Neuroimaging and Physiological Evidence for Involvement of Glutamatergic Transmission in Regulation of the Striatal Dopaminergic System
Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders, but the mode of their interaction is yet to be uncovered. In this study, we demonstrated the pharmacological reversal of methamphetamine-stimul...
Saved in:
Published in | The Journal of neuroscience Vol. 29; no. 6; pp. 1887 - 1896 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
11.02.2009
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders, but the mode of their interaction is yet to be uncovered. In this study, we demonstrated the pharmacological reversal of methamphetamine-stimulated dopaminergic overflow by suppression of group I metabotropic glutamate (mGlu) receptor in living primates and rodents.
In viv
o positron emission tomography (PET) was conducted on cynomolgus monkeys and rats using a full agonistic tracer for dopamine D
2/3
receptor, [
11
C]MNPA [(
R
)-2-
11
CH
3
O-
N
-n-propylnorapomorphine], and fluctuation of kinetic data resulting from anesthesia was avoided by scanning awake subjects. Excessive release of dopamine induced by methamphetamine and abolishment of this alteration by treatment with an antagonist of group I mGlu receptors, 2-methyl-6-(phenylethynyl)pyridine (MPEP), were measured in both species as decreased binding potential because of increased dopamine and its recovery to baseline levels, respectively. Counteraction of MPEP to the methamphetamine-induced dopamine spillover was also supported neurochemically by microdialysis of unanesthetized rat striatum. Moreover, patch-clamp electrophysiological assays using acute brain slices prepared from rats indicated that direct targets of MPEP mechanistically involved in the effects of methamphetamine are present locally within the striatum. Because MPEP alone did not markedly alter the baseline dopaminergic neurotransmission according to our PET and electrophysiological data, the present findings collectively extend the insights on dopamine–glutamate cross talk from extrastriatal localization of responsible mGlu receptors to intrastriatal synergy and support therapeutic interventions in case of disordered striatal dopaminergic status using group I mGlu receptor antagonists assessable by
in vivo
imaging techniques. |
---|---|
AbstractList | Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders, but the mode of their interaction is yet to be uncovered. In this study, we demonstrated the pharmacological reversal of methamphetamine-stimulated dopaminergic overflow by suppression of group I metabotropic glutamate (mGlu) receptor in living primates and rodents. In vivo positron emission tomography (PET) was conducted on cynomolgus monkeys and rats using a full agonistic tracer for dopamine D(2/3) receptor, [(11)C]MNPA [(R)-2-(11)CH(3)O-N-n-propylnorapomorphine], and fluctuation of kinetic data resulting from anesthesia was avoided by scanning awake subjects. Excessive release of dopamine induced by methamphetamine and abolishment of this alteration by treatment with an antagonist of group I mGlu receptors, 2-methyl-6-(phenylethynyl)pyridine (MPEP), were measured in both species as decreased binding potential because of increased dopamine and its recovery to baseline levels, respectively. Counteraction of MPEP to the methamphetamine-induced dopamine spillover was also supported neurochemically by microdialysis of unanesthetized rat striatum. Moreover, patch-clamp electrophysiological