Neuroimaging and Physiological Evidence for Involvement of Glutamatergic Transmission in Regulation of the Striatal Dopaminergic System

Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders, but the mode of their interaction is yet to be uncovered. In this study, we demonstrated the pharmacological reversal of methamphetamine-stimul...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 29; no. 6; pp. 1887 - 1896
Main Authors Tokunaga, Masaki, Seneca, Nicholas, Shin, Ryong-Moon, Maeda, Jun, Obayashi, Shigeru, Okauchi, Takashi, Nagai, Yuji, Zhang, Ming-Rong, Nakao, Ryuji, Ito, Hiroshi, Innis, Robert B, Halldin, Christer, Suzuki, Kazutoshi, Higuchi, Makoto, Suhara, Tetsuya
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 11.02.2009
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders, but the mode of their interaction is yet to be uncovered. In this study, we demonstrated the pharmacological reversal of methamphetamine-stimulated dopaminergic overflow by suppression of group I metabotropic glutamate (mGlu) receptor in living primates and rodents. In viv o positron emission tomography (PET) was conducted on cynomolgus monkeys and rats using a full agonistic tracer for dopamine D 2/3 receptor, [ 11 C]MNPA [( R )-2- 11 CH 3 O- N -n-propylnorapomorphine], and fluctuation of kinetic data resulting from anesthesia was avoided by scanning awake subjects. Excessive release of dopamine induced by methamphetamine and abolishment of this alteration by treatment with an antagonist of group I mGlu receptors, 2-methyl-6-(phenylethynyl)pyridine (MPEP), were measured in both species as decreased binding potential because of increased dopamine and its recovery to baseline levels, respectively. Counteraction of MPEP to the methamphetamine-induced dopamine spillover was also supported neurochemically by microdialysis of unanesthetized rat striatum. Moreover, patch-clamp electrophysiological assays using acute brain slices prepared from rats indicated that direct targets of MPEP mechanistically involved in the effects of methamphetamine are present locally within the striatum. Because MPEP alone did not markedly alter the baseline dopaminergic neurotransmission according to our PET and electrophysiological data, the present findings collectively extend the insights on dopamine–glutamate cross talk from extrastriatal localization of responsible mGlu receptors to intrastriatal synergy and support therapeutic interventions in case of disordered striatal dopaminergic status using group I mGlu receptor antagonists assessable by in vivo imaging techniques.
AbstractList Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders, but the mode of their interaction is yet to be uncovered. In this study, we demonstrated the pharmacological reversal of methamphetamine-stimulated dopaminergic overflow by suppression of group I metabotropic glutamate (mGlu) receptor in living primates and rodents. In vivo positron emission tomography (PET) was conducted on cynomolgus monkeys and rats using a full agonistic tracer for dopamine D(2/3) receptor, [(11)C]MNPA [(R)-2-(11)CH(3)O-N-n-propylnorapomorphine], and fluctuation of kinetic data resulting from anesthesia was avoided by scanning awake subjects. Excessive release of dopamine induced by methamphetamine and abolishment of this alteration by treatment with an antagonist of group I mGlu receptors, 2-methyl-6-(phenylethynyl)pyridine (MPEP), were measured in both species as decreased binding potential because of increased dopamine and its recovery to baseline levels, respectively. Counteraction of MPEP to the methamphetamine-induced dopamine spillover was also supported neurochemically by microdialysis of unanesthetized rat striatum. Moreover, patch-clamp electrophysiological assays using acute brain slices prepared from rats indicated that direct targets of MPEP mechanistically involved in the effects of methamphetamine are present locally within the striatum. Because MPEP alone did not markedly alter the baseline dopaminergic neurotransmission according to our PET and electrophysiological data, the present findings collectively extend the insights on dopamine-glutamate cross talk from extrastriatal localization of responsible mGlu receptors to intrastriatal synergy and support therapeutic interventions in case of disordered striatal dopaminergic status using group I mGlu receptor antagonists assessable by in vivo imaging techniques.
Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders, but the mode of their interaction is yet to be uncovered. In this study, we demonstrated the pharmacological reversal of methamphetamine-stimulated dopaminergic overflow by suppression of group I metabotropic glutamate (mGlu) receptor in living primates and rodents. In viv o positron emission tomography (PET) was conducted on cynomolgus monkeys and rats using a full agonistic tracer for dopamine D 2/3 receptor, [ 11 C]MNPA [( R )-2- 11 CH 3 O- N -n-propylnorapomorphine], and fluctuation of kinetic data resulting from anesthesia was avoided by scanning awake subjects. Excessive release of dopamine induced by methamphetamine and abolishment of this alteration by treatment with an antagonist of group I mGlu receptors, 2-methyl-6-(phenylethynyl)pyridine (MPEP), were measured in both species as decreased binding potential because of increased dopamine and its recovery to baseline levels, respectively. Counteraction of MPEP to the methamphetamine-induced dopamine spillover was also supported neurochemically by microdialysis of unanesthetized rat striatum. Moreover, patch-clamp electrophysiological assays using acute brain slices prepared from rats indicated that direct targets of MPEP mechanistically involved in the effects of methamphetamine are present locally within the striatum. Because MPEP alone did not markedly alter the baseline dopaminergic neurotransmission according to our PET and electrophysiological data, the present findings collectively extend the insights on dopamine–glutamate cross talk from extrastriatal localization of responsible mGlu receptors to intrastriatal synergy and support therapeutic interventions in case of disordered striatal dopaminergic status using group I mGlu receptor antagonists assessable by in vivo imaging techniques.
Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders, but the mode of their interaction is yet to be uncovered. In this study, we demonstrated the pharmacological reversal of methamphetamine-stimulated dopaminergic overflow by suppression of group I metabotropic glutamate (mGlu) receptor in living primates and rodents. In vivo positron emission tomography (PET) was conducted on cynomolgus monkeys and rats using a full agonistic tracer for dopamine D(2/3) receptor, [(11)C]MNPA [(R)-2-(11)CH(3)O-N-n-propylnorapomorphine], and fluctuation of kinetic data resulting from anesthesia was avoided by scanning awake subjects. Excessive release of dopamine induced by methamphetamine and abolishment of this alteration by treatment with an antagonist of group I mGlu receptors, 2-methyl-6-(phenylethynyl)pyridine (MPEP), were measured in both species as decreased binding potential because of increased dopamine and its recovery to baseline levels, respectively. Counteraction of MPEP to the methamphetamine-induced dopamine spillover was also supported neurochemically by microdialysis of unanesthetized rat striatum. Moreover, patch-clamp electrophysiological assays using acute brain slices prepared from rats indicated that direct targets of MPEP mechanistically involved in the effects of methamphetamine are present locally within the striatum. Because MPEP alone did not markedly alter the baseline dopaminergic neurotransmission according to our PET and electrophysiological data, the present findings collectively extend the insights on dopamine-glutamate cross talk from extrastriatal localization of responsible mGlu receptors to intrastriatal synergy and support therapeutic interventions in case of disordered striatal dopaminergic status using group I mGlu receptor antagonists assessable by in vivo imaging techniques.Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders, but the mode of their interaction is yet to be uncovered. In this study, we demonstrated the pharmacological reversal of methamphetamine-stimulated dopaminergic overflow by suppression of group I metabotropic glutamate (mGlu) receptor in living primates and rodents. In vivo positron emission tomography (PET) was conducted on cynomolgus monkeys and rats using a full agonistic tracer for dopamine D(2/3) receptor, [(11)C]MNPA [(R)-2-(11)CH(3)O-N-n-propylnorapomorphine], and fluctuation of kinetic data resulting from anesthesia was avoided by scanning awake subjects. Excessive release of dopamine induced by methamphetamine and abolishment of this alteration by treatment with an antagonist of group I mGlu receptors, 2-methyl-6-(phenylethynyl)pyridine (MPEP), were measured in both species as decreased binding potential because of increased dopamine and its recovery to baseline levels, respectively. Counteraction of MPEP to the methamphetamine-induced dopamine spillover was also supported neurochemically by microdialysis of unanesthetized rat striatum. Moreover, patch-clamp electrophysiological assays using acute brain slices prepared from rats indicated that direct targets of MPEP mechanistically involved in the effects of methamphetamine are present locally within the striatum. Because MPEP alone did not markedly alter the baseline dopaminergic neurotransmission according to our PET and electrophysiological data, the present findings collectively extend the insights on dopamine-glutamate cross talk from extrastriatal localization of responsible mGlu receptors to intrastriatal synergy and support therapeutic interventions in case of disordered striatal dopaminergic status using group I mGlu receptor antagonists assessable by in vivo imaging techniques.
Author Okauchi, Takashi
Seneca, Nicholas
Suzuki, Kazutoshi
Nagai, Yuji
Nakao, Ryuji
Halldin, Christer
Higuchi, Makoto
Ito, Hiroshi
Maeda, Jun
Innis, Robert B
Obayashi, Shigeru
Suhara, Tetsuya
Zhang, Ming-Rong
Shin, Ryong-Moon
Tokunaga, Masaki
Author_xml – sequence: 1
  fullname: Tokunaga, Masaki
– sequence: 2
  fullname: Seneca, Nicholas
– sequence: 3
  fullname: Shin, Ryong-Moon
– sequence: 4
  fullname: Maeda, Jun
– sequence: 5
  fullname: Obayashi, Shigeru
– sequence: 6
  fullname: Okauchi, Takashi
– sequence: 7
  fullname: Nagai, Yuji
– sequence: 8
  fullname: Zhang, Ming-Rong
– sequence: 9
  fullname: Nakao, Ryuji
– sequence: 10
  fullname: Ito, Hiroshi
– sequence: 11
  fullname: Innis, Robert B
– sequence: 12
  fullname: Halldin, Christer
– sequence: 13
  fullname: Suzuki, Kazutoshi
– sequence: 14
  fullname: Higuchi, Makoto
– sequence: 15
  fullname: Suhara, Tetsuya
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19211895$$D View this record in MEDLINE/PubMed
BookMark eNqFUd1u0zAYtdAQ6wavMPmKuxTbSexYQkioK6No2tC6XVue46ZGjl1sp1WfgNfGoaUCbriyrO_8fOc7F-DMeacBuMJoimtSvvtyN396uF_OFlNS17xAzZQgxF-ASZ7yglQIn4EJIgwVtGLVObiI8RtCiCHMXoFzzAnGDa8n4MedHoI3veyM66B0Lfy63kfjre-MkhbOt6bVTmm48gEu3Nbbre61S9Cv4I0dkuxl0iFj4WOQLvYmZrKDxsEH3Q1WpvGXsWmt4TIFI1MWvfYb2Rt34C33Men-NXi5kjbqN8f3Ejx9mj_OPhe39zeL2cfbQtUcp6KlpNWcEkY5LvmqbTnGWknNWM3KZ17yRqGyRFJSydumqSRFtapbUleyUYzR8hJ8OOhuhudetypHCdKKTcgnCHvhpRF_T5xZi85vBWEVrapR4O1RIPjvg45J5MxKWyud9kMUdNysbHgGXv3pdLL4ffsMeH8AqOBjDHollEm_DpaNjRUYibFqcapajFUL1Iix6kyn_9BPDv8jHhOsTbfemaBF7KW1eU0sdrsd4YIK3DSs_Amtur_U
CitedBy_id crossref_primary_10_1124_jpet_114_222463
crossref_primary_10_1007_s11064_015_1566_5
crossref_primary_10_1124_jpet_108_136689
crossref_primary_10_4103_1673_5374_392887
crossref_primary_10_1016_j_bbadis_2010_01_003
crossref_primary_10_1124_jpet_112_196295
crossref_primary_10_1016_j_neures_2010_12_017
crossref_primary_10_1007_s00213_012_2925_4
crossref_primary_10_1097_QAD_0b013e328336e98b
crossref_primary_10_1002_syn_21864
crossref_primary_10_1523_JNEUROSCI_2880_19_2020
crossref_primary_10_5692_clinicalneurol_49_929
crossref_primary_10_1002_syn_20955
crossref_primary_10_1007_s00213_011_2222_7
crossref_primary_10_1038_jcbfm_2009_193
crossref_primary_10_1517_13543784_2015_1074175
crossref_primary_10_1016_j_neulet_2019_03_023
crossref_primary_10_1007_s11307_014_0786_4
crossref_primary_10_1016_j_pharmthera_2021_107831
Cites_doi 10.1016/0006-8993(90)90953-9
10.1038/sj.npp.1300902
10.1097/01.WCB.0000085441.37552.CA
10.1007/s11307-005-0005-4
10.1007/s00213-002-1236-6
10.1016/j.pnpbp.2007.08.025
10.1196/annals.1300.063
10.1046/j.1471-4159.2001.00179.x
10.1016/S0026-895X(25)14176-X
10.1038/nm1632
10.1002/syn.10012
10.1111/j.1471-4159.2004.02691.x
10.1001/archpsyc.1994.03950030035004
10.1523/JNEUROSCI.17-08-02921.1997
10.1002/syn.20238
10.1016/0893-133X(88)90012-7
10.1016/S0893-133X(98)00060-8
10.1146/annurev.ne.12.030189.000305
10.2174/1568007024606221
10.1196/annals.1316.035
10.1152/jn.1989.62.5.1052
10.1016/S0022-3956(99)00031-X
10.1097/00004647-200205000-00011
10.1146/annurev.pharmtox.47.120505.105140
10.1002/1098-2396(200008)37:2<95::AID-SYN3>3.0.CO;2-H
10.1016/j.apradiso.2004.07.003
10.1016/S0028-3908(01)00083-1
10.1016/j.biopsych.2004.12.019
10.1016/j.nucmedbio.2005.01.007
10.1152/jn.1997.78.3.1248
10.1176/ajp.148.10.1301
10.1109/23.597001
10.1002/syn.20013
10.1016/S0028-3908(03)00209-0
10.1523/JNEUROSCI.21-04-01413.2001
10.1007/s00259-002-0904-4
10.1007/s00259-003-1171-8
10.1002/syn.20083
10.1016/S0893-133X(97)00092-4
10.1046/j.1460-9568.1999.00482.x
10.1006/nimg.2001.0878
10.1016/0006-8993(90)90197-J
10.1523/JNEUROSCI.16-01-00373.1996
10.1097/00000542-200508000-00008
10.1016/S0893-133X(01)00299-8
10.1016/S0893-133X(98)00101-8
10.1002/syn.890010203
10.1016/0166-2236(90)90108-M
10.1038/sj.npp.1301531
10.1016/0006-8993(94)91263-7
10.1126/science.281.5381.1349
10.1016/j.neuron.2006.10.010
10.1016/j.biopsych.2006.01.022
10.1002/syn.1063
10.1016/S0074-7742(06)78003-5
10.1016/S0014-2999(00)00697-X
10.1016/S0028-3908(99)00082-9
10.1002/syn.10010
10.1038/sj.npp.1300313
10.1152/jn.00224.2002
10.1002/(SICI)1098-2396(199806)29:2<142::AID-SYN5>3.0.CO;2-7
10.1113/jphysiol.1996.sp021296
ContentType Journal Article
Copyright Copyright © 2009 Society for Neuroscience 0270-6474/09/291887-10$15.00/0 2009
Copyright_xml – notice: Copyright © 2009 Society for Neuroscience 0270-6474/09/291887-10$15.00/0 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1523/JNEUROSCI.2559-08.2009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 1896
ExternalDocumentID PMC2746446
19211895
10_1523_JNEUROSCI_2559_08_2009
www29_6_1887
Genre Comparative Study
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R01 DA015188
– fundername: Intramural NIH HHS
  grantid: Z01 MH002795
– fundername: NIMH NIH HHS
  grantid: R01 MH063649
GroupedDBID -
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
UQL
WH7
WOQ
X
X7M
XJT
ZA5
---
-DZ
-~X
.55
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
AFCFT
AFOSN
AFSQR
AHWXS
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c591t-d62de962769139fdd911ecae77573b9398c0330aa6a9d884a605c5d254a8c7763
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:13:55 EDT 2025
Thu Jul 10 22:16:37 EDT 2025
Fri May 30 11:02:19 EDT 2025
Tue Jul 01 02:59:01 EDT 2025
Thu Apr 24 23:04:38 EDT 2025
Tue Nov 10 19:20:02 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c591t-d62de962769139fdd911ecae77573b9398c0330aa6a9d884a605c5d254a8c7763
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.jneurosci.org/content/jneuro/29/6/1887.full.pdf
PMID 19211895
PQID 66913389
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2746446
proquest_miscellaneous_66913389
pubmed_primary_19211895
crossref_citationtrail_10_1523_JNEUROSCI_2559_08_2009
crossref_primary_10_1523_JNEUROSCI_2559_08_2009
highwire_smallpub1_www29_6_1887
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-02-11
PublicationDateYYYYMMDD 2009-02-11
PublicationDate_xml – month: 02
  year: 2009
  text: 2009-02-11
  day: 11
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2009
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References Moghaddam (2023041303364070000_29.6.1887.36) 1997; 17
2023041303364070000_29.6.1887.8
2023041303364070000_29.6.1887.20
2023041303364070000_29.6.1887.21
2023041303364070000_29.6.1887.65
2023041303364070000_29.6.1887.63
2023041303364070000_29.6.1887.60
2023041303364070000_29.6.1887.61
2023041303364070000_29.6.1887.29
2023041303364070000_29.6.1887.26
Umemiya (2023041303364070000_29.6.1887.62) 1997; 78
2023041303364070000_29.6.1887.27
2023041303364070000_29.6.1887.68
2023041303364070000_29.6.1887.25
2023041303364070000_29.6.1887.22
2023041303364070000_29.6.1887.66
2023041303364070000_29.6.1887.23
2023041303364070000_29.6.1887.67
Elfving (2023041303364070000_29.6.1887.12) 2003; 30
2023041303364070000_29.6.1887.53
2023041303364070000_29.6.1887.54
2023041303364070000_29.6.1887.51
2023041303364070000_29.6.1887.50
2023041303364070000_29.6.1887.17
2023041303364070000_29.6.1887.18
Creese (2023041303364070000_29.6.1887.9) 1984; 43
2023041303364070000_29.6.1887.59
2023041303364070000_29.6.1887.16
2023041303364070000_29.6.1887.13
2023041303364070000_29.6.1887.14
2023041303364070000_29.6.1887.58
2023041303364070000_29.6.1887.11
2023041303364070000_29.6.1887.55
2023041303364070000_29.6.1887.56
Cumming (2023041303364070000_29.6.1887.10) 2002; 22
Seeman (2023041303364070000_29.6.1887.52) 1985; 28
Sandoval (2023041303364070000_29.6.1887.49) 2001; 21
Ametamey (2023041303364070000_29.6.1887.2) 2006; 47
Kawaguchi (2023041303364070000_29.6.1887.28) 1989; 62
2023041303364070000_29.6.1887.42
Tai (2023041303364070000_29.6.1887.57) 2005; 46
2023041303364070000_29.6.1887.43
2023041303364070000_29.6.1887.40
2023041303364070000_29.6.1887.41
Javitt (2023041303364070000_29.6.1887.24) 1991; 148
2023041303364070000_29.6.1887.46
2023041303364070000_29.6.1887.47
2023041303364070000_29.6.1887.44
2023041303364070000_29.6.1887.45
2023041303364070000_29.6.1887.3
2023041303364070000_29.6.1887.31
2023041303364070000_29.6.1887.32
2023041303364070000_29.6.1887.1
Pietraszek (2023041303364070000_29.6.1887.48) 2004; 55
2023041303364070000_29.6.1887.30
2023041303364070000_29.6.1887.7
2023041303364070000_29.6.1887.6
2023041303364070000_29.6.1887.5
2023041303364070000_29.6.1887.4
2023041303364070000_29.6.1887.39
Finnema (2023041303364070000_29.6.1887.15) 2005; 32
2023041303364070000_29.6.1887.37
2023041303364070000_29.6.1887.38
2023041303364070000_29.6.1887.35
Harvey (2023041303364070000_29.6.1887.19) 1996; 492
2023041303364070000_29.6.1887.33
2023041303364070000_29.6.1887.34
Verma (2023041303364070000_29.6.1887.64) 1996; 16
References_xml – ident: 2023041303364070000_29.6.1887.35
  doi: 10.1016/0006-8993(90)90953-9
– ident: 2023041303364070000_29.6.1887.63
  doi: 10.1038/sj.npp.1300902
– ident: 2023041303364070000_29.6.1887.21
  doi: 10.1097/01.WCB.0000085441.37552.CA
– volume: 55
  start-page: 587
  year: 2004
  ident: 2023041303364070000_29.6.1887.48
  article-title: Opposite influence of MPEP, an mGluR5 antagonist, on the locomotor hyperactivity induced by PCP and amphetamine
  publication-title: J Physiol Pharmacol
– ident: 2023041303364070000_29.6.1887.45
  doi: 10.1007/s11307-005-0005-4
– ident: 2023041303364070000_29.6.1887.1
  doi: 10.1007/s00213-002-1236-6
– ident: 2023041303364070000_29.6.1887.13
  doi: 10.1016/j.pnpbp.2007.08.025
– ident: 2023041303364070000_29.6.1887.33
  doi: 10.1196/annals.1300.063
– ident: 2023041303364070000_29.6.1887.44
  doi: 10.1046/j.1471-4159.2001.00179.x
– volume: 28
  start-page: 391
  year: 1985
  ident: 2023041303364070000_29.6.1887.52
  article-title: Dopamine D2 receptor binding sites for agonists. A tetrahedral model
  publication-title: Mol Pharmacol
  doi: 10.1016/S0026-895X(25)14176-X
– ident: 2023041303364070000_29.6.1887.46
  doi: 10.1038/nm1632
– ident: 2023041303364070000_29.6.1887.60
  doi: 10.1002/syn.10012
– ident: 2023041303364070000_29.6.1887.22
  doi: 10.1111/j.1471-4159.2004.02691.x
– ident: 2023041303364070000_29.6.1887.31
  doi: 10.1001/archpsyc.1994.03950030035004
– volume: 17
  start-page: 2921
  year: 1997
  ident: 2023041303364070000_29.6.1887.36
  article-title: Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-08-02921.1997
– ident: 2023041303364070000_29.6.1887.53
  doi: 10.1002/syn.20238
– ident: 2023041303364070000_29.6.1887.4
  doi: 10.1016/0893-133X(88)90012-7
– ident: 2023041303364070000_29.6.1887.26
  doi: 10.1016/S0893-133X(98)00060-8
– ident: 2023041303364070000_29.6.1887.68
  doi: 10.1146/annurev.ne.12.030189.000305
– ident: 2023041303364070000_29.6.1887.8
  doi: 10.2174/1568007024606221
– ident: 2023041303364070000_29.6.1887.61
  doi: 10.1196/annals.1316.035
– volume: 62
  start-page: 1052
  year: 1989
  ident: 2023041303364070000_29.6.1887.28
  article-title: Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1989.62.5.1052
– ident: 2023041303364070000_29.6.1887.65
  doi: 10.1016/S0022-3956(99)00031-X
– volume: 22
  start-page: 596
  year: 2002
  ident: 2023041303364070000_29.6.1887.10
  article-title: Specific binding of [11C]raclopride and N-[3H]propyl-norapomorphine to dopamine receptors in living mouse striatum: occupancy by endogenous dopamine and guanosine triphosphate-free G protein
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/00004647-200205000-00011
– ident: 2023041303364070000_29.6.1887.16
  doi: 10.1146/annurev.pharmtox.47.120505.105140
– ident: 2023041303364070000_29.6.1887.59
  doi: 10.1002/1098-2396(200008)37:2<95::AID-SYN3>3.0.CO;2-H
– ident: 2023041303364070000_29.6.1887.67
  doi: 10.1016/j.apradiso.2004.07.003
– ident: 2023041303364070000_29.6.1887.43
  doi: 10.1016/S0028-3908(01)00083-1
– ident: 2023041303364070000_29.6.1887.6
  doi: 10.1016/j.biopsych.2004.12.019
– ident: 2023041303364070000_29.6.1887.14
  doi: 10.1016/j.nucmedbio.2005.01.007
– volume: 78
  start-page: 1248
  year: 1997
  ident: 2023041303364070000_29.6.1887.62
  article-title: Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1997.78.3.1248
– volume: 148
  start-page: 1301
  year: 1991
  ident: 2023041303364070000_29.6.1887.24
  article-title: Recent advances in the phencyclidine model of schizophrenia
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.148.10.1301
– ident: 2023041303364070000_29.6.1887.66
  doi: 10.1109/23.597001
– ident: 2023041303364070000_29.6.1887.39
  doi: 10.1002/syn.20013
– ident: 2023041303364070000_29.6.1887.18
  doi: 10.1016/S0028-3908(03)00209-0
– volume: 21
  start-page: 1413
  year: 2001
  ident: 2023041303364070000_29.6.1887.49
  article-title: Methamphetamine-induced rapid and reversible changes in dopamine transporter function: an in vitro model
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-04-01413.2001
– ident: 2023041303364070000_29.6.1887.20
  doi: 10.1007/s00259-002-0904-4
– volume: 30
  start-page: 912
  year: 2003
  ident: 2023041303364070000_29.6.1887.12
  article-title: Interference of anaesthetics with radioligand binding in neuroreceptor studies
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-003-1171-8
– ident: 2023041303364070000_29.6.1887.37
  doi: 10.1002/syn.20083
– volume: 32
  start-page: SB2
  year: 2005
  ident: 2023041303364070000_29.6.1887.15
  article-title: Scatchard analysis of the D2 receptor agonist [11C]MNPA in the monkey brain using PET
  publication-title: Eur J Nucl Med
– ident: 2023041303364070000_29.6.1887.55
  doi: 10.1016/S0893-133X(97)00092-4
– ident: 2023041303364070000_29.6.1887.50
  doi: 10.1046/j.1460-9568.1999.00482.x
– ident: 2023041303364070000_29.6.1887.47
– volume: 43
  start-page: 2779
  year: 1984
  ident: 2023041303364070000_29.6.1887.9
  article-title: Agonist interactions with dopamine receptors: focus on radioligand-binding studies
  publication-title: Fed Proc
– ident: 2023041303364070000_29.6.1887.40
  doi: 10.1006/nimg.2001.0878
– ident: 2023041303364070000_29.6.1887.27
  doi: 10.1016/0006-8993(90)90197-J
– volume: 16
  start-page: 373
  year: 1996
  ident: 2023041303364070000_29.6.1887.64
  article-title: NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-01-00373.1996
– ident: 2023041303364070000_29.6.1887.32
  doi: 10.1097/00000542-200508000-00008
– ident: 2023041303364070000_29.6.1887.7
  doi: 10.1016/S0893-133X(01)00299-8
– ident: 2023041303364070000_29.6.1887.38
  doi: 10.1016/S0893-133X(98)00101-8
– ident: 2023041303364070000_29.6.1887.51
  doi: 10.1002/syn.890010203
– ident: 2023041303364070000_29.6.1887.5
  doi: 10.1016/0166-2236(90)90108-M
– ident: 2023041303364070000_29.6.1887.11
  doi: 10.1038/sj.npp.1301531
– ident: 2023041303364070000_29.6.1887.42
  doi: 10.1016/0006-8993(94)91263-7
– ident: 2023041303364070000_29.6.1887.34
  doi: 10.1126/science.281.5381.1349
– ident: 2023041303364070000_29.6.1887.54
  doi: 10.1016/j.neuron.2006.10.010
– ident: 2023041303364070000_29.6.1887.58
  doi: 10.1016/j.biopsych.2006.01.022
– ident: 2023041303364070000_29.6.1887.41
  doi: 10.1002/syn.1063
– ident: 2023041303364070000_29.6.1887.23
  doi: 10.1016/S0074-7742(06)78003-5
– volume: 46
  start-page: 455
  year: 2005
  ident: 2023041303364070000_29.6.1887.57
  article-title: Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging
  publication-title: J Nucl Med
– ident: 2023041303364070000_29.6.1887.56
  doi: 10.1016/S0014-2999(00)00697-X
– volume: 47
  start-page: 698
  year: 2006
  ident: 2023041303364070000_29.6.1887.2
  article-title: Radiosynthesis and preclinical evaluation of 11C-ABP688 as a probe for imaging the metabotropic glutamate receptor subtype 5
  publication-title: J Nucl Med
– ident: 2023041303364070000_29.6.1887.17
  doi: 10.1016/S0028-3908(99)00082-9
– ident: 2023041303364070000_29.6.1887.29
  doi: 10.1002/syn.10010
– ident: 2023041303364070000_29.6.1887.25
  doi: 10.1038/sj.npp.1300313
– ident: 2023041303364070000_29.6.1887.30
  doi: 10.1152/jn.00224.2002
– ident: 2023041303364070000_29.6.1887.3
  doi: 10.1002/(SICI)1098-2396(199806)29:2<142::AID-SYN5>3.0.CO;2-7
– volume: 492
  start-page: 143
  year: 1996
  ident: 2023041303364070000_29.6.1887.19
  article-title: Endogenous and exogenous dopamine depress EPSCs in rat nucleus accumbens in vitro via D1 receptors activation
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1996.sp021296
SSID ssj0007017
Score 2.0918689
Snippet Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders,...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1887
SubjectTerms Animals
Corpus Striatum - diagnostic imaging
Corpus Striatum - physiology
Dopamine - physiology
Glutamic Acid - physiology
Macaca
Male
Positron-Emission Tomography - methods
Rats
Rats, Sprague-Dawley
Synaptic Transmission - physiology
Title Neuroimaging and Physiological Evidence for Involvement of Glutamatergic Transmission in Regulation of the Striatal Dopaminergic System
URI http://www.jneurosci.org/cgi/content/abstract/29/6/1887
https://www.ncbi.nlm.nih.gov/pubmed/19211895
https://www.proquest.com/docview/66913389
https://pubmed.ncbi.nlm.nih.gov/PMC2746446
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXc9NJL0TZd3JWHopdCjhZSlI5BusQp7EPsALkJpMQ0Rm0piG0Y7g_0O_snHZISRSUG0vZiGDJpjzlPnBlq5g1C78Fh46FPhUd9UngEAgxPSEI8v-Bg_ZmUeaiqkUfj-PiMnJzT817vt5O1tF6JQf5zZ13J_2gVroFeVZXsP2jWfilcgPegX3gFDcPrX-lYM2vMFqbRkE77V6tut7OmY6hOJRyWsBFpcnD97P8ryMXBW5XXMNZQnIPGl3Xm46npUF87k8o3naj2Hqpw8hNE2QtdMQjzDN-56-C2pWbayXXoMi2CptWPdcnNge6IL8GFtcc8sPHmvAaoCrqtwz-5NFwHp9uq_O6NqjZ5YMRlYfJ912XnCCNVWc9Be4QxqfKP45vimC0wZBDcEtPHZyDrLTrUz4QCdw-vT01mtzbkIDH2_JaloJqx4mSsEiYnR8OBCq08P9HloO4E0PjVQuNHMccFiWkJ2iXuvmFQbZrjZrMJ0yzOlBD30P0Qbgwd9Q-_WWeB-boptP2jdRE7SHewWzbNcmsE6bpSDb31rlDpZsav40JNH6GHNSzwoQHyY9ST5RO0f1jyVbXY4g_Yone7j3652MaAbdzBNm6wjQHb2ME2ri5wB9vYxTaelbjFthoL2MYNtrGLbWyw_RSdffk8PTr26qYhXk7TYOUVcVhI1VEqVoS3F0UB1hygKxmjLBJplCa5H0U-5zFPiyQhHOL5nBYhJTzJGVjbZ2ivrEr5AuFE5IkfEZEzkRIaCEHiIBVUphEYwjBlfUSb9c_ymlFfNXaZZyqyBhVmVoWZUmHmJ6rra9pHB3beleGUuXPGu0a92XLB53PQZpC58IIRjdYzWFL11I-Xslovs1gtBIQlffTcYKD9zRpHfcQ66LADFPV895Nydqkp6ENGIJCKX94p1yv0oL3jX6O91fVavgE3fiXe6hvhD0bi90g
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuroimaging+and+Physiological+Evidence+for+Involvement+of+Glutamatergic+Transmission+in+Regulation+of+the+Striatal+Dopaminergic+System&rft.jtitle=The+Journal+of+neuroscience&rft.au=Tokunaga%2C+Masaki&rft.au=Seneca%2C+Nicholas&rft.au=Shin%2C+Ryong-Moon&rft.au=Maeda%2C+Jun&rft.date=2009-02-11&rft.pub=Soc+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=29&rft.issue=6&rft.spage=1887&rft_id=info:doi/10.1523%2FJNEUROSCI.2559-08.2009&rft_id=info%3Apmid%2F19211895&rft.externalDBID=n%2Fa&rft.externalDocID=www29_6_1887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon