway, lncFAL reduced ferroptosis vulnerability by directly binding to ferroptosis suppressor protein 1 (FSP1) and competitively abolishing Trim69-dependent FSP1 polyubiquitination degradation. More importantly, FSP1 inhibition promoted the antitumour activity of ferroptosis inducers both in vitro and in vivo. Collectively, our results provide a clinically promising demonstration that HDLBP stabilizes lncFAL, which mediates a FSP1-dependent anti-ferroptosis mechanism in HCC. These results support the enormous potential of disrupting FSP1 as a promising therapeutic approach for HCC patients with high HDLBP or lncFAL expression. [Display omitted] •HDLBP inhibits the ferroptosis vulnerability of HCC by stabilizing LncFAL.•Splicing of LncFAL is increased by YTHDF2 in a m6A-dependent manner in HCC.•LncFAL inhibits FSP1 polyubiquitination by disrupting the FSP1-TRIM69 interaction.•FSP1 blockade is essential for the induction of ferroptosis in HCC.•LncFAL is positively related to FSP1 and as an independent prognostic biomarker. Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic efficacy in HCC. High-density lipoprotein-binding protein (HDLBP), the largest RNA-binding protein, is an important transporter that protects cells from overaccumulation of cholesterol, but few studies have elucidated the role of HDLBP in the regulation of ferroptosis vulnerability in HCC. Our study suggests that HDLBP was markedly elevated in HCC compared with noncancerous liver tissues and that this elevation inhibited the ferroptosis vulnerability of HCC. Further experiments revealed that HDLBP bound to and stabilized the long noncoding RNA lncFAL (ferroptosis-associated lncRNA), which is derived from the plexin B2 gene. Moreover, our study suggests that the splicing of lncFAL was increased by YTH N6-methyladenosine (m6A) RNA-binding protein 2 (YTHDF2) in a m6A-dependent manner. Although HDLBP or lncFAL could not regulate the GPX4 antioxidant signalling pathway, lncFAL reduced ferroptosis vulnerability by directly binding to ferroptosis suppressor protein 1 (FSP1) and competitively abolishing Trim69-dependent FSP1 polyubiquitination degradation. More importantly, FSP1 inhibition promoted the antitumour activity of ferroptosis inducers both in vitro and in vivo. Collectively, our results provide a clinically promising demonstration that HDLBP stabilizes lncFAL, which mediates a FSP1-dependent anti-ferroptosis mechanism in HCC. These results support the enormous potential of disrupting FSP1 as a promising therapeutic approach for HCC patients with high HDLBP or lncFAL expression.Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic efficacy in HCC. High-density lipoprotein-binding protein (HDLBP), the largest RNA-binding protein, is an important transporter that protects cells from overaccumulation of cholesterol, but few studies have elucidated the role of HDLBP in the regulation of ferroptosis vulnerability in HCC. Our study suggests that HDLBP was markedly elevated in HCC compared with noncancerous liver tissues and that this elevation inhibited the ferroptosis vulnerability of HCC. Further experiments revealed that HDLBP bound to and stabilized the long noncoding RNA lncFAL (ferroptosis-associated lncRNA), which is derived from the plexin B2 gene. Moreover, our study suggests that the splicing of lncFAL was increased by YTH N6-methyladenosine (m6A) RNA-binding protein 2 (YTHDF2) in a m6A-dependent manner. Although HDLBP or lncFAL could not regulate the GPX4 antioxidant signalling pathway, lncFAL reduced ferroptosis vulnerability by directly binding to ferroptosis suppressor protein 1 (FSP1) and competitively abolishing Trim69-dependent FSP1 polyubiquitination degradation. More importantly, FSP1 inhibition promoted the antitumour activity of ferroptosis inducers both in vitro and in vivo. Collectively, our results provide a clinically promising demonstration that HDLBP stabilizes lncFAL, which mediates a FSP1-dependent anti-ferroptosis mechanism in HCC. These results support the enormous potential of disrupting FSP1 as a promising therapeutic approach for HCC patients with high HDLBP or lncFAL expression. Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic efficacy in HCC. High-density lipoprotein-binding protein (HDLBP), the largest RNA-binding protein, is an important transporter that protects cells from overaccumulation of cholesterol, but few studies have elucidated the role of HDLBP in the regulation of ferroptosis vulnerability in HCC. Our study suggests that HDLBP was markedly elevated in HCC compared with noncancerous liver tissues and that this elevation inhibited the ferroptosis vulnerability of HCC. Further experiments revealed that HDLBP bound to and stabilized the long noncoding RNA lncFAL (ferroptosis-associated lncRNA), which is derived from the plexin B2 gene. Moreover, our study suggests that the splicing of lncFAL was increased by YTH N6-methyladenosine (m6A) RNA-binding protein 2 (YTHDF2) in a m6A-dependent manner. Although HDLBP or lncFAL could not regulate the GPX4 antioxidant signalling pathway, lncFAL reduced ferroptosis vulnerability by directly binding to ferroptosis suppressor protein 1 (FSP1) and competitively abolishing Trim69-dependent FSP1 polyubiquitination degradation. More importantly, FSP1 inhibition promoted the antitumour activity of ferroptosis inducers both in vitro and in vivo . Collectively, our results provide a clinically promising demonstration that HDLBP stabilizes lncFAL, which mediates a FSP1-dependent anti-ferroptosis mechanism in HCC. These results support the enormous potential of disrupting FSP1 as a promising therapeutic approach for HCC patients with high HDLBP or lncFAL expression. Image 1 • HDLBP inhibits the ferroptosis vulnerability of HCC by stabilizing LncFAL. • Splicing of LncFAL is increased by YTHDF2 in a m6A-dependent manner in HCC. • LncFAL inhibits FSP1 polyubiquitination by disrupting the FSP1-TRIM69 interaction. • FSP1 blockade is essential for the induction of ferroptosis in HCC. • LncFAL is positively related to FSP1 and as an independent prognostic biomarker. |
ArticleNumber | 102546 |
Author | Yuan, Jingsheng Lv, Tao Yang, Jian Wu, Zhenru Yang, Jiayin Yan, Lvnan Shi, Yujun |
Author_xml | – sequence: 1 givenname: Jingsheng surname: Yuan fullname: Yuan, Jingsheng organization: Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China – sequence: 2 givenname: Tao surname: Lv fullname: Lv, Tao organization: Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China – sequence: 3 givenname: Jian surname: Yang fullname: Yang, Jian organization: Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China – sequence: 4 givenname: Zhenru surname: Wu fullname: Wu, Zhenru organization: Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China – sequence: 5 givenname: Lvnan surname: Yan fullname: Yan, Lvnan organization: Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China – sequence: 6 givenname: Jiayin surname: Yang fullname: Yang, Jiayin email: doctoryjy@scu.edu.cn organization: Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, 610041, China – sequence: 7 givenname: Yujun surname: Shi fullname: Shi, Yujun email: shiyujun@scu.edu.cn organization: Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, 610041, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36423520$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksFuEzEQhleoiJbSJ0BCPnLZYHud9foAUlsIrRSJSpSz5bUnyUQbO9hORHkBXhsnaVHLob7YGs__jf3PvK6OfPBQVW8ZHTHK2g_LUQQXfo045bxE-Fi0L6oTzllT84bJo0fn4-ospSUtq-sEZ_RVddy0gjdjTk-qP1efpxc3dcqmxwF_gyODt5PzKUG_wB5zIjOIMaxzSJjIdjN4iPvUfEf6O-JwhR7TAv2c3EZctap2sAbvwGcy-X7DiIN5NM5kDL4wyQLWJgcLw7AZTCTWRIs-rMyb6uXMDAnO7vfT6sfky-3lVT399vX68nxa27FiuQaAme0ayyUXtpMzJrhwqhNAnVGgOLfKgpNSUtGZXriuZa1TkjlVfOqpaU6r6wPXBbPU6_JkE-90MKj3gRDn2sSMdgDddIoLyZQreDE2fS87a7u27aXpqLSssD4dWOtNvwJny5-jGZ5An954XOh52GrVKk7FDvD-HhDDzw2krFeYdt4YD2GTNJeCjpmgDS2p7x7X-lfkoZMlQR0SbAwpRZhpi3lveymNg2ZU7wZHL_V-cPRucPRhcIq2-U_7gH9e9fGggtKvLULUySL44j9GsLkYis_q_wICjN92 |
CitedBy_id | crossref_primary_10_1016_j_biopha_2023_115192 crossref_primary_10_1016_j_biopha_2024_116365 crossref_primary_10_1177_1934578X231220485 crossref_primary_10_1016_j_biopha_2024_116722 crossref_primary_10_3892_etm_2024_12768 crossref_primary_10_1007_s10142_024_01292_4 crossref_primary_10_1080_15476286_2024_2313881 crossref_primary_10_1007_s10238_024_01418_9 crossref_primary_10_1007_s10863_024_10024_z crossref_primary_10_1016_j_tcb_2023_07_003 crossref_primary_10_1002_adbi_202300642 crossref_primary_10_1186_s13062_024_00530_w crossref_primary_10_1038_s41420_023_01645_1 crossref_primary_10_3389_fimmu_2025_1568567 crossref_primary_10_3389_fimmu_2024_1424954 crossref_primary_10_1038_s41598_024_55050_4 crossref_primary_10_1016_j_intimp_2024_113804 crossref_primary_10_1016_j_molmed_2023_05_013 crossref_primary_10_1002_advs_202300824 crossref_primary_10_1016_j_bmc_2024_117922 crossref_primary_10_1038_s41467_024_49202_3 crossref_primary_10_3389_fonc_2025_1502673 crossref_primary_10_1016_j_critrevonc_2024_104440 crossref_primary_10_1016_j_biopha_2023_115538 crossref_primary_10_1016_j_cellsig_2024_111076 crossref_primary_10_1007_s10495_024_01966_1 crossref_primary_10_1007_s11427_023_2474_4 crossref_primary_10_1038_s44318_025_00369_5 crossref_primary_10_1016_j_lfs_2024_123011 crossref_primary_10_1152_physrev_00031_2024 crossref_primary_10_1016_j_metabol_2024_155953 crossref_primary_10_1016_j_biopha_2023_115053 crossref_primary_10_1038_s41392_023_01720_0 crossref_primary_10_1016_j_canlet_2023_216147 crossref_primary_10_1016_j_gendis_2025_101534 crossref_primary_10_3390_cancers15164187 crossref_primary_10_1038_s41420_024_02116_x crossref_primary_10_1097_HEP_0000000000000390 crossref_primary_10_1111_jcmm_18335 crossref_primary_10_3389_fimmu_2024_1486229 crossref_primary_10_32948_auo_2023_01_20 crossref_primary_10_1186_s12935_024_03559_z crossref_primary_10_1016_j_celrep_2024_114662 crossref_primary_10_3390_antiox12061218 crossref_primary_10_1016_j_apsb_2024_03_015 crossref_primary_10_1016_j_isci_2024_110622 crossref_primary_10_1007_s11010_023_04893_y crossref_primary_10_1016_j_bbadis_2024_167481 crossref_primary_10_1016_j_jep_2023_117282 crossref_primary_10_1186_s12964_023_01357_0 crossref_primary_10_1093_procel_pwad045 crossref_primary_10_1016_j_ijbiomac_2024_137234 crossref_primary_10_3389_fonc_2024_1350011 crossref_primary_10_3892_or_2024_8764 crossref_primary_10_1007_s12672_023_00822_z crossref_primary_10_1002_advs_202414141 crossref_primary_10_1016_j_heliyon_2024_e37225 |
Cites_doi | 10.1016/j.molcel.2016.03.021 10.1038/s41586-019-1705-2 10.1016/j.tem.2020.11.005 10.1007/978-1-4939-6716-2_8 10.1016/j.jhep.2021.11.018 10.21037/jgo-21-274 10.15252/emmm.202114351 10.1038/nchembio.1416 10.1056/NEJMoa0708857 10.1093/bioinformatics/btr209 10.1111/brv.12693 10.3390/ijms21144908 10.3389/fphar.2018.01371 10.1016/j.jhep.2017.09.016 10.1016/j.cell.2011.02.013 10.1080/17474124.2021.1991792 10.1016/j.ccr.2008.05.005 10.1007/978-3-030-92034-0_9 10.2174/1566523220666200628014530 10.1111/apt.16563 10.1080/15548627.2020.1810918 10.1038/nprot.2012.086 10.1016/j.canlet.2020.02.015 10.1038/ng.848 10.3892/or.2014.3111 10.1093/nar/gkt1115 10.1038/s41418-020-00728-1 10.1016/j.jhep.2019.09.025 10.1002/JLB.3MA1220-815RRR 10.1016/j.canlet.2019.05.006 10.1016/j.ijbiomac.2017.11.109 10.3322/caac.21660 10.1007/s00018-022-04245-x 10.1038/s41586-019-1707-0 10.1158/0008-5472.CAN-15-2613 10.1093/nar/gkaa1046 10.1038/s41420-022-00994-7 10.7150/thno.49116 10.1186/s12943-022-01508-w 10.1016/j.bbagrm.2013.03.005 10.1093/nar/gkab1112 10.1038/cr.2017.155 10.1016/j.bbrc.2020.01.066 10.1002/pro.3978 10.1158/0008-5472.CAN-16-2634 10.1016/j.jhep.2017.03.007 10.1021/acs.biochem.0c00477 10.1016/j.canlet.2020.04.006 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. 2022 The Authors 2022 |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2022 The Authors 2022 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.redox.2022.102546 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-2317 |
ExternalDocumentID | oai_doaj_org_article_38924719d84e45abb78cc866b7a807c1 PMC9692041 36423520 10_1016_j_redox_2022_102546 S2213231722003184 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABGSF ABMAC ACGFS ADBBV ADEZE ADRAZ ADUVX ADVLN AENEX AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB M48 MO0 M~E NCXOZ O-L O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c591t-eeefc83c2724c87f1424d984e0da9e922c9ced777048ab4d8616d971d9022b0a3 |
IEDL.DBID | DOA |
ISSN | 2213-2317 |
IngestDate | Wed Aug 27 01:32:45 EDT 2025 Thu Aug 21 18:39:14 EDT 2025 Fri Jul 11 06:07:50 EDT 2025 Mon Jul 21 06:04:51 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 Tue Jul 01 00:47:09 EDT 2025 Mon Sep 30 11:37:08 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | HDLBP Hepatocellular carcinoma Ferroptosis Ubiquitination lncRNA FSP1 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c591t-eeefc83c2724c87f1424d984e0da9e922c9ced777048ab4d8616d971d9022b0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://doaj.org/article/38924719d84e45abb78cc866b7a807c1 |
PMID | 36423520 |
PQID | 2740514030 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_38924719d84e45abb78cc866b7a807c1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9692041 proquest_miscellaneous_2740514030 pubmed_primary_36423520 crossref_citationtrail_10_1016_j_redox_2022_102546 crossref_primary_10_1016_j_redox_2022_102546 elsevier_sciencedirect_doi_10_1016_j_redox_2022_102546 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Redox biology |
PublicationTitleAlternate | Redox Biol |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Tang, Sheng, Peng, Zhang, Xu, Hu, Kang, Wu, Dang (bib16) 2022; 8 Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (bib3) 2021; 71 Su, Zhao, Zhou, Zhang, Shen, Lv, AlQudsy, Shang (bib15) 2020; 483 Yang, Wei, Huang, Li, Shen, Liu, Xu, Li, Qin (bib20) 2014; 31 Hanahan, Weinberg (bib40) 2011; 144 Yuan, Yin, Tan, Zhu, Tao, Wang, Shi, Gao (bib22) 2019; 457 Lin, Jungreis, Kellis (bib29) 2011; 27 Galle, Tovoli, Foerster, Wörns, Cucchetti, Bolondi (bib8) 2017; 67 Bagga, Tulsian, Mok, Kini, Sivaraman (bib39) 2022; 79 Sayers, Bolton, Brister, Canese, Chan, Comeau, Connor, Funk, Kelly, Kim, Madej, Marchler-Bauer, Lanczycki, Lathrop, Lu, Thibaud-Nissen, Murphy, Phan, Skripchenko, Tse, Wang, Williams, Trawick, Pruitt, Sherry (bib26) 2022; 50 Kong, Wang, Han, Bao, Lu (bib14) 2021; 110 Zhou, Ji H, Xu, Zhang, Cao, Chen, Shao, Wu, Zhang, Lu, Yang, Shi, Bu (bib21) 2021; 11 Porporato, Filigheddu, Pedro, Kroemer, Galluzzi (bib41) 2018; 28 Gao, Kalathur, Coto-Llerena, Ercan, Buechel, Shuang, Piscuoglio, Dill, Camargo, Christofori, Tang (bib23) 2021; 13 Hung, Wang, Lin, Koegel, Kotake Y, Grant GD, Horlings, Shah, Umbricht, Wang, Wang, Kong, Langerød, Børresen-Dale, Kim, van de Vijver, Sukumar, Whitfield, Kellis, Xiong, Wong, Chang (bib28) 2011; 43 Kong, Tao, Shen, Ju (bib45) 2020; 483 Kroemer, Pouyssegur (bib18) 2008; 13 Mann, Muppirala, Dobbs (bib24) 2017; 1543 Harding-Theobald, Louissaint, Maraj, Cuaresma, Townsend, Mendiratta-Lala, Singal, Su, Lok, Parikh (bib9) 2021; 54 Capelletti, Manceau, Puy, Peoc'h (bib11) 2020; 21 Orchard, Ammari, Aranda, Breuza, Briganti, Broackes-Carter, Campbell, Chavali, Chen, del-Toro, Duesbury, Dumousseau, Galeota, Hinz, Iannuccelli, Jagannathan, Jimenez, Khadake, Lagreid, Licata, Lovering, Meldal, Melidoni, Milagros, Peluso, Perfetto, Porras, Raghunath, Ricard-Blum, Roechert, Stutz, Tognolli, van Roey, Cesareni, Hermjakob (bib38) 2014; 42 Wu, Kersten, Qi (bib43) 2021; 32 Llovet, Ricci, Mazzaferro, Hilgard, Gane, Blanc, de Oliveira, Santoro A, Raoul, Forner, Schwartz, Porta, Zeuzem, Bolondi, Greten, Galle, Seitz, Borbath, Häussinger, Giannaris, Shan, Moscovici, Voliotis, Bruix (bib6) 2008; 359 Lin, Choe, Du, Triboulet, Gregory (bib33) 2016; 62 Liu, Li, Hu, Wang, Shao, Zhong, Yang, Liu, Zhang (bib32) 2022; 21 Pierce, Zhou, Simion, Feinberg (bib30) 2022; 1363 Konyn, Ahmed, Kim (bib2) 2021; 15 Fujiwara, Friedman, Goossens, Hoshida (bib1) 2018; 68 Chen, Li, Kang, Klionsky, Tang (bib46) 2021; 17 Zhao, Wang, Li, Song, Wu, Fang S, Bu, Li, Sun, Pei, Zheng, Huang, Xu, Chen, Zhao, He (bib25) 2021; 49 Zhang, Li, Lin, Gao (bib5) 2022; 20 Alannan, Fayyad-Kazan, Trézéguet, Merched (bib42) 2020; 59 Doll, Freitas, Shah, Aldrovandi, da Silva, Ingold, Goya Grocin, Xavier da Silva, Panzilius, Scheel, Mourão, Buday, Sato, Wanninger, Vignane, Mohana, Rehberg, Flatley, Schepers, Kurz, White, Sauer, Sattler, Tate, Schmitz, Schulze, O'Donnell, Proneth, Popowicz, Pratt, Angeli, Conrad (bib48) 2019; 575 Cheng, Jansen (bib19) 2017; vol. 8 Dixon, Stockwell (bib47) 2014; 10 Yu, Liu, He, Huang, Jiang, Xie, Liu, Chen, Wei, Qin (bib31) 2018; 108 Awosika, Sohal (bib7) 2022; 13 Nagarajan, Jones, Newbury, Green (bib35) 2013; 1829 Stuparević, Novačić, Rahmouni, Fernandez, Lamb, Primig (bib34) 2021; 96 Bersuker, Hendricks, Li, Magtanong, Ford, Tang, Roberts, Tong, Maimone, Zoncu, Bassik, Nomura, Dixon, Olzmann (bib36) 2019; 575 Kuzu, Noory, Robertson (bib17) 2016; 76 Dai, Zhang, Cong, Kang, Wang, Tang (bib49) 2020; 523 Bhan, Soleimani, Mandal (bib44) 2017; 77 Reig, Forner, Rimola, Ferrer-Fàbrega, Burrel, Á, Garcia-Criado, Kelley, Galle, Mazzaferro, Salem, Sangro, Singal, Vogel, Fuster, Ayuso, Bruix (bib4) 2022; 76 Chen, Fan, Hu, Lu, Xiang, Liao (bib13) 2022; 12 Cheng, Hsu, Chan, Choo, Kudo (bib10) 2020; 72 Sui, Zhang, Liu, Duan, Zhai, Zhang, Han, Xiang, Huang, Lin, Xie (bib50) 2018; 9 Chen, Yu, Kang, Kroemer, Tang (bib12) 2021; 28 Oughtred, Rust, Chang, Breitkreutz, Stark, Willems, Boucher, Leung, Kolas, Zhang, Dolma, Coulombe-Huntington, Chatr-Aryamontri, Dolinski, Tyers (bib37) 2021; 30 Ingolia, Brar, Rouskin, McGeachy, Weissman (bib27) 2012; 7 Sayers (10.1016/j.redox.2022.102546_bib26) 2022; 50 Bagga (10.1016/j.redox.2022.102546_bib39) 2022; 79 Capelletti (10.1016/j.redox.2022.102546_bib11) 2020; 21 Chen (10.1016/j.redox.2022.102546_bib13) 2022; 12 Llovet (10.1016/j.redox.2022.102546_bib6) 2008; 359 Wu (10.1016/j.redox.2022.102546_bib43) 2021; 32 Nagarajan (10.1016/j.redox.2022.102546_bib35) 2013; 1829 Alannan (10.1016/j.redox.2022.102546_bib42) 2020; 59 Dai (10.1016/j.redox.2022.102546_bib49) 2020; 523 Yang (10.1016/j.redox.2022.102546_bib20) 2014; 31 Bhan (10.1016/j.redox.2022.102546_bib44) 2017; 77 Zhou (10.1016/j.redox.2022.102546_bib21) 2021; 11 Dixon (10.1016/j.redox.2022.102546_bib47) 2014; 10 Kong (10.1016/j.redox.2022.102546_bib14) 2021; 110 Yuan (10.1016/j.redox.2022.102546_bib22) 2019; 457 Fujiwara (10.1016/j.redox.2022.102546_bib1) 2018; 68 Bersuker (10.1016/j.redox.2022.102546_bib36) 2019; 575 Yu (10.1016/j.redox.2022.102546_bib31) 2018; 108 Reig (10.1016/j.redox.2022.102546_bib4) 2022; 76 Tang (10.1016/j.redox.2022.102546_bib16) 2022; 8 Chen (10.1016/j.redox.2022.102546_bib12) 2021; 28 Su (10.1016/j.redox.2022.102546_bib15) 2020; 483 Gao (10.1016/j.redox.2022.102546_bib23) 2021; 13 Konyn (10.1016/j.redox.2022.102546_bib2) 2021; 15 Doll (10.1016/j.redox.2022.102546_bib48) 2019; 575 Stuparević (10.1016/j.redox.2022.102546_bib34) 2021; 96 Sung (10.1016/j.redox.2022.102546_bib3) 2021; 71 Awosika (10.1016/j.redox.2022.102546_bib7) 2022; 13 Kong (10.1016/j.redox.2022.102546_bib45) 2020; 483 Hanahan (10.1016/j.redox.2022.102546_bib40) 2011; 144 Kuzu (10.1016/j.redox.2022.102546_bib17) 2016; 76 Hung (10.1016/j.redox.2022.102546_bib28) 2011; 43 Lin (10.1016/j.redox.2022.102546_bib29) 2011; 27 Chen (10.1016/j.redox.2022.102546_bib46) 2021; 17 Porporato (10.1016/j.redox.2022.102546_bib41) 2018; 28 Pierce (10.1016/j.redox.2022.102546_bib30) 2022; 1363 Oughtred (10.1016/j.redox.2022.102546_bib37) 2021; 30 Galle (10.1016/j.redox.2022.102546_bib8) 2017; 67 Orchard (10.1016/j.redox.2022.102546_bib38) 2014; 42 Zhao (10.1016/j.redox.2022.102546_bib25) 2021; 49 Harding-Theobald (10.1016/j.redox.2022.102546_bib9) 2021; 54 Mann (10.1016/j.redox.2022.102546_bib24) 2017; 1543 Ingolia (10.1016/j.redox.2022.102546_bib27) 2012; 7 Cheng (10.1016/j.redox.2022.102546_bib10) 2020; 72 Liu (10.1016/j.redox.2022.102546_bib32) 2022; 21 Kroemer (10.1016/j.redox.2022.102546_bib18) 2008; 13 Cheng (10.1016/j.redox.2022.102546_bib19) 2017; vol. 8 Zhang (10.1016/j.redox.2022.102546_bib5) 2022; 20 Sui (10.1016/j.redox.2022.102546_bib50) 2018; 9 Lin (10.1016/j.redox.2022.102546_bib33) 2016; 62 |
References_xml | – volume: 575 start-page: 693 year: 2019 end-page: 698 ident: bib48 article-title: FSP1 is a glutathione-independent ferroptosis suppressor publication-title: Nature – volume: vol. 8 year: 2017 ident: bib19 publication-title: A Jack of All Trades: the RNA-Binding Protein Vigilin – volume: 68 start-page: 526 year: 2018 end-page: 549 ident: bib1 article-title: Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine publication-title: J. Hepatol. – volume: 28 start-page: 1135 year: 2021 end-page: 1148 ident: bib12 article-title: Cellular degradation systems in ferroptosis publication-title: Cell Death Differ. – volume: 30 start-page: 187 year: 2021 end-page: 200 ident: bib37 article-title: The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions publication-title: Protein Sci. – volume: 1543 start-page: 169 year: 2017 end-page: 185 ident: bib24 article-title: Computational prediction of RNA-protein interactions publication-title: Methods Mol. Biol. – volume: 62 start-page: 335 year: 2016 end-page: 345 ident: bib33 article-title: The m(6)A methyltransferase METTL3 promotes translation in human cancer cells publication-title: Mol. Cell – volume: 575 start-page: 688 year: 2019 end-page: 692 ident: bib36 article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis publication-title: Nature – volume: 15 start-page: 1295 year: 2021 end-page: 1307 ident: bib2 article-title: Current epidemiology in hepatocellular carcinoma publication-title: Expet Rev. Gastroenterol. Hepatol. – volume: 72 start-page: 307 year: 2020 end-page: 319 ident: bib10 article-title: Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma publication-title: J. Hepatol. – volume: 76 start-page: 681 year: 2022 end-page: 693 ident: bib4 article-title: BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update publication-title: J. Hepatol. – volume: 110 start-page: 301 year: 2021 end-page: 314 ident: bib14 article-title: IFNγ-mediated repression of system xc- drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells publication-title: J. Leukoc. Biol. – volume: 79 start-page: 233 year: 2022 ident: bib39 article-title: Mapping of molecular interactions between human E3 ligase TRIM69 and Dengue virus NS3 protease using hydrogen-deuterium exchange mass spectrometry publication-title: Cell. Mol. Life Sci. – volume: 359 start-page: 378 year: 2008 end-page: 390 ident: bib6 article-title: Sorafenib in advanced hepatocellular carcinoma publication-title: N. Engl. J. Med. – volume: 1829 start-page: 590 year: 2013 end-page: 603 ident: bib35 article-title: XRN 5'→3' exoribonucleases: structure, mechanisms and functions publication-title: Biochim. Biophys. Acta – volume: 13 start-page: 472 year: 2008 end-page: 482 ident: bib18 article-title: Tumor cell metabolism: cancer's Achilles' heel publication-title: Cancer Cell – volume: 59 start-page: 3951 year: 2020 end-page: 3964 ident: bib42 article-title: Targeting lipid metabolism in liver cancer publication-title: Biochemistry – volume: 9 start-page: 1371 year: 2018 ident: bib50 article-title: RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer publication-title: Front. Pharmacol. – volume: 27 start-page: i275 year: 2011 end-page: i282 ident: bib29 article-title: PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions publication-title: Bioinformatics – volume: 457 start-page: 28 year: 2019 end-page: 39 ident: bib22 article-title: Interferon regulatory factor-1 reverses chemoresistance by downregulating the expression of P-glycoprotein in gastric cancer publication-title: Cancer Lett. – volume: 21 start-page: 4908 year: 2020 ident: bib11 article-title: Ferroptosis in liver diseases: an overview publication-title: Int. J. Mol. Sci. – volume: 1363 start-page: 161 year: 2022 end-page: 175 ident: bib30 article-title: Long noncoding RNAs as therapeutic targets publication-title: Adv. Exp. Med. Biol. – volume: 7 start-page: 1534 year: 2012 end-page: 1550 ident: bib27 article-title: The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments publication-title: Nat. Protoc. – volume: 144 start-page: 646 year: 2011 end-page: 674 ident: bib40 article-title: Hallmarks of cancer: the next generation publication-title: Cell – volume: 483 start-page: 59 year: 2020 end-page: 65 ident: bib45 article-title: Translatable circRNAs and lncRNAs: driving mechanisms and functions of their translation products publication-title: Cancer Lett. – volume: 50 start-page: D20 year: 2022 end-page: D26 ident: bib26 article-title: Database resources of the national center for biotechnology information publication-title: Nucleic Acids Res. – volume: 43 start-page: 621 year: 2011 end-page: 629 ident: bib28 article-title: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters publication-title: Nat. Genet. – volume: 54 start-page: 890 year: 2021 end-page: 901 ident: bib9 article-title: Systematic review: radiomics for the diagnosis and prognosis of hepatocellular carcinoma publication-title: Aliment. Pharmacol. Ther. – volume: 10 start-page: 9 year: 2014 end-page: 17 ident: bib47 article-title: The role of iron and reactive oxygen species in cell death publication-title: Nat. Chem. Biol. – volume: 13 start-page: 426 year: 2022 end-page: 437 ident: bib7 article-title: A narrative review of systemic treatment options for hepatocellular carcinoma: state of the art review publication-title: J. Gastrointest. Oncol. – volume: 76 start-page: 2063 year: 2016 end-page: 2070 ident: bib17 article-title: The role of cholesterol in cancer publication-title: Cancer Res. – volume: 13 year: 2021 ident: bib23 article-title: YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis publication-title: EMBO Mol. Med. – volume: 11 start-page: 7262 year: 2021 end-page: 7275 ident: bib21 article-title: Congenital biliary atresia is correlated with disrupted cell junctions and polarity caused by Cdc42 insufficiency in the liver publication-title: Theranostics – volume: 32 start-page: 48 year: 2021 end-page: 61 ident: bib43 article-title: Lipoprotein lipase and its regulators: an unfolding story publication-title: Trends Endocrinol. Metabol. – volume: 77 start-page: 3965 year: 2017 end-page: 3981 ident: bib44 article-title: Long noncoding RNA and cancer: a new paradigm publication-title: Cancer Res. – volume: 20 start-page: 84 year: 2022 end-page: 99 ident: bib5 article-title: Systemic therapy for hepatocellular carcinoma: advances and hopes publication-title: Curr. Gene Ther. – volume: 523 start-page: 966 year: 2020 end-page: 971 ident: bib49 article-title: AIFM2 blocks ferroptosis independent of ubiquinol metabolism publication-title: Biochem. Biophys. Res. Commun. – volume: 8 start-page: 177 year: 2022 ident: bib16 article-title: Targeting NOX4 disrupts the resistance of papillary thyroid carcinoma to chemotherapeutic drugs and lenvatinib publication-title: Cell Death Dis. – volume: 17 start-page: 2054 year: 2021 end-page: 2081 ident: bib46 article-title: Ferroptosis: machinery and regulation publication-title: Autophagy – volume: 49 start-page: D165 year: 2021 end-page: D171 ident: bib25 article-title: NONCODEV6: an updated database dedicated to long non-coding RNA annotation in both animals and plants publication-title: Nucleic Acids Res. – volume: 31 start-page: 2328 year: 2014 end-page: 2334 ident: bib20 article-title: Vigilin is overexpressed in hepatocellular carcinoma and is required for HCC cell proliferation and tumor growth publication-title: Oncol. Rep. – volume: 108 start-page: 515 year: 2018 end-page: 522 ident: bib31 article-title: Vigilin interacts with CTCF and is involved in the maintenance of imprinting of IGF2 through a novel RNA-mediated mechanism publication-title: Int. J. Biol. Macromol. – volume: 42 start-page: D358 year: 2014 end-page: D363 ident: bib38 article-title: The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases publication-title: Nucleic Acids Res. – volume: 21 start-page: 32 year: 2022 ident: bib32 article-title: Insights into N6-methyladenosine and programmed cell death in cancer publication-title: Mol. Cancer – volume: 96 start-page: 1092 year: 2021 end-page: 1113 ident: bib34 article-title: Regulation of the conserved 3'-5' exoribonuclease EXOSC10/Rrp6 during cell division, development and cancer publication-title: Biol. Rev. Camb. Phil. Soc. – volume: 71 start-page: 209 year: 2021 end-page: 249 ident: bib3 article-title: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA publication-title: Cancer J. Clin. – volume: 12 year: 2022 ident: bib13 article-title: Ferroptosis: a new strategy for cancer therapy publication-title: Front. Oncol. – volume: 483 start-page: 127 year: 2020 end-page: 136 ident: bib15 article-title: Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs publication-title: Cancer Lett. – volume: 28 start-page: 265 year: 2018 end-page: 280 ident: bib41 article-title: Mitochondrial metabolism and cancer publication-title: Cell Res. – volume: 67 start-page: 173 year: 2017 end-page: 183 ident: bib8 article-title: The treatment of intermediate stage tumours beyond TACE: from surgery to systemic therapy publication-title: J. Hepatol. – volume: 62 start-page: 335 year: 2016 ident: 10.1016/j.redox.2022.102546_bib33 article-title: The m(6)A methyltransferase METTL3 promotes translation in human cancer cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.03.021 – volume: 575 start-page: 688 year: 2019 ident: 10.1016/j.redox.2022.102546_bib36 article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis publication-title: Nature doi: 10.1038/s41586-019-1705-2 – volume: 32 start-page: 48 year: 2021 ident: 10.1016/j.redox.2022.102546_bib43 article-title: Lipoprotein lipase and its regulators: an unfolding story publication-title: Trends Endocrinol. Metabol. doi: 10.1016/j.tem.2020.11.005 – volume: 1543 start-page: 169 year: 2017 ident: 10.1016/j.redox.2022.102546_bib24 article-title: Computational prediction of RNA-protein interactions publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6716-2_8 – volume: 76 start-page: 681 year: 2022 ident: 10.1016/j.redox.2022.102546_bib4 article-title: BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update publication-title: J. Hepatol. doi: 10.1016/j.jhep.2021.11.018 – volume: 13 start-page: 426 year: 2022 ident: 10.1016/j.redox.2022.102546_bib7 article-title: A narrative review of systemic treatment options for hepatocellular carcinoma: state of the art review publication-title: J. Gastrointest. Oncol. doi: 10.21037/jgo-21-274 – volume: 13 year: 2021 ident: 10.1016/j.redox.2022.102546_bib23 article-title: YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis publication-title: EMBO Mol. Med. doi: 10.15252/emmm.202114351 – volume: 10 start-page: 9 year: 2014 ident: 10.1016/j.redox.2022.102546_bib47 article-title: The role of iron and reactive oxygen species in cell death publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1416 – volume: 359 start-page: 378 year: 2008 ident: 10.1016/j.redox.2022.102546_bib6 article-title: Sorafenib in advanced hepatocellular carcinoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0708857 – volume: 27 start-page: i275 year: 2011 ident: 10.1016/j.redox.2022.102546_bib29 article-title: PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr209 – volume: 96 start-page: 1092 year: 2021 ident: 10.1016/j.redox.2022.102546_bib34 article-title: Regulation of the conserved 3'-5' exoribonuclease EXOSC10/Rrp6 during cell division, development and cancer publication-title: Biol. Rev. Camb. Phil. Soc. doi: 10.1111/brv.12693 – volume: 21 start-page: 4908 year: 2020 ident: 10.1016/j.redox.2022.102546_bib11 article-title: Ferroptosis in liver diseases: an overview publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21144908 – volume: 9 start-page: 1371 year: 2018 ident: 10.1016/j.redox.2022.102546_bib50 article-title: RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.01371 – volume: 68 start-page: 526 year: 2018 ident: 10.1016/j.redox.2022.102546_bib1 article-title: Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine publication-title: J. Hepatol. doi: 10.1016/j.jhep.2017.09.016 – volume: 144 start-page: 646 year: 2011 ident: 10.1016/j.redox.2022.102546_bib40 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 15 start-page: 1295 year: 2021 ident: 10.1016/j.redox.2022.102546_bib2 article-title: Current epidemiology in hepatocellular carcinoma publication-title: Expet Rev. Gastroenterol. Hepatol. doi: 10.1080/17474124.2021.1991792 – volume: 13 start-page: 472 year: 2008 ident: 10.1016/j.redox.2022.102546_bib18 article-title: Tumor cell metabolism: cancer's Achilles' heel publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.05.005 – volume: 1363 start-page: 161 year: 2022 ident: 10.1016/j.redox.2022.102546_bib30 article-title: Long noncoding RNAs as therapeutic targets publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-030-92034-0_9 – volume: 12 year: 2022 ident: 10.1016/j.redox.2022.102546_bib13 article-title: Ferroptosis: a new strategy for cancer therapy publication-title: Front. Oncol. – volume: 20 start-page: 84 year: 2022 ident: 10.1016/j.redox.2022.102546_bib5 article-title: Systemic therapy for hepatocellular carcinoma: advances and hopes publication-title: Curr. Gene Ther. doi: 10.2174/1566523220666200628014530 – volume: 54 start-page: 890 year: 2021 ident: 10.1016/j.redox.2022.102546_bib9 article-title: Systematic review: radiomics for the diagnosis and prognosis of hepatocellular carcinoma publication-title: Aliment. Pharmacol. Ther. doi: 10.1111/apt.16563 – volume: 17 start-page: 2054 year: 2021 ident: 10.1016/j.redox.2022.102546_bib46 article-title: Ferroptosis: machinery and regulation publication-title: Autophagy doi: 10.1080/15548627.2020.1810918 – volume: 7 start-page: 1534 year: 2012 ident: 10.1016/j.redox.2022.102546_bib27 article-title: The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.086 – volume: 483 start-page: 127 year: 2020 ident: 10.1016/j.redox.2022.102546_bib15 article-title: Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs publication-title: Cancer Lett. doi: 10.1016/j.canlet.2020.02.015 – volume: 43 start-page: 621 year: 2011 ident: 10.1016/j.redox.2022.102546_bib28 article-title: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters publication-title: Nat. Genet. doi: 10.1038/ng.848 – volume: 31 start-page: 2328 year: 2014 ident: 10.1016/j.redox.2022.102546_bib20 article-title: Vigilin is overexpressed in hepatocellular carcinoma and is required for HCC cell proliferation and tumor growth publication-title: Oncol. Rep. doi: 10.3892/or.2014.3111 – volume: 42 start-page: D358 year: 2014 ident: 10.1016/j.redox.2022.102546_bib38 article-title: The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1115 – volume: 28 start-page: 1135 year: 2021 ident: 10.1016/j.redox.2022.102546_bib12 article-title: Cellular degradation systems in ferroptosis publication-title: Cell Death Differ. doi: 10.1038/s41418-020-00728-1 – volume: vol. 8 year: 2017 ident: 10.1016/j.redox.2022.102546_bib19 – volume: 72 start-page: 307 year: 2020 ident: 10.1016/j.redox.2022.102546_bib10 article-title: Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma publication-title: J. Hepatol. doi: 10.1016/j.jhep.2019.09.025 – volume: 110 start-page: 301 year: 2021 ident: 10.1016/j.redox.2022.102546_bib14 article-title: IFNγ-mediated repression of system xc- drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.3MA1220-815RRR – volume: 457 start-page: 28 year: 2019 ident: 10.1016/j.redox.2022.102546_bib22 article-title: Interferon regulatory factor-1 reverses chemoresistance by downregulating the expression of P-glycoprotein in gastric cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2019.05.006 – volume: 108 start-page: 515 year: 2018 ident: 10.1016/j.redox.2022.102546_bib31 article-title: Vigilin interacts with CTCF and is involved in the maintenance of imprinting of IGF2 through a novel RNA-mediated mechanism publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.11.109 – volume: 71 start-page: 209 year: 2021 ident: 10.1016/j.redox.2022.102546_bib3 article-title: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA publication-title: Cancer J. Clin. doi: 10.3322/caac.21660 – volume: 79 start-page: 233 year: 2022 ident: 10.1016/j.redox.2022.102546_bib39 article-title: Mapping of molecular interactions between human E3 ligase TRIM69 and Dengue virus NS3 protease using hydrogen-deuterium exchange mass spectrometry publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-022-04245-x – volume: 575 start-page: 693 year: 2019 ident: 10.1016/j.redox.2022.102546_bib48 article-title: FSP1 is a glutathione-independent ferroptosis suppressor publication-title: Nature doi: 10.1038/s41586-019-1707-0 – volume: 76 start-page: 2063 year: 2016 ident: 10.1016/j.redox.2022.102546_bib17 article-title: The role of cholesterol in cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-2613 – volume: 49 start-page: D165 year: 2021 ident: 10.1016/j.redox.2022.102546_bib25 article-title: NONCODEV6: an updated database dedicated to long non-coding RNA annotation in both animals and plants publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1046 – volume: 8 start-page: 177 year: 2022 ident: 10.1016/j.redox.2022.102546_bib16 article-title: Targeting NOX4 disrupts the resistance of papillary thyroid carcinoma to chemotherapeutic drugs and lenvatinib publication-title: Cell Death Dis. doi: 10.1038/s41420-022-00994-7 – volume: 11 start-page: 7262 year: 2021 ident: 10.1016/j.redox.2022.102546_bib21 article-title: Congenital biliary atresia is correlated with disrupted cell junctions and polarity caused by Cdc42 insufficiency in the liver publication-title: Theranostics doi: 10.7150/thno.49116 – volume: 21 start-page: 32 year: 2022 ident: 10.1016/j.redox.2022.102546_bib32 article-title: Insights into N6-methyladenosine and programmed cell death in cancer publication-title: Mol. Cancer doi: 10.1186/s12943-022-01508-w – volume: 1829 start-page: 590 year: 2013 ident: 10.1016/j.redox.2022.102546_bib35 article-title: XRN 5'→3' exoribonucleases: structure, mechanisms and functions publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2013.03.005 – volume: 50 start-page: D20 year: 2022 ident: 10.1016/j.redox.2022.102546_bib26 article-title: Database resources of the national center for biotechnology information publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1112 – volume: 28 start-page: 265 year: 2018 ident: 10.1016/j.redox.2022.102546_bib41 article-title: Mitochondrial metabolism and cancer publication-title: Cell Res. doi: 10.1038/cr.2017.155 – volume: 523 start-page: 966 year: 2020 ident: 10.1016/j.redox.2022.102546_bib49 article-title: AIFM2 blocks ferroptosis independent of ubiquinol metabolism publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.01.066 – volume: 30 start-page: 187 year: 2021 ident: 10.1016/j.redox.2022.102546_bib37 article-title: The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions publication-title: Protein Sci. doi: 10.1002/pro.3978 – volume: 77 start-page: 3965 year: 2017 ident: 10.1016/j.redox.2022.102546_bib44 article-title: Long noncoding RNA and cancer: a new paradigm publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-2634 – volume: 67 start-page: 173 year: 2017 ident: 10.1016/j.redox.2022.102546_bib8 article-title: The treatment of intermediate stage tumours beyond TACE: from surgery to systemic therapy publication-title: J. Hepatol. doi: 10.1016/j.jhep.2017.03.007 – volume: 59 start-page: 3951 year: 2020 ident: 10.1016/j.redox.2022.102546_bib42 article-title: Targeting lipid metabolism in liver cancer publication-title: Biochemistry doi: 10.1021/acs.biochem.0c00477 – volume: 483 start-page: 59 year: 2020 ident: 10.1016/j.redox.2022.102546_bib45 article-title: Translatable circRNAs and lncRNAs: driving mechanisms and functions of their translation products publication-title: Cancer Lett. doi: 10.1016/j.canlet.2020.04.006 |
SSID | ssj0000884210 |
Score | 2.5283797 |
Snippet | Recent studies have suggested that exploring the potential mechanisms regulating ferroptosis vulnerability may contribute to improving the systemic therapeutic... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102546 |
SubjectTerms | Carcinoma, Hepatocellular - metabolism Ferroptosis Ferroptosis - genetics FSP1 HDLBP Hepatocellular carcinoma Humans Liver Neoplasms - metabolism lncRNA Research Paper RNA, Long Noncoding RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism Tripartite Motif Proteins - metabolism Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelMNjL2PeydUODPc7ElmXJemy6hTC6UWgLeTPWhxeP1A6OM5r9A_u3dyfbod6gD3u0LNuS7nT3k3z6HSEfQpYnhUh4gFxYsECJkwBQaxJEQjNtEmGNzxn59ZtYXPMvy2R5RM6GszAYVtnb_s6me2vdl0z70ZxuynJ6yRispMD9MeY1EzlBY576Q3zL2WGfBWYRZ56UAOsH-MBAPuTDvJCW8xbWiYwhi0GCQPiOg_I8_iM_9S8O_Tuc8o5_mj8mj3pgSU-7tj8hR656Sh50qSb3z8jvxafz2UUAWBCjYX85S9eVmZ-e07Jalbpst7RwTVNv2npbbunP3RrZqH3g7J7qPbWl5yDB7Sp61ZQ3QgVD-tyWzi8vImqRdaJL0ATvpCtwc22NvwUwzpUaTFlU1Tf5c3I9_3x1tgj6JAyBSVTUBs65wqSxYZJxk8oCT8ZZlXIX2lw5xZhRICopJZiCXHObikhYJSOrYEh1mMcvyHFVV-4VoSzkYM1EwQD0cGstgD9hpbZ5WCS8MPGEsGHkM9MzlGOijHU2hKL9yLy4MhRX1olrQj4eHtp0BB33V5-hSA9VkV3bF9TN96xXrwxAHAOnrSx0kye51jI1JhVCyzwNpYkmRAwKkY2UFV5V3v_194P6ZDCNUQh55erdNmOSIxM9mNwJedmp06GNMawRASfDHTlStFEnxneqcuWpwpVQMOrR6_9t8BvyEK-6-J0Tctw2O_cWUFir3_lp9gdqszBs priority: 102 providerName: Elsevier – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERIXxJvlJSNxJChx_IgPFWqB1Qq1qBJdqTcrfoQN2iYlyVZd_gB_m7GTLCxUPXGNEyf2zHg-J5PvQ-h1THJWcEYjz4UFG5SURYBaWZRwTbRh3JqgGXn0mc_m9NMpO91BoyrqMIHtlVs7ryc1b5ZvL7-v30HA7_2u1fLcmpew2SPEUxEwym-gm5CahI_UowHvh6U5yygJDAWEJGkE2EaMTERX97OVrQKp_1bS-heU_l1b-Ueymt5FdwaUifd7t7iHdlx1H93qdSfXD9DP2YfDg-MIgKEvjf3hLF5WZrp_iMtqUeqya3HhmqY-7-q2bPHFaumpqUMV7RrrNbZlICTx767wSVOecRmNWrodnn45TrD1FBS9WhP0iReQ87rafyPwRa_YeP2iqj7LH6L59OPJ-1k0KDJEhsmki5xzhclSQwShJhOF_03Oyoy62ObSSUKMNM4KIWBdyDW1GU-4lSKxEqZUx3n6CO1WdeWeIExiCksbLwggIGqtBSTIrdA2jwtGC5NOEBlnXpmBrtyrZizVWJf2TQVzKW8u1Ztrgt5sLjrv2TquP_3Am3RzqqfaDgfq5qsaIlcBoiOQwaWFYVKWay0yYzLOtcizWJhkgvjoEGpALT0aga7K6-_-anQfBTHtjZBXrl61igjqaelh_Z2gx707bZ4xhQ0jgGZoEVuOtjWI7ZaqXATecMklzHry9H-M-hm67YfSF_Y8R7tds3IvAJ51-mUIuV9zoThz priority: 102 providerName: Scholars Portal |
Title | HDLBP-stabilized lncFAL inhibits ferroptosis vulnerability by diminishing Trim69-dependent FSP1 degradation in hepatocellular carcinoma |
URI | https://dx.doi.org/10.1016/j.redox.2022.102546 https://www.ncbi.nlm.nih.gov/pubmed/36423520 https://www.proquest.com/docview/2740514030 https://pubmed.ncbi.nlm.nih.gov/PMC9692041 https://doaj.org/article/38924719d84e45abb78cc866b7a807c1 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQIiQuiDflsTISRyISx89jC1SF3UUr2BW9WfEjalA3WbXpassf4G8zdpqqBWm5cMkhdpzYM575Jpl8g9CblBSs5IwmgQsLApScJYBaWZJxQ4xl3NlYM_LkC5-c089TNt0p9RVywjp64G7h3oFDJWBAlZPUU1YYI6S1knMjCpkKGwMf8Hk7wVS0wVJSEqkICMnyBECM6CmHYnJXIOO8huiQkMBdwAL83XFLkb1_zzv9jT7_TKLc8Urj--jeBk7iYTeNB-iWrx-iO12ByfUj9Gvy4Xh0mgACDDmwP73D89qOh8e4qmeVqdolLv1i0Vy2zbJa4qvVPHBQx3TZNTZr7KrIPBJeUuGzRXXBVdIXzW3x-Ntphl3gmujKMsGYeAbOrW3Cx4CQ3YptKFRUNxfFY3Q-_nj2fpJsSi8klqmsTbz3pZW5JYJQK0UZ_odzCkSQukJ5RYhV1jshBBiAwlAnecadEplTsKQmLfIn6KBuav8MYZJSsGG8JAB1qHMOIB93wrgiLRktbT5ApF95bTe85KE8xlz3CWg_dBSXDuLSnbgG6O32osuOluPm7qMg0m3XwKkdT4Cm6Y2m6X9p2gDxXiH0Bp50sAOGqm6---tefTRs3iCEovbNaqmJoIF_HgztAD3t1Gn7jDlEhoCOoUXsKdreJPZb6moWCcIVV7Dq2fP_MesX6G6YSpfB8xIdtIuVfwU4rDWH6Pbw6Ov3o8O49eD4aTqC4wmVvwEn3jLG |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEIIXxDfl00g8EjVxHTt-XAdVB900aZ3Utyj-yBrUJVWbIso_wL_NnZNUK0h74DWOE9t3vvudc_kdIR9DlsW5iHmAXFgQoAziAFBrHERCM21iYY2vGXl6JsaX_Ossnh2Q4-5fGEyrbG1_Y9O9tW6v9NvV7C-Lon_BGERS4P4Y85rJ75C7gAYk1m84mQ13By2wjTjzrATYIcAeHfuQz_NCXs6fECgyhjQGMSLhGx7KE_nvOap_gejf-ZQ3HNToEXnYIkt61Az-MTlw5RNyr6k1uX1Kfo8_T4bnAYBBTIf95SxdlGZ0NKFFOS90Ua9p7larallX62JNf2wWSEftM2e3VG-pLTwJCZ5X0emquBYq6Orn1nR0cR5Ri7QTTYUmeCadg5-rK_wugImu1GDNorK6zp6Ry9GX6fE4aKswBCZWUR0453KTDAyTjJtE5vhrnFUJd6HNlFOMGQWyklKCLcg0t4mIhFUysgqWVIfZ4Dk5LKvSvSSUhRzMmcgZoB5urQX0J6zUNgvzmOdm0COsW_nUtBTlWCljkXa5aN9TL64UxZU24uqRT7tOy4ah4_bbhyjS3a1Ir-0vVKurtNWvFFAcA6-tLEyTx5nWMjEmEULLLAmliXpEdAqR7mkrPKq4_e0fOvVJYR-jELLSVZt1yiRHKnqwuT3yolGn3RgHECQCUIYWuadoe5PYbymLuecKV0LBqkev_nfA78n98fR0kk5Ozr69Jg-wpUnmeUMO69XGvQVIVut3fsv9AawNM4s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HDLBP-stabilized+lncFAL+inhibits+ferroptosis+vulnerability+by+diminishing+Trim69-dependent+FSP1+degradation+in+hepatocellular+carcinoma&rft.jtitle=Redox+biology&rft.au=Jingsheng+Yuan&rft.au=Tao+Lv&rft.au=Jian+Yang&rft.au=Zhenru+Wu&rft.date=2022-12-01&rft.pub=Elsevier&rft.issn=2213-2317&rft.eissn=2213-2317&rft.volume=58&rft.spage=102546&rft_id=info:doi/10.1016%2Fj.redox.2022.102546&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_38924719d84e45abb78cc866b7a807c1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon |