Toxicity of gold nanoparticles (AuNPs): A review

Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical and optical properties. With these great potentials came the consequence of their interaction with biological tissues and molecules which pr...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry and biophysics reports Vol. 26; p. 100991
Main Authors Sani, A., Cao, C., Cui, D.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical and optical properties. With these great potentials came the consequence of their interaction with biological tissues and molecules which presents the possibility of toxicity. This paper aims to consolidate and bring forward the studies performed that evaluate the toxicological aspect of AuNPs which were categorized into in vivo and in vitro studies. Both indicate to some extent oxidative damage to tissues and cell lines used in vivo and in vitro respectively with the liver, spleen and kidney most affected. The outcome of these review showed small controversy but however, the primary toxicity and its extent is collectively determined by the characteristics, preparations and physicochemical properties of the NPs. Some studies have shown that AuNPs are not toxic, though many other studies contradict this statement. In order to have a holistic inference, more studies are required that will focus on characterization of NPs and changes of physical properties before and after treatment with biological media. So also, they should incorporate controlled experiment which includes supernatant control Since most studies dwell on citrate or CTAB-capped AuNPs, there is the need to evaluate the toxicity and pharmacokinetics of functionalized AuNPs with their surface composition which in turn affects their toxicity. Functionalizing the NPs surface with more peculiar ligands would however help regulate and detoxify the uptake of these NPs. •In vitro and in vivo indicate oxidative damage to tissues and cell lines.•The liver, spleen and kidney tissues and cells were most affected.•Some controversy exist, however, the primary toxicity is collectively determined by the properties of the NPs.•Characterization of NPs and changes in physicochemistry before and after treatment with bio-media should be evaluated.•Functionalizing the NPs surface with more peculiar ligands would help regulate and detoxify the uptake of these NPs.
AbstractList Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical and optical properties. With these great potentials came the consequence of their interaction with biological tissues and molecules which presents the possibility of toxicity. This paper aims to consolidate and bring forward the studies performed that evaluate the toxicological aspect of AuNPs which were categorized into in vivo and in vitro studies. Both indicate to some extent oxidative damage to tissues and cell lines used in vivo and in vitro respectively with the liver, spleen and kidney most affected. The outcome of these review showed small controversy but however, the primary toxicity and its extent is collectively determined by the characteristics, preparations and physicochemical properties of the NPs. Some studies have shown that AuNPs are not toxic, though many other studies contradict this statement. In order to have a holistic inference, more studies are required that will focus on characterization of NPs and changes of physical properties before and after treatment with biological media. So also, they should incorporate controlled experiment which includes supernatant control Since most studies dwell on citrate or CTAB-capped AuNPs, there is the need to evaluate the toxicity and pharmacokinetics of functionalized AuNPs with their surface composition which in turn affects their toxicity. Functionalizing the NPs surface with more peculiar ligands would however help regulate and detoxify the uptake of these NPs.Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical and optical properties. With these great potentials came the consequence of their interaction with biological tissues and molecules which presents the possibility of toxicity. This paper aims to consolidate and bring forward the studies performed that evaluate the toxicological aspect of AuNPs which were categorized into in vivo and in vitro studies. Both indicate to some extent oxidative damage to tissues and cell lines used in vivo and in vitro respectively with the liver, spleen and kidney most affected. The outcome of these review showed small controversy but however, the primary toxicity and its extent is collectively determined by the characteristics, preparations and physicochemical properties of the NPs. Some studies have shown that AuNPs are not toxic, though many other studies contradict this statement. In order to have a holistic inference, more studies are required that will focus on characterization of NPs and changes of physical properties before and after treatment with biological media. So also, they should incorporate controlled experiment which includes supernatant control Since most studies dwell on citrate or CTAB-capped AuNPs, there is the need to evaluate the toxicity and pharmacokinetics of functionalized AuNPs with their surface composition which in turn affects their toxicity. Functionalizing the NPs surface with more peculiar ligands would however help regulate and detoxify the uptake of these NPs.
Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical and optical properties. With these great potentials came the consequence of their interaction with biological tissues and molecules which presents the possibility of toxicity. This paper aims to consolidate and bring forward the studies performed that evaluate the toxicological aspect of AuNPs which were categorized into in vivo and in vitro studies. Both indicate to some extent oxidative damage to tissues and cell lines used in vivo and in vitro respectively with the liver, spleen and kidney most affected. The outcome of these review showed small controversy but however, the primary toxicity and its extent is collectively determined by the characteristics, preparations and physicochemical properties of the NPs. Some studies have shown that AuNPs are not toxic, though many other studies contradict this statement. In order to have a holistic inference, more studies are required that will focus on characterization of NPs and changes of physical properties before and after treatment with biological media. So also, they should incorporate controlled experiment which includes supernatant control Since most studies dwell on citrate or CTAB-capped AuNPs, there is the need to evaluate the toxicity and pharmacokinetics of functionalized AuNPs with their surface composition which in turn affects their toxicity. Functionalizing the NPs surface with more peculiar ligands would however help regulate and detoxify the uptake of these NPs.
Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical and optical properties. With these great potentials came the consequence of their interaction with biological tissues and molecules which presents the possibility of toxicity. This paper aims to consolidate and bring forward the studies performed that evaluate the toxicological aspect of AuNPs which were categorized into in vivo and in vitro studies. Both indicate to some extent oxidative damage to tissues and cell lines used in vivo and in vitro respectively with the liver, spleen and kidney most affected. The outcome of these review showed small controversy but however, the primary toxicity and its extent is collectively determined by the characteristics, preparations and physicochemical properties of the NPs. Some studies have shown that AuNPs are not toxic, though many other studies contradict this statement. In order to have a holistic inference, more studies are required that will focus on characterization of NPs and changes of physical properties before and after treatment with biological media. So also, they should incorporate controlled experiment which includes supernatant control Since most studies dwell on citrate or CTAB-capped AuNPs, there is the need to evaluate the toxicity and pharmacokinetics of functionalized AuNPs with their surface composition which in turn affects their toxicity. Functionalizing the NPs surface with more peculiar ligands would however help regulate and detoxify the uptake of these NPs. •In vitro and in vivo indicate oxidative damage to tissues and cell lines.•The liver, spleen and kidney tissues and cells were most affected.•Some controversy exist, however, the primary toxicity is collectively determined by the properties of the NPs.•Characterization of NPs and changes in physicochemistry before and after treatment with bio-media should be evaluated.•Functionalizing the NPs surface with more peculiar ligands would help regulate and detoxify the uptake of these NPs.
Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical and optical properties. With these great potentials came the consequence of their interaction with biological tissues and molecules which presents the possibility of toxicity. This paper aims to consolidate and bring forward the studies performed that evaluate the toxicological aspect of AuNPs which were categorized into in vivo and in vitro studies. Both indicate to some extent oxidative damage to tissues and cell lines used in vivo and in vitro respectively with the liver, spleen and kidney most affected. The outcome of these review showed small controversy but however, the primary toxicity and its extent is collectively determined by the characteristics, preparations and physicochemical properties of the NPs. Some studies have shown that AuNPs are not toxic, though many other studies contradict this statement. In order to have a holistic inference, more studies are required that will focus on characterization of NPs and changes of physical properties before and after treatment with biological media. So also, they should incorporate controlled experiment which includes supernatant control Since most studies dwell on citrate or CTAB-capped AuNPs, there is the need to evaluate the toxicity and pharmacokinetics of functionalized AuNPs with their surface composition which in turn affects their toxicity. Functionalizing the NPs surface with more peculiar ligands would however help regulate and detoxify the uptake of these NPs. • In vitro and in vivo indicate oxidative damage to tissues and cell lines. • The liver, spleen and kidney tissues and cells were most affected. • Some controversy exist, however, the primary toxicity is collectively determined by the properties of the NPs. • Characterization of NPs and changes in physicochemistry before and after treatment with bio-media should be evaluated. • Functionalizing the NPs surface with more peculiar ligands would help regulate and detoxify the uptake of these NPs.
ArticleNumber 100991
Author Cao, C.
Cui, D.
Sani, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Sani
  fullname: Sani, A.
  email: asani.bio@buk.edu.ng
  organization: Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
– sequence: 2
  givenname: C.
  surname: Cao
  fullname: Cao, C.
  organization: Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
– sequence: 3
  givenname: D.
  surname: Cui
  fullname: Cui, D.
  organization: Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33912692$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS3Uiv6hnwAJ5VgOu_XYcWwjUWlVFahUAYdythxnsniVjRc7W-i3x2mWqu2BnsYav_dmNL8jsteHHgl5C3QOFKqz1byuI27mjDLIHao1vCKHrKRiJhRVe4_eB-QkpRWlFARTglWvyQHnGlil2SGhN-GPd364K0JbLEPXFL3tw8bGwbsOU3G62H79nt5_KBZFxFuPv9-Q_dZ2CU929Zj8-HR5c_Fldv3t89XF4nrmhIZh1ihnpasUgBQtNk5YUKphlApb8nFdJ1vOkXNZU-EccC5yyVImtaxqzY_J1ZTbBLsym-jXNt6ZYL25b4S4NLsljdPYWorUMgUl51bVSIFXJSjLKymanHU-ZW229Tovg_0Qbfck9OlP73-aZbg1ilZcliwHnO4CYvi1xTSYtU8Ou872GLbJMAFaai1hlL57POthyL-TZwGfBC6GlCK2DxKgZmRrVuaerRnZmoltdulnrgzNDj6MC_vuBe_HyYuZV2YYTXIee4eNj-iGfFD_X_9fpLW9mg
CitedBy_id crossref_primary_10_1002_adfm_202312260
crossref_primary_10_1007_s11051_024_06048_6
crossref_primary_10_1117_1_NPh_11_S1_S11513
crossref_primary_10_1016_j_surfin_2023_103000
crossref_primary_10_1021_acs_est_3c01839
crossref_primary_10_1021_acsomega_4c04134
crossref_primary_10_1016_j_apmate_2024_100233
crossref_primary_10_1080_26896583_2023_2289767
crossref_primary_10_1016_j_ccr_2022_214977
crossref_primary_10_1002_med_22082
crossref_primary_10_3390_molecules30030684
crossref_primary_10_1080_1062936X_2023_2242785
crossref_primary_10_2147_JIR_S327292
crossref_primary_10_1007_s11356_024_34900_8
crossref_primary_10_1007_s13205_024_04110_7
crossref_primary_10_3897_pharmacia_71_e112322
crossref_primary_10_3390_ph17111479
crossref_primary_10_1002_adtp_202400042
crossref_primary_10_3390_pharmaceutics16101268
crossref_primary_10_3390_toxics12100750
crossref_primary_10_1016_j_heliyon_2024_e39225
crossref_primary_10_1002_advs_202307060
crossref_primary_10_22358_jafs_193929_2024
crossref_primary_10_3390_nano14221854
crossref_primary_10_1007_s11356_024_35806_1
crossref_primary_10_1088_1572_9494_accf04
crossref_primary_10_1155_2023_4085090
crossref_primary_10_3389_fcell_2024_1491260
crossref_primary_10_3390_ijms242316593
crossref_primary_10_1021_acs_jchemed_4c00089
crossref_primary_10_1021_acsomega_3c09680
crossref_primary_10_1038_s41598_024_66175_x
crossref_primary_10_1016_j_ncrna_2024_03_012
crossref_primary_10_1021_acsanm_3c02867
crossref_primary_10_3390_info15120794
crossref_primary_10_1007_s12596_024_02321_y
crossref_primary_10_1051_e3sconf_202448803020
crossref_primary_10_1002_adfm_202315879
crossref_primary_10_1016_j_trac_2024_118113
crossref_primary_10_1002_elan_202100529
crossref_primary_10_3389_fimmu_2023_1128582
crossref_primary_10_1088_2043_6262_ad2c7b
crossref_primary_10_1002_anbr_202200085
crossref_primary_10_1186_s12951_024_02526_0
crossref_primary_10_3390_biomedicines12010185
crossref_primary_10_1002_ppsc_202300149
crossref_primary_10_1002_wnan_70000
crossref_primary_10_1021_acsanm_2c04551
crossref_primary_10_3389_fbioe_2022_849464
crossref_primary_10_3390_antiox13070822
crossref_primary_10_1002_jbt_23793
crossref_primary_10_1021_acsabm_3c00202
crossref_primary_10_3390_ijms25105361
crossref_primary_10_3390_nano15020079
crossref_primary_10_1002_cplu_202300544
crossref_primary_10_1007_s42600_023_00278_8
crossref_primary_10_1021_acsanm_4c07241
crossref_primary_10_3390_pharmaceutics16040449
crossref_primary_10_1080_21691401_2024_2304814
crossref_primary_10_3390_applnano5040018
crossref_primary_10_1155_2023_3251211
crossref_primary_10_3390_coatings14030254
crossref_primary_10_3390_vaccines13020119
crossref_primary_10_1080_10717544_2024_2388624
crossref_primary_10_2174_0122117385279456240329041704
crossref_primary_10_3390_nano14221805
crossref_primary_10_1021_acsami_2c13976
crossref_primary_10_1080_17425247_2022_2041599
crossref_primary_10_1016_j_talo_2024_100327
crossref_primary_10_3389_fimmu_2022_865554
crossref_primary_10_3390_molecules29010248
crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2023046209
crossref_primary_10_3390_plants13141936
crossref_primary_10_1177_08853282231162200
crossref_primary_10_1016_j_jenvman_2024_120858
crossref_primary_10_1021_acsami_4c11546
crossref_primary_10_1007_s13404_021_00306_4
crossref_primary_10_1080_17435390_2022_2090025
crossref_primary_10_3390_ijms25084488
crossref_primary_10_1016_j_jddst_2023_104806
crossref_primary_10_3390_jcs8090352
crossref_primary_10_1007_s11051_023_05867_3
crossref_primary_10_1021_acsomega_4c01449
crossref_primary_10_2147_IJN_S465959
crossref_primary_10_5348_100071Z09MR2022CI
crossref_primary_10_32604_biocell_2022_021059
crossref_primary_10_37349_emed_2025_1001272
crossref_primary_10_1007_s13404_024_00343_9
crossref_primary_10_1021_acsami_3c03874
crossref_primary_10_1042_BSR20222255
crossref_primary_10_1007_s10072_024_07871_4
crossref_primary_10_1002_asia_202200823
crossref_primary_10_3390_nano12081376
crossref_primary_10_1021_acsnano_1c08890
crossref_primary_10_3390_ph16101416
crossref_primary_10_1016_j_jddst_2022_103306
crossref_primary_10_1007_s00604_025_07063_7
crossref_primary_10_1039_D1EN01074C
crossref_primary_10_1080_03639045_2022_2153862
crossref_primary_10_1515_ntrev_2021_0099
crossref_primary_10_1007_s12668_023_01134_w
crossref_primary_10_1016_j_cbi_2022_110023
crossref_primary_10_3390_coatings15010033
crossref_primary_10_2147_IJN_S418675
crossref_primary_10_1002_nano_202400118
crossref_primary_10_3389_fbioe_2022_897575
crossref_primary_10_1016_j_matchemphys_2024_129524
crossref_primary_10_1080_21691401_2024_2383583
crossref_primary_10_1007_s10603_023_09552_9
crossref_primary_10_3390_toxics11090791
crossref_primary_10_3390_ijms231911465
crossref_primary_10_3390_nano13202802
crossref_primary_10_1002_mabi_202300118
crossref_primary_10_36790_epistemus_v16i33_223
crossref_primary_10_1515_zpch_2023_0539
crossref_primary_10_1021_acsnano_4c15509
crossref_primary_10_31436_iiumej_v25i1_2811
crossref_primary_10_1007_s10653_024_02018_y
crossref_primary_10_1016_j_radphyschem_2024_112195
crossref_primary_10_1021_acsabm_4c00012
crossref_primary_10_1080_24701556_2023_2181821
crossref_primary_10_1007_s12013_024_01360_3
crossref_primary_10_1088_1755_1315_1054_1_012007
crossref_primary_10_1155_2021_7244677
crossref_primary_10_3389_fgeed_2022_1030285
crossref_primary_10_1134_S1063778822090356
crossref_primary_10_3390_pharmaceutics16091197
crossref_primary_10_1515_oncologie_2024_0320
crossref_primary_10_1002_jccs_202400303
crossref_primary_10_3390_molecules30051038
crossref_primary_10_1016_j_chemosphere_2022_134635
crossref_primary_10_1002_cmdc_202300538
crossref_primary_10_1073_pnas_2307796121
crossref_primary_10_1080_17435390_2023_2186279
crossref_primary_10_1002_ppsc_202200015
crossref_primary_10_1364_OL_486196
crossref_primary_10_54097_hset_v40i_6587
crossref_primary_10_1016_j_addr_2021_114083
crossref_primary_10_1002_bio_70099
crossref_primary_10_1063_5_0216261
crossref_primary_10_21641_los_2023_20_1_239
crossref_primary_10_3390_c10020035
crossref_primary_10_1002_nano_202100255
crossref_primary_10_1007_s12668_024_01672_x
crossref_primary_10_1021_acsnano_3c01973
crossref_primary_10_1007_s12088_024_01392_6
crossref_primary_10_3390_cells11121861
crossref_primary_10_1021_acsomega_2c01313
crossref_primary_10_1088_1361_6528_ac3c7c
crossref_primary_10_3390_ijms241914897
crossref_primary_10_1016_j_trac_2024_117846
crossref_primary_10_3390_ph16101463
crossref_primary_10_2174_18743641_v17_e230214_2022_36
crossref_primary_10_1021_acsnano_1c03948
crossref_primary_10_1016_j_inoche_2023_111618
crossref_primary_10_1021_acsomega_3c08608
crossref_primary_10_3389_fbioe_2024_1456704
crossref_primary_10_3390_ijms26051934
crossref_primary_10_1021_acsami_3c00627
Cites_doi 10.1088/1612-202X/aa63ae
10.1088/0957-4484/23/31/315102
10.1039/C4EN00006D
10.1186/1743-8977-6-18
10.1016/j.colsurfb.2008.07.004
10.1016/j.addr.2009.03.010
10.1166/jnn.2013.7149
10.1186/1752-153X-3-16
10.1016/j.toxlet.2013.09.020
10.1166/jbn.2011.1313
10.1038/nrm1858
10.1016/j.biomaterials.2010.04.014
10.1002/cbic.200700165
10.1155/2012/734398
10.1186/1745-6673-8-32
10.1021/nl803487r
10.1002/adma.201001040
10.1039/C1CS15166E
10.1262/jrd.20241
10.1016/j.lfs.2016.04.022
10.1093/toxsci/kft081
10.1166/jnn.2012.6430
10.1186/1742-2094-9-123
10.1016/j.copbio.2007.11.008
10.1155/2013/590730
10.1016/j.jconrel.2009.12.006
10.1021/nn301714n
10.1007/s10534-012-9567-1
10.1021/la200787t
10.1016/j.watres.2013.09.019
10.1007/s11051-011-0590-x
10.1016/j.radonc.2013.12.013
10.1021/nl0722929
10.1016/j.jconrel.2018.09.010
10.3389/fonc.2018.00404
10.1186/1743-8977-4-10
10.1016/j.nano.2007.03.005
10.1039/C3AN01463K
10.1016/j.nano.2012.06.002
10.1016/j.toxlet.2013.07.018
10.1007/s00204-017-2016-8
10.1021/ja902894s
10.1007/s12011-013-9679-7
10.1016/j.msec.2015.12.078
10.1038/s41598-017-06014-4
10.1002/adma.200701853
10.1021/nl3020846
10.1016/j.colsurfb.2010.12.002
10.1155/2015/986902
10.1016/j.micpath.2016.06.016
10.1186/1743-8977-10-50
10.1007/s11671-009-9334-6
10.1177/1535370213505964
10.3109/17435390.2013.822593
10.1002/ppsc.201800395
10.1093/toxsci/kfs150
10.1080/02726351.2015.1054972
10.1016/j.snb.2018.10.103
10.1186/1743-8977-9-23
10.1016/j.anl.2013.04.011
10.1016/j.ejpb.2010.12.029
10.1021/acs.chemmater.6b04738
10.1039/C8TB02484G
10.1021/bc5005087
10.1007/s11051-012-1212-y
10.1039/C7NR02494K
10.1016/j.taap.2008.12.023
10.1016/j.addr.2009.11.007
10.1186/1743-8977-6-13
10.1021/acs.chemrev.8b00396
10.3390/nano8060396
10.1016/j.tox.2011.11.004
10.1073/pnas.1220143110
10.1007/s10517-013-2288-9
10.1063/1.4831679
10.4062/biomolther.2009.17.1.92
10.1021/nn101557e
10.1002/anie.200602454
10.1039/c0nr00478b
10.1042/BSR20194296
10.1186/s13568-019-0762-0
10.2217/nnm-2017-0208
10.3390/ijms17030316
10.1007/s12274-011-0095-z
10.1002/smll.200700595
10.1002/smll.200801546
10.1021/acs.langmuir.5b02797
10.1021/acsomega.7b01779
10.1111/and.12028
10.2217/nnm.15.177
10.1016/j.biomaterials.2009.11.079
10.3109/15376516.2013.869783
10.3390/nano1010031
10.1021/am507919m
10.1016/j.nano.2017.08.011
10.3109/17435390903374001
10.4014/jmb.1805.05028
10.1073/pnas.1409431111
10.2147/IJN.S8428
10.1016/j.nano.2011.04.004
10.1016/j.trac.2010.09.006
10.1016/j.rpor.2018.10.001
10.1292/jvms.13-0512
10.1016/j.nano.2014.06.005
10.1016/j.jhazmat.2013.11.031
10.1016/j.toxlet.2011.05.1018
10.1021/la9019475
10.1039/C5NR07642K
10.1080/17435390902788086
10.15171/apb.2015.061
10.1016/j.nano.2011.10.004
10.1021/ja800561b
10.1186/1477-3155-9-17
10.1016/j.toxlet.2012.11.022
10.1016/j.biomaterials.2007.12.037
10.1007/s00216-010-3915-1
10.1186/1743-8977-8-16
10.1021/nl052396o
10.1080/02772248.2012.697731
10.1016/j.tibtech.2005.12.004
10.3390/ma13010001
10.1039/C5NR04881H
10.1016/j.biomaterials.2008.12.038
10.1007/s42452-019-0354-2
10.3389/fmicb.2016.00607
10.1002/smll.200900466
10.3390/nano5020835
10.1039/c0nr00345j
10.1016/j.sjbs.2013.01.007
10.1080/17458080.2010.514952
10.1016/j.biomaterials.2010.05.009
10.1007/BF03216589
10.1016/j.bbrc.2010.02.046
10.1016/j.colsurfb.2018.04.005
10.1016/j.colsurfa.2013.08.067
10.1007/s11244-009-9205-5
10.1021/acs.bioconjchem.9b00004
10.1002/anie.200904359
10.1016/j.jconrel.2017.04.026
10.1016/j.mrgentox.2012.03.012
10.1007/978-0-387-76713-0_3
10.1002/smll.200700378
10.1088/1361-6463/aaef4d
10.3109/21691401.2014.955107
10.1016/j.electacta.2010.10.022
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.bbrep.2021.100991
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2405-5808
ExternalDocumentID oai_doaj_org_article_c9efa0e0a281433a8be0136418a3675d
PMC8063742
33912692
10_1016_j_bbrep_2021_100991
S2405580821000856
Genre Journal Article
Review
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDW
AAFTH
AAFWJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFPKN
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c591t-d8ca7c681175fedc5a188d2005a430099c7f33e337b05cc13355cc5fe27976b93
IEDL.DBID DOA
ISSN 2405-5808
IngestDate Wed Aug 27 01:29:59 EDT 2025
Thu Aug 21 18:17:30 EDT 2025
Thu Jul 10 17:18:14 EDT 2025
Mon Jul 21 06:17:32 EDT 2025
Tue Jul 01 03:08:21 EDT 2025
Thu Apr 24 23:12:07 EDT 2025
Tue Jul 25 21:02:37 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords In vivo
Toxicity
In vitro
Gold nanoparticles
Cell lines
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c591t-d8ca7c681175fedc5a188d2005a430099c7f33e337b05cc13355cc5fe27976b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/c9efa0e0a281433a8be0136418a3675d
PMID 33912692
PQID 2519799712
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c9efa0e0a281433a8be0136418a3675d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8063742
proquest_miscellaneous_2519799712
pubmed_primary_33912692
crossref_primary_10_1016_j_bbrep_2021_100991
crossref_citationtrail_10_1016_j_bbrep_2021_100991
elsevier_sciencedirect_doi_10_1016_j_bbrep_2021_100991
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochemistry and biophysics reports
PublicationTitleAlternate Biochem Biophys Rep
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Jeff, Bulte (bib70) 2008
Stelzer, Hutz (bib155) 2009; 55
Jebali, Kazemi (bib166) 2013; 27
Khan, Abdelhalim, Alhomida, Al-Ayed (bib129) 2013; 2013
Artiga, Serrano-Sevilla, De Matteis, Mitchell, de la Fuente (bib41) 2019; 7
Alkilany, Nagaria, Hexel, Shaw, Murphy, Wyatt (bib99) 2009; 5
Guo, Guo, Yuan, Zeng (bib48) 2014; 441
Jenkins, Halaney, Sokolov, Ma, Shipley, Mahajan, Louden, Asmis, Milner, Johnsons, Feldman (bib5) 2013; 33
Schmid, Kreyling, Simon (bib75) 2017; 91
Lee, Park, Yoo (bib51) 2010; 36
Qiu, Min, Rodgers, Zhang, Wang (bib63) 2017; 9
Fraga (bib76) 2014; 10
Dykman, Khelbstov (bib6) 2012; 41
Prime, Paul, Joseph-Franks (bib18) 2009; 367
Ojea-Jimenez, Puntes (bib140) 2009; 131
Ravensthorpe (bib28) 2013
Lewinski, Colvin, Drezek (bib30) 2008; 4
Khan, Pillai, Das, Singh, Maiti (bib36) 2007; 8
Fanord, Fairbairn, Kim, Garces, Bhethanabotla, Gupta (bib37) 2011; 22
Barnaby, Lee, Mirkin (bib40) 2014; 111
Bibikova, Singh, Popov, Akchurin, Skaptsov, Skovorodkin, Khanadeev, Mikhalevich, Kinnunen, Akchurin, Bogatyrev, Khlebtsov, Vainio, Meglinski, Tuchin (bib50) 2017; 14
Kim, Zaikova, Hutchison, Tanguay (bib60) 2013; 133
Dragoni, Franco, Regoli, Bracciali, Morandi, Sgaragli, Bertelli, Valoti (bib108) 2012; 128
Sabella, Brunetti, Vecchio, Galeone, Maiorano, Cingolani, Pompa (bib145) 2011; 13
Siddiqi, Abdelhalim, El-Ansary, Alhomida, Ong (bib141) 2012; 9
Chandra, Das, Wahab (bib10) 2010; 5
Chaicherd, Killingsworth, Pissuwan (bib168) 2019; 1
Liu, Huang, Liu, Zhou, Chen, Ji (bib158) 2013; 5
Mateo, Morales, Ávalos, Haza (bib125) 2014; 24
Yah (bib29) 2013; 24
Piryazev, Azizova, Aseichev, Dudnik, Sergienko (bib124) 2013; 156
Grimaldi, Incoronato, Salvatore, Soricelli (bib64) 2017; 12
Yah, Iyuke, Simate (bib31) 2012; 25
Bozich, Lohse, Torelli (bib98) 2014; 1
Balasubramanian, Jittiwat, Manikandan, Ong, Yu, Ong (bib92) 2010; 31
Salado, Insausti, Lezama, Gil de Muro, Moros, Pelaz, Grazu, de la Fuente, Rojo (bib171) 2012; 23
Characterization and biocompatibility studies, Part. Science and Technology, 34:2, 156-164.
Pfaller, Colognato, Nelissen, Favilli, Casals, Ooms, Leppens, Ponti, Stritzinger, Puntes (bib170) 2010; 4
Khan, Abdelhalim, Al-Ayed, Alhomida (bib142) 2012; 19
Ambwani, Kandpal, Arora, Ambwani (bib196) 2016
Jia, Zhang, Xin, Jiang, Yan, Zhai (bib68) 2018; 8
.
Jain, Coulter, Butterworth, Hounsell, McMahon, Hyland, Muir, Dickson, Prise, Currell (bib169) 2014; 110
Hassanen, Morsy, Hussien, Ibrahim, Farroh (bib110) 2020
Shilo, Berenstein, Dreifuss, Nash, Goldsmith, Kazimirsky, Motiei, Frenkel, Brodie, Popovtzer (bib192) 2015; 7
Zhang, Wu, Shen, Liu, Fan, Fan (bib73) 2012; 33
Sardar, Funston, Mulvaney, Murray (bib23) 2009; 25
Sung, Ji, Park, Song, Song, Ryu, Yoon, Jeon, Jeong, Han, Chung, Chang, Lee, Kim, Kelman, Yu (bib27) 2011; 8
Leroueil, Berry, Duthie, Han, Rotello, McNerny, Baker, Orr, Banaszak, Mark (bib152) 2008; 8
Vetten, Tloleng, Rascher, Skepu, Keter, Boodhia, Koekemoer, Andraos, Tshikhudo, Gulumian (bib164) 2013; 10
Vecchio, Galeone, Brunetti, Maiorano, Rizzello, Sabella, Cingolani, Pompa (bib116) 2012; 8
Tsai, Liaw, Kao, Huang, Lee, Rau, Huang, Wei, Ye (bib133) 2013; 8
Lin, Monteiro-Riviere, Kannan, Riviere (bib84) 2016; 11
Donaldson, Borm, Castranova, Gulumian (bib38) 2009; 6
Hu, Wu, Bao, Zhang (bib65) 2017; 256
Zhang, Wu, Shen, Liu, Yang, Zhao, Zhang, Sun, Zhang, Fan (bib87) 2011; 6
Abdelhalim, Moussa (bib81) 2013; 20
Simpson, Salleng, Cliffel, Feldheim (bib90) 2013; 9
Zhai, Hinton, Waddington (bib101) 2015; 31
Rattanata, Klaynongsruang, Leelayuwat, Limpaiboon, Lulitanond, Boonsiri, Chio-Srichan, Soontaranon, Rugmai, Daduang (bib194) 2016; 11
Khoobchandani, Katti, Maxwell, Fay, Katti (bib49) 2016; 17
Lopez-Campos, Candini, Carrasco, Berenguer Frances (bib71) 2019; 24
Cho, Cho, Jeong (bib86) 2009; 236
Sousa, Hassan, Knittel, Balbo, Aronova, Brown (bib131) 2016; 8
Sadauskas, Wallin, Stoltenberg, Vogel, Doering, Larsen (bib79) 2007; 4
Calderon-Gonzalez, Teran-Navarro, Garcia, Marradi, Salcines-Cuevas, Yanez-Diaz, Solis- Angulo, Frande-Cabanes, Farinas, Garcia-Castano, Gomez-Roman, Penades, Rivera, Freire, Alvarez-Dominguez (bib45) 2017; 9
Griffith, Swartz (bib43) 2006; 7
Hiilin, Carrillo-Carrion, Soliman, Pfeiffer, Valdeperez, Masood, Chakraborly, Zhu, Gallego, Yue, Carril, Feliu, Escudero, Alkilany, Pelaz, del Pino, Parak (bib47) 2017; 29
Ng, Li, Gurung, Hande, Ong, Bay, Yung (bib135) 2013; 238
Li, Zou, Hartono, Ong, Bay, Lanry Yung (bib138) 2008; 20
Lyu, Zhou, Liu, Xue, Yu, Chen (bib46) 2016; 26
Chakraborty, Joshi, Shanker, Ansari, Singh, Chakrabarti (bib154) 2011; 27
Downs, Crosby, Hu, Kumar, Sullivan, Sarlo (bib128) 2012; 745
Gao, Xu, Ji, Tang (bib167) 2011; 205
Surendra, Nidhi, Ramesh (bib11) 2011; 7
Li, Albee, Alemayehu (bib121) 2010; 398
Renault, Baudrimont, Mesmer-DudonsN, Gonzalez, Mornet, Brisson (bib34) 2008; 41
Pan, Leifert, Ruau (bib103) 2009; 5
Chen, Wang, Long, Shen, Wu, Song, Sun, Liu, Fan, Fan (bib111) 2012; 8
Gerber, Bundschuh, Klingelhofer (bib42) 2013; 8
Balasubramanian (bib93) 2010; 31
Sonavane, Tomoda, Makino (bib78) 2008; 66
Amini, Kamali, Amini, Najafi (bib187) 2019; 52
Meng, Li, Liu, Cheng, Guo, Zhang, Wu, Xu (bib74) 2014; 8
Uboldi, Bonacchi, Lorenzi, Hermanns, Pohl, Baldi, Unger, Kirkpatrick (bib32) 2009; 6
Lopez-Chaves, Soto-Alvaredo, Montes-Bayon, Bettmer, Llopis, Sanchez-Gonzalez (bib127) 2018; 14
Coradeghini, Gioria, Garcia, Nativo, Franchini, Gilliland, Ponti, Rossi (bib25) 2013; 217
Venkatpurwar, Mali, Bodhankar, Pokharkar (bib114) 2012; 94
Siddiqi, Abdelhalim, El-Ansary, Alhomida, Ong (bib113) 2012; 9
McPherson, Thompson (bib22) 2009; 52
Kalita, Kandimalla, Sharma, Kataki, Deka, katoky (bib186) 2016; 61
Chen, Hung, Hong, Onischuk, Chiou, Sorokina, Tolstikova, Huang (bib112) 2012; 2012
Di Guglielmo, De Lapuente, Porredon, Ramos-Lopez, Sendra, Borras (bib147) 2012; 12
Pissuwan, Niidome, Cortie (bib7) 2011; 149
Li, Hartono, Ong, Bay, Yung (bib120) 2010; 31
Aillon, Xie, El-Gendy, Berkland, Forrest (bib3) 2009; 61
Liu, Liu, Wang, Li, Tan, Fu, Nie, Chen, Tang (bib156) 2013; 34
Patra, Banerjee, Chaudhuri, Lahiri, Dasgupta (bib163) 2007; 3
Jo, Bae, Go, Kim, Hwang, Choi (bib26) 2015; 5
Cho, Xie, Wurm, Xia (bib85) 2009; 9
Zhang, Yang, Lu (bib100) 2009; 30
De Jong (bib15) 2008; 29
Cho, Cho, Jeong, Choi, Cho, Han, Kim, Kim, Lim, Chung, Jeong (bib106) 2009; 236
Liu, Gu, Zhang, Ding, Wei, Zhang, Zhao (bib157) 2013; 15
Das, Debnath, Mitra, Datta, Goswami (bib82) 2012; 25
Anwar, Siddiqui, Raza Shah, Ahmed Khan (bib62) 2019; 29
Payne, Waghwani, Connor, Hamilton, Tockstein, Moolani, Chavda, Badwaik, Lawrenz, Dakshinamurthy (bib55) 2016; 7
Martinez Paino, Spolon Marangoni, de Cassia Silva de Oliveira, Greggi Antunes, Zucolotto (bib134) 2012; 215
Lipka, Semmler-BehnkeM, Sperling, Wenk, Takenaka, Schleh, Kissel, Parak, Kreyling (bib105) 2010; 31
Li, Zhao, Hammer, Du, Chen (bib136) 2013; 7
Etame, Smith, Chan, Rutka (bib67) 2011; 7
Leifert, Pan, Kinkeldey, Schiefer, Setzler, Scheel, Lichtenbeld, Schmid, Wenzel, Jahnen-Dechent (bib177) 2013; 110
Tiedemann, Taylor, Rehbock, Jakobi, Klein, Kues, Barcikowski, Rath (bib159) 2014; 139
Xiaomin Li, Zhenpeng Hu, Jinlong Ma, Xinyu Wang, Yapei Zhang, Wei Wang, Zhi Yuan, The Systematic Evaluation of Size-dependent Toxicity and Multi-Time Biodistribution of Gold Nanoparticles, Colloids and Surfaces B: Biointerfaces
Cho, MacCuspie, Gigault, Gorham, Elliott, Hackley (bib172) 2014; 30
Lan, Hsu, Hsu, Ho, Lin, Lee (bib193) 2013; 40
Lasagna-Reeves, Gonzalez-Romero, Barria, Olmedo, Clos, Ramanujam, Urayama, Vergara, Kogan, Soto (bib104) 2010; 393
Aueviriyavit, Phummiratch, Maniratanachote (bib173) 2014; 224
Moretti, Terzuoli, Renieri, Iacoponi, Castellini, Giordano, Collodel (bib160) 2013; 45
Byrne, Lynch, de Jong, Kreyling, Loft, Park, Riediker, Warheit (bib14) 2010
Silvero C, Rocca, de la Villarmois, Fournier, Lanterna, Perez, Becerra, Scaiano (bib59) 2018; 3
Chen, Hung, Liau, Huang (bib88) 2009; 4
Chuang, Lee, Liang, Roam, Zeng, Tu, Wang, Chueh (bib161) 2013; 1830
Griffith, Swartz (bib123) 2006; 7
Camesano, D'Angelo (bib153) 2011
Heaven, Dass, White, Holt, Murray (bib21) 2008; 130
Li, Wang, Liu, Wang, Wang, Sun (bib137) 2013; 9
Young, Scott, Hao, Mirkin, Liu, Mirkin (bib162) 2012; 12
Simpson, Salleng, Cliffel, Feldheim (bib102) 2013; 9
Sousa, Mandal, Garrovo, Astolfo, Bonifacio, Latawiec, Menk, Arfelli, Huewel, Legname, Galla, Krol (bib115) 2010; 2
Nghiem, Nguyen, Fort, Nguyen, Hoang, Nguyen, Tran (bib89) 2012; 3
Freese, Uboldi, Gibson, Unger, Weksler, Romero, Couraud, Kirkpatrick (bib146) 2012; 9
PradeepaVidya, Mutalik, Udaya, BhatHuilgol (bib185) 2016; 153
Auffan, Rose, Orsiere, De Meo, Thill, Zeyons (bib139) 2009; 3
Vijayakumar, Ganesan (bib96) 2012; 2012
Hashmi, Hutchings (bib20) 2006; 45
Pissuwan, Valenzuela, Cortie (bib8) 2006; 24
Choi, Jeong, Jang, Park, Park, Ock, Lee, Joo (bib24) 2012; 26
Vijayakumar, Ganesan (bib97) 2012; 2012
Jennings, Strouse (bib1) 2007; 620
Singh, Patil, Singh, gupta (bib188) 2017; 7
Giljohann, Seferos, Daniel, Massich, Patel, Mirkin (bib52) 2010; 49
Li, Hartono, Ong, Bay, Yung (bib119) 2010; 31
Dhamecha, D., Jalalpure, S., Jadhav, K. & Sajjan, D. (2016) Green synthesis of gold nanoparticles using
Pompa, Vecchio, Galeone, Brunetti, Sabella, Maiorano, Falqui, Bertoni, Congolani (bib117) 2011; 4
Soenen, Manshian, Montenegro, Amin, Meermann, Thiron, Cornelissen, Vanhaecke, Doak, Parak (bib148) 2012; 6
Castro, Wender, Alencar, Teixeira, Dupont, Hickmann (bib184) 2013; 114
Bogdanov, Gupta, Koshkina (bib94) 2015; 26
Schneider, T., Westermann, M. & Glei, M. In vitro uptake and toxicity studies of metal nanoparticles and metal oxide nanoparticles in human HT29 cells. Arch. Toxicol.. DOI 10.1007/s00204-017-1976-z.
Raji, Kumar, Rejiya, Vibin, John, Abraham (bib174) 2012; 7
Suh, Lee, Seo, Kim (bib165) 2013; 153
Kang, Yum, Kim, Song, Jeong, Lim (bib54) 2009; 17
Pongsuchart, Danladkaew, Khomvarn, Sereemaspun (bib143) 2012; 27
Marsich, Travan, Donati, Luca, Benincasa, Crosera, Paoletti (bib4) 2011; 83
Mahjub, R., Jatana, S., Lee, S. E., Qin, Z., Pauli, G., Soleimani, M., Madadi, S. and Li, S. D. Recent advances in applying nanolechnologies for cancer immunotherapy. J. Contr. Release 288, 239-263 A201&).
Slepička (10.1016/j.bbrep.2021.100991_bib39) 2020; 13
Patra (10.1016/j.bbrep.2021.100991_bib163) 2007; 3
Schaeublin (10.1016/j.bbrep.2021.100991_bib150) 2011; 3
Simpson (10.1016/j.bbrep.2021.100991_bib90) 2013; 9
Bogdanov (10.1016/j.bbrep.2021.100991_bib94) 2015; 26
Sousa (10.1016/j.bbrep.2021.100991_bib115) 2010; 2
Coradeghini (10.1016/j.bbrep.2021.100991_bib25) 2013; 217
Yang (10.1016/j.bbrep.2021.100991_bib130) 2013; 222
Li (10.1016/j.bbrep.2021.100991_bib13) 2011
Yahyaei (10.1016/j.bbrep.2021.100991_bib109) 2019; 9
Shittu (10.1016/j.bbrep.2021.100991_bib189) 2017; 8
Abdelhalim (10.1016/j.bbrep.2021.100991_bib81) 2013; 20
Liu (10.1016/j.bbrep.2021.100991_bib156) 2013; 34
Zhang (10.1016/j.bbrep.2021.100991_bib73) 2012; 33
Lasagna-Reeves (10.1016/j.bbrep.2021.100991_bib104) 2010; 393
Bachand (10.1016/j.bbrep.2021.100991_bib132) 2012; 14
Soenen (10.1016/j.bbrep.2021.100991_bib148) 2012; 6
Sardar (10.1016/j.bbrep.2021.100991_bib23) 2009; 25
Kim (10.1016/j.bbrep.2021.100991_bib60) 2013; 133
Siddiqi (10.1016/j.bbrep.2021.100991_bib141) 2012; 9
Amini (10.1016/j.bbrep.2021.100991_bib187) 2019; 52
Morgan (10.1016/j.bbrep.2021.100991_bib44) 2019; 30
Chuang (10.1016/j.bbrep.2021.100991_bib161) 2013; 1830
Lipka (10.1016/j.bbrep.2021.100991_bib105) 2010; 31
Heaven (10.1016/j.bbrep.2021.100991_bib21) 2008; 130
Vecchio (10.1016/j.bbrep.2021.100991_bib116) 2012; 8
Aillon (10.1016/j.bbrep.2021.100991_bib3) 2009; 61
Tiwari (10.1016/j.bbrep.2021.100991_bib95) 2011; 1
Zhang (10.1016/j.bbrep.2021.100991_bib100) 2009; 30
De Jong (10.1016/j.bbrep.2021.100991_bib15) 2008; 29
Zhang (10.1016/j.bbrep.2021.100991_bib87) 2011; 6
Lin (10.1016/j.bbrep.2021.100991_bib84) 2016; 11
Payne (10.1016/j.bbrep.2021.100991_bib55) 2016; 7
Englinger (10.1016/j.bbrep.2021.100991_bib69) 2019; 119
Haddada (10.1016/j.bbrep.2021.100991_bib61) 2019; 736
Sonavane (10.1016/j.bbrep.2021.100991_bib78) 2008; 66
Vetten (10.1016/j.bbrep.2021.100991_bib164) 2013; 10
Downs (10.1016/j.bbrep.2021.100991_bib128) 2012; 745
Lan (10.1016/j.bbrep.2021.100991_bib193) 2013; 40
Qiu (10.1016/j.bbrep.2021.100991_bib63) 2017; 9
Chen (10.1016/j.bbrep.2021.100991_bib111) 2012; 8
Balasubramanian (10.1016/j.bbrep.2021.100991_bib92) 2010; 31
Castro (10.1016/j.bbrep.2021.100991_bib184) 2013; 114
Kaur (10.1016/j.bbrep.2021.100991_bib175) 2013; 301
Freese (10.1016/j.bbrep.2021.100991_bib146) 2012; 9
Yah (10.1016/j.bbrep.2021.100991_bib31) 2012; 25
Anwar (10.1016/j.bbrep.2021.100991_bib62) 2019; 29
Sadauskas (10.1016/j.bbrep.2021.100991_bib91) 2009; 3
Pissuwan (10.1016/j.bbrep.2021.100991_bib7) 2011; 149
Gurunathan (10.1016/j.bbrep.2021.100991_bib53) 2018; 8
Ravensthorpe (10.1016/j.bbrep.2021.100991_bib28) 2013
Martinez Paino (10.1016/j.bbrep.2021.100991_bib134) 2012; 215
Kang (10.1016/j.bbrep.2021.100991_bib54) 2009; 17
Khan (10.1016/j.bbrep.2021.100991_bib36) 2007; 8
Pongsuchart (10.1016/j.bbrep.2021.100991_bib143) 2012; 27
Prime (10.1016/j.bbrep.2021.100991_bib18) 2009; 367
Lewinski (10.1016/j.bbrep.2021.100991_bib30) 2008; 4
Leifert (10.1016/j.bbrep.2021.100991_bib177) 2013; 110
Yah (10.1016/j.bbrep.2021.100991_bib29) 2013; 24
10.1016/j.bbrep.2021.100991_bib66
Artiga (10.1016/j.bbrep.2021.100991_bib41) 2019; 7
Maiorano (10.1016/j.bbrep.2021.100991_bib144) 2010; 4
Zhang (10.1016/j.bbrep.2021.100991_bib12) 2010; 5
10.1016/j.bbrep.2021.100991_bib190
Cho (10.1016/j.bbrep.2021.100991_bib106) 2009; 236
PradeepaVidya (10.1016/j.bbrep.2021.100991_bib185) 2016; 153
Shilo (10.1016/j.bbrep.2021.100991_bib192) 2015; 7
Frohlich (10.1016/j.bbrep.2021.100991_bib9) 2012; 291
Hu (10.1016/j.bbrep.2021.100991_bib65) 2017; 256
Khalili (10.1016/j.bbrep.2021.100991_bib56) 2015; 5
Dong (10.1016/j.bbrep.2021.100991_bib195) 2004
Alkilany (10.1016/j.bbrep.2021.100991_bib99) 2009; 5
Sung (10.1016/j.bbrep.2021.100991_bib27) 2011; 8
10.1016/j.bbrep.2021.100991_bib107
Uboldi (10.1016/j.bbrep.2021.100991_bib32) 2009; 6
Balasubramanian (10.1016/j.bbrep.2021.100991_bib93) 2010; 31
Pissuwan (10.1016/j.bbrep.2021.100991_bib8) 2006; 24
Van Doren (10.1016/j.bbrep.2021.100991_bib16) 2011; 9
Pompa (10.1016/j.bbrep.2021.100991_bib117) 2011; 4
Ambwani (10.1016/j.bbrep.2021.100991_bib196) 2016
Sabella (10.1016/j.bbrep.2021.100991_bib145) 2011; 13
Simpson (10.1016/j.bbrep.2021.100991_bib102) 2013; 9
Hirn (10.1016/j.bbrep.2021.100991_bib77) 2011; 77
Li (10.1016/j.bbrep.2021.100991_bib119) 2010; 31
Schmid (10.1016/j.bbrep.2021.100991_bib75) 2017; 91
Jain (10.1016/j.bbrep.2021.100991_bib169) 2014; 110
Chandra (10.1016/j.bbrep.2021.100991_bib10) 2010; 5
Sadauskas (10.1016/j.bbrep.2021.100991_bib79) 2007; 4
Bozich (10.1016/j.bbrep.2021.100991_bib98) 2014; 1
Raji (10.1016/j.bbrep.2021.100991_bib174) 2012; 7
Nghiem (10.1016/j.bbrep.2021.100991_bib89) 2012; 3
Singh (10.1016/j.bbrep.2021.100991_bib188) 2017; 7
Li (10.1016/j.bbrep.2021.100991_bib136) 2013; 7
Jeff (10.1016/j.bbrep.2021.100991_bib70) 2008
Gerber (10.1016/j.bbrep.2021.100991_bib42) 2013; 8
Pfaller (10.1016/j.bbrep.2021.100991_bib170) 2010; 4
Silvero C (10.1016/j.bbrep.2021.100991_bib59) 2018; 3
Rattanapinyopituk (10.1016/j.bbrep.2021.100991_bib80) 2014; 76
Dragoni (10.1016/j.bbrep.2021.100991_bib108) 2012; 128
Marsich (10.1016/j.bbrep.2021.100991_bib4) 2011; 83
Khoobchandani (10.1016/j.bbrep.2021.100991_bib49) 2016; 17
Chueh (10.1016/j.bbrep.2021.100991_bib151) 2014; 264
You (10.1016/j.bbrep.2021.100991_bib58) 2019; 281
Rattanata (10.1016/j.bbrep.2021.100991_bib194) 2016; 11
Bracamonte (10.1016/j.bbrep.2021.100991_bib2) 2011; 56
Lyu (10.1016/j.bbrep.2021.100991_bib46) 2016; 26
Jia (10.1016/j.bbrep.2021.100991_bib68) 2018; 8
Byrne (10.1016/j.bbrep.2021.100991_bib14) 2010
Choi (10.1016/j.bbrep.2021.100991_bib24) 2012; 26
Zhai (10.1016/j.bbrep.2021.100991_bib101) 2015; 31
Grimaldi (10.1016/j.bbrep.2021.100991_bib64) 2017; 12
Fischer (10.1016/j.bbrep.2021.100991_bib72) 2007; 18
Fraga (10.1016/j.bbrep.2021.100991_bib76) 2014; 10
Meng (10.1016/j.bbrep.2021.100991_bib74) 2014; 8
Ng (10.1016/j.bbrep.2021.100991_bib135) 2013; 238
Chen (10.1016/j.bbrep.2021.100991_bib88) 2009; 4
Tsai (10.1016/j.bbrep.2021.100991_bib133) 2013; 8
Leroueil (10.1016/j.bbrep.2021.100991_bib152) 2008; 8
10.1016/j.bbrep.2021.100991_bib126
Cho (10.1016/j.bbrep.2021.100991_bib172) 2014; 30
Dykman (10.1016/j.bbrep.2021.100991_bib6) 2012; 41
Griffith (10.1016/j.bbrep.2021.100991_bib43) 2006; 7
Nam (10.1016/j.bbrep.2021.100991_bib118) 2014; 48
Hashmi (10.1016/j.bbrep.2021.100991_bib20) 2006; 45
Surendra (10.1016/j.bbrep.2021.100991_bib11) 2011; 7
Botha (10.1016/j.bbrep.2021.100991_bib122) 2015
Camesano (10.1016/j.bbrep.2021.100991_bib153) 2011
Pan (10.1016/j.bbrep.2021.100991_bib103) 2009; 5
Venkatpurwar (10.1016/j.bbrep.2021.100991_bib114) 2012; 94
Aueviriyavit (10.1016/j.bbrep.2021.100991_bib173) 2014; 224
Guo (10.1016/j.bbrep.2021.100991_bib48) 2014; 441
Khan (10.1016/j.bbrep.2021.100991_bib142) 2012; 19
Moretti (10.1016/j.bbrep.2021.100991_bib160) 2013; 45
Calderon-Gonzalez (10.1016/j.bbrep.2021.100991_bib45) 2017; 9
Etame (10.1016/j.bbrep.2021.100991_bib67) 2011; 7
Patra (10.1016/j.bbrep.2021.100991_bib17) 2010; 62
Liu (10.1016/j.bbrep.2021.100991_bib158) 2013; 5
Li (10.1016/j.bbrep.2021.100991_bib120) 2010; 31
Das (10.1016/j.bbrep.2021.100991_bib82) 2012; 25
Mallick (10.1016/j.bbrep.2021.100991_bib176) 2013; 13
Ahmed (10.1016/j.bbrep.2021.100991_bib191) 2016; 98
Bibikova (10.1016/j.bbrep.2021.100991_bib50) 2017; 14
Daraee (10.1016/j.bbrep.2021.100991_bib83) 2016; 44
Barnaby (10.1016/j.bbrep.2021.100991_bib40) 2014; 111
Cho (10.1016/j.bbrep.2021.100991_bib86) 2009; 236
Chen (10.1016/j.bbrep.2021.100991_bib112) 2012; 2012
Jenkins (10.1016/j.bbrep.2021.100991_bib5) 2013; 33
Vijayakumar (10.1016/j.bbrep.2021.100991_bib96) 2012; 2012
Young (10.1016/j.bbrep.2021.100991_bib162) 2012; 12
Jo (10.1016/j.bbrep.2021.100991_bib26) 2015; 5
Di Guglielmo (10.1016/j.bbrep.2021.100991_bib147) 2012; 12
Vijayakumar (10.1016/j.bbrep.2021.100991_bib97) 2012; 2012
Tsoukalas (10.1016/j.bbrep.2021.100991_bib19) 2009; 367
Mateo (10.1016/j.bbrep.2021.100991_bib125) 2014; 24
Lopez-Chaves (10.1016/j.bbrep.2021.100991_bib127) 2018; 14
Salado (10.1016/j.bbrep.2021.100991_bib171) 2012; 23
Weinberg (10.1016/j.bbrep.2021.100991_bib33) 2011; 30
Donaldson (10.1016/j.bbrep.2021.100991_bib38) 2009; 6
Li (10.1016/j.bbrep.2021.100991_bib137) 2013; 9
Renault (10.1016/j.bbrep.2021.100991_bib34) 2008; 41
Fanord (10.1016/j.bbrep.2021.100991_bib37) 2011; 22
Piryazev (10.1016/j.bbrep.2021.100991_bib124) 2013; 156
Pan (10.1016/j.bbrep.2021.100991_bib149) 2007; 3
Li (10.1016/j.bbrep.2021.100991_bib121) 2010; 398
Jennings (10.1016/j.bbrep.2021.100991_bib1) 2007; 620
Griffith (10.1016/j.bbrep.2021.100991_bib123) 2006; 7
Khan (10.1016/j.bbrep.2021.100991_bib129) 2013; 2013
Chithrani (10.1016/j.bbrep.2021.100991_bib35) 2006; 6
Jebali (10.1016/j.bbrep.2021.100991_bib166) 2013; 27
Cho (10.1016/j.bbrep.2021.100991_bib85) 2009; 9
Chakraborty (10.1016/j.bbrep.2021.100991_bib154) 2011; 27
Kalita (10.1016/j.bbrep.2021.100991_bib186) 2016; 61
McPherson (10.1016/j.bbrep.2021.100991_bib22) 2009; 52
Lee (10.1016/j.bbrep.2021.100991_bib51) 2010; 36
Giljohann (10.1016/j.bbrep.2021.100991_bib52) 2010; 49
Lopez-Campos (10.1016/j.bbrep.2021.100991_bib71) 2019; 24
Stelzer (10.1016/j.bbrep.2021.100991_bib155) 2009; 55
Liu (10.1016/j.bbrep.2021.100991_bib157) 2013; 15
Sousa (10.1016/j.bbrep.2021.100991_bib131) 2016; 8
Hassanen (10.1016/j.bbrep.2021.100991_bib110) 2020
Tiedemann (10.1016/j.bbrep.2021.100991_bib159) 2014; 139
Gao (10.1016/j.bbrep.2021.100991_bib167) 2011; 205
Lai (10.1016/j.bbrep.2021.100991_bib57) 2015; 7
Li (10.1016/j.bbrep.2021.100991_bib138) 2008; 20
Auffan (10.1016/j.bbrep.2021.100991_bib139) 2009; 3
Suh (10.1016/j.bbrep.2021.100991_bib165) 2013; 153
Hiilin (10.1016/j.bbrep.2021.100991_bib47) 2017; 29
Ojea-Jimenez (10.1016/j.bbrep.2021.100991_bib140) 2009; 131
Chaicherd (10.1016/j.bbrep.2021.100991_bib168) 2019; 1
Siddiqi (10.1016/j.bbrep.2021.100991_bib113) 2012; 9
References_xml – volume: 13
  start-page: 3223e3229
  year: 2013
  ident: bib176
  publication-title: J. Nanosci. Nanotechnol.
– volume: 6
  start-page: 2071e2081
  year: 2011
  ident: bib87
  publication-title: Int. J. Nanomed.
– volume: 26
  year: 2016
  ident: bib46
  article-title: A universal platform for macromolecular deliveryinto cells using gold nanoparticle layers via the . nhotoporation effect
  publication-title: Adv. Funct. Mater.
– volume: 441
  start-page: 127
  year: 2014
  end-page: 132
  ident: bib48
  article-title: Biosynthesis of gold nanoparticles using a kind of flavonol: Dihydromyricetin
  publication-title: Colloid. Surface. Physicochem. Eng. Aspect.
– reference: Schneider, T., Westermann, M. & Glei, M. In vitro uptake and toxicity studies of metal nanoparticles and metal oxide nanoparticles in human HT29 cells. Arch. Toxicol.. DOI 10.1007/s00204-017-1976-z.
– volume: 281
  start-page: 408
  year: 2019
  end-page: 414
  ident: bib58
  article-title: Colorimelric and test stripe-based assay of bacteria by using vancomycin-modified gold nanoparticles
  publication-title: Sensor. Actuator. B Chem.
– volume: 7
  start-page: 9664e9674
  year: 2013
  ident: bib136
  publication-title: ACS Nano
– volume: 33
  start-page: 4628e4638
  year: 2012
  ident: bib73
  publication-title: J. Biomaterials
– volume: 4
  start-page: 405
  year: 2011
  end-page: 413
  ident: bib117
  article-title: toxicity assessment of gold nanoparticles in
  publication-title: Nano Res
– year: 2013
  ident: bib28
  article-title: Colloidal gold: the great rejuvenator of mind and body
  publication-title: IOP Publishihing Natural News Web
– volume: 9
  year: 2017
  ident: bib63
  article-title: Nanomedicine approaches to improve cancer immunotherapy
  publication-title: Wiley Interdiscip. Rev. Nanomcd. /Nanobiotechnol.
– volume: 29
  year: 2008
  ident: bib15
  article-title: Particle size-dependent organ distribution of gold nanoparticles after intravenous administration
  publication-title: Biomaterials
– volume: 130
  start-page: 3754
  year: 2008
  ident: bib21
  article-title: Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]
  publication-title: Am. Chem. Soc.
– volume: 3
  start-page: 16
  year: 2009
  ident: bib91
  article-title: Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation
  publication-title: Chem. Cent. J.
– volume: 153
  start-page: 428e436
  year: 2013
  ident: bib165
  publication-title: Biol. Trace Elem. Res.
– volume: 52
  start-page: 743
  year: 2009
  end-page: 750
  ident: bib22
  article-title: Selectivity of gold catalysis for application of commercial interest
  publication-title: Tropics in Catalysis
– volume: 41
  start-page: 2256
  year: 2012
  end-page: 2282
  ident: bib6
  article-title: Gold nanoparticles in biomedical applications: recent advances and perspectives
  publication-title: Chem. Soc. Rev.
– volume: 25
  start-page: 13840
  year: 2009
  end-page: 13851
  ident: bib23
  article-title: Gold nanoparticles: past, present, and future
  publication-title: Langmuir
– volume: 139
  start-page: 931e942
  year: 2014
  ident: bib159
  publication-title: Analyst
– volume: 8
  start-page: 2409e2419
  year: 2012
  ident: bib111
  publication-title: Int. J. Nanomed.
– volume: 2012
  year: 2012
  ident: bib112
  publication-title: J. Nanomater.
– volume: 8
  start-page: 1e7
  year: 2012
  ident: bib116
  publication-title: Nanomedicine
– volume: 238
  start-page: 1355e1361
  year: 2013
  ident: bib135
  publication-title: Exp. Biol. Med.
– volume: 5
  start-page: 447
  year: 2015 Nov
  end-page: 454
  ident: bib56
  article-title: A review of molecular mechanisms involved in toxicity of nanoparticles
  publication-title: Adv. Pharmaceut. Bull.
– volume: 9
  start-page: 10721
  year: 2017
  end-page: 10732
  ident: bib45
  article-title: Gold glyconanoparticles coupled to listeriolysin O 91-99 peptide serve as adjuvant therapy against melanoma
  publication-title: Nanoscale
– volume: 6
  start-page: 13
  year: 2009
  ident: bib38
  article-title: The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles
  publication-title: Part. Fibre Toxicol.
– volume: 9
  year: 2019
  ident: bib109
  article-title: Effects of biologically produced gold nanoparticles: toxicity assessment in different rat organs after intraperitoneal injection
  publication-title: Amb. Express
– volume: 7
  start-page: 504
  year: 2011
  end-page: 520
  ident: bib11
  article-title: Cationic polymer based nanocarriers for delivery of therapeutic nucleic acids
  publication-title: J. Biomed. Nanotechnol.
– volume: 15
  start-page: 1745e1759
  year: 2013
  ident: bib157
  publication-title: J. Nano Res.
– volume: 30
  start-page: 3883e3893
  year: 2014
  ident: bib172
  publication-title: Langmuir
– volume: 236
  start-page: 16
  year: 2009
  end-page: 24
  ident: bib86
  article-title: Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 14
  year: 2017
  ident: bib50
  article-title: Shape dependent interaction of gold nanoparticles with cultured cells at laser exposure
  publication-title: Laser Phys. Lett.
– volume: 7
  start-page: 211
  year: 2006
  end-page: 224
  ident: bib123
  article-title: Capturing complex 3D tissue physiology in vitro
  publication-title: Nat. Rev. Mol. Cell Biol.
– start-page: 102
  year: 2008
  ident: bib70
  article-title: Nanoparticles in Biomedical Imaging, Emerging Technologies and Applications. Fundamental Biomedical Technologies
– volume: 1
  start-page: 260
  year: 2014
  end-page: 270
  ident: bib98
  article-title: Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to daphnia magna
  publication-title: Environ-Sci Nano.
– volume: 31
  start-page: 2034
  year: 2010
  end-page: 2042
  ident: bib92
  article-title: Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats
  publication-title: Biomaterials
– volume: 77
  start-page: 407
  year: 2011
  end-page: 416
  ident: bib77
  article-title: Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 56
  start-page: 1316
  year: 2011
  end-page: 1322
  ident: bib2
  article-title: Quaternized chitosan as support for the assembly of gold nanoparticles and glucose oxidase. Physiochemical characterization of the platform and evaluation of its biocatalytic activity
  publication-title: Electrochmica Acta
– volume: 7
  start-page: 2046
  year: 2015
  end-page: 2054
  ident: bib57
  article-title: Potent antibacterial nanoparticles for pathogenic bacteria
  publication-title: ACS Appl. Mater. Interfaces
– volume: 20
  start-page: 138
  year: 2008
  end-page: 142
  ident: bib138
  article-title: Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro
  publication-title: Adv. Mater.
– volume: 4
  start-page: 7481e7491
  year: 2010
  ident: bib144
  publication-title: ACS Nano
– volume: 8
  start-page: 404
  year: 2018
  ident: bib68
  article-title: Interactions between nanoparticles and dendritic cells: from the perspective of cancer immunotherapy
  publication-title: Front. Oncol.
– volume: 217
  start-page: 205
  year: 2013
  end-page: 216
  ident: bib25
  article-title: Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts
  publication-title: Toxicol. Lett.
– volume: 17
  start-page: 316
  year: 2016
  ident: bib49
  article-title: Laminin receptor-avid nanotherapeutic GCg-AuNP as a potential alternative therapeutic approach to prevent yfestenosis
  publication-title: Int. J. Mol. Sci.
– volume: 3
  start-page: 410e420
  year: 2011
  ident: bib150
  publication-title: Nanoscale
– volume: 34
  start-page: 6967e6975
  year: 2013
  ident: bib156
  publication-title: Biomaterials
– volume: 94
  start-page: 1357e1367
  year: 2012
  ident: bib114
  publication-title: Toxicol. Environ. Chem.
– volume: 8
  start-page: 32
  year: 2013
  ident: bib42
  article-title: Gold nanoparticles: recent aspects for human toxicology
  publication-title: J. Occup. Med. Toxicol.
– volume: 114
  start-page: 183104
  year: 2013
  ident: bib184
  article-title: Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 20489
  year: 2015
  end-page: 20496
  ident: bib192
  article-title: Insulin-coated gold nanoparticles as a new concept for personalized and adjustable glucose regulation
  publication-title: Nanoscale
– volume: 7
  start-page: 992
  year: 2011
  end-page: 1000
  ident: bib67
  article-title: Design and potential application of PEGylated gold, nanoparticles with size-dependent permeation through brain microvasculature
  publication-title: Nanomed: XNanotechnol Biol Med
– volume: 149
  start-page: 65
  year: 2011
  end-page: 71
  ident: bib7
  article-title: The forthcoming applications of gold nanoparticles in drug and gene delivery systems
  publication-title: J. Contr. Release
– volume: 31
  start-page: 10871
  year: 2015
  end-page: 10880
  ident: bib101
  article-title: Lipid-Peg conjugates sterically stabilize and reduce the toxicity of phytantriol-based lyotropic liquid crystalline nanoparticles
  publication-title: Langmuir
– volume: 13
  start-page: 6821e6835
  year: 2011
  ident: bib145
  publication-title: J. Nano Res.
– volume: 620
  start-page: 34
  year: 2007
  ident: bib1
  article-title: Past, present, and future of gold nanoparticles
  publication-title: Adv. Exp. Med. Biol.
– volume: 31
  start-page: 5996e6003
  year: 2010
  ident: bib120
  publication-title: Biomaterials
– volume: 44
  start-page: 410
  year: 2016
  end-page: 422
  ident: bib83
  article-title: Application of gold nanoparticles in biomedical and drug delivery
  publication-title: Artif. Cells Nanomed. Biotechnol.
– volume: 62
  start-page: 346
  year: 2010
  end-page: 361
  ident: bib17
  article-title: Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer
  publication-title: Adv. Drug Deliv. Rev.
– volume: 8
  start-page: 420e424
  year: 2008
  ident: bib152
  publication-title: Nano Lett.
– volume: 5
  start-page: 771
  year: 2010
  end-page: 781
  ident: bib12
  article-title: Toxicologic effects of gold nanoparticles in vivo by different administration routes
  publication-title: Int. J. Nanomed.
– volume: 2012
  start-page: 9
  year: 2012
  ident: bib97
  article-title: Vitro cytotoxicity assay on gold nanoparticles with different stabilizing agents
  publication-title: J. Nanomater.
– volume: 2013
  start-page: 590730
  year: 2013
  ident: bib129
  article-title: Effects of naked gold nanoparticles on proinflammatory cytokinesmRNAexpression in rat liver and kidney
  publication-title: BioMed Res. Int.
– volume: 22
  year: 2011
  ident: bib37
  article-title: Bisphosphonate modified gold nanoparticles: a useful vehicle to study the treatmentNanotechnology
– volume: 48
  start-page: 126
  year: 2014
  end-page: 136
  ident: bib118
  article-title: Derivation of guideline values for gold (III) ion toxicity limits to protect aquatic ecosystems
  publication-title: Water Res.
– volume: 4
  start-page: 26
  year: 2008
  end-page: 49
  ident: bib30
  article-title: Cytotoxicity of nanoparticles
  publication-title: Small
– volume: 31
  start-page: 2034
  year: 2010
  end-page: 2042
  ident: bib93
  article-title: Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rat
  publication-title: Biomaterials
– volume: 27
  start-page: 98e102
  year: 2012
  ident: bib143
  publication-title: Int. Proc. Chem. Biol. Environ. Eng.
– year: 2015
  ident: bib122
  article-title: Comparative aquatic toxicity of gold nanoparticles and ionic gold using a species sensitivity distribution approach
  publication-title: J. Nanomater.
– volume: 18
  start-page: 565
  year: 2007
  end-page: 571
  ident: bib72
  article-title: Nanotoxicity: the growing need for in vivo study
  publication-title: Curr. Opin. Biotechnol.
– volume: 26
  start-page: 229e237
  year: 2012
  ident: bib24
  publication-title: Toxicol. Vitro
– volume: 4
  start-page: 52e72
  year: 2010
  ident: bib170
  publication-title: Nanotoxicology
– volume: 8
  start-page: 16
  year: 2011
  ident: bib27
  article-title: Subchronic inhalation toxicity of gold nanoparticles
  publication-title: Part. Fibre Toxicol.
– volume: 29
  start-page: 71
  year: 2019
  end-page: 177
  ident: bib62
  article-title: Gold nanoparticles conjugation enhances antiacanthamoebic properties of nystatin, fluconazole and amphotericin B
  publication-title: J. Microbiol. Biotechnol.
– volume: 24
  start-page: 47
  year: 2019
  end-page: 55
  ident: bib71
  article-title: Nanoparticles applied to cancer immunoregulation
  publication-title: Rep. Practical Oncol. Radiother.
– volume: 30
  start-page: 1928
  year: 2009
  end-page: 1936
  ident: bib100
  article-title: Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice
  publication-title: Biomaterials
– volume: 10
  start-page: 1757
  year: 2014
  end-page: 1766
  ident: bib76
  article-title: Short-and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose intravenous administration
  publication-title: Nanomed.-Nanotechnol
– volume: 7
  start-page: 5792
  year: 2017
  ident: bib188
  article-title: Dual functionality nanobioconjugates targeting intracellular bacteria in cancer cells with enhanced antimicrobial activity
  publication-title: Sci. Rep.
– start-page: 3
  year: 2004
  end-page: 4
  ident: bib195
  article-title: Photochemical synthesis of gold nanoparticles by the sunlight radiation using a seeding approach
  publication-title: Gold Bull.
– volume: 393
  start-page: 649
  year: 2010
  end-page: 655
  ident: bib104
  article-title: Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 12
  start-page: 2349
  year: 2017
  end-page: 2365
  ident: bib64
  article-title: Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics
  publication-title: Nanomedicine
– volume: 1
  start-page: 336
  year: 2019
  ident: bib168
  article-title: Toxicity of gold nanoparticles in a commercial dietary supplement drink on connective tissue fibroblast cells
  publication-title: SN Applied Sciences
– volume: 12
  start-page: 6185e6191
  year: 2012
  ident: bib147
  publication-title: J. Nanosci. Nanotechnol.
– volume: 222
  start-page: 197
  year: 2013
  end-page: 203
  ident: bib130
  article-title: No overt structural or functional changes associated with PEG-coated gold nanoparticles accumulation with acute exposure in the mouse heart
  publication-title: Toxicol. Lett.
– volume: 9
  start-page: 123
  year: 2012
  ident: bib113
  article-title: Identification of potential biomarkers of gold nanoparticle toxicity in rat brains
  publication-title: J. Neuroinflammation
– volume: 45
  start-page: 392e396
  year: 2013
  ident: bib160
  publication-title: Andrologia
– volume: 20
  start-page: 177e181
  year: 2013
  ident: bib81
  publication-title: Saudi J. Biol. Sci.
– reference: Mahjub, R., Jatana, S., Lee, S. E., Qin, Z., Pauli, G., Soleimani, M., Madadi, S. and Li, S. D. Recent advances in applying nanolechnologies for cancer immunotherapy. J. Contr. Release 288, 239-263 A201&).
– volume: 91
  start-page: 3011
  year: 2017
  end-page: 3037
  ident: bib75
  article-title: Toxic effects and biodistribution of ultrasmall gold nanoparticles
  publication-title: Arch. Toxicol.
– volume: 25
  start-page: 1009e1022
  year: 2012
  ident: bib82
  publication-title: Biometals
– volume: 128
  start-page: 186
  year: 2012
  end-page: 197
  ident: bib108
  article-title: Gold nanoparticles uptake and cytotoxicity assessed on rat liver precision-cut slices
  publication-title: Toxicol. Sci.
– volume: 7
  start-page: 174e188
  year: 2012
  ident: bib174
  publication-title: J. Exp. Nanosci.
– volume: 61
  start-page: 720
  year: 2016
  end-page: 727
  ident: bib186
  article-title: Amoxicillin functionalized gold nanoparticles reverts MRSA resistance
  publication-title: Mater. Sci. Eng. C
– volume: 19
  start-page: 461e464
  year: 2012
  ident: bib142
  publication-title: Saudi J. Biol. Sci.
– volume: 10
  start-page: 50e65
  year: 2013
  ident: bib164
  publication-title: Part. Fibre Toxicol.
– volume: 27
  start-page: 1847e1854
  year: 2013
  ident: bib166
  publication-title: Toxicol. Vitro
– volume: 8
  start-page: 1237
  year: 2007
  ident: bib36
  article-title: Molecular effects of uptake of gold nanoparticles in HeLa cells
  publication-title: Chembiochem
– volume: 17
  start-page: 6
  year: 2009
  ident: bib54
  article-title: Induction of DNA damage in L5178Y cells treated with gold nanoparticle
  publication-title: Biomol.Ther.
– volume: 6
  start-page: 662
  year: 2006
  ident: bib35
  article-title: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells
  publication-title: Nano Lett.
– volume: 111
  start-page: 9739
  year: 2014
  end-page: 9744
  ident: bib40
  article-title: Probing the inherent stability of RNA immobilized on nanoparticle constructs
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 224
  start-page: 73e83
  year: 2014
  ident: bib173
  publication-title: Toxicol. Lett.
– volume: 26
  start-page: 39
  year: 2015
  end-page: 50
  ident: bib94
  article-title: Gold nanoparticles stabilized with mpeg-grafted poly(L-Lysine): in vitro and in vivo evaluation of a potential theranostic agent
  publication-title: Bioconjugate Chem.
– volume: 3
  start-page: 1941e1949
  year: 2007
  ident: bib149
  publication-title: Small
– volume: 256
  start-page: 26
  year: 2017
  end-page: 45
  ident: bib65
  article-title: Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense
  publication-title: J. Contr. Release
– volume: 9
  start-page: 1080
  year: 2009
  end-page: 1084
  ident: bib85
  article-title: Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant
  publication-title: Nano Lett.
– volume: 5
  start-page: 3982e3991
  year: 2013
  ident: bib158
  publication-title: J. Nanoscale
– volume: 76
  start-page: 377
  year: 2014
  end-page: 387
  ident: bib80
  article-title: Demonstration of the clathrin-and caveolinmediated endocytosis at the maternal–fetal barrier in mouse placenta after intravenous administration of gold nanoparticles
  publication-title: J. Vet. Med. Sci.
– volume: 9
  start-page: 17
  year: 2011
  ident: bib16
  article-title: Determination of the volume specific surface area by using transmission electron tomography for characterization and definition of nanomaterials
  publication-title: Journal of Nanobiiotechnology
– volume: 8
  start-page: 686e696
  year: 2014
  ident: bib74
  publication-title: Nanotoxicology
– volume: 9
  start-page: 1e11
  year: 2012
  ident: bib146
  publication-title: Part. Fibre Toxicol.
– volume: 52
  year: 2019
  ident: bib187
  article-title: enhanced antibacterial activity of imipenem-immobilized on surface of spherical and rod gold nanoparticles
  publication-title: J. Phys. D
– volume: 55
  start-page: 685e690
  year: 2009
  ident: bib155
  publication-title: J. Reprod. Develop.
– volume: 7
  start-page: 211
  year: 2006
  end-page: 224
  ident: bib43
  article-title: Capturing complex 3D tissue physiology in vitro
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 30
  start-page: 853
  year: 2019
  end-page: 860
  ident: bib44
  article-title: Gold nanoparlicle shape impacts the biological activity of siRNA delivery
  publication-title: Bioconjugate Chem.
– volume: 11
  start-page: 107
  year: 2016
  end-page: 119
  ident: bib84
  article-title: A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles
  publication-title: Nanomedicine
– volume: 5
  start-page: 363
  year: 2010
  end-page: 367
  ident: bib10
  article-title: Gold nanoparticles in molecular diagnostics and therapeutics
  publication-title: Digest Journal of nanomedicine and biostructures
– volume: 27
  start-page: 7722e7731
  year: 2011
  ident: bib154
  publication-title: Langmuir
– reference: Xiaomin Li, Zhenpeng Hu, Jinlong Ma, Xinyu Wang, Yapei Zhang, Wei Wang, Zhi Yuan, The Systematic Evaluation of Size-dependent Toxicity and Multi-Time Biodistribution of Gold Nanoparticles, Colloids and Surfaces B: Biointerfaces
– year: 2011
  ident: bib153
  article-title: 85th ACS Colloid and Surface Science Symposium
– volume: 12
  start-page: 3867e3871
  year: 2012
  ident: bib162
  publication-title: Nano Lett.
– volume: 11
  start-page: 3347
  year: 2016
  end-page: 3356
  ident: bib194
  article-title: Gallic acid conjugated with gold nanoparticles antibacterial activity and mechanism of action on food borne pathogens
  publication-title: Int. J. Nanomed.
– reference: Dhamecha, D., Jalalpure, S., Jadhav, K. & Sajjan, D. (2016) Green synthesis of gold nanoparticles using
– volume: 14
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib127
  article-title: Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 153
  start-page: 171
  year: 2016
  end-page: 179
  ident: bib185
  article-title: Avadhan. Preparation of gold nanoparticles by novel bacterial exopolysaccharide for antibiotic delivery
  publication-title: Life sci.
– volume: 36
  start-page: 4049
  year: 2010
  end-page: 4053
  ident: bib51
  article-title: Synergistic cancer therapeutic effects of locally delivered drug and heat/using multifunctional nanoparticles
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1220
  year: 2018
  end-page: 1230
  ident: bib59
  article-title: Selective photoinduced antibacterial activity of amoxicillin-coated gold nanoparticles: from one-step synthesis to in vivo cytocompatibility
  publication-title: ACS Omega
– volume: 13
  start-page: 1
  year: 2020
  ident: bib39
  article-title: Methods of gold and silver nanoparticles preparation
  publication-title: Materials
– volume: 8
  start-page: 6577
  year: 2016
  end-page: 6588
  ident: bib131
  article-title: Biointeractions of ultrasmall glutathione-coated gold nanoparticles: effect of small size variations
  publication-title: Nanoscale
– volume: 156
  start-page: 101
  year: 2013
  end-page: 103
  ident: bib124
  article-title: Effect of gold nanoparticles on production of reactive oxygen species by human peripheral blood leukocytes stimulated with opsonized zymosan
  publication-title: Bull. Exp. Biol. Med.
– volume: 25
  start-page: 477
  year: 2012
  end-page: 491
  ident: bib31
  article-title: Nanoparticles toxicity and their routes of exposures
  publication-title: PJPS
– volume: 40
  start-page: 563
  year: 2013
  end-page: 568
  ident: bib193
  article-title: Induction of apoptosis by high-dose gold nanoparticles in nasopharyngeal carcinoma cells
  publication-title: Auris Nasus Larynx
– volume: 301
  start-page: 7e11
  year: 2013
  ident: bib175
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
– volume: 119
  start-page: 1519
  year: 2019
  end-page: 1624
  ident: bib69
  article-title: Metal drugs/and the anticancer immune response
  publication-title: Cheni. Rev.
– volume: 5
  start-page: 835
  year: 2015
  end-page: 850
  ident: bib26
  article-title: Toxicity and biokinetics of colloidal gold nanoparticles
  publication-title: Nanomaterials
– volume: 83
  start-page: 331
  year: 2011
  end-page: 339
  ident: bib4
  article-title: Biological response of hydrogels embedding gold nanoparticles
  publication-title: Collods and SurfaceB: Biointerfaces.
– year: 2011
  ident: bib13
  article-title: Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold nanoparticles
  publication-title: Biomaterials
– volume: 1830
  start-page: 4960e4973
  year: 2013
  ident: bib161
  publication-title: Biochim. Biophys. Acta
– volume: 49
  start-page: 3280
  year: 2010
  end-page: 3294
  ident: bib52
  article-title: Gold nanoparticles for biology and medicine
  publication-title: Angew. Chem.
– volume: 367
  start-page: 4169
  year: 2009
  end-page: 4179
  ident: bib19
  article-title: From silicon to organic nanoparticle memory devices
  publication-title: Philos transact A Math Phys Eng Sci
– volume: 5
  start-page: 701
  year: 2009
  end-page: 708
  ident: bib99
  article-title: Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects
  publication-title: Small
– volume: 367
  start-page: 4215
  year: 2009
  end-page: 4225
  ident: bib18
  article-title: Gold nanoparticle charge trapping and relation to organic polymer memory devices
  publication-title: Philos transact A Math Phys Eng Sci
– volume: 2012
  year: 2012
  ident: bib96
  publication-title: J. Nanomater.
– volume: 3
  start-page: 161
  year: 2009
  end-page: 171
  ident: bib139
  article-title: CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro
  publication-title: Nanotoxicology
– volume: 33
  start-page: 550
  year: 2013
  end-page: 556
  ident: bib5
  article-title: Excretion and toxicity of gold–iron nanoparticles
  publication-title: Mater. Sci. Eng. C
– volume: 6
  start-page: 5767e5783
  year: 2012
  ident: bib148
  publication-title: ACS Nano
– volume: 8
  start-page: 1e12
  year: 2013
  ident: bib133
  publication-title: PloS One
– volume: 4
  start-page: 858
  year: 2009
  end-page: 864
  ident: bib88
  article-title: Assessment of the in vivo toxicity of gold nanoparticles
  publication-title: Nanoscale Res Lett
– volume: 110
  start-page: 342e347
  year: 2014
  ident: bib169
  publication-title: Radiother. Oncol.
– volume: 3
  year: 2012
  ident: bib89
  publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol.
– start-page: 020091
  year: 2016
  ident: bib196
  article-title: Cytotoxic effects of gold nanoparticles exposure employing in vitro animal cell culture system as part of nanobiosafety
  publication-title: CONFERENCE ON EMERGING TECHNOLOGIES: MICRO TO NANO 2015 (ETMN-2015): Contributory papers presented in 2nd International Conference on Emerging Technologies: Micro to Nano 2015
– volume: 23
  year: 2012
  ident: bib171
  publication-title: Nanotechnology
– volume: 291
  start-page: 10
  year: 2012
  end-page: 17
  ident: bib9
  article-title: Models for oral uptake of nanoparticles in consumer products
  publication-title: Toxicology
– volume: 66
  start-page: 274
  year: 2008
  end-page: 280
  ident: bib78
  article-title: Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size
  publication-title: Colloid. Surface. B
– volume: 264
  start-page: 303e312
  year: 2014
  ident: bib151
  publication-title: J. Hazard Mater.
– volume: 398
  start-page: 689
  year: 2010
  end-page: 700
  ident: bib121
  article-title: Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on
  publication-title: Anal. Bioanal. Chem.
– volume: 9
  start-page: 257
  year: 2013
  end-page: 263
  ident: bib102
  article-title: In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles
  publication-title: Nanomedicine
– volume: 8
  start-page: 396
  year: 2018
  ident: bib53
  article-title: Biocompatible gold nanoparticles ameliorate retinoic acid-induced cell death and induce differentiation in F9 teratocarcinormi stem cells
  publication-title: Nanomaterials
– volume: 7
  start-page: 607
  year: 2016
  ident: bib55
  article-title: Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity
  publication-title: Front. Microbiol.
– volume: 61
  start-page: 457
  year: 2009
  end-page: 466
  ident: bib3
  article-title: Nanomaterials physiochemical properties on in vivo toxicity
  publication-title: Adv. Drug Deliv. Rev.
– volume: 98
  start-page: 50
  year: 2016
  end-page: 56
  ident: bib191
  article-title: Biofilm inhibitory effect of chlorhexidine conjugated gold nanoparticles against Klebsiella pneumonia
  publication-title: Microb. Pathog.
– volume: 736
  start-page: 1800395
  year: 2019
  ident: bib61
  article-title: Novel synthesis and characterization of doxycycline- loaded gold nanoparticles: the golden doxycycline for antibacterial applications. Part. Part
  publication-title: Sysl. Charact.
– year: 2020
  ident: bib110
  article-title: The effect of different concentrations of gold nanoparticles on growth performance, toxicopathological and immunological parameters of broiler chickens
  publication-title: Biosci. Rep.
– volume: 14
  start-page: 1212e1222
  year: 2012
  ident: bib132
  publication-title: J. Nano Res.
– volume: 41
  start-page: 116
  year: 2008
  end-page: 126
  ident: bib34
  article-title: Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea)
  publication-title: Gold Bull.
– volume: 8
  year: 2017
  ident: bib189
  article-title: Application of gold nanoparticles for improved drug efficiency
  publication-title: Adv. Nat. Sci: Nanosci. Nanotechnol.
– volume: 6
  start-page: 18
  year: 2009
  ident: bib32
  article-title: Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441
  publication-title: Part. Fibre Toxicol.
– reference: : Characterization and biocompatibility studies, Part. Science and Technology, 34:2, 156-164.
– volume: 9
  start-page: 257e263
  year: 2013
  ident: bib90
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 5
  start-page: 2067
  year: 2009
  end-page: 2076
  ident: bib103
  article-title: Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage
  publication-title: Small
– volume: 24
  start-page: 400
  year: 2013
  ident: bib29
  article-title: The toxicity of Gold Nanoparticles in relation to their physiochemical properties
  publication-title: Biomed. Res.
– volume: 4
  start-page: 10
  year: 2007
  ident: bib79
  article-title: Kupffer cells are central in the removal of nanoparticles from the organism. Part
  publication-title: Fibre Toxicol
– volume: 31
  start-page: 6574
  year: 2010
  end-page: 6581
  ident: bib105
  article-title: Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection
  publication-title: Biomaterials
– volume: 29
  start-page: 399
  year: 2017
  end-page: 461
  ident: bib47
  article-title: Selected standard protocols for the • synthesis, phase transfer, and characterization of inorganic colloidal nanoparticles
  publication-title: Chem. Mater.
– reference: .
– volume: 24
  start-page: 62
  year: 2006
  end-page: 67
  ident: bib8
  article-title: Therapeutic possibilities of plasmonically heated gold nanoparticles
  publication-title: Trends Biotechnol.
– volume: 31
  start-page: 5996
  year: 2010
  end-page: 6003
  ident: bib119
  article-title: Autophagy and oxidative stress associated with gold nanoparticles
  publication-title: Biomaterials
– volume: 9
  start-page: 1708e1714
  year: 2013
  ident: bib137
  publication-title: Small
– volume: 3
  start-page: 111
  year: 2007
  end-page: 119
  ident: bib163
  article-title: Cell selective response to gold nanoparticles
  publication-title: Nanomedicine
– volume: 110
  start-page: 8004e8009
  year: 2013
  ident: bib177
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 9
  start-page: 123
  year: 2012
  ident: bib141
  article-title: Identification of potential biomarkers of gold nanoparticle toxicity in rat brains
  publication-title: J. Neuroinflammation
– volume: 133
  start-page: 275e288
  year: 2013
  ident: bib60
  publication-title: Toxicol. Sci.
– volume: 45
  start-page: 7896
  year: 2006
  end-page: 7936
  ident: bib20
  article-title: Gold catalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 745
  start-page: 38
  year: 2012
  end-page: 50
  ident: bib128
  article-title: Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not
  publication-title: Mutat Res Toxicol Environ Mutagen
– volume: 215
  start-page: 119e125
  year: 2012
  ident: bib134
  publication-title: Toxicol. Lett.
– start-page: 1
  year: 2010
  end-page: 30
  ident: bib14
  article-title: Protocols for assessment of biological hazards of engineered nanomaterials
– volume: 7
  start-page: 876
  year: 2019
  end-page: 896
  ident: bib41
  article-title: Current status and future perspectives of gold nanoparticle vectors for siRNA delivery
  publication-title: J. Mater. Chem. B Mater. Biol. Med. /
– volume: 2
  start-page: 2826
  year: 2010
  end-page: 2834
  ident: bib115
  article-title: Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study
  publication-title: Nanoscale
– volume: 1
  start-page: 31
  year: 2011
  end-page: 63
  ident: bib95
  article-title: Functionalized gold nanoparticles and their biomedical applications
  publication-title: Nanomaterials
– volume: 30
  start-page: 72
  year: 2011
  end-page: 83
  ident: bib33
  article-title: Evaluating engineered nanoparticles in natural waters
  publication-title: Trac. Trends Anal. Chem.
– volume: 24
  start-page: 161
  year: 2014
  end-page: 172
  ident: bib125
  article-title: Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells
  publication-title: Toxicol. Mech. Methods
– volume: 205
  start-page: 86e95
  year: 2011
  ident: bib167
  publication-title: Toxicol. Lett.
– volume: 131
  start-page: 13320
  year: 2009
  end-page: 13327
  ident: bib140
  article-title: Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions
  publication-title: J. Am. Chem. Soc.
– volume: 236
  start-page: 16e24
  year: 2009
  ident: bib106
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 215
  start-page: 119e125
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib134
  publication-title: Toxicol. Lett.
– volume: 14
  issue: 5
  year: 2017
  ident: 10.1016/j.bbrep.2021.100991_bib50
  article-title: Shape dependent interaction of gold nanoparticles with cultured cells at laser exposure
  publication-title: Laser Phys. Lett.
  doi: 10.1088/1612-202X/aa63ae
– volume: 9
  start-page: 1708e1714
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib137
  publication-title: Small
– volume: 23
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib171
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/31/315102
– volume: 1
  start-page: 260
  issue: 3
  year: 2014
  ident: 10.1016/j.bbrep.2021.100991_bib98
  article-title: Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to daphnia magna
  publication-title: Environ-Sci Nano.
  doi: 10.1039/C4EN00006D
– volume: 25
  start-page: 477
  issue: 2
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib31
  article-title: Nanoparticles toxicity and their routes of exposures
  publication-title: PJPS
– volume: 6
  start-page: 18
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib32
  article-title: Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-6-18
– volume: 66
  start-page: 274
  year: 2008
  ident: 10.1016/j.bbrep.2021.100991_bib78
  article-title: Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size
  publication-title: Colloid. Surface. B
  doi: 10.1016/j.colsurfb.2008.07.004
– volume: 27
  start-page: 1847e1854
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib166
  publication-title: Toxicol. Vitro
– volume: 61
  start-page: 457
  issue: 8
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib3
  article-title: Nanomaterials physiochemical properties on in vivo toxicity
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2009.03.010
– start-page: 1
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib14
– volume: 13
  start-page: 3223e3229
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib176
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2013.7149
– volume: 3
  start-page: 16
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib91
  article-title: Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation
  publication-title: Chem. Cent. J.
  doi: 10.1186/1752-153X-3-16
– volume: 224
  start-page: 73e83
  year: 2014
  ident: 10.1016/j.bbrep.2021.100991_bib173
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2013.09.020
– volume: 7
  start-page: 504
  issue: 4
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib11
  article-title: Cationic polymer based nanocarriers for delivery of therapeutic nucleic acids
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2011.1313
– volume: 7
  start-page: 211
  year: 2006
  ident: 10.1016/j.bbrep.2021.100991_bib123
  article-title: Capturing complex 3D tissue physiology in vitro
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1858
– volume: 31
  start-page: 5996
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib119
  article-title: Autophagy and oxidative stress associated with gold nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.04.014
– volume: 8
  start-page: 1237
  year: 2007
  ident: 10.1016/j.bbrep.2021.100991_bib36
  article-title: Molecular effects of uptake of gold nanoparticles in HeLa cells
  publication-title: Chembiochem
  doi: 10.1002/cbic.200700165
– volume: 2012
  start-page: 9
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib97
  article-title: Vitro cytotoxicity assay on gold nanoparticles with different stabilizing agents
  publication-title: J. Nanomater.
  doi: 10.1155/2012/734398
– volume: 8
  start-page: 32
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib42
  article-title: Gold nanoparticles: recent aspects for human toxicology
  publication-title: J. Occup. Med. Toxicol.
  doi: 10.1186/1745-6673-8-32
– volume: 9
  start-page: 1080
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib85
  article-title: Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant
  publication-title: Nano Lett.
  doi: 10.1021/nl803487r
– volume: 36
  start-page: 4049
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib51
  article-title: Synergistic cancer therapeutic effects of locally delivered drug and heat/using multifunctional nanoparticles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001040
– volume: 41
  start-page: 2256
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib6
  article-title: Gold nanoparticles in biomedical applications: recent advances and perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15166E
– volume: 55
  start-page: 685e690
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib155
  publication-title: J. Reprod. Develop.
  doi: 10.1262/jrd.20241
– volume: 153
  start-page: 171
  year: 2016
  ident: 10.1016/j.bbrep.2021.100991_bib185
  article-title: Avadhan. Preparation of gold nanoparticles by novel bacterial exopolysaccharide for antibiotic delivery
  publication-title: Life sci.
  doi: 10.1016/j.lfs.2016.04.022
– volume: 133
  start-page: 275e288
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib60
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kft081
– volume: 12
  start-page: 6185e6191
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib147
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2012.6430
– volume: 9
  start-page: 123
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib113
  article-title: Identification of potential biomarkers of gold nanoparticle toxicity in rat brains
  publication-title: J. Neuroinflammation
  doi: 10.1186/1742-2094-9-123
– volume: 18
  start-page: 565
  year: 2007
  ident: 10.1016/j.bbrep.2021.100991_bib72
  article-title: Nanotoxicity: the growing need for in vivo study
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2007.11.008
– volume: 2013
  start-page: 590730
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib129
  article-title: Effects of naked gold nanoparticles on proinflammatory cytokinesmRNAexpression in rat liver and kidney
  publication-title: BioMed Res. Int.
  doi: 10.1155/2013/590730
– volume: 149
  start-page: 65
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib7
  article-title: The forthcoming applications of gold nanoparticles in drug and gene delivery systems
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2009.12.006
– volume: 8
  issue: 3
  year: 2017
  ident: 10.1016/j.bbrep.2021.100991_bib189
  article-title: Application of gold nanoparticles for improved drug efficiency
  publication-title: Adv. Nat. Sci: Nanosci. Nanotechnol.
– volume: 6
  start-page: 5767e5783
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib148
  publication-title: ACS Nano
  doi: 10.1021/nn301714n
– volume: 27
  start-page: 98e102
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib143
  publication-title: Int. Proc. Chem. Biol. Environ. Eng.
– volume: 25
  start-page: 1009e1022
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib82
  publication-title: Biometals
  doi: 10.1007/s10534-012-9567-1
– volume: 27
  start-page: 7722e7731
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib154
  publication-title: Langmuir
  doi: 10.1021/la200787t
– volume: 48
  start-page: 126
  issue: 1
  year: 2014
  ident: 10.1016/j.bbrep.2021.100991_bib118
  article-title: Derivation of guideline values for gold (III) ion toxicity limits to protect aquatic ecosystems
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.09.019
– volume: 13
  start-page: 6821e6835
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib145
  publication-title: J. Nano Res.
  doi: 10.1007/s11051-011-0590-x
– volume: 110
  start-page: 342e347
  year: 2014
  ident: 10.1016/j.bbrep.2021.100991_bib169
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2013.12.013
– volume: 8
  start-page: 420e424
  year: 2008
  ident: 10.1016/j.bbrep.2021.100991_bib152
  publication-title: Nano Lett.
  doi: 10.1021/nl0722929
– volume: 33
  start-page: 550
  issue: 1
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib5
  article-title: Excretion and toxicity of gold–iron nanoparticles
  publication-title: Mater. Sci. Eng. C
– start-page: 3
  issue: 37
  year: 2004
  ident: 10.1016/j.bbrep.2021.100991_bib195
  article-title: Photochemical synthesis of gold nanoparticles by the sunlight radiation using a seeding approach
  publication-title: Gold Bull.
– ident: 10.1016/j.bbrep.2021.100991_bib66
  doi: 10.1016/j.jconrel.2018.09.010
– volume: 8
  start-page: 404
  year: 2018
  ident: 10.1016/j.bbrep.2021.100991_bib68
  article-title: Interactions between nanoparticles and dendritic cells: from the perspective of cancer immunotherapy
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2018.00404
– volume: 4
  start-page: 10
  year: 2007
  ident: 10.1016/j.bbrep.2021.100991_bib79
  article-title: Kupffer cells are central in the removal of nanoparticles from the organism. Part
  publication-title: Fibre Toxicol
  doi: 10.1186/1743-8977-4-10
– volume: 26
  start-page: 229e237
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib24
  publication-title: Toxicol. Vitro
– volume: 3
  start-page: 111
  year: 2007
  ident: 10.1016/j.bbrep.2021.100991_bib163
  article-title: Cell selective response to gold nanoparticles
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2007.03.005
– volume: 139
  start-page: 931e942
  year: 2014
  ident: 10.1016/j.bbrep.2021.100991_bib159
  publication-title: Analyst
  doi: 10.1039/C3AN01463K
– volume: 8
  start-page: 2409e2419
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib111
  publication-title: Int. J. Nanomed.
– volume: 9
  start-page: 257
  issue: 2
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib102
  article-title: In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2012.06.002
– volume: 222
  start-page: 197
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib130
  article-title: No overt structural or functional changes associated with PEG-coated gold nanoparticles accumulation with acute exposure in the mouse heart
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2013.07.018
– volume: 33
  start-page: 4628e4638
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib73
  publication-title: J. Biomaterials
– volume: 1830
  start-page: 4960e4973
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib161
  publication-title: Biochim. Biophys. Acta
– volume: 91
  start-page: 3011
  year: 2017
  ident: 10.1016/j.bbrep.2021.100991_bib75
  article-title: Toxic effects and biodistribution of ultrasmall gold nanoparticles
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-017-2016-8
– volume: 131
  start-page: 13320
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib140
  article-title: Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902894s
– volume: 153
  start-page: 428e436
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib165
  publication-title: Biol. Trace Elem. Res.
  doi: 10.1007/s12011-013-9679-7
– volume: 61
  start-page: 720
  year: 2016
  ident: 10.1016/j.bbrep.2021.100991_bib186
  article-title: Amoxicillin functionalized gold nanoparticles reverts MRSA resistance
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.12.078
– volume: 7
  start-page: 5792
  issue: 2
  year: 2017
  ident: 10.1016/j.bbrep.2021.100991_bib188
  article-title: Dual functionality nanobioconjugates targeting intracellular bacteria in cancer cells with enhanced antimicrobial activity
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06014-4
– volume: 20
  start-page: 138
  year: 2008
  ident: 10.1016/j.bbrep.2021.100991_bib138
  article-title: Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701853
– volume: 12
  start-page: 3867e3871
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib162
  publication-title: Nano Lett.
  doi: 10.1021/nl3020846
– volume: 83
  start-page: 331
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib4
  article-title: Biological response of hydrogels embedding gold nanoparticles
  publication-title: Collods and SurfaceB: Biointerfaces.
  doi: 10.1016/j.colsurfb.2010.12.002
– volume: 15
  start-page: 1745e1759
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib157
  publication-title: J. Nano Res.
– year: 2015
  ident: 10.1016/j.bbrep.2021.100991_bib122
  article-title: Comparative aquatic toxicity of gold nanoparticles and ionic gold using a species sensitivity distribution approach
  publication-title: J. Nanomater.
  doi: 10.1155/2015/986902
– volume: 26
  issue: 32
  year: 2016
  ident: 10.1016/j.bbrep.2021.100991_bib46
  article-title: A universal platform for macromolecular deliveryinto cells using gold nanoparticle layers via the . nhotoporation effect
  publication-title: Adv. Funct. Mater.
– volume: 98
  start-page: 50
  year: 2016
  ident: 10.1016/j.bbrep.2021.100991_bib191
  article-title: Biofilm inhibitory effect of chlorhexidine conjugated gold nanoparticles against Klebsiella pneumonia
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2016.06.016
– volume: 10
  start-page: 50e65
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib164
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-10-50
– volume: 4
  start-page: 858
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib88
  article-title: Assessment of the in vivo toxicity of gold nanoparticles
  publication-title: Nanoscale Res Lett
  doi: 10.1007/s11671-009-9334-6
– volume: 238
  start-page: 1355e1361
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib135
  publication-title: Exp. Biol. Med.
  doi: 10.1177/1535370213505964
– volume: 8
  start-page: 686e696
  year: 2014
  ident: 10.1016/j.bbrep.2021.100991_bib74
  publication-title: Nanotoxicology
  doi: 10.3109/17435390.2013.822593
– volume: 736
  start-page: 1800395
  issue: 2
  year: 2019
  ident: 10.1016/j.bbrep.2021.100991_bib61
  article-title: Novel synthesis and characterization of doxycycline- loaded gold nanoparticles: the golden doxycycline for antibacterial applications. Part. Part
  publication-title: Sysl. Charact.
  doi: 10.1002/ppsc.201800395
– volume: 128
  start-page: 186
  issue: 1
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib108
  article-title: Gold nanoparticles uptake and cytotoxicity assessed on rat liver precision-cut slices
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfs150
– ident: 10.1016/j.bbrep.2021.100991_bib190
  doi: 10.1080/02726351.2015.1054972
– volume: 281
  start-page: 408
  year: 2019
  ident: 10.1016/j.bbrep.2021.100991_bib58
  article-title: Colorimelric and test stripe-based assay of bacteria by using vancomycin-modified gold nanoparticles
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2018.10.103
– volume: 2012
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib96
  publication-title: J. Nanomater.
  doi: 10.1155/2012/734398
– volume: 2012
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib112
  publication-title: J. Nanomater.
– volume: 9
  start-page: 257e263
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib90
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2012.06.002
– volume: 6
  start-page: 2071e2081
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib87
  publication-title: Int. J. Nanomed.
– volume: 9
  start-page: 1e11
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib146
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-9-23
– volume: 40
  start-page: 563
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib193
  article-title: Induction of apoptosis by high-dose gold nanoparticles in nasopharyngeal carcinoma cells
  publication-title: Auris Nasus Larynx
  doi: 10.1016/j.anl.2013.04.011
– volume: 77
  start-page: 407
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib77
  article-title: Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2010.12.029
– volume: 29
  start-page: 399
  issue: 1
  year: 2017
  ident: 10.1016/j.bbrep.2021.100991_bib47
  article-title: Selected standard protocols for the • synthesis, phase transfer, and characterization of inorganic colloidal nanoparticles
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04738
– volume: 7
  start-page: 876
  issue: 6
  year: 2019
  ident: 10.1016/j.bbrep.2021.100991_bib41
  article-title: Current status and future perspectives of gold nanoparticle vectors for siRNA delivery
  publication-title: J. Mater. Chem. B Mater. Biol. Med. /
  doi: 10.1039/C8TB02484G
– start-page: 102
  year: 2008
  ident: 10.1016/j.bbrep.2021.100991_bib70
– volume: 26
  start-page: 39
  issue: 1
  year: 2015
  ident: 10.1016/j.bbrep.2021.100991_bib94
  article-title: Gold nanoparticles stabilized with mpeg-grafted poly(L-Lysine): in vitro and in vivo evaluation of a potential theranostic agent
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc5005087
– volume: 14
  start-page: 1212e1222
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib132
  publication-title: J. Nano Res.
  doi: 10.1007/s11051-012-1212-y
– volume: 7
  start-page: 211
  year: 2006
  ident: 10.1016/j.bbrep.2021.100991_bib43
  article-title: Capturing complex 3D tissue physiology in vitro
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1858
– volume: 9
  start-page: 10721
  issue: 30
  year: 2017
  ident: 10.1016/j.bbrep.2021.100991_bib45
  article-title: Gold glyconanoparticles coupled to listeriolysin O 91-99 peptide serve as adjuvant therapy against melanoma
  publication-title: Nanoscale
  doi: 10.1039/C7NR02494K
– volume: 236
  start-page: 16
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib86
  article-title: Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2008.12.023
– ident: 10.1016/j.bbrep.2021.100991_bib126
– volume: 62
  start-page: 346
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib17
  article-title: Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2009.11.007
– volume: 6
  start-page: 13
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib38
  article-title: The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-6-13
– volume: 119
  start-page: 1519
  issue: 2
  year: 2019
  ident: 10.1016/j.bbrep.2021.100991_bib69
  article-title: Metal drugs/and the anticancer immune response
  publication-title: Cheni. Rev.
  doi: 10.1021/acs.chemrev.8b00396
– volume: 8
  start-page: 396
  issue: 6
  year: 2018
  ident: 10.1016/j.bbrep.2021.100991_bib53
  article-title: Biocompatible gold nanoparticles ameliorate retinoic acid-induced cell death and induce differentiation in F9 teratocarcinormi stem cells
  publication-title: Nanomaterials
  doi: 10.3390/nano8060396
– volume: 291
  start-page: 10
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib9
  article-title: Models for oral uptake of nanoparticles in consumer products
  publication-title: Toxicology
  doi: 10.1016/j.tox.2011.11.004
– volume: 110
  start-page: 8004e8009
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib177
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1220143110
– volume: 156
  start-page: 101
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib124
  article-title: Effect of gold nanoparticles on production of reactive oxygen species by human peripheral blood leukocytes stimulated with opsonized zymosan
  publication-title: Bull. Exp. Biol. Med.
  doi: 10.1007/s10517-013-2288-9
– volume: 301
  start-page: 7e11
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib175
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
– volume: 114
  start-page: 183104
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib184
  article-title: Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4831679
– volume: 17
  start-page: 6
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib54
  article-title: Induction of DNA damage in L5178Y cells treated with gold nanoparticle
  publication-title: Biomol.Ther.
  doi: 10.4062/biomolther.2009.17.1.92
– volume: 4
  start-page: 7481e7491
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib144
  publication-title: ACS Nano
  doi: 10.1021/nn101557e
– volume: 45
  start-page: 7896
  year: 2006
  ident: 10.1016/j.bbrep.2021.100991_bib20
  article-title: Gold catalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200602454
– volume: 3
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib89
  publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol.
– volume: 3
  start-page: 410e420
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib150
  publication-title: Nanoscale
  doi: 10.1039/c0nr00478b
– volume: 7
  start-page: 9664e9674
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib136
  publication-title: ACS Nano
– year: 2020
  ident: 10.1016/j.bbrep.2021.100991_bib110
  article-title: The effect of different concentrations of gold nanoparticles on growth performance, toxicopathological and immunological parameters of broiler chickens
  publication-title: Biosci. Rep.
  doi: 10.1042/BSR20194296
– volume: 9
  start-page: 38
  year: 2019
  ident: 10.1016/j.bbrep.2021.100991_bib109
  article-title: Effects of biologically produced gold nanoparticles: toxicity assessment in different rat organs after intraperitoneal injection
  publication-title: Amb. Express
  doi: 10.1186/s13568-019-0762-0
– volume: 12
  start-page: 2349
  issue: 19
  year: 2017
  ident: 10.1016/j.bbrep.2021.100991_bib64
  article-title: Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2017-0208
– volume: 17
  start-page: 316
  issue: 3
  year: 2016
  ident: 10.1016/j.bbrep.2021.100991_bib49
  article-title: Laminin receptor-avid nanotherapeutic GCg-AuNP as a potential alternative therapeutic approach to prevent yfestenosis
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17030316
– volume: 4
  start-page: 405
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib117
  article-title: In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster
  publication-title: Nano Res
  doi: 10.1007/s12274-011-0095-z
– volume: 4
  start-page: 26
  year: 2008
  ident: 10.1016/j.bbrep.2021.100991_bib30
  article-title: Cytotoxicity of nanoparticles
  publication-title: Small
  doi: 10.1002/smll.200700595
– volume: 236
  start-page: 16e24
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib106
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2008.12.023
– volume: 5
  start-page: 701
  issue: 6
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib99
  article-title: Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects
  publication-title: Small
  doi: 10.1002/smll.200801546
– start-page: 020091
  year: 2016
  ident: 10.1016/j.bbrep.2021.100991_bib196
  article-title: Cytotoxic effects of gold nanoparticles exposure employing in vitro animal cell culture system as part of nanobiosafety
– volume: 31
  start-page: 10871
  issue: 39
  year: 2015
  ident: 10.1016/j.bbrep.2021.100991_bib101
  article-title: Lipid-Peg conjugates sterically stabilize and reduce the toxicity of phytantriol-based lyotropic liquid crystalline nanoparticles
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b02797
– volume: 22
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib37
  article-title: Bisphosphonate modified gold nanoparticles: a useful vehicle to study the treatmentNanotechnology
– volume: 3
  start-page: 1220
  issue: 1
  year: 2018
  ident: 10.1016/j.bbrep.2021.100991_bib59
  article-title: Selective photoinduced antibacterial activity of amoxicillin-coated gold nanoparticles: from one-step synthesis to in vivo cytocompatibility
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b01779
– volume: 31
  start-page: 5996e6003
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib120
  publication-title: Biomaterials
– year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib13
  article-title: Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold nanoparticles
  publication-title: Biomaterials
– volume: 11
  start-page: 3347
  issue: 11
  year: 2016
  ident: 10.1016/j.bbrep.2021.100991_bib194
  article-title: Gallic acid conjugated with gold nanoparticles antibacterial activity and mechanism of action on food borne pathogens
  publication-title: Int. J. Nanomed.
– volume: 45
  start-page: 392e396
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib160
  publication-title: Andrologia
  doi: 10.1111/and.12028
– volume: 11
  start-page: 107
  year: 2016
  ident: 10.1016/j.bbrep.2021.100991_bib84
  article-title: A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles
  publication-title: Nanomedicine
  doi: 10.2217/nnm.15.177
– volume: 31
  start-page: 2034
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib92
  article-title: Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.11.079
– volume: 24
  start-page: 161
  year: 2014
  ident: 10.1016/j.bbrep.2021.100991_bib125
  article-title: Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells
  publication-title: Toxicol. Mech. Methods
  doi: 10.3109/15376516.2013.869783
– volume: 1
  start-page: 31
  issue: 1
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib95
  article-title: Functionalized gold nanoparticles and their biomedical applications
  publication-title: Nanomaterials
  doi: 10.3390/nano1010031
– volume: 7
  start-page: 2046
  issue: 3
  year: 2015
  ident: 10.1016/j.bbrep.2021.100991_bib57
  article-title: Potent antibacterial nanoparticles for pathogenic bacteria
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507919m
– volume: 14
  start-page: 1
  year: 2018
  ident: 10.1016/j.bbrep.2021.100991_bib127
  article-title: Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2017.08.011
– volume: 4
  start-page: 52e72
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib170
  publication-title: Nanotoxicology
  doi: 10.3109/17435390903374001
– volume: 24
  start-page: 400
  issue: 3
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib29
  article-title: The toxicity of Gold Nanoparticles in relation to their physiochemical properties
  publication-title: Biomed. Res.
– volume: 29
  start-page: 71
  issue: 1
  year: 2019
  ident: 10.1016/j.bbrep.2021.100991_bib62
  article-title: Gold nanoparticles conjugation enhances antiacanthamoebic properties of nystatin, fluconazole and amphotericin B
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1805.05028
– volume: 111
  start-page: 9739
  issue: 27
  year: 2014
  ident: 10.1016/j.bbrep.2021.100991_bib40
  article-title: Probing the inherent stability of RNA immobilized on nanoparticle constructs
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1409431111
– volume: 5
  start-page: 771
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib12
  article-title: Toxicologic effects of gold nanoparticles in vivo by different administration routes
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S8428
– volume: 7
  start-page: 992
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib67
  article-title: Design and potential application of PEGylated gold, nanoparticles with size-dependent permeation through brain microvasculature
  publication-title: Nanomed: XNanotechnol Biol Med
  doi: 10.1016/j.nano.2011.04.004
– volume: 30
  start-page: 72
  issue: 1
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib33
  article-title: Evaluating engineered nanoparticles in natural waters
  publication-title: Trac. Trends Anal. Chem.
  doi: 10.1016/j.trac.2010.09.006
– volume: 31
  start-page: 2034
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib93
  article-title: Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rat
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.11.079
– volume: 9
  issue: 5
  year: 2017
  ident: 10.1016/j.bbrep.2021.100991_bib63
  article-title: Nanomedicine approaches to improve cancer immunotherapy
  publication-title: Wiley Interdiscip. Rev. Nanomcd. /Nanobiotechnol.
– volume: 30
  start-page: 3883e3893
  year: 2014
  ident: 10.1016/j.bbrep.2021.100991_bib172
  publication-title: Langmuir
– volume: 24
  start-page: 47
  issue: 1
  year: 2019
  ident: 10.1016/j.bbrep.2021.100991_bib71
  article-title: Nanoparticles applied to cancer immunoregulation
  publication-title: Rep. Practical Oncol. Radiother.
  doi: 10.1016/j.rpor.2018.10.001
– volume: 76
  start-page: 377
  year: 2014
  ident: 10.1016/j.bbrep.2021.100991_bib80
  article-title: Demonstration of the clathrin-and caveolinmediated endocytosis at the maternal–fetal barrier in mouse placenta after intravenous administration of gold nanoparticles
  publication-title: J. Vet. Med. Sci.
  doi: 10.1292/jvms.13-0512
– volume: 10
  start-page: 1757
  year: 2014
  ident: 10.1016/j.bbrep.2021.100991_bib76
  article-title: Short-and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose intravenous administration
  publication-title: Nanomed.-Nanotechnol
  doi: 10.1016/j.nano.2014.06.005
– volume: 264
  start-page: 303e312
  year: 2014
  ident: 10.1016/j.bbrep.2021.100991_bib151
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2013.11.031
– volume: 205
  start-page: 86e95
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib167
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2011.05.1018
– volume: 25
  start-page: 13840
  issue: 24
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib23
  article-title: Gold nanoparticles: past, present, and future
  publication-title: Langmuir
  doi: 10.1021/la9019475
– volume: 8
  start-page: 6577
  year: 2016
  ident: 10.1016/j.bbrep.2021.100991_bib131
  article-title: Biointeractions of ultrasmall glutathione-coated gold nanoparticles: effect of small size variations
  publication-title: Nanoscale
  doi: 10.1039/C5NR07642K
– volume: 3
  start-page: 161
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib139
  article-title: CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro
  publication-title: Nanotoxicology
  doi: 10.1080/17435390902788086
– year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib28
  article-title: Colloidal gold: the great rejuvenator of mind and body
– volume: 367
  start-page: 4169
  issue: 1905
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib19
  article-title: From silicon to organic nanoparticle memory devices
  publication-title: Philos transact A Math Phys Eng Sci
– volume: 34
  start-page: 6967e6975
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib156
  publication-title: Biomaterials
– volume: 8
  start-page: 1e12
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib133
  publication-title: PloS One
– volume: 5
  start-page: 447
  issue: 4
  year: 2015
  ident: 10.1016/j.bbrep.2021.100991_bib56
  article-title: A review of molecular mechanisms involved in toxicity of nanoparticles
  publication-title: Adv. Pharmaceut. Bull.
  doi: 10.15171/apb.2015.061
– volume: 8
  start-page: 1e7
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib116
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2011.10.004
– volume: 130
  start-page: 3754
  year: 2008
  ident: 10.1016/j.bbrep.2021.100991_bib21
  article-title: Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]
  publication-title: Am. Chem. Soc.
  doi: 10.1021/ja800561b
– volume: 9
  start-page: 17
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib16
  article-title: Determination of the volume specific surface area by using transmission electron tomography for characterization and definition of nanomaterials
  publication-title: Journal of Nanobiiotechnology
  doi: 10.1186/1477-3155-9-17
– volume: 217
  start-page: 205
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib25
  article-title: Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2012.11.022
– volume: 29
  year: 2008
  ident: 10.1016/j.bbrep.2021.100991_bib15
  article-title: Particle size-dependent organ distribution of gold nanoparticles after intravenous administration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.12.037
– volume: 398
  start-page: 689
  issue: 2
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib121
  article-title: Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-010-3915-1
– volume: 8
  start-page: 16
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib27
  article-title: Subchronic inhalation toxicity of gold nanoparticles
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-8-16
– volume: 6
  start-page: 662
  year: 2006
  ident: 10.1016/j.bbrep.2021.100991_bib35
  article-title: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells
  publication-title: Nano Lett.
  doi: 10.1021/nl052396o
– volume: 94
  start-page: 1357e1367
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib114
  publication-title: Toxicol. Environ. Chem.
  doi: 10.1080/02772248.2012.697731
– volume: 24
  start-page: 62
  year: 2006
  ident: 10.1016/j.bbrep.2021.100991_bib8
  article-title: Therapeutic possibilities of plasmonically heated gold nanoparticles
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2005.12.004
– volume: 5
  start-page: 3982e3991
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib158
  publication-title: J. Nanoscale
– volume: 13
  start-page: 1
  year: 2020
  ident: 10.1016/j.bbrep.2021.100991_bib39
  article-title: Methods of gold and silver nanoparticles preparation
  publication-title: Materials
  doi: 10.3390/ma13010001
– volume: 7
  start-page: 20489
  issue: 48
  year: 2015
  ident: 10.1016/j.bbrep.2021.100991_bib192
  article-title: Insulin-coated gold nanoparticles as a new concept for personalized and adjustable glucose regulation
  publication-title: Nanoscale
  doi: 10.1039/C5NR04881H
– volume: 30
  start-page: 1928
  issue: 10
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib100
  article-title: Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.12.038
– volume: 1
  start-page: 336
  year: 2019
  ident: 10.1016/j.bbrep.2021.100991_bib168
  article-title: Toxicity of gold nanoparticles in a commercial dietary supplement drink on connective tissue fibroblast cells
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-019-0354-2
– volume: 7
  start-page: 607
  year: 2016
  ident: 10.1016/j.bbrep.2021.100991_bib55
  article-title: Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00607
– volume: 5
  start-page: 363
  issue: 2
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib10
  article-title: Gold nanoparticles in molecular diagnostics and therapeutics
  publication-title: Digest Journal of nanomedicine and biostructures
– volume: 367
  start-page: 4215
  issue: 1905
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib18
  article-title: Gold nanoparticle charge trapping and relation to organic polymer memory devices
  publication-title: Philos transact A Math Phys Eng Sci
– volume: 19
  start-page: 461e464
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib142
  publication-title: Saudi J. Biol. Sci.
– volume: 5
  start-page: 2067
  issue: 18
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib103
  article-title: Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage
  publication-title: Small
  doi: 10.1002/smll.200900466
– volume: 5
  start-page: 835
  year: 2015
  ident: 10.1016/j.bbrep.2021.100991_bib26
  article-title: Toxicity and biokinetics of colloidal gold nanoparticles
  publication-title: Nanomaterials
  doi: 10.3390/nano5020835
– volume: 2
  start-page: 2826
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib115
  article-title: Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study
  publication-title: Nanoscale
  doi: 10.1039/c0nr00345j
– volume: 20
  start-page: 177e181
  year: 2013
  ident: 10.1016/j.bbrep.2021.100991_bib81
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2013.01.007
– volume: 7
  start-page: 174e188
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib174
  publication-title: J. Exp. Nanosci.
  doi: 10.1080/17458080.2010.514952
– volume: 31
  start-page: 6574
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib105
  article-title: Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.05.009
– volume: 9
  start-page: 123
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib141
  article-title: Identification of potential biomarkers of gold nanoparticle toxicity in rat brains
  publication-title: J. Neuroinflammation
  doi: 10.1186/1742-2094-9-123
– volume: 41
  start-page: 116
  issue: 2
  year: 2008
  ident: 10.1016/j.bbrep.2021.100991_bib34
  article-title: Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea)
  publication-title: Gold Bull.
  doi: 10.1007/BF03216589
– volume: 393
  start-page: 649
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib104
  article-title: Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.02.046
– ident: 10.1016/j.bbrep.2021.100991_bib107
  doi: 10.1016/j.colsurfb.2018.04.005
– volume: 441
  start-page: 127
  year: 2014
  ident: 10.1016/j.bbrep.2021.100991_bib48
  article-title: Biosynthesis of gold nanoparticles using a kind of flavonol: Dihydromyricetin
  publication-title: Colloid. Surface. Physicochem. Eng. Aspect.
  doi: 10.1016/j.colsurfa.2013.08.067
– volume: 52
  start-page: 743
  year: 2009
  ident: 10.1016/j.bbrep.2021.100991_bib22
  article-title: Selectivity of gold catalysis for application of commercial interest
  publication-title: Tropics in Catalysis
  doi: 10.1007/s11244-009-9205-5
– volume: 30
  start-page: 853
  issue: 3
  year: 2019
  ident: 10.1016/j.bbrep.2021.100991_bib44
  article-title: Gold nanoparlicle shape impacts the biological activity of siRNA delivery
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.9b00004
– volume: 49
  start-page: 3280
  year: 2010
  ident: 10.1016/j.bbrep.2021.100991_bib52
  article-title: Gold nanoparticles for biology and medicine
  publication-title: Angew. Chem.
  doi: 10.1002/anie.200904359
– volume: 256
  start-page: 26
  year: 2017
  ident: 10.1016/j.bbrep.2021.100991_bib65
  article-title: Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2017.04.026
– volume: 745
  start-page: 38
  year: 2012
  ident: 10.1016/j.bbrep.2021.100991_bib128
  article-title: Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not
  publication-title: Mutat Res Toxicol Environ Mutagen
  doi: 10.1016/j.mrgentox.2012.03.012
– volume: 620
  start-page: 34
  year: 2007
  ident: 10.1016/j.bbrep.2021.100991_bib1
  article-title: Past, present, and future of gold nanoparticles
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-0-387-76713-0_3
– volume: 3
  start-page: 1941e1949
  year: 2007
  ident: 10.1016/j.bbrep.2021.100991_bib149
  publication-title: Small
  doi: 10.1002/smll.200700378
– year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib153
– volume: 52
  issue: 6
  year: 2019
  ident: 10.1016/j.bbrep.2021.100991_bib187
  article-title: enhanced antibacterial activity of imipenem-immobilized on surface of spherical and rod gold nanoparticles
  publication-title: J. Phys. D
  doi: 10.1088/1361-6463/aaef4d
– volume: 44
  start-page: 410
  year: 2016
  ident: 10.1016/j.bbrep.2021.100991_bib83
  article-title: Application of gold nanoparticles in biomedical and drug delivery
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.3109/21691401.2014.955107
– volume: 56
  start-page: 1316
  year: 2011
  ident: 10.1016/j.bbrep.2021.100991_bib2
  article-title: Quaternized chitosan as support for the assembly of gold nanoparticles and glucose oxidase. Physiochemical characterization of the platform and evaluation of its biocatalytic activity
  publication-title: Electrochmica Acta
  doi: 10.1016/j.electacta.2010.10.022
SSID ssj0001528526
Score 2.61459
SecondaryResourceType review_article
Snippet Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100991
SubjectTerms Cell lines
Gold nanoparticles
In vitro
In vivo
Review
Toxicity
Title Toxicity of gold nanoparticles (AuNPs): A review
URI https://dx.doi.org/10.1016/j.bbrep.2021.100991
https://www.ncbi.nlm.nih.gov/pubmed/33912692
https://www.proquest.com/docview/2519799712
https://pubmed.ncbi.nlm.nih.gov/PMC8063742
https://doaj.org/article/c9efa0e0a281433a8be0136418a3675d
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA9jPswXcc6Pq3N04IOCxXw2iW_X4RgOh8iGewtpPvTKaMXdC_vzd5K0l1uF-eJToU3bnJO053faX34HoVcOMHWMQdYyuljzhpNa--jrKANmtHVKZDLm57Pm5IJ_uhSXG6W-EiesyAMXx71zOkSLA7ZUQWhnVrUhyYxxoiwDsOvT2xdi3kYyVdYHUyVyrTWIWKIWCqtRciiTu1rIN5NaJSWJJqA1mYSlrN4_iU5_o88_SZQbUen4IXowwMlqXszYRVuhe4R2jsYqbnsIn_c3CwdQu-pj9b2_8lVnO0iUBz5c9Xq-Ovty_eZ9Na_KKpbH6OL44_nRST1USaid0GRZe-WsdE1aMCoidEdYopRPH4ssZ8k2JyNjgTHZYuEc5KQCNtCUSoAirWZP0HbXd-FZojkpgb1WglvBifctw9y1zrmGYW2ZnyE6Osm4QUI8VbK4MiNX7KfJnjXJs6Z4doberk_6VRQ07m7-IXl_3TTJX-cdMCnM4Bzzr0kxQ804dmZAEgUhwKUWd9_9cBxpAwOVfp7YLvSra5NX-GotCZ2hp2Xk131kTBPaaDgiJ3NiYsT0SLf4kbW8FUBEyenz_2H1C3Q_mVLIxPtoe_l7FV4CZFq2B-je_PTrt9OD_JTcApN-EXA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toxicity+of+gold+nanoparticles+%28AuNPs%29%3A+A+review&rft.jtitle=Biochemistry+and+biophysics+reports&rft.au=Sani%2C+A&rft.au=Cao%2C+C&rft.au=Cui%2C+D&rft.date=2021-07-01&rft.issn=2405-5808&rft.eissn=2405-5808&rft.volume=26&rft.spage=100991&rft_id=info:doi/10.1016%2Fj.bbrep.2021.100991&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-5808&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-5808&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-5808&client=summon