assays using acute brain slices prepared from rats indicated that direct targets of MPEP mechanistically involved in the effects of methamphetamine are present locally within the striatum. Because MPEP alone did not markedly alter the baseline dopaminergic neurotransmission according to our PET and electrophysiological data, the present findings collectively extend the insights on dopamine-glutamate cross talk from extrastriatal localization of responsible mGlu receptors to intrastriatal synergy and support therapeutic interventions in case of disordered striatal dopaminergic status using group I mGlu receptor antagonists assessable by in vivo imaging techniques. Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders, but the mode of their interaction is yet to be uncovered. In this study, we demonstrated the pharmacological reversal of methamphetamine-stimulated dopaminergic overflow by suppression of group I metabotropic glutamate (mGlu) receptor in living primates and rodents. In viv o positron emission tomography (PET) was conducted on cynomolgus monkeys and rats using a full agonistic tracer for dopamine D 2/3 receptor, [ 11 C]MNPA [( R )-2- 11 CH 3 O- N -n-propylnorapomorphine], and fluctuation of kinetic data resulting from anesthesia was avoided by scanning awake subjects. Excessive release of dopamine induced by methamphetamine and abolishment of this alteration by treatment with an antagonist of group I mGlu receptors, 2-methyl-6-(phenylethynyl)pyridine (MPEP), were measured in both species as decreased binding potential because of increased dopamine and its recovery to baseline levels, respectively. Counteraction of MPEP to the methamphetamine-induced dopamine spillover was also supported neurochemically by microdialysis of unanesthetized rat striatum. Moreover, patch-clamp electrophysiological assays using acute brain slices prepared from rats indicated that direct targets of MPEP mechanistically involved in the effects of methamphetamine are present locally within the striatum. Because MPEP alone did not markedly alter the baseline dopaminergic neurotransmission according to our PET and electrophysiological data, the present findings collectively extend the insights on dopamine–glutamate cross talk from extrastriatal localization of responsible mGlu receptors to intrastriatal synergy and support therapeutic interventions in case of disordered striatal dopaminergic status using group I mGlu receptor antagonists assessable by in vivo imaging techniques. Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders, but the mode of their interaction is yet to be uncovered. In this study, we demonstrated the pharmacological reversal of methamphetamine-stimulated dopaminergic overflow by suppression of group I metabotropic glutamate (mGlu) receptor in living primates and rodents. In vivo positron emission tomography (PET) was conducted on cynomolgus monkeys and rats using a full agonistic tracer for dopamine D(2/3) receptor, [(11)C]MNPA [(R)-2-(11)CH(3)O-N-n-propylnorapomorphine], and fluctuation of kinetic data resulting from anesthesia was avoided by scanning awake subjects. Excessive release of dopamine induced by methamphetamine and abolishment of this alteration by treatment with an antagonist of group I mGlu receptors, 2-methyl-6-(phenylethynyl)pyridine (MPEP), were measured in both species as decreased binding potential because of increased dopamine and its recovery to baseline levels, respectively. Counteraction of MPEP to the methamphetamine-induced dopamine spillover was also supported neurochemically by microdialysis of unanesthetized rat striatum. Moreover, patch-clamp electrophysiological assays using acute brain slices prepared from rats indicated that direct targets of MPEP mechanistically involved in the effects of methamphetamine are present locally within the striatum. Because MPEP alone did not markedly alter the baseline dopaminergic neurotransmission according to our PET and electrophysiological data, the present findings collectively extend the insights on dopamine-glutamate cross talk from extrastriatal localization of responsible mGlu receptors to intrastriatal synergy and support therapeutic interventions in case of disordered striatal dopaminergic status using group I mGlu receptor antagonists assessable by in vivo imaging techniques.Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders, but the mode of their interaction is yet to be uncovered. In this study, we demonstrated the pharmacological reversal of methamphetamine-stimulated dopaminergic overflow by suppression of group I metabotropic glutamate (mGlu) receptor in living primates and rodents. In vivo positron emission tomography (PET) was conducted on cynomolgus monkeys and rats using a full agonistic tracer for dopamine D(2/3) receptor, [(11)C]MNPA [(R)-2-(11)CH(3)O-N-n-propylnorapomorphine], and fluctuation of kinetic data resulting from anesthesia was avoided by scanning awake subjects. Excessive release of dopamine induced by methamphetamine and abolishment of this alteration by treatment with an antagonist of group I mGlu receptors, 2-methyl-6-(phenylethynyl)pyridine (MPEP), were measured in both species as decreased binding potential because of increased dopamine and its recovery to baseline levels, respectively. Counteraction of MPEP to the methamphetamine-induced dopamine spillover was also supported neurochemically by microdialysis of unanesthetized rat striatum. Moreover, patch-clamp electrophysiological assays using acute brain slices prepared from rats indicated that direct targets of MPEP mechanistically involved in the effects of methamphetamine are present locally within the striatum. Because MPEP alone did not markedly alter the baseline dopaminergic neurotransmission according to our PET and electrophysiological data, the present findings collectively extend the insights on dopamine-glutamate cross talk from extrastriatal localization of responsible mGlu receptors to intrastriatal synergy and support therapeutic interventions in case of disordered striatal dopaminergic status using group I mGlu receptor antagonists assessable by in vivo imaging techniques. |
Author | Okauchi, Takashi Seneca, Nicholas Suzuki, Kazutoshi Nagai, Yuji Nakao, Ryuji Halldin, Christer Higuchi, Makoto Ito, Hiroshi Maeda, Jun Innis, Robert B Obayashi, Shigeru Suhara, Tetsuya Zhang, Ming-Rong Shin, Ryong-Moon Tokunaga, Masaki |
Author_xml | – sequence: 1 fullname: Tokunaga, Masaki – sequence: 2 fullname: Seneca, Nicholas – sequence: 3 fullname: Shin, Ryong-Moon – sequence: 4 fullname: Maeda, Jun – sequence: 5 fullname: Obayashi, Shigeru – sequence: 6 fullname: Okauchi, Takashi – sequence: 7 fullname: Nagai, Yuji – sequence: 8 fullname: Zhang, Ming-Rong – sequence: 9 fullname: Nakao, Ryuji – sequence: 10 fullname: Ito, Hiroshi – sequence: 11 fullname: Innis, Robert B – sequence: 12 fullname: Halldin, Christer – sequence: 13 fullname: Suzuki, Kazutoshi – sequence: 14 fullname: Higuchi, Makoto – sequence: 15 fullname: Suhara, Tetsuya |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19211895$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUd1u0zAYtdAQ6wavMPmKuxTbSexYQkioK6No2tC6XVue46ZGjl1sp1WfgNfGoaUCbriyrO_8fOc7F-DMeacBuMJoimtSvvtyN396uF_OFlNS17xAzZQgxF-ASZ7yglQIn4EJIgwVtGLVObiI8RtCiCHMXoFzzAnGDa8n4MedHoI3veyM66B0Lfy63kfjre-MkhbOt6bVTmm48gEu3Nbbre61S9Cv4I0dkuxl0iFj4WOQLvYmZrKDxsEH3Q1WpvGXsWmt4TIFI1MWvfYb2Rt34C33Men-NXi5kjbqN8f3Ejx9mj_OPhe39zeL2cfbQtUcp6KlpNWcEkY5LvmqbTnGWknNWM3KZ17yRqGyRFJSydumqSRFtapbUleyUYzR8hJ8OOhuhudetypHCdKKTcgnCHvhpRF_T5xZi85vBWEVrapR4O1RIPjvg45J5MxKWyud9kMUdNysbHgGXv3pdLL4ffsMeH8AqOBjDHollEm_DpaNjRUYibFqcapajFUL1Iix6kyn_9BPDv8jHhOsTbfemaBF7KW1eU0sdrsd4YIK3DSs_Amtur_U |
CitedBy_id | crossref_primary_10_1124_jpet_114_222463 crossref_primary_10_1007_s11064_015_1566_5 crossref_primary_10_1124_jpet_108_136689 crossref_primary_10_4103_1673_5374_392887 crossref_primary_10_1016_j_bbadis_2010_01_003 crossref_primary_10_1124_jpet_112_196295 crossref_primary_10_1016_j_neures_2010_12_017 crossref_primary_10_1007_s00213_012_2925_4 crossref_primary_10_1097_QAD_0b013e328336e98b crossref_primary_10_1002_syn_21864 crossref_primary_10_1523_JNEUROSCI_2880_19_2020 crossref_primary_10_5692_clinicalneurol_49_929 crossref_primary_10_1002_syn_20955 crossref_primary_10_1007_s00213_011_2222_7 crossref_primary_10_1038_jcbfm_2009_193 crossref_primary_10_1517_13543784_2015_1074175 crossref_primary_10_1016_j_neulet_2019_03_023 crossref_primary_10_1007_s11307_014_0786_4 crossref_primary_10_1016_j_pharmthera_2021_107831 |
Cites_doi | 10.1016/0006-8993(90)90953-9 10.1038/sj.npp.1300902 10.1097/01.WCB.0000085441.37552.CA 10.1007/s11307-005-0005-4 10.1007/s00213-002-1236-6 10.1016/j.pnpbp.2007.08.025 10.1196/annals.1300.063 10.1046/j.1471-4159.2001.00179.x 10.1016/S0026-895X(25)14176-X 10.1038/nm1632 10.1002/syn.10012 10.1111/j.1471-4159.2004.02691.x 10.1001/archpsyc.1994.03950030035004 10.1523/JNEUROSCI.17-08-02921.1997 10.1002/syn.20238 10.1016/0893-133X(88)90012-7 10.1016/S0893-133X(98)00060-8 10.1146/annurev.ne.12.030189.000305 10.2174/1568007024606221 10.1196/annals.1316.035 10.1152/jn.1989.62.5.1052 10.1016/S0022-3956(99)00031-X 10.1097/00004647-200205000-00011 10.1146/annurev.pharmtox.47.120505.105140 10.1002/1098-2396(200008)37:2<95::AID-SYN3>3.0.CO;2-H 10.1016/j.apradiso.2004.07.003 10.1016/S0028-3908(01)00083-1 10.1016/j.biopsych.2004.12.019 10.1016/j.nucmedbio.2005.01.007 10.1152/jn.1997.78.3.1248 10.1176/ajp.148.10.1301 10.1109/23.597001 10.1002/syn.20013 10.1016/S0028-3908(03)00209-0 10.1523/JNEUROSCI.21-04-01413.2001 10.1007/s00259-002-0904-4 10.1007/s00259-003-1171-8 10.1002/syn.20083 10.1016/S0893-133X(97)00092-4 10.1046/j.1460-9568.1999.00482.x 10.1006/nimg.2001.0878 10.1016/0006-8993(90)90197-J 10.1523/JNEUROSCI.16-01-00373.1996 10.1097/00000542-200508000-00008 10.1016/S0893-133X(01)00299-8 10.1016/S0893-133X(98)00101-8 10.1002/syn.890010203 10.1016/0166-2236(90)90108-M 10.1038/sj.npp.1301531 10.1016/0006-8993(94)91263-7 10.1126/science.281.5381.1349 10.1016/j.neuron.2006.10.010 10.1016/j.biopsych.2006.01.022 10.1002/syn.1063 10.1016/S0074-7742(06)78003-5 10.1016/S0014-2999(00)00697-X 10.1016/S0028-3908(99)00082-9 10.1002/syn.10010 10.1038/sj.npp.1300313 10.1152/jn.00224.2002 10.1002/(SICI)1098-2396(199806)29:2<142::AID-SYN5>3.0.CO;2-7 10.1113/jphysiol.1996.sp021296 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Society for Neuroscience 0270-6474/09/291887-10$15.00/0 2009 |
Copyright_xml | – notice: Copyright © 2009 Society for Neuroscience 0270-6474/09/291887-10$15.00/0 2009 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1523/JNEUROSCI.2559-08.2009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 1896 |
ExternalDocumentID | PMC2746446 19211895 10_1523_JNEUROSCI_2559_08_2009 www29_6_1887 |
Genre | Comparative Study Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R01 DA015188 – fundername: Intramural NIH HHS grantid: Z01 MH002795 – fundername: NIMH NIH HHS grantid: R01 MH063649 |
GroupedDBID | - 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RPM TFN UQL WH7 WOQ X X7M XJT ZA5 --- -DZ -~X .55 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD AFCFT AFOSN AFSQR AHWXS AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c591t-d62de962769139fdd911ecae77573b9398c0330aa6a9d884a605c5d254a8c7763 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:13:55 EDT 2025 Thu Jul 10 22:16:37 EDT 2025 Fri May 30 11:02:19 EDT 2025 Tue Jul 01 02:59:01 EDT 2025 Thu Apr 24 23:04:38 EDT 2025 Tue Nov 10 19:20:02 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c591t-d62de962769139fdd911ecae77573b9398c0330aa6a9d884a605c5d254a8c7763 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/29/6/1887.full.pdf |
PMID | 19211895 |
PQID | 66913389 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2746446 proquest_miscellaneous_66913389 pubmed_primary_19211895 crossref_citationtrail_10_1523_JNEUROSCI_2559_08_2009 crossref_primary_10_1523_JNEUROSCI_2559_08_2009 highwire_smallpub1_www29_6_1887 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-02-11 |
PublicationDateYYYYMMDD | 2009-02-11 |
PublicationDate_xml | – month: 02 year: 2009 text: 2009-02-11 day: 11 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2009 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | Moghaddam (2023041303364070000_29.6.1887.36) 1997; 17 2023041303364070000_29.6.1887.8 2023041303364070000_29.6.1887.20 2023041303364070000_29.6.1887.21 2023041303364070000_29.6.1887.65 2023041303364070000_29.6.1887.63 2023041303364070000_29.6.1887.60 2023041303364070000_29.6.1887.61 2023041303364070000_29.6.1887.29 2023041303364070000_29.6.1887.26 Umemiya (2023041303364070000_29.6.1887.62) 1997; 78 2023041303364070000_29.6.1887.27 2023041303364070000_29.6.1887.68 2023041303364070000_29.6.1887.25 2023041303364070000_29.6.1887.22 2023041303364070000_29.6.1887.66 2023041303364070000_29.6.1887.23 2023041303364070000_29.6.1887.67 Elfving (2023041303364070000_29.6.1887.12) 2003; 30 2023041303364070000_29.6.1887.53 2023041303364070000_29.6.1887.54 2023041303364070000_29.6.1887.51 2023041303364070000_29.6.1887.50 2023041303364070000_29.6.1887.17 2023041303364070000_29.6.1887.18 Creese (2023041303364070000_29.6.1887.9) 1984; 43 2023041303364070000_29.6.1887.59 2023041303364070000_29.6.1887.16 2023041303364070000_29.6.1887.13 2023041303364070000_29.6.1887.14 2023041303364070000_29.6.1887.58 2023041303364070000_29.6.1887.11 2023041303364070000_29.6.1887.55 2023041303364070000_29.6.1887.56 Cumming (2023041303364070000_29.6.1887.10) 2002; 22 Seeman (2023041303364070000_29.6.1887.52) 1985; 28 Sandoval (2023041303364070000_29.6.1887.49) 2001; 21 Ametamey (2023041303364070000_29.6.1887.2) 2006; 47 Kawaguchi (2023041303364070000_29.6.1887.28) 1989; 62 2023041303364070000_29.6.1887.42 Tai (2023041303364070000_29.6.1887.57) 2005; 46 2023041303364070000_29.6.1887.43 2023041303364070000_29.6.1887.40 2023041303364070000_29.6.1887.41 Javitt (2023041303364070000_29.6.1887.24) 1991; 148 2023041303364070000_29.6.1887.46 2023041303364070000_29.6.1887.47 2023041303364070000_29.6.1887.44 2023041303364070000_29.6.1887.45 2023041303364070000_29.6.1887.3 2023041303364070000_29.6.1887.31 2023041303364070000_29.6.1887.32 2023041303364070000_29.6.1887.1 Pietraszek (2023041303364070000_29.6.1887.48) 2004; 55 2023041303364070000_29.6.1887.30 2023041303364070000_29.6.1887.7 2023041303364070000_29.6.1887.6 2023041303364070000_29.6.1887.5 2023041303364070000_29.6.1887.4 2023041303364070000_29.6.1887.39 Finnema (2023041303364070000_29.6.1887.15) 2005; 32 2023041303364070000_29.6.1887.37 2023041303364070000_29.6.1887.38 2023041303364070000_29.6.1887.35 Harvey (2023041303364070000_29.6.1887.19) 1996; 492 2023041303364070000_29.6.1887.33 2023041303364070000_29.6.1887.34 Verma (2023041303364070000_29.6.1887.64) 1996; 16 |
References_xml | – ident: 2023041303364070000_29.6.1887.35 doi: 10.1016/0006-8993(90)90953-9 – ident: 2023041303364070000_29.6.1887.63 doi: 10.1038/sj.npp.1300902 – ident: 2023041303364070000_29.6.1887.21 doi: 10.1097/01.WCB.0000085441.37552.CA – volume: 55 start-page: 587 year: 2004 ident: 2023041303364070000_29.6.1887.48 article-title: Opposite influence of MPEP, an mGluR5 antagonist, on the locomotor hyperactivity induced by PCP and amphetamine publication-title: J Physiol Pharmacol – ident: 2023041303364070000_29.6.1887.45 doi: 10.1007/s11307-005-0005-4 – ident: 2023041303364070000_29.6.1887.1 doi: 10.1007/s00213-002-1236-6 – ident: 2023041303364070000_29.6.1887.13 doi: 10.1016/j.pnpbp.2007.08.025 – ident: 2023041303364070000_29.6.1887.33 doi: 10.1196/annals.1300.063 – ident: 2023041303364070000_29.6.1887.44 doi: 10.1046/j.1471-4159.2001.00179.x – volume: 28 start-page: 391 year: 1985 ident: 2023041303364070000_29.6.1887.52 article-title: Dopamine D2 receptor binding sites for agonists. A tetrahedral model publication-title: Mol Pharmacol doi: 10.1016/S0026-895X(25)14176-X – ident: 2023041303364070000_29.6.1887.46 doi: 10.1038/nm1632 – ident: 2023041303364070000_29.6.1887.60 doi: 10.1002/syn.10012 – ident: 2023041303364070000_29.6.1887.22 doi: 10.1111/j.1471-4159.2004.02691.x – ident: 2023041303364070000_29.6.1887.31 doi: 10.1001/archpsyc.1994.03950030035004 – volume: 17 start-page: 2921 year: 1997 ident: 2023041303364070000_29.6.1887.36 article-title: Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-08-02921.1997 – ident: 2023041303364070000_29.6.1887.53 doi: 10.1002/syn.20238 – ident: 2023041303364070000_29.6.1887.4 doi: 10.1016/0893-133X(88)90012-7 – ident: 2023041303364070000_29.6.1887.26 doi: 10.1016/S0893-133X(98)00060-8 – ident: 2023041303364070000_29.6.1887.68 doi: 10.1146/annurev.ne.12.030189.000305 – ident: 2023041303364070000_29.6.1887.8 doi: 10.2174/1568007024606221 – ident: 2023041303364070000_29.6.1887.61 doi: 10.1196/annals.1316.035 – volume: 62 start-page: 1052 year: 1989 ident: 2023041303364070000_29.6.1887.28 article-title: Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs publication-title: J Neurophysiol doi: 10.1152/jn.1989.62.5.1052 – ident: 2023041303364070000_29.6.1887.65 doi: 10.1016/S0022-3956(99)00031-X – volume: 22 start-page: 596 year: 2002 ident: 2023041303364070000_29.6.1887.10 article-title: Specific binding of [11C]raclopride and N-[3H]propyl-norapomorphine to dopamine receptors in living mouse striatum: occupancy by endogenous dopamine and guanosine triphosphate-free G protein publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-200205000-00011 – ident: 2023041303364070000_29.6.1887.16 doi: 10.1146/annurev.pharmtox.47.120505.105140 – ident: 2023041303364070000_29.6.1887.59 doi: 10.1002/1098-2396(200008)37:2<95::AID-SYN3>3.0.CO;2-H – ident: 2023041303364070000_29.6.1887.67 doi: 10.1016/j.apradiso.2004.07.003 – ident: 2023041303364070000_29.6.1887.43 doi: 10.1016/S0028-3908(01)00083-1 – ident: 2023041303364070000_29.6.1887.6 doi: 10.1016/j.biopsych.2004.12.019 – ident: 2023041303364070000_29.6.1887.14 doi: 10.1016/j.nucmedbio.2005.01.007 – volume: 78 start-page: 1248 year: 1997 ident: 2023041303364070000_29.6.1887.62 article-title: Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons publication-title: J Neurophysiol doi: 10.1152/jn.1997.78.3.1248 – volume: 148 start-page: 1301 year: 1991 ident: 2023041303364070000_29.6.1887.24 article-title: Recent advances in the phencyclidine model of schizophrenia publication-title: Am J Psychiatry doi: 10.1176/ajp.148.10.1301 – ident: 2023041303364070000_29.6.1887.66 doi: 10.1109/23.597001 – ident: 2023041303364070000_29.6.1887.39 doi: 10.1002/syn.20013 – ident: 2023041303364070000_29.6.1887.18 doi: 10.1016/S0028-3908(03)00209-0 – volume: 21 start-page: 1413 year: 2001 ident: 2023041303364070000_29.6.1887.49 article-title: Methamphetamine-induced rapid and reversible changes in dopamine transporter function: an in vitro model publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-04-01413.2001 – ident: 2023041303364070000_29.6.1887.20 doi: 10.1007/s00259-002-0904-4 – volume: 30 start-page: 912 year: 2003 ident: 2023041303364070000_29.6.1887.12 article-title: Interference of anaesthetics with radioligand binding in neuroreceptor studies publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-003-1171-8 – ident: 2023041303364070000_29.6.1887.37 doi: 10.1002/syn.20083 – volume: 32 start-page: SB2 year: 2005 ident: 2023041303364070000_29.6.1887.15 article-title: Scatchard analysis of the D2 receptor agonist [11C]MNPA in the monkey brain using PET publication-title: Eur J Nucl Med – ident: 2023041303364070000_29.6.1887.55 doi: 10.1016/S0893-133X(97)00092-4 – ident: 2023041303364070000_29.6.1887.50 doi: 10.1046/j.1460-9568.1999.00482.x – ident: 2023041303364070000_29.6.1887.47 – volume: 43 start-page: 2779 year: 1984 ident: 2023041303364070000_29.6.1887.9 article-title: Agonist interactions with dopamine receptors: focus on radioligand-binding studies publication-title: Fed Proc – ident: 2023041303364070000_29.6.1887.40 doi: 10.1006/nimg.2001.0878 – ident: 2023041303364070000_29.6.1887.27 doi: 10.1016/0006-8993(90)90197-J – volume: 16 start-page: 373 year: 1996 ident: 2023041303364070000_29.6.1887.64 article-title: NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-01-00373.1996 – ident: 2023041303364070000_29.6.1887.32 doi: 10.1097/00000542-200508000-00008 – ident: 2023041303364070000_29.6.1887.7 doi: 10.1016/S0893-133X(01)00299-8 – ident: 2023041303364070000_29.6.1887.38 doi: 10.1016/S0893-133X(98)00101-8 – ident: 2023041303364070000_29.6.1887.51 doi: 10.1002/syn.890010203 – ident: 2023041303364070000_29.6.1887.5 doi: 10.1016/0166-2236(90)90108-M – ident: 2023041303364070000_29.6.1887.11 doi: 10.1038/sj.npp.1301531 – ident: 2023041303364070000_29.6.1887.42 doi: 10.1016/0006-8993(94)91263-7 – ident: 2023041303364070000_29.6.1887.34 doi: 10.1126/science.281.5381.1349 – ident: 2023041303364070000_29.6.1887.54 doi: 10.1016/j.neuron.2006.10.010 – ident: 2023041303364070000_29.6.1887.58 doi: 10.1016/j.biopsych.2006.01.022 – ident: 2023041303364070000_29.6.1887.41 doi: 10.1002/syn.1063 – ident: 2023041303364070000_29.6.1887.23 doi: 10.1016/S0074-7742(06)78003-5 – volume: 46 start-page: 455 year: 2005 ident: 2023041303364070000_29.6.1887.57 article-title: Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging publication-title: J Nucl Med – ident: 2023041303364070000_29.6.1887.56 doi: 10.1016/S0014-2999(00)00697-X – volume: 47 start-page: 698 year: 2006 ident: 2023041303364070000_29.6.1887.2 article-title: Radiosynthesis and preclinical evaluation of 11C-ABP688 as a probe for imaging the metabotropic glutamate receptor subtype 5 publication-title: J Nucl Med – ident: 2023041303364070000_29.6.1887.17 doi: 10.1016/S0028-3908(99)00082-9 – ident: 2023041303364070000_29.6.1887.29 doi: 10.1002/syn.10010 – ident: 2023041303364070000_29.6.1887.25 doi: 10.1038/sj.npp.1300313 – ident: 2023041303364070000_29.6.1887.30 doi: 10.1152/jn.00224.2002 – ident: 2023041303364070000_29.6.1887.3 doi: 10.1002/(SICI)1098-2396(199806)29:2<142::AID-SYN5>3.0.CO;2-7 – volume: 492 start-page: 143 year: 1996 ident: 2023041303364070000_29.6.1887.19 article-title: Endogenous and exogenous dopamine depress EPSCs in rat nucleus accumbens in vitro via D1 receptors activation publication-title: J Physiol doi: 10.1113/jphysiol.1996.sp021296 |
SSID | ssj0007017 |
Score | 2.0918689 |
Snippet | Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders,... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1887 |
SubjectTerms | Animals Corpus Striatum - diagnostic imaging Corpus Striatum - physiology Dopamine - physiology Glutamic Acid - physiology Macaca Male Positron-Emission Tomography - methods Rats Rats, Sprague-Dawley Synaptic Transmission - physiology |
Title | Neuroimaging and Physiological Evidence for Involvement of Glutamatergic Transmission in Regulation of the Striatal Dopaminergic System |
URI | http://www.jneurosci.org/cgi/content/abstract/29/6/1887 https://www.ncbi.nlm.nih.gov/pubmed/19211895 https://www.proquest.com/docview/66913389 https://pubmed.ncbi.nlm.nih.gov/PMC2746446 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXc9NJL0TZd3JWHopdCjhZSlI5BusQp7EPsALkJpMQ0Rm0piG0Y7g_0O_snHZISRSUG0vZiGDJpjzlPnBlq5g1C78Fh46FPhUd9UngEAgxPSEI8v-Bg_ZmUeaiqkUfj-PiMnJzT817vt5O1tF6JQf5zZ13J_2gVroFeVZXsP2jWfilcgPegX3gFDcPrX-lYM2vMFqbRkE77V6tut7OmY6hOJRyWsBFpcnD97P8ryMXBW5XXMNZQnIPGl3Xm46npUF87k8o3naj2Hqpw8hNE2QtdMQjzDN-56-C2pWbayXXoMi2CptWPdcnNge6IL8GFtcc8sPHmvAaoCrqtwz-5NFwHp9uq_O6NqjZ5YMRlYfJ912XnCCNVWc9Be4QxqfKP45vimC0wZBDcEtPHZyDrLTrUz4QCdw-vT01mtzbkIDH2_JaloJqx4mSsEiYnR8OBCq08P9HloO4E0PjVQuNHMccFiWkJ2iXuvmFQbZrjZrMJ0yzOlBD30P0Qbgwd9Q-_WWeB-boptP2jdRE7SHewWzbNcmsE6bpSDb31rlDpZsav40JNH6GHNSzwoQHyY9ST5RO0f1jyVbXY4g_Yone7j3652MaAbdzBNm6wjQHb2ME2ri5wB9vYxTaelbjFthoL2MYNtrGLbWyw_RSdffk8PTr26qYhXk7TYOUVcVhI1VEqVoS3F0UB1hygKxmjLBJplCa5H0U-5zFPiyQhHOL5nBYhJTzJGVjbZ2ivrEr5AuFE5IkfEZEzkRIaCEHiIBVUphEYwjBlfUSb9c_ymlFfNXaZZyqyBhVmVoWZUmHmJ6rra9pHB3beleGUuXPGu0a92XLB53PQZpC58IIRjdYzWFL11I-Xslovs1gtBIQlffTcYKD9zRpHfcQ66LADFPV895Nydqkp6ENGIJCKX94p1yv0oL3jX6O91fVavgE3fiXe6hvhD0bi90g |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuroimaging+and+Physiological+Evidence+for+Involvement+of+Glutamatergic+Transmission+in+Regulation+of+the+Striatal+Dopaminergic+System&rft.jtitle=The+Journal+of+neuroscience&rft.au=Tokunaga%2C+Masaki&rft.au=Seneca%2C+Nicholas&rft.au=Shin%2C+Ryong-Moon&rft.au=Maeda%2C+Jun&rft.date=2009-02-11&rft.pub=Soc+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=29&rft.issue=6&rft.spage=1887&rft_id=info:doi/10.1523%2FJNEUROSCI.2559-08.2009&rft_id=info%3Apmid%2F19211895&rft.externalDBID=n%2Fa&rft.externalDocID=www29_6_1887 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |