Survival Strategies of Duckweeds, the World’s Smallest Angiosperms
Duckweeds (Lemnaceae) are small, simply constructed aquatic higher plants that grow on or just below the surface of quiet waters. They consist primarily of leaf-like assimilatory organs, or fronds, that reproduce mainly by vegetative replication. Despite their diminutive size and inornate habit, duc...
Saved in:
Published in | Plants (Basel) Vol. 12; no. 11; p. 2215 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
03.06.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Duckweeds (Lemnaceae) are small, simply constructed aquatic higher plants that grow on or just below the surface of quiet waters. They consist primarily of leaf-like assimilatory organs, or fronds, that reproduce mainly by vegetative replication. Despite their diminutive size and inornate habit, duckweeds have been able to colonize and maintain themselves in almost all of the world’s climate zones. They are thereby subject to multiple adverse influences during the growing season, such as high temperatures, extremes of light intensity and pH, nutrient shortage, damage by microorganisms and herbivores, the presence of harmful substances in the water, and competition from other aquatic plants, and they must also be able to withstand winter cold and drought that can be lethal to the fronds. This review discusses the means by which duckweeds come to grips with these adverse influences to ensure their survival. Important duckweed attributes in this regard are a pronounced potential for rapid growth and frond replication, a juvenile developmental status facilitating adventitious organ formation, and clonal diversity. Duckweeds have specific features at their disposal for coping with particular environmental difficulties and can also cooperate with other organisms of their surroundings to improve their survival chances. |
---|---|
AbstractList | Duckweeds (Lemnaceae) are small, simply constructed aquatic higher plants that grow on or just below the surface of quiet waters. They consist primarily of leaf-like assimilatory organs, or fronds, that reproduce mainly by vegetative replication. Despite their diminutive size and inornate habit, duckweeds have been able to colonize and maintain themselves in almost all of the world's climate zones. They are thereby subject to multiple adverse influences during the growing season, such as high temperatures, extremes of light intensity and pH, nutrient shortage, damage by microorganisms and herbivores, the presence of harmful substances in the water, and competition from other aquatic plants, and they must also be able to withstand winter cold and drought that can be lethal to the fronds. This review discusses the means by which duckweeds come to grips with these adverse influences to ensure their survival. Important duckweed attributes in this regard are a pronounced potential for rapid growth and frond replication, a juvenile developmental status facilitating adventitious organ formation, and clonal diversity. Duckweeds have specific features at their disposal for coping with particular environmental difficulties and can also cooperate with other organisms of their surroundings to improve their survival chances. Duckweeds (Lemnaceae) are small, simply constructed aquatic higher plants that grow on or just below the surface of quiet waters. They consist primarily of leaf-like assimilatory organs, or fronds, that reproduce mainly by vegetative replication. Despite their diminutive size and inornate habit, duckweeds have been able to colonize and maintain themselves in almost all of the world's climate zones. They are thereby subject to multiple adverse influences during the growing season, such as high temperatures, extremes of light intensity and pH, nutrient shortage, damage by microorganisms and herbivores, the presence of harmful substances in the water, and competition from other aquatic plants, and they must also be able to withstand winter cold and drought that can be lethal to the fronds. This review discusses the means by which duckweeds come to grips with these adverse influences to ensure their survival. Important duckweed attributes in this regard are a pronounced potential for rapid growth and frond replication, a juvenile developmental status facilitating adventitious organ formation, and clonal diversity. Duckweeds have specific features at their disposal for coping with particular environmental difficulties and can also cooperate with other organisms of their surroundings to improve their survival chances.Duckweeds (Lemnaceae) are small, simply constructed aquatic higher plants that grow on or just below the surface of quiet waters. They consist primarily of leaf-like assimilatory organs, or fronds, that reproduce mainly by vegetative replication. Despite their diminutive size and inornate habit, duckweeds have been able to colonize and maintain themselves in almost all of the world's climate zones. They are thereby subject to multiple adverse influences during the growing season, such as high temperatures, extremes of light intensity and pH, nutrient shortage, damage by microorganisms and herbivores, the presence of harmful substances in the water, and competition from other aquatic plants, and they must also be able to withstand winter cold and drought that can be lethal to the fronds. This review discusses the means by which duckweeds come to grips with these adverse influences to ensure their survival. Important duckweed attributes in this regard are a pronounced potential for rapid growth and frond replication, a juvenile developmental status facilitating adventitious organ formation, and clonal diversity. Duckweeds have specific features at their disposal for coping with particular environmental difficulties and can also cooperate with other organisms of their surroundings to improve their survival chances. |
Audience | Academic |
Author | Appenroth, Klaus J. Ziegler, Paul Sree, K. Sowjanya |
AuthorAffiliation | 3 Department of Environmental Science, Central University of Kerala, Periye 671320, India 2 Matthias Schleiden Institute—Plant Physiology, University of Jena, 07743 Jena, Germany; klaus.appenroth@uni-jena.de 1 Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany; paul.ziegler@uni-bayreuth.de |
AuthorAffiliation_xml | – name: 3 Department of Environmental Science, Central University of Kerala, Periye 671320, India – name: 2 Matthias Schleiden Institute—Plant Physiology, University of Jena, 07743 Jena, Germany; klaus.appenroth@uni-jena.de – name: 1 Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany; paul.ziegler@uni-bayreuth.de |
Author_xml | – sequence: 1 givenname: Paul surname: Ziegler fullname: Ziegler, Paul – sequence: 2 givenname: Klaus J. orcidid: 0000-0002-6385-6645 surname: Appenroth fullname: Appenroth, Klaus J. – sequence: 3 givenname: K. Sowjanya surname: Sree fullname: Sree, K. Sowjanya |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37299193$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUltvFCEYnZgaW2tffTST-KKJW7kO8GQ2rZdNmpi4Gh8Jw2VKnRm2wKz65t_w7_lLpLu1dpsYgQCBc87Hd_geVntjGG1VPYbgGGMBXq56NeYEEYQIQXqvOkAI4RljhO3d2u9XRyldgNJ4GbB5UO1jhoSAAh9Up8sprv1a9fUyR5Vt522qg6tPJ_3lq7Umvajzua0_h9ibXz9-pno5qL63KdfzsfMhrWwc0qPqvlN9skfX62H16c3rjyfvZmfv3y5O5mczTQXMs1YzxSl2VpvWEMJEyyFogeKuzBC30CCtGsIMw8gAYihBpsGIOWANMMbiw2qx1TVBXchV9IOK32VQXm4OQuykitnr3kpCOXMW84Y7RIymrSrxBGso15Ryx4vWq63WamoHa7QdS_79jujuzejPZRfWEgJEKWpwUXh2rRDD5VQskYNP2vblU2yYksSAAEIFwuK_UMQRaQQWHBTo0zvQizDFsdi6QQECm43g8RbVqZKsH10ob9SlGzt4XarE-XI-ZxQR1jQcFcLzHULBZPstd2pKSS6WH3axT25bc-PJn6r5G13HkFK07gYCgbyqTLlbmYVA7hC0zyr7cGWt7_9F-w2MgObV |
CitedBy_id | crossref_primary_10_1002_pld3_70048 crossref_primary_10_3390_plants13212993 crossref_primary_10_1002_ece3_11599 crossref_primary_10_1038_s41598_024_75232_4 crossref_primary_10_3390_biom14060628 crossref_primary_10_3390_horticulturae11010020 crossref_primary_10_1007_s00425_024_04534_8 crossref_primary_10_3989_dra_2023_010 crossref_primary_10_15407_ukrbotj81_01_040 crossref_primary_10_1111_ppl_70137 crossref_primary_10_3390_plants13020215 crossref_primary_10_1093_jxb_erad499 crossref_primary_10_1016_j_jenvman_2024_121721 crossref_primary_10_15407_frg2023_04_344 crossref_primary_10_1093_aob_mcae059 crossref_primary_10_3390_plants13182607 crossref_primary_10_3390_w17060830 crossref_primary_10_3390_agronomy14040726 crossref_primary_10_3390_plants12183307 crossref_primary_10_1007_s11258_024_01436_3 crossref_primary_10_3390_plants13010057 crossref_primary_10_1002_tqem_70062 crossref_primary_10_3390_horticulturae10060562 crossref_primary_10_1016_j_foodchem_2024_141544 crossref_primary_10_15407_ukrbotj81_06_408 crossref_primary_10_1590_1809_4392202303020 |
Cites_doi | 10.1038/s41579-020-0412-1 10.1042/bj0940768 10.1614/WS-06-002R.1 10.1042/bj1160569 10.1007/s00344-023-10954-9 10.1111/nph.16056 10.1038/s41467-019-09796-5 10.1007/s10530-016-1293-0 10.1086/378650 10.1371/journal.pone.0013527 10.1111/mec.16757 10.1007/978-3-030-11045-1 10.1104/pp.81.1.285 10.1093/pcp/pcq199 10.1071/BI9720707 10.1039/D0RA06741E 10.2323/jgam.2018.08.002 10.1016/j.chemosphere.2018.03.175 10.1016/S0168-9452(03)00334-0 10.1111/njb.02658 10.5004/dwt.2017.0479 10.1562/0031-8655(2001)073<0077:LISDIN>2.0.CO;2 10.1111/nph.18844 10.7717/peerj.12698 10.1016/j.plantsci.2010.08.009 10.1007/s00248-019-01452-1 10.1016/j.aquabot.2018.01.002 10.1111/j.1365-2427.1976.tb01596.x 10.1104/pp.118.3.1015 10.1016/j.aquabot.2012.08.002 10.1093/jxb/37.7.1020 10.1038/s41598-017-03240-8 10.1016/j.ecoenv.2004.11.003 10.1098/rsbl.2018.0703 10.1016/S0176-1617(11)80460-8 10.1104/pp.43.8.1309 10.1104/pp.111.175281 10.1016/S0176-1617(11)80542-0 10.1080/15592324.2022.2058256 10.1016/j.indcrop.2022.115098 10.1093/evlett/qrac003 10.3389/fchem.2018.00317 10.1016/S0176-1617(86)80050-5 10.1055/s-2002-37406 10.1590/1519-6984.06213 10.1093/femsec/fiaa101 10.1371/journal.pone.0228560 10.1016/j.ijbiomac.2022.11.139 10.1093/glycob/cww012 10.1016/j.tplants.2021.08.011 10.5586/asbp.1967.008 10.1111/ppl.12065 10.1016/j.indcrop.2021.113529 10.1016/j.plaphy.2014.11.007 10.1021/es1007017 10.1111/j.1751-1097.1990.tb01756.x 10.1002/fedr.202200001 10.1046/j.1365-3040.2002.00885.x 10.1016/j.aquatox.2020.105550 10.1104/pp.46.4.609 10.1111/j.1438-8677.2010.00394.x 10.1016/j.envpol.2016.04.019 10.1093/oxfordjournals.pcp.a077179 10.1186/1471-2164-15-60 10.5586/asbp.1963.011 10.1002/ece3.9459 10.3390/plants11212915 10.1055/s-2005-873009 10.1104/pp.54.6.904 10.1111/plb.12184 10.1016/j.aquabot.2009.11.005 10.3389/fpls.2021.697206 10.1007/s11356-018-3427-7 10.1016/j.isci.2022.104634 10.3389/fpls.2022.963579 10.1104/pp.108.2.623 10.1007/s00128-015-1575-8 10.1111/nph.18453 10.1111/plb.12154 10.3390/molecules27113428 10.1074/jbc.M116.749069 10.1093/plcell/koab189 10.1007/BF00387140 10.1002/ecy.2657 10.1007/s11258-014-0430-z 10.1007/s11356-015-4138-y 10.1007/BF00384758 10.1016/S0168-9452(97)00151-9 10.2307/1948596 10.3390/plants11202674 10.1007/s00425-015-2264-x 10.1104/pp.77.3.770 10.1007/s10750-022-04881-1 10.1101/gad.1589007 10.3389/fpls.2020.00618 10.3390/microorganisms9061133 10.1007/s00248-018-1306-x 10.1016/j.aquabot.2019.01.001 10.1002/j.1537-2197.1978.tb06088.x 10.1007/s11738-015-1951-3 10.1002/tox.20079 10.1016/j.aquatox.2007.05.004 10.5586/asbp.1979.006 10.1016/j.aquabot.2018.06.002 10.1016/S0960-8524(99)00137-6 10.1016/j.aquatox.2020.105710 10.1016/j.bcab.2019.101146 10.1016/j.aquabot.2018.04.011 10.1098/rsos.230090 10.1016/0304-4165(95)00185-9 10.1002/ajb2.16117 10.1515/znb-1965-0110 10.1007/s10725-018-0428-y 10.1093/oxfordjournals.aob.a088011 10.1007/BF02821835 10.3390/cells11071167 10.2307/3392157 10.1111/j.1438-8677.2012.00637.x 10.3390/plants11233317 10.1111/plb.12182 10.1016/S0176-1617(89)80230-5 10.3390/plants11233326 10.1016/S0044-328X(78)80130-5 10.1080/10643389.2012.710451 10.1016/j.toxicon.2006.11.017 10.1016/j.aquabot.2023.103633 10.3390/genes10100743 10.1186/s12870-016-0774-8 10.1080/02772248.2015.1094701 10.3389/fsufs.2019.00117 10.1264/jsme2.ME20112 10.1016/j.flora.2018.09.004 10.1016/j.aquabot.2012.05.007 10.3390/plants11111468 10.1111/j.0031-9317.2004.0231.x 10.3390/plants9050599 10.1016/S0176-1617(88)80189-5 10.3389/fchem.2018.00207 10.5962/p.355648 10.3390/plants10122639 10.1007/s10530-021-02530-7 10.1007/BF00385759 10.3390/plants11223033 10.3389/fpls.2022.1065199 10.15666/aeer/0901_017026 10.1093/oxfordjournals.pcp.a075327 10.1007/BF02890887 10.1016/j.carbpol.2019.115119 10.1104/pp.54.6.899 10.1007/s00425-017-2837-y 10.1007/s10725-022-00948-0 10.1016/j.aquatox.2017.09.023 10.1016/S0176-1617(89)80118-X 10.1002/fes3.244 10.1111/nph.18941 10.1002/tax.12188 10.1016/j.chemosphere.2017.09.146 10.1016/j.jenvman.2018.01.077 10.2307/1934824 10.1016/j.aquabot.2013.07.001 10.1078/0176-1617-01035 10.1016/j.ecoenv.2019.109668 10.1016/j.jgg.2022.04.017 10.3390/cells10061481 10.1016/j.flora.2014.10.006 10.1111/j.1399-3054.2009.01319.x 10.1002/ps.7008 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM ISR 3V. 7SN 7SS 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/plants12112215 |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed Agricultural Science Database CrossRef MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2223-7747 |
ExternalDocumentID | oai_doaj_org_article_4587fe3868f24dc5ba47997658c558f8 PMC10255263 A752476682 37299193 10_3390_plants12112215 |
Genre | Journal Article Review |
GeographicLocations | Germany India |
GeographicLocations_xml | – name: Germany – name: India |
GroupedDBID | 53G 5VS 7X2 7XC 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ HYE IAG IAO IGH ISR ITC KQ8 LK8 M0K M48 M7P MODMG M~E OK1 OZF PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RPM NPM PMFND 3V. 7SN 7SS 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c591t-bc7a853fecdbd4479b810b0a8f0b013b1d2ca647d732d04d542d6327f0ed0dde3 |
IEDL.DBID | BENPR |
ISSN | 2223-7747 |
IngestDate | Wed Aug 27 01:22:23 EDT 2025 Thu Aug 21 18:37:58 EDT 2025 Fri Jul 11 15:12:18 EDT 2025 Fri Jul 11 11:26:33 EDT 2025 Fri Jul 25 11:45:48 EDT 2025 Tue Jun 10 21:06:26 EDT 2025 Fri Jun 27 06:05:04 EDT 2025 Thu Jan 02 22:51:26 EST 2025 Tue Jul 01 02:33:29 EDT 2025 Thu Apr 24 22:57:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Lemnaceae biotic stress abiotic stress duckweed turion |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c591t-bc7a853fecdbd4479b810b0a8f0b013b1d2ca647d732d04d542d6327f0ed0dde3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6385-6645 |
OpenAccessLink | https://www.proquest.com/docview/2824041639?pq-origsite=%requestingapplication% |
PMID | 37299193 |
PQID | 2824041639 |
PQPubID | 2032347 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4587fe3868f24dc5ba47997658c558f8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10255263 proquest_miscellaneous_3040459239 proquest_miscellaneous_2824693980 proquest_journals_2824041639 gale_infotracacademiconefile_A752476682 gale_incontextgauss_ISR_A752476682 pubmed_primary_37299193 crossref_primary_10_3390_plants12112215 crossref_citationtrail_10_3390_plants12112215 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-03 |
PublicationDateYYYYMMDD | 2023-06-03 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Plants (Basel) |
PublicationTitleAlternate | Plants (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Beck (ref_85) 1965; 20 Morita (ref_63) 1996; 1290 Bog (ref_12) 2020; 38 ref_132 Czopek (ref_162) 1967; 36 Appenroth (ref_173) 2002; 4 Yamaga (ref_104) 2010; 44 Trivedi (ref_99) 2020; 18 Coughlan (ref_34) 2015; 17 Appenroth (ref_180) 2013; 15 Shi (ref_125) 2020; 225 Das (ref_167) 1969; 10 Sun (ref_76) 2023; 238 Rinne (ref_177) 2011; 180 Hereman (ref_143) 2014; 74 Augsten (ref_182) 1988; 132 Appenroth (ref_137) 1990; 32 Inhuelsen (ref_68) 1975; 124 Olah (ref_131) 2014; 58 Bartley (ref_172) 1987; 27 ref_123 Appenroth (ref_190) 2021; 9 Smart (ref_164) 1983; 6 Armitage (ref_154) 2019; 100 Smart (ref_168) 1995; 108 Appenroth (ref_170) 1990; 66 Tan (ref_94) 2018; 14 ref_71 Kandeler (ref_9) 1988; 26 Paolacci (ref_44) 2021; 23 Reid (ref_59) 1970; 46 Pieterse (ref_198) 1976; 17 Ishizawa (ref_101) 2020; 35 Sagrane (ref_148) 2007; 85 Kovats (ref_151) 2011; 9 Pieterse (ref_194) 1977; 18 Tang (ref_126) 2015; 22 Ovodova (ref_89) 2000; 26 Wang (ref_133) 2022; 78 Liebert (ref_145) 2000; 74 ref_82 Knypl (ref_61) 1979; 48 Appenroth (ref_174) 2003; 165 Landolt (ref_33) 1997; 63 Yang (ref_149) 2021; 231 Sree (ref_18) 2015; 37 Ziegler (ref_118) 2019; 26 Appenroth (ref_159) 1993; 141 Cleland (ref_199) 1974; 54 Hase (ref_66) 2004; 120 Tanaka (ref_196) 1979; 20 Jacobs (ref_32) 1947; 17 Maheshwari (ref_192) 1966; 55 Reid (ref_58) 1970; 94 Sree (ref_189) 2015; 210 Appenroth (ref_155) 2022; 78 (ref_161) 1970; 39 Cleland (ref_193) 1974; 54 Paolacci (ref_139) 2018; 6 Zhao (ref_74) 2015; 86 Kirecci (ref_93) 2010; 34 ref_203 Treutter (ref_96) 2005; 7 Pieterse (ref_185) 2013; 104 Ishizawa (ref_110) 2020; 96 Haigh (ref_5) 2023; 110 Smart (ref_158) 1983; 6 Pasaribu (ref_184) 2023; 239 Khurana (ref_195) 1986; 27 Borisjuk (ref_54) 2018; 6 ref_115 ref_119 Xu (ref_27) 2019; 10 Les (ref_62) 1999; 9 ref_111 ref_112 Yoshida (ref_201) 2021; 12 Bog (ref_13) 2019; 3 Muranaka (ref_202) 2022; 25 Koschnick (ref_130) 2006; 54 Bieleski (ref_67) 1968; 43 Les (ref_38) 2003; 164 ref_103 ref_106 Hicks (ref_56) 1932; 32 Yamakawa (ref_105) 2018; 86 Appenroth (ref_175) 2015; 17 Ziegler (ref_10) 2016; 98 ref_102 Appenroth (ref_100) 2016; 27 Firmin (ref_77) 2022; 27 Shang (ref_49) 2023; 225 Kobayashi (ref_200) 2007; 21 Adamec (ref_157) 2018; 148 Appenroth (ref_165) 2002; 25 Jewell (ref_156) 2023; 186 Appenroth (ref_166) 2010; 138 Brain (ref_117) 2008; 198 Xu (ref_120) 2018; 190 ref_14 Keddy (ref_31) 1976; 57 Burns (ref_128) 2015; 95 Baggs (ref_83) 2022; 236 Zhao (ref_127) 2018; 203 Jang (ref_152) 2007; 49 Fu (ref_204) 2017; 7 ref_16 Rimon (ref_188) 1968; 18 ref_15 Bergmann (ref_23) 2000; 73 Appenroth (ref_191) 2022; 10 Smith (ref_87) 2016; 291 Shuvro (ref_108) 2023; 100 Nakazato (ref_65) 1998; 118 Mkandawire (ref_116) 2014; 44 ref_24 Newton (ref_181) 1978; 65 Smith (ref_40) 2014; 112 Appenroth (ref_163) 1989; 135 Bog (ref_8) 2020; 69 Shen (ref_107) 2019; 65 Borstlap (ref_81) 1986; 37 Lee (ref_98) 2022; 12 Ceschin (ref_42) 2018; 150 Appenroth (ref_171) 2003; 160 Ley (ref_179) 1997; 129 Paolacci (ref_46) 2018; 249 (ref_95) 2022; 27 Appenroth (ref_183) 1990; 52 Sree (ref_22) 2022; 34 Pagliuso (ref_97) 2020; 10 Dan (ref_153) 2022; 17 Sun (ref_72) 2022; 185 Krzeslowska (ref_122) 2016; 214 Topp (ref_20) 2011; 13 Beck (ref_88) 1967; 57 LeBlanc (ref_150) 2005; 20 Nakazato (ref_64) 1997; 35 Kufel (ref_39) 2010; 92 Douhovnikoff (ref_28) 2015; 216 Bafort (ref_30) 2023; 7 Sree (ref_21) 2015; 241 Ishizawa (ref_113) 2019; 19 Paolacci (ref_36) 2023; 10 Acosta (ref_4) 2021; 33 Ho (ref_26) 2019; 224 Faerber (ref_197) 1989; 135 Ziegler (ref_17) 2015; 17 Prelovsek (ref_29) 2023; 32 Picmanova (ref_86) 2016; 26 Cheng (ref_19) 2009; 37 Strzalek (ref_52) 2021; 9 Novacky (ref_78) 1978; 139 ref_51 Scheiner (ref_69) 1978; 88 Pham (ref_144) 2018; 213 Shi (ref_50) 2022; 49 Bich (ref_142) 2013; 32 ref_169 Coughlan (ref_37) 2017; 19 Zhang (ref_134) 2020; 11 Hart (ref_91) 1970; 116 Frick (ref_75) 1994; 144 Silva (ref_35) 2018; 14 Paterson (ref_57) 2020; 9 Kuehdorf (ref_25) 2014; 150 Czopek (ref_136) 1963; 32 Henssen (ref_176) 1954; 141 Pip (ref_53) 1986; 100 Datko (ref_79) 1985; 77 Bieleski (ref_60) 1972; 25 Datko (ref_80) 1986; 81 Strzalek (ref_140) 2019; 154 Szabo (ref_138) 2022; 13 Faerber (ref_135) 1986; 124 Bich (ref_141) 2012; 103 Paolacci (ref_45) 2018; 146 Ishizawa (ref_109) 2019; 77 Wan (ref_147) 2019; 185 Huang (ref_121) 2022; 13 Mitrovic (ref_146) 2005; 61 Ziegler (ref_11) 2017; 63 Wersal (ref_129) 2021; 59 Appenroth (ref_160) 2011; 52 Landolt (ref_47) 1957; 67 Sowinski (ref_90) 2019; 223 Fedoniuk (ref_43) 2022; 133 Laurich (ref_114) 2020; 80 Smith (ref_41) 2022; 849 ref_187 ref_1 ref_3 ref_2 Li (ref_73) 2021; 167 Avci (ref_92) 2018; 247 Appenroth (ref_178) 2001; 73 ref_48 Zhao (ref_124) 2017; 192 Plaxton (ref_70) 2011; 156 McLay (ref_55) 1976; 6 ref_7 ref_6 Duff (ref_84) 1965; 94 Kandeler (ref_186) 1984; 24 |
References_xml | – volume: 18 start-page: 607 year: 2020 ident: ref_99 article-title: Plant-microbiome interactions: From community assembly to plant health publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-0412-1 – volume: 94 start-page: 768 year: 1965 ident: ref_84 article-title: The occurrence of apiose in Lemna (duckweed) and other angiosperms publication-title: Biochem. J. doi: 10.1042/bj0940768 – volume: 54 start-page: 615 year: 2006 ident: ref_130 article-title: Documentation of Landoltia (Landoltia punctata) resistance to diquat publication-title: Weed Sci. doi: 10.1614/WS-06-002R.1 – volume: 116 start-page: 569 year: 1970 ident: ref_91 article-title: Isolation and partial characterization of apigalacturonans from the cell wall of Lemna minor publication-title: Biochem. J. doi: 10.1042/bj1160569 – ident: ref_112 doi: 10.1007/s00344-023-10954-9 – volume: 224 start-page: 1361 year: 2019 ident: ref_26 article-title: Population genomics of the facultatively asexual duckweed Spirodela polyrhiza publication-title: New Phytol. doi: 10.1111/nph.16056 – volume: 10 start-page: 1857 year: 2019 ident: ref_27 article-title: Low genetic variation is associated with low mutation rate in the giant duckweed publication-title: Nat. Commun. doi: 10.1038/s41467-019-09796-5 – volume: 19 start-page: 625 year: 2017 ident: ref_37 article-title: “Step by step”: High frequency short-distance epizoochorous dispersal of aquatic macrophytes publication-title: Biol. Invasions doi: 10.1007/s10530-016-1293-0 – volume: 164 start-page: 917 year: 2003 ident: ref_38 article-title: Biogeography of discontinuously distributed hydrophytes: A molecular appraisal of intercontinental disjunctions publication-title: Int. J. Plant Sci. doi: 10.1086/378650 – ident: ref_82 doi: 10.1371/journal.pone.0013527 – volume: 74 start-page: 100 year: 2000 ident: ref_145 article-title: Influence of microcystin-RR on growth and photosynthetic capacity of the duckweed Lemna minor L. publication-title: J. Appl. Bot. – volume: 32 start-page: 428 year: 2023 ident: ref_29 article-title: DNA methylation in clonal duckweed (Lemna minor L.) lineages reflects current and historical environmental exposures publication-title: Mol. Ecol. doi: 10.1111/mec.16757 – volume: 9 start-page: 5 year: 2021 ident: ref_190 article-title: Historical account: Riklef Kandeler (1927–2015) publication-title: Duckweed Forum – ident: ref_7 doi: 10.1007/978-3-030-11045-1 – ident: ref_203 doi: 10.1007/978-3-030-11045-1 – volume: 81 start-page: 285 year: 1986 ident: ref_80 article-title: Uptake of choline and ethanolamine by Lemna paucicostata Hegelm. 6746 publication-title: Plant Physiol. doi: 10.1104/pp.81.1.285 – volume: 52 start-page: 384 year: 2011 ident: ref_160 article-title: Light-induced degradation of starch granules in turions of Spirodela polyrhiza studied by electron microscopy publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcq199 – volume: 25 start-page: 707 year: 1972 ident: ref_60 article-title: The external location of phosphatase activity in phosphorus-deficient Spirodela oligorrhiza publication-title: Aust. J. Biol. Sci. doi: 10.1071/BI9720707 – volume: 10 start-page: 44981 year: 2020 ident: ref_97 article-title: Flavonoids from duckweeds: Potential applications in the human diet publication-title: RSC Adv. doi: 10.1039/D0RA06741E – ident: ref_48 – volume: 65 start-page: 151 year: 2019 ident: ref_107 article-title: Combination of heterotrophic nitrifying bacterium and duckweed (Lemna gibba L.) enhances ammonium nitrogen removal efficiency in aquaculture water via mutual growth promotion publication-title: J. Gen. Appl. Microbiol. doi: 10.2323/jgam.2018.08.002 – volume: 203 start-page: 76 year: 2018 ident: ref_127 article-title: Duckweed diversity decreases heavy metal toxicity by altering the metabolic function of associated microbial communities publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.03.175 – volume: 165 start-page: 1261 year: 2003 ident: ref_174 article-title: Ion antagonism between calcium and magnesium in phytochrome-mediated degradation of storage starch in Spirodela polyrhiza publication-title: Plant Sci. doi: 10.1016/S0168-9452(03)00334-0 – volume: 24 start-page: 113 year: 1984 ident: ref_186 article-title: Flowering in the Lemna system publication-title: Phyton – volume: 34 start-page: 24 year: 2022 ident: ref_22 article-title: Starch accumulation in duckweeds (Lemnaceae) induced by nutrient deficiency publication-title: Emir. J Food Agric. – volume: 38 start-page: e02658 year: 2020 ident: ref_12 article-title: Key to the determination of taxa of Lemnaceae: An update publication-title: Nordic J. Bot. doi: 10.1111/njb.02658 – volume: 63 start-page: 327 year: 2017 ident: ref_11 article-title: The uses of duckweed in relation to water remediation publication-title: Desalination Water Treat. doi: 10.5004/dwt.2017.0479 – volume: 73 start-page: 77 year: 2001 ident: ref_178 article-title: Light-induced starch degradation in non-dormant turions of Spirodela polyrhiza publication-title: Photochem. Photobiol. doi: 10.1562/0031-8655(2001)073<0077:LISDIN>2.0.CO;2 – volume: 238 start-page: 1386 year: 2023 ident: ref_76 article-title: Metabolic flexibility during a trophic transition reveals the phenotypic plasticity of greater duckweed (Spirodela polyrhiza 7498) publication-title: New Phytol. doi: 10.1111/nph.18844 – volume: 9 start-page: e21698 year: 2021 ident: ref_52 article-title: Light intensity drives different growth strategies in two duckweed species: Lemna minor L. and Spirodela polyrhiza (L.) Schleiden publication-title: PeerJ doi: 10.7717/peerj.12698 – volume: 180 start-page: 120 year: 2011 ident: ref_177 article-title: Dormancy cycling at the shoot apical meristem: Transitioning between self-organisation and self-arrest publication-title: Plant Sci. doi: 10.1016/j.plantsci.2010.08.009 – volume: 80 start-page: 384 year: 2020 ident: ref_114 article-title: Mutualistic outcomes across plant populations, microbes, and environments in the duckweed Lemna minor publication-title: Microb. Ecol. doi: 10.1007/s00248-019-01452-1 – volume: 146 start-page: 8 year: 2018 ident: ref_45 article-title: The invasive duckweed Lemna minuta Kunth displays a different light utilization strategy than native Lemna minor Linnaeus publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2018.01.002 – ident: ref_3 – volume: 6 start-page: 125 year: 1976 ident: ref_55 article-title: The effect of pH on the population growth of three species of duckweed: Spirodela oligorrhiza, Lemna minor and Wolffia arrhiza publication-title: Freshw. Biol. doi: 10.1111/j.1365-2427.1976.tb01596.x – volume: 118 start-page: 1015 year: 1998 ident: ref_65 article-title: The glycosylposphatidylinositol-anchored phosphatase from Spirodela oligorrhiza is a purple acid phosphatase publication-title: Plant Physiol. doi: 10.1104/pp.118.3.1015 – volume: 104 start-page: 1 year: 2013 ident: ref_185 article-title: Is flowering in Lemnaceae stress-induced? A review publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2012.08.002 – volume: 37 start-page: 1020 year: 1986 ident: ref_81 article-title: Kinetics and specificity of amino acid uptake by the duckweed Spirodela polyrhiza (L.) Schleiden publication-title: J. Exp. Bot. doi: 10.1093/jxb/37.7.1020 – volume: 7 start-page: 3047 year: 2017 ident: ref_204 article-title: Flower induction, microscope-aided cross-pollination, and seed production in the duckweed Lemna gibba with discovery of a male-sterile clone publication-title: Sci. Rep. doi: 10.1038/s41598-017-03240-8 – volume: 61 start-page: 345 year: 2005 ident: ref_146 article-title: Bioaccumulation and harmful effects of microcystin-LR in the aquatic plants Lemna minor and Wolffia arrhiza and the filamentous alga Cladophora fracta publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2004.11.003 – volume: 26 start-page: 347 year: 1988 ident: ref_9 article-title: Überlebensstrategien bei Wasserlinsen publication-title: Biol. Rundsch. – volume: 14 start-page: 20180703 year: 2018 ident: ref_35 article-title: Whole angiosperms Wolffia columbiana disperse by gut passage through wildfowl in South America publication-title: Biol. Lett. doi: 10.1098/rsbl.2018.0703 – volume: 141 start-page: 583 year: 1993 ident: ref_159 article-title: Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. XI. Structural changes during red light induced responses publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(11)80460-8 – volume: 43 start-page: 1309 year: 1968 ident: ref_67 article-title: L Effect of phosphorus deficiency on levels of phosphorus compounds in Spirodela publication-title: Plant Physiol. doi: 10.1104/pp.43.8.1309 – volume: 156 start-page: 1006 year: 2011 ident: ref_70 article-title: Metabolic adaptations of phosphate-starved plants publication-title: Plant Physiol. doi: 10.1104/pp.111.175281 – volume: 144 start-page: 189 year: 1994 ident: ref_75 article-title: Heterotrophy in the Lemnaceae publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(11)80542-0 – volume: 17 start-page: e2058256 year: 2022 ident: ref_153 article-title: Allelopathic inhibition of the extracts of Landoltia punctata on Microcystis aeruginosa publication-title: Plant Signal. Behav. doi: 10.1080/15592324.2022.2058256 – volume: 27 start-page: 94 year: 2016 ident: ref_100 article-title: Duckweed as a model organism for investigating plant-microbe interactions in an aquatic environment and its applications publication-title: Endocytobiosis Cell Res. – volume: 185 start-page: 115098 year: 2022 ident: ref_72 article-title: Sulfur limitation boosts more starch accumulation than nitrogen or phosphorus in duckweed (Spirodela polyrhiza) publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2022.115098 – volume: 7 start-page: 37 year: 2023 ident: ref_30 article-title: The immediate effects of polyploidization of Spirodela polrhiza change in a strain-specific way along environmental gradients publication-title: Evol. Lett. doi: 10.1093/evlett/qrac003 – volume: 14 start-page: 387 year: 2018 ident: ref_94 article-title: Antibacterial activity and toxicity of duckweed, Lemna minor L. (Arales: Lemnaceae) from Malaysia publication-title: Malays. J. Microbiol. – volume: 6 start-page: 317 year: 2018 ident: ref_54 article-title: Structural and biochemical properties of duckweed surface cuticle publication-title: Front. Chem. doi: 10.3389/fchem.2018.00317 – volume: 124 start-page: 379 year: 1986 ident: ref_135 article-title: Ethylene production and overcrowding in Lemnaceae publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(86)80050-5 – volume: 4 start-page: 688 year: 2002 ident: ref_173 article-title: Clonal differences in the formation of turions are independent of the specific turion-inducing signal in Spirodela polyrhiza (Great Duckweed) publication-title: Plant Biol. doi: 10.1055/s-2002-37406 – volume: 74 start-page: 753 year: 2014 ident: ref_143 article-title: Phytotoxicity associated to microcystins: A review publication-title: Braz. J. Biol. doi: 10.1590/1519-6984.06213 – volume: 96 start-page: fiaa101 year: 2020 ident: ref_110 article-title: Community dynamics of duckweed-associated bacteria upon inoculation of plant growth-promoting bacteria publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiaa101 – ident: ref_102 doi: 10.1371/journal.pone.0228560 – volume: 225 start-page: 767 year: 2023 ident: ref_49 article-title: Transcriptome analysis reveals gene expression pattern of Spirodela polyrhiza response to heat stress publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.11.139 – volume: 26 start-page: 430 year: 2016 ident: ref_86 article-title: Apiose: One of nature’s witty games publication-title: Glycobiology doi: 10.1093/glycob/cww012 – volume: 27 start-page: 147 year: 2022 ident: ref_77 article-title: Mixotrophy in aquatic plants, an overlooked ability publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2021.08.011 – volume: 36 start-page: 87 year: 1967 ident: ref_162 article-title: Photosynthesis and respiration of turions and vegetative fronds of Spirodela polyrrhiza publication-title: Acta Soc. Bot. Pol. doi: 10.5586/asbp.1967.008 – volume: 150 start-page: 46 year: 2014 ident: ref_25 article-title: The clonal dependence of turion formation in the duckweed Spirodela polyrhiza—An ecogeographical approach publication-title: Physiol. Plant. doi: 10.1111/ppl.12065 – volume: 167 start-page: 113529 year: 2021 ident: ref_73 article-title: High starch accumulation mechanism and phosphorus utilization efficiency of duckweed (Landoltia punctata) under phosphate starvation publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2021.113529 – volume: 86 start-page: 72 year: 2015 ident: ref_74 article-title: Effect of nitrogen and phosphorus deficiency on transcriptional regulation of genes encoding key enzymes of starch metabolism in duckweed (Landoltia punctata) publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.11.007 – volume: 32 start-page: 213 year: 2013 ident: ref_142 article-title: Isolation and identification of an allelopathic substance from duckweed (Lemna minor L.) publication-title: Allelopath. J. – volume: 44 start-page: 6470 year: 2010 ident: ref_104 article-title: Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa publication-title: Environ. Sci. Technol. doi: 10.1021/es1007017 – volume: 39 start-page: 421 year: 1970 ident: ref_161 article-title: Characteristic of vegetative and resting forms in Wolffia arrhiza (L.) Wimm publication-title: Acta Soc. Bot. Pol. – volume: 52 start-page: 61 year: 1990 ident: ref_183 article-title: Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden–V. Demonstration of a calcium-requiring phase during phytochrome-mediated germination publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1990.tb01756.x – volume: 133 start-page: 305 year: 2022 ident: ref_43 article-title: Lemna aequinoctialis migrates further into temperate continental Europe—A new alien aquatic plant for the Ukraine publication-title: Feddes Repert. doi: 10.1002/fedr.202200001 – volume: 25 start-page: 1079 year: 2002 ident: ref_165 article-title: Co-action of temperature and phosphate in inducing turion formation in Spirodela polyrhiza (Great Duckweed) publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2002.00885.x – volume: 225 start-page: 105550 year: 2020 ident: ref_125 article-title: The change of accumulation of heavy metal drive interspecific facilitation und copper and cold stress publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2020.105550 – volume: 46 start-page: 609 year: 1970 ident: ref_59 article-title: Response of Spirodela oligorrhiza to phosphorus deficiency publication-title: Plant Physiol. doi: 10.1104/pp.46.4.609 – volume: 10 start-page: 270 year: 1969 ident: ref_167 article-title: Vegetative propagation in Spirodela polyrhiza publication-title: Trop. Ecol. – volume: 13 start-page: 517 year: 2011 ident: ref_20 article-title: A novel mechanism of abscission in fronds of Lemna minor L. and the effect of silver ions publication-title: Plant Biol. doi: 10.1111/j.1438-8677.2010.00394.x – volume: 214 start-page: 354 year: 2016 ident: ref_122 article-title: Pectinous cell wall thickenings formation—A common defense strategy to cope with Pb publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.04.019 – volume: 27 start-page: 919 year: 1986 ident: ref_195 article-title: A comparison of the effects of chelates, salicylic acid and benzoic acid on growth and flowering of Spirodela polyrrhiza publication-title: Plant Cell Physiol. doi: 10.1093/oxfordjournals.pcp.a077179 – ident: ref_169 doi: 10.1186/1471-2164-15-60 – volume: 32 start-page: 199 year: 1963 ident: ref_136 article-title: Studies on the external factors inducing the formation of turions in Spirodela polyrrhiza (L.) Schleiden publication-title: Acta Soc. Bot. Pol. doi: 10.5586/asbp.1963.011 – volume: 12 start-page: e9459 year: 2022 ident: ref_98 article-title: Flavone-associated resistance of two Lemna species to duckweed weevil attack publication-title: Ecol. Evol. doi: 10.1002/ece3.9459 – volume: 57 start-page: 444 year: 1967 ident: ref_88 article-title: Isolierung und Charakterisierung eines Apigalacturonans aus der Zellwand von Lemna minor publication-title: Z. Für Pflanzenphysiol. – ident: ref_103 doi: 10.3390/plants11212915 – volume: 78 start-page: 70 year: 2022 ident: ref_155 article-title: Das Comeback der Wasserlinsen publication-title: Nat. Rundsch. – volume: 7 start-page: 581 year: 2005 ident: ref_96 article-title: Significance of flavonoids in plant resistance and enhancement of their biosynthesis publication-title: Plant Biol. doi: 10.1055/s-2005-873009 – volume: 6 start-page: 515 year: 1983 ident: ref_158 article-title: Abscisic-acid-induced turion formation in Spirodela polyrrhiza L. II. Ultrastructure of the turion publication-title: Plant Cell Environ. – volume: 54 start-page: 904 year: 1974 ident: ref_193 article-title: Isolation and identification of the flower-inducing factor from aphid honeydew as being salicylic acid publication-title: Plant Physiol. doi: 10.1104/pp.54.6.904 – volume: 17 start-page: 33 year: 2015 ident: ref_17 article-title: Relative in vitro growth rates of duckweeds (Lemnaceae)—The most rapidly growing higher plants publication-title: Plant Biol. doi: 10.1111/plb.12184 – volume: 92 start-page: 168 year: 2010 ident: ref_39 article-title: The effect of Stratiotes aloides L. and nutrients on the growth rate of Lemna minor L. publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2009.11.005 – volume: 12 start-page: 697206 year: 2021 ident: ref_201 article-title: Characterization of frond and flower development and identification of FT and FD genes from duckweed Lemna aequinoctialis Nd publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.697206 – volume: 26 start-page: 14797 year: 2019 ident: ref_118 article-title: Duckweed biomarkers for identifying toxic water contaminants? publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-3427-7 – volume: 25 start-page: 104634 year: 2022 ident: ref_202 article-title: Circadian-period variation underlies the local adaptation of photoperiodism in the short-day plant Lemna aequinoctialis publication-title: iScience doi: 10.1016/j.isci.2022.104634 – volume: 13 start-page: 963579 year: 2022 ident: ref_138 article-title: The mechanisms sustaining a stable state of submerged macrophyte dominance against free-floating competitors publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.963579 – volume: 108 start-page: 623 year: 1995 ident: ref_168 article-title: The physiological role of abscisic acid in eliciting turion morphogenesis publication-title: Plant Physiol. doi: 10.1104/pp.108.2.623 – volume: 95 start-page: 150 year: 2015 ident: ref_128 article-title: Growth recovery of Lemna gibba and Lemna minor following a 7-day exposure to the herbicide diuron publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s00128-015-1575-8 – volume: 55 start-page: 89 year: 1966 ident: ref_192 article-title: Induction of flowering in Wolffia microscopica by the iron salt of ethylenediamine-di-o-hydroxyphenylacetic acid (Fe-EDDHA) publication-title: Z. Pflanzenphysiol. – volume: 20 start-page: 839 year: 1979 ident: ref_196 article-title: Inhibition of flowering in the long-day plant Lemna gibba G3 by Hutner’s medium and its reversal by salicylic acid publication-title: Plant Cell Physiol. – volume: 236 start-page: 1838 year: 2022 ident: ref_83 article-title: Characterization of defense responses against bacterial pathogens in duckweeds lacking EDS1 publication-title: New Phytol. doi: 10.1111/nph.18453 – ident: ref_2 – volume: 17 start-page: 125 year: 2015 ident: ref_175 article-title: Specific turion yields of different clones of Spirodela polyrhiza depend on external phosphate thresholds publication-title: Plant Biol. doi: 10.1111/plb.12154 – ident: ref_132 doi: 10.3390/molecules27113428 – volume: 291 start-page: 21434 year: 2016 ident: ref_87 article-title: Functional characterization of UDP-apiose synthases from bryophytes and green algae provides insight into the appearance of apiose-containing glycans during plant evolution publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.749069 – volume: 33 start-page: 3207 year: 2021 ident: ref_4 article-title: Return of the Lemnaceae: Duckweed as a model plant system in the genomics and postgenomics era publication-title: Plant Cell doi: 10.1093/plcell/koab189 – volume: 139 start-page: 149 year: 1978 ident: ref_78 article-title: Active hexose uptake in Lemna gibba G1 publication-title: Planta doi: 10.1007/BF00387140 – volume: 100 start-page: e02657 year: 2019 ident: ref_154 article-title: Negative frequency-dependent growth underlies the stable coexistence of two cosmopolitan aquatic plants publication-title: Ecology doi: 10.1002/ecy.2657 – volume: 216 start-page: 227 year: 2015 ident: ref_28 article-title: Epigenetics: A potential mechanism for clonal plant success publication-title: Plant Ecol. doi: 10.1007/s11258-014-0430-z – volume: 22 start-page: 9686 year: 2015 ident: ref_126 article-title: Effects of a rhizobacterium on the growth and chromium remediation by Lemna minor publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4138-y – volume: 6 start-page: 507 year: 1983 ident: ref_164 article-title: Abscisic-acid-induced turion formation in Spirodela polyrrhiza L. I. Production and development of the turion publication-title: Plant Cell Environ. – volume: 124 start-page: 159 year: 1975 ident: ref_68 article-title: Kondensierte Phosphate in Lemna minor L. und ihre Beziehungen zu den Nucleinsäuren publication-title: Planta doi: 10.1007/BF00384758 – volume: 129 start-page: 1 year: 1997 ident: ref_179 article-title: Carbohydrate metabolism as a possible physiological modulator of dormancy in turions of Spirodela polyrhiza (L.) Schleiden publication-title: Plant Sci. doi: 10.1016/S0168-9452(97)00151-9 – volume: 17 start-page: 437 year: 1947 ident: ref_32 article-title: An ecological life-history of Spirodela polyrhiza (Greater Duckweed) with emphasis on the turion phase publication-title: Ecol. Monogr. doi: 10.2307/1948596 – ident: ref_14 doi: 10.3390/plants11202674 – volume: 241 start-page: 1395 year: 2015 ident: ref_21 article-title: Natural variance in salt tolerance and induction of starch accumulation in duckweeds publication-title: Planta doi: 10.1007/s00425-015-2264-x – volume: 77 start-page: 770 year: 1985 ident: ref_79 article-title: Uptake of amino acids and other organic compounds by Lemna paucicostata Hegelm. 6746 publication-title: Plant Physiol. doi: 10.1104/pp.77.3.770 – volume: 849 start-page: 2595 year: 2022 ident: ref_41 article-title: The influence of light and nutrient availability on floating plant dominance in forested temporary and semipermanent wetlands publication-title: Hydrobiologia doi: 10.1007/s10750-022-04881-1 – ident: ref_1 – volume: 21 start-page: 2371 year: 2007 ident: ref_200 article-title: Move on up, it’s time for change—Mobile signals controlling photoperiod-dependent flowering publication-title: Genes Dev. doi: 10.1101/gad.1589007 – volume: 11 start-page: 618 year: 2020 ident: ref_134 article-title: Growth and morphological responses of duckweed to clonal fragmentation, nutrient availability, and population density publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00618 – volume: 27 start-page: 3465 year: 2022 ident: ref_95 article-title: Antibacterial activity of Lemna minor extracts against Pseudomonas fluorescens and safety evaluation in a zebrafish model publication-title: Saudi J. Biol. Sci. – ident: ref_106 doi: 10.3390/microorganisms9061133 – volume: 77 start-page: 440 year: 2019 ident: ref_109 article-title: Colonization and competition dynamics of plant growth-promoting/inhibiting bacteria in the phytosphere of the duckweed Lemna minor publication-title: Microb. Ecol. doi: 10.1007/s00248-018-1306-x – volume: 154 start-page: 45 year: 2019 ident: ref_140 article-title: How does Stratiotes aloides L. affect the growth and turion formation of Spirodela polyrhiza (L.) Schleiden? publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2019.01.001 – volume: 65 start-page: 421 year: 1978 ident: ref_181 article-title: Turion formation and germination in Spirodela polyrhiza publication-title: Am. J. Bot. doi: 10.1002/j.1537-2197.1978.tb06088.x – volume: 37 start-page: 17 year: 2009 ident: ref_19 article-title: Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed publication-title: Clean – volume: 32 start-page: 227 year: 1932 ident: ref_56 article-title: Ranges of pH-tolerance of the Lemnaceae publication-title: Ohio J. Sci. – volume: 37 start-page: 204 year: 2015 ident: ref_18 article-title: How fast can duckweeds grow? Species and clonal diversity of growth rates in the genus Wolffia (Lemnaceae) publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-015-1951-3 – volume: 20 start-page: 67 year: 2005 ident: ref_150 article-title: Allelopathic effects of the toxic cyanobacterium Microcystis aeruginosa on duckweed, Lemna gibba L. publication-title: Environ. Toxicol. doi: 10.1002/tox.20079 – volume: 85 start-page: 284 year: 2007 ident: ref_148 article-title: Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba: Microcystin accumulation, detoxification and oxidative stress induction publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2007.05.004 – ident: ref_187 – volume: 48 start-page: 65 year: 1979 ident: ref_61 article-title: Molecular forms of phosphatase and ribonuclease in phosphate deficient and N,N-dimethylmorpholinium chloride treated Spirodela olgorrhiza (Lemnaceae) publication-title: Acta Soc. Bot. Pol. doi: 10.5586/asbp.1979.006 – volume: 198 start-page: 49 year: 2008 ident: ref_117 article-title: Biomarkers in aquatic plants: Selection and utility publication-title: Rev. Environ. Contam. Toxicol. – volume: 150 start-page: 1 year: 2018 ident: ref_42 article-title: Riding invasion waves: Spatial and temporal patterns of the invasive Lemna minuta from its arrival to its spread across Europe publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2018.06.002 – volume: 18 start-page: 45 year: 1977 ident: ref_194 article-title: Induction of flowering in Lemna gibba G3 under short-day conditions publication-title: Plant Cell Physiol. – volume: 73 start-page: 13 year: 2000 ident: ref_23 article-title: In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(99)00137-6 – volume: 231 start-page: 105710 year: 2021 ident: ref_149 article-title: Joint effects of naphthalene and microcystin-LR on physiological responses and toxin bioaccumulation of Landoltia punctata publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2020.105710 – volume: 19 start-page: 101146 year: 2019 ident: ref_113 article-title: Performance of plant growth-promoting bacterium of duckweed under different kinds of abiotic stress factors publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2019.101146 – volume: 148 start-page: 64 year: 2018 ident: ref_157 article-title: Ecophysiological characteristics of turions of aquatic plants: A review publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2018.04.011 – volume: 27 start-page: 139 year: 1987 ident: ref_172 article-title: Dormancy and propagation in helophytes and hydrophytes publication-title: Arch. Hydrobiol. Beih. Ergeb. Limnol. – volume: 18 start-page: 364 year: 1968 ident: ref_188 article-title: Morphogenesis of Wolffia microscopica: Frond and flower development publication-title: Phytomorphology – volume: 10 start-page: 230090 year: 2023 ident: ref_36 article-title: Metabolically active angiosperms survive passage through the digestive tract of a large-bodied waterbird publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.230090 – volume: 1290 start-page: 53 year: 1996 ident: ref_63 article-title: Evidence for a glycosylinositolphospholipid-anchored alkaline phosphatase in the aquatic plant Spirodela oligorrhiza publication-title: Biochim. Biophys. Acta (BBA)-Gen. Subj. doi: 10.1016/0304-4165(95)00185-9 – volume: 110 start-page: 16117 year: 2023 ident: ref_5 article-title: Target sequence data shed new light on the infrafamilial classification of Araceae publication-title: Am. J. Bot. doi: 10.1002/ajb2.16117 – volume: 63 start-page: 25 year: 1997 ident: ref_33 article-title: How do the Lemnaceae (duckweed family) survive dry conditions? publication-title: Bull. Geobot. Inst. ETH – volume: 20 start-page: 62 year: 1965 ident: ref_85 article-title: Apiose als Bestandteil der Zellwand höherer Pflanzen publication-title: Z. Naturforsch. B doi: 10.1515/znb-1965-0110 – volume: 35 start-page: 437 year: 1997 ident: ref_64 article-title: Purification and characterization of phosphatase inducibly synthesized in Spirodela oligorrhiza grown under phosphate-deficient conditions publication-title: Plant Physiol. Biochem. – volume: 86 start-page: 287 year: 2018 ident: ref_105 article-title: Effects of co-inoculation of two different plant growth-promoting bacteria on duckweed publication-title: Plant Growth Regul. doi: 10.1007/s10725-018-0428-y – volume: 66 start-page: 163 year: 1990 ident: ref_170 article-title: Phytochrome control of turion formation in Spirodela polyrhiza L. Schleiden publication-title: Ann. Bot. doi: 10.1093/oxfordjournals.aob.a088011 – volume: 26 start-page: 743 year: 2000 ident: ref_89 article-title: Structural studies and physiological activity of lemnan, a pectin from Lemna minor L. publication-title: Russ. J. Bioorganic Chem. doi: 10.1007/BF02821835 – ident: ref_71 doi: 10.3390/cells11071167 – volume: 34 start-page: 175 year: 2010 ident: ref_93 article-title: Antioxidaant, antibacterial, and anticandidal activities of an aquatic plant: Duckweed (Lemna minor L. Lemnaceae) publication-title: Turk. J. Biol. – volume: 9 start-page: 530 year: 1999 ident: ref_62 article-title: Landoltia (Lemnaceae), a new genus of duckweed publication-title: Novon doi: 10.2307/3392157 – volume: 15 start-page: 284 year: 2013 ident: ref_180 article-title: Low-molecular weight carbohydrates modulate dormancy and are required for post-germination growth in turions of Spirodela polyrhiza publication-title: Plant Biol. doi: 10.1111/j.1438-8677.2012.00637.x – ident: ref_115 doi: 10.3390/plants11233317 – volume: 17 start-page: 108 year: 2015 ident: ref_34 article-title: Mallard duck (Anas platyrhynchos)-mediated dispersal of Lemnaceae: A contribution factor to the spread of invasive Lemna minuta? publication-title: Plant Biol. doi: 10.1111/plb.12182 – volume: 135 start-page: 94 year: 1989 ident: ref_197 article-title: Significance of calcium ions in the overcrowding effect in Spirodela polyrrhiza P 143 publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(89)80230-5 – ident: ref_16 doi: 10.3390/plants11233326 – volume: 88 start-page: 295 year: 1978 ident: ref_69 article-title: Effect of nitrogen deficiency and other factors on phytic acid accumulation in Lemna gibba G1 publication-title: Z. Pflanzenphysiol. doi: 10.1016/S0044-328X(78)80130-5 – volume: 44 start-page: 154 year: 2014 ident: ref_116 article-title: The Lemna bioassay: Contemporary issues as the most standardized plant bioassay for aquatic ecotoxicology publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2012.710451 – volume: 49 start-page: 727 year: 2007 ident: ref_152 article-title: Reciprocal allelopathic responses between toxic cyanobacteria (Microcystis aeruginosa) and duckweed (Lemna japonica) publication-title: Toxicon doi: 10.1016/j.toxicon.2006.11.017 – volume: 67 start-page: 271 year: 1957 ident: ref_47 article-title: Physiologische und ökologische Untersuchungen an Lemnaceen publication-title: Ber. Schweiz. Bot. Ges. – volume: 186 start-page: 103633 year: 2023 ident: ref_156 article-title: Overwintering and re-emergence in Lemna minor publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2023.103633 – volume: 59 start-page: 40 year: 2021 ident: ref_129 article-title: Using contact herbicides for control of duckweed and watermeal with implications for management publication-title: J. Aquat. Plant Manag. – ident: ref_123 doi: 10.3390/genes10100743 – ident: ref_119 doi: 10.1186/s12870-016-0774-8 – volume: 98 start-page: 1127 year: 2016 ident: ref_10 article-title: Duckweeds for water remediation and toxicity testing publication-title: Toxicol. Environ. Chem. doi: 10.1080/02772248.2015.1094701 – volume: 3 start-page: 117 year: 2019 ident: ref_13 article-title: Duckweed (Lemnaceae): Its molecular taxonomy publication-title: Front. Sust. Food Syst. doi: 10.3389/fsufs.2019.00117 – volume: 58 start-page: 103 year: 2014 ident: ref_131 article-title: Cadmium-induced turion formation of Spirodela polyrhiza (L.) Schleiden publication-title: Acta Biol. Szeged. – volume: 35 start-page: ME20112 year: 2020 ident: ref_101 article-title: Synthetic bacterial community of duckweed: A simple and stable system to study plant-microbe interactions publication-title: Microbes Environ. doi: 10.1264/jsme2.ME20112 – volume: 249 start-page: 31 year: 2018 ident: ref_46 article-title: Are alien species necessarily stress-sensitive? A case study on Lemna minuta and Lemna minor publication-title: Flora doi: 10.1016/j.flora.2018.09.004 – volume: 103 start-page: 30 year: 2012 ident: ref_141 article-title: Allelopathic potential of two aquatic plants, duckweed (Lemna minor L.) and water lettuce (Pistia stratiotes L.) on terrestrial plant species publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2012.05.007 – ident: ref_15 doi: 10.3390/plants11111468 – volume: 120 start-page: 271 year: 2004 ident: ref_66 article-title: Induction of high affinity phosphate transporter in the duckweed Spirodela oligorrhiza publication-title: Physiol. Plant. doi: 10.1111/j.0031-9317.2004.0231.x – ident: ref_111 doi: 10.3390/plants9050599 – volume: 132 start-page: 90 year: 1988 ident: ref_182 article-title: Photophysiology of turion germination in Spirodela polyrrhiza (L.) SCHLEIDEN. I. Phytochrome-mediated responses of light- and dark-grown turions publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(88)80189-5 – volume: 6 start-page: 207 year: 2018 ident: ref_139 article-title: Competition between Lemna minuta, Lemna minor, and Azolla filiculoides. Growing fast or being steadfast? publication-title: Front. Chem. doi: 10.3389/fchem.2018.00207 – volume: 100 start-page: 354 year: 1986 ident: ref_53 article-title: Aquatic angiosperms at unusual depths in Shoal Lake publication-title: Canad. Field-Nat. doi: 10.5962/p.355648 – ident: ref_6 doi: 10.3390/plants10122639 – volume: 23 start-page: 2649 year: 2021 ident: ref_44 article-title: Clonal diversity amongst island populations of alien, invasive Lemna minuta Kunth publication-title: Biol. Invasions doi: 10.1007/s10530-021-02530-7 – volume: 94 start-page: 273 year: 1970 ident: ref_58 article-title: Changes in phosphatase activity in phosphorus-deficient Spirodela publication-title: Planta doi: 10.1007/BF00385759 – ident: ref_24 doi: 10.3390/plants11223033 – volume: 13 start-page: 1065199 year: 2022 ident: ref_121 article-title: Physiological responses and antibiotic-degradation capacity of duckweed (Lemna aequinoctialis) exposed to streptomycin publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.1065199 – volume: 9 start-page: 17 year: 2011 ident: ref_151 article-title: Response of Lemna minor clones to Microcystis toxicity publication-title: Appl. Ecol. Environ. Res. doi: 10.15666/aeer/0901_017026 – volume: 17 start-page: 713 year: 1976 ident: ref_198 article-title: Specific interactions in the physiology of flowering and gibbosity of Lemna gibba G3 publication-title: Plant Cell Physiol. doi: 10.1093/oxfordjournals.pcp.a075327 – volume: 32 start-page: 420 year: 1990 ident: ref_137 article-title: Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. The cause of germination inhibition by overcrowding publication-title: Biol. Plant. doi: 10.1007/BF02890887 – volume: 223 start-page: 115119 year: 2019 ident: ref_90 article-title: Linkage structure of cell-wall polysaccharides from three duckweed species publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.115119 – volume: 54 start-page: 899 year: 1974 ident: ref_199 article-title: Isolation of flower-inducing and flower-inhibitory factors from aphid honeydew publication-title: Plant Physiol. doi: 10.1104/pp.54.6.899 – volume: 247 start-page: 953 year: 2018 ident: ref_92 article-title: Changes in the abundance of cell wall apigalacturonen and xylogalacturonan and conservation of rhamnogalacturonan II structure during the diversification of the Lemnoideae publication-title: Planta doi: 10.1007/s00425-017-2837-y – volume: 100 start-page: 171 year: 2023 ident: ref_108 article-title: Diazotropic bacterium Azotobacter vinelandii as a mutualistic growth promoter of an aquatic plant: Lemna minor publication-title: Plant Growth Regul. doi: 10.1007/s10725-022-00948-0 – volume: 192 start-page: 216 year: 2017 ident: ref_124 article-title: Inter- and intra-specific competition of duckweed under multiple heavy metal contaminated water publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2017.09.023 – volume: 135 start-page: 274 year: 1989 ident: ref_163 article-title: Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. II. Influence of after-ripening on germination kinetics publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(89)80118-X – volume: 9 start-page: e124 year: 2020 ident: ref_57 article-title: Uncoupling growth from phosphorus uptake in Lemna: Implications for use of duckweed in wastewater remediation and P recovery in temperate climates publication-title: Food Energy Secur. doi: 10.1002/fes3.244 – volume: 141 start-page: 525 year: 1954 ident: ref_176 article-title: Die Dauerorgane von Spirodela polyrrhiza (L.) SCHLEID. in physiologischer Betrachtung publication-title: Flora – volume: 239 start-page: 116 year: 2023 ident: ref_184 article-title: Genomics of turions from the Greater Duckweed reveal its pathways for dormancy and re-emergence strategy publication-title: New Phytol. doi: 10.1111/nph.18941 – volume: 69 start-page: 56 year: 2020 ident: ref_8 article-title: A taxonomic revision of Lemna sect. Uninerves (Lemnaceae) publication-title: Taxon doi: 10.1002/tax.12188 – volume: 190 start-page: 150 year: 2018 ident: ref_120 article-title: Comparative transcriptome analysis of duckweed (Landoltia punctata) in response to cadmium provides insights into molecular mechanisms underlying hyperaccumulation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.09.146 – volume: 213 start-page: 520 year: 2018 ident: ref_144 article-title: An overview of the accumulation of microcystins in aquatic ecosystems publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.01.077 – volume: 57 start-page: 353 year: 1976 ident: ref_31 article-title: Lakes as islands: The distributional ecology of two aquatic plants, Lemna minor L., and L. trisulca L. publication-title: Ecology doi: 10.2307/1934824 – volume: 10 start-page: 16 year: 2022 ident: ref_191 article-title: Obituary: Jitendra, P. Khurana (30. 10. 1954–72. 10. 2021) publication-title: Duckweed Forum – volume: 112 start-page: 1 year: 2014 ident: ref_40 article-title: The roles of nitrogen and phosphorous in regulating the dominance of floating and submerged aquatic plants in a field mesocosm experiment publication-title: Aquat. Bot. doi: 10.1016/j.aquabot.2013.07.001 – volume: 160 start-page: 1329 year: 2003 ident: ref_171 article-title: No photoperiodic control of the formation of turions in eight clones of Spirodela polyrhiza publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-01035 – volume: 185 start-page: 109668 year: 2019 ident: ref_147 article-title: Combined toxic effects of microcystin-LR and phenanthrene on growth and antioxidant system of duckweed (Lemna gibba L.) publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.109668 – volume: 49 start-page: 735 year: 2022 ident: ref_50 article-title: Plants response to light stress publication-title: J. Genet. Genom. doi: 10.1016/j.jgg.2022.04.017 – ident: ref_51 doi: 10.3390/cells10061481 – volume: 210 start-page: 31 year: 2015 ident: ref_189 article-title: The duckweed Wolffia microscopica: A unique aquatic monocot publication-title: Flora doi: 10.1016/j.flora.2014.10.006 – volume: 138 start-page: 312 year: 2010 ident: ref_166 article-title: Turion formation in Spirodela polyrhiza: The environmental signals that induce the developmental process in nature publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2009.01319.x – volume: 78 start-page: 3654 year: 2022 ident: ref_133 article-title: A non-chemical weed control strategy, introducing duckweed into the paddy field publication-title: Pest Manag. Sci. doi: 10.1002/ps.7008 |
SSID | ssj0000800816 |
Score | 2.4136617 |
SecondaryResourceType | review_article |
Snippet | Duckweeds (Lemnaceae) are small, simply constructed aquatic higher plants that grow on or just below the surface of quiet waters. They consist primarily of... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2215 |
SubjectTerms | abiotic stress Analysis Angiosperms Aquatic plants Araceae biotic stress climate Cloning cold DNA methylation Drought Duckweed Epigenetics Floating plants Fronds Growing season Growth Herbivores High temperature juveniles Lemnaceae Light intensity Luminous intensity Microorganisms Morphology Physiology Plant defenses Replication Review Survival turion |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4k2gIIOQuBDV8SvOcQtUBQkOLJV6s_wsrdqkIruH3vo3-Hv8EsZOdpUIVVy4xqPImczjm2T8DUJvlKqiZKwpBZGu5CIE8Dknyqpy3hgTiclk1V--ysMj_vlYHE9GfaWesIEeeFDcHheqjoEpqSLl3glreN1ADhXKCaFiPuYLOW9STJ2NOEhVcmBphK2Qvcvz1FeSCM0oTTNwJ1kok_X_HZInOWneLzlJQAf30N0ROeLFsOP76FZoH6Db-x2gu6uH6MNyDU4PZoM3fLOhx13EeQQ0ZKj-HQaoh3PvzO_rXz1eXqQpKv0KL9qT08wXftE_QkcHH7-_PyzHCQmlE021Kq2rDeTbGJy3noNirKqIJUbF_H3TVp46I3nta0Y94V5w6iWjdSTBEwhs7DHaabs2PEXYukClgcjnKIPgKSyH0ktZRRxAvoaHApUbjWk30oenKRbnGsqIpGE913CB3m7lLwfijBsl99ML2Eolwut8AcxAj2ag_2UGBXqdXp9OlBZt6pk5Meu-15-W3_SiFpTXUioKexqFYgd7d2Y8ggAaSCxYM8ndjRno0al7DdUpJwnANgV6tV0Gd0z_WEwbuvUgIxvWKHKzDIPAyQUga7jPk8Gytg-f_qI2AKoLpGY2N9POfKU9_ZFpwatUHlLJnv0PfT5HdyjAudwUx3bRzurnOrwA-LWyL7On_QFFhC19 priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF6hwoELKm9DQQYhccGw3pfXB4RSoCpI5UCI1Ntqn2lRardxItEbf4O_xy9hduOEWrRc7bG1np3HN_b4G4ReSFkGQWldcCxswbj34HOWF2VpndY6YJ3Iqg--iP0J-3zID__2P_UK7C4t7eI8qcl89vrH2fk7cPi3seKEkv3N6Sy2jESuMkLi_-bXIStV0UkPeqj_vUdGshQr3sZLLhvkpUTf_2-QvpClhh2UF1LS3ja61WPJfLTa_Nvomm_uoBu7LeC987vow3gJYQAMKV8z0Poub0OehkJDzupe5QD-8tRN8_vnry4fn8S5Kt0iHzXT48QgftLdQ5O9j9_e7xf9zITC8rpcFMZWGjJw8NYZx1hVG1lig7UM6Y2nKR2xWrDKVZQ4zBxnxAlKqoC9wxDq6H201bSNf4hyYz0RGmKhJRTCKTcMijFpJLYAAmvmM1SsNaZsTyge51rMFBQWUcNqqOEMvdzIn66oNK6U3I0bsJGKFNjpQDufqt6jFOOyCp5KIQNhznKj4WkBXHFpOZdBZuh53D4VSS6a2EUz1cuuU5_GX9Wo4oRVQkgCa-qFQgtrt7r_KQE0EHmxBpI7azNQaytVUK8yHCFtnaFnm9PgoPGri258u1zJiJrWEl8tQyGUMg5YG-7zYGVZm4eP31VrgNkZkgObG2hneKY5PkpE4WUsGImgj_6_9sfoJgHolhrg6A7aWsyX_glArYV5mnzoD366KSM priority: 102 providerName: Scholars Portal |
Title | Survival Strategies of Duckweeds, the World’s Smallest Angiosperms |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37299193 https://www.proquest.com/docview/2824041639 https://www.proquest.com/docview/2824693980 https://www.proquest.com/docview/3040459239 https://pubmed.ncbi.nlm.nih.gov/PMC10255263 https://doaj.org/article/4587fe3868f24dc5ba47997658c558f8 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELag5cAF8SalVAEhcSGq41ecE9qFVgWpFepSqbfI8WOp1CZLs3vojb_B3-OXMHa8YSNULnvYjFbOeB6fx7PfIPRWytwJSsuMY6Ezxq0Fn9M8y3NtlFIOq0BWfXwijs7Yl3N-HgtuXWyrXMfEEKhNq32NfB-OBgx79FB-WPzI_NQof7saR2jcRdsQgiUcvranBydfT4cqi8dDMhc9WyMsCe8vLn1_iSc2I8TPwt3IRoG0_9_QvJGbxn2TG4no8CF6EBFkOum3_BG6Y5vH6N60BZR38wR9mq3A-cF80jXvrO3S1qVhFDRkqu59CpAvDT00v3_-6tLZlZ-m0i3TSTO_CLzhV91TdHZ48O3jURYnJWSal_kyq3WhIO86q01tGCvKWua4xkq6UOesc0O0EqwwBSUGM8MZMYKSwmFrMAQ4-gxtNW1jX6C01pYIBRFQEwpBlNcMjmCyllgD9CuZTVC21lilI424n2ZxWcFxwmu4Gms4Qe8G-UVPoHGr5NRvwCDlia_DF-31vIp-VDEuC2epFNIRZjSvFbwtQCouNefSyQS98dtXeWqLxvfOzNWq66rPs9NqUnDCCiEkgTVFIdfC2rWKf0UADXg2rJHk7toMqujcXfXXFBP0engMbunvWlRj21UvI0paSny7DIUAyjggbPid571lDS_vb1NLANcJkiObG2ln_KS5-B7owXN_TCSC7vx_7S_RfQKALbS90V20tbxe2VcAsJb1XvSivVCggM9jJv8Aexgo1Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKFgkuiH8CBQICcSGq4784B4R2aatd2q5Qt5V6Sx3bWSq1ydLsCvXGa_ASPBRPwjg_y0ao3HpNRpEzHs98Y4-_QeiNlGEmKI0DjoUOGLcW1pzmQRhqo5TKsKrIqvfHYnjEPh_z4zX0q70L48oqW59YOWpTaLdHvgmpAcMOPcQfZ98C1zXKna62LTRqs9i1l98hZSs_jLZgft8SsrN9-GkYNF0FAs3jcB6kOlIQozKrTWoYi-JUhjjFSmbVnmAaGqKVYJGJKDGYGc6IEZREGbYGgzOg8N0baJ1RSGV6aH2wPf5ysNzVcfhLhqJmhwQV4M3ZmatncURqhLjeuyvRr2oS8G8oWImF3TrNlcC3cxfdaRCr369N7B5as_l9dHNQAKq8fIC2JgtwNmCufstza0u_yPyq9TRExvK9DxDTr2p2fv_4WfqTc9e9pZz7_Xx6WvGUn5cP0dG16PAR6uVFbp8gP9WWCAUeVxMKTpunDFI-mUqsAWrGzHooaDWW6Ia23HXPOEsgfXEaTroa9tC7pfysJuy4UnLgJmAp5Yi2qwfFxTRp1m3CuIwyS6WQGWFG81TB3wKE41JzLjPpoddu-hJHpZG7Wp2pWpRlMpocJP2IExYJIQmMqRHKChi7Vs3VB9CAY9_qSG60ZpA0zqRM_pq-h14tX4MbcGc7KrfFopYRMY0lvlqGgsNmHBA9fOdxbVnLn3entzGAeQ_Jjs11tNN9k59-rejIQ5eWEkGf_n_sL9Gt4eH-XrI3Gu8-Q7cJgMWq5I5uoN78YmGfA7ibpy-aFeWjk-texH8AlrJk8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VFCEuFW9SChgE4oKV9b68PiCUkEYNhahqqNTbdr1eh0qtHepEqDf-Bn-Fn8MvYdaPEAuVW6_2yFrPzuMb7_gbhF5JGaSC0sjnWBifcWvB5wz3g8AkWusU65Ks-vNE7B2xj8f8eAP9av6FcW2VTUwsA3WSG_eNvAelAcMOPUS9tG6LOBiO3s-_-W6ClDtpbcZpVCayby-_Q_lWvBsPYa9fEzLa_fJhz68nDPiGR8HCj02oIV-l1iRxwlgYxTLAMdYyLb8PxkFCjBYsTEJKEswSzkgiKAlTbBMMgYHCc2-gzRCqItxBm4PdycHh6guPw2IyEBVTJKgD9-ZnrrfFkaoR4ubwrmXCcmDAv2lhLS-2ezbXkuDoDtqq0avXr8ztLtqw2T10c5ADwry8j4bTJQQeMF2v4by1hZenXjmGGrJk8dYDuOmV_Tu_f_wsvOm5m-RSLLx-NjstOcvPiwfo6Fp0-BB1sjyzj5EXG0uEhuhrCIUAzmMG5Z-MJTYAOyNmu8hvNKZMTWHuJmmcKShlnIZVW8Nd9GYlP6_IO66UHLgNWEk50u3yQn4xU7UPK8ZlmFoqhUwJSwyPNbwtwDkuDecylV300m2fcrQamTPQmV4WhRpPD1U_5ISFQkgCa6qF0hzWbnT9GwRowDFxtSR3GjNQdWAp1F836KIXq9sQEtw5j85svqxkREQjia-WoRC8GQd0D895VFnW6uXdSW4EwL6LZMvmWtpp38lOv5bU5IErUYmg2_9f-3N0C5xXfRpP9p-g2wRwY9l9R3dQZ3GxtE8B5y3iZ7VDeejkun34DxhGaSY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survival+Strategies+of+Duckweeds%2C+the+World%E2%80%99s+Smallest+Angiosperms&rft.jtitle=Plants+%28Basel%29&rft.au=Ziegler%2C+Paul&rft.au=Appenroth%2C+Klaus+J&rft.au=Sree%2C+K+Sowjanya&rft.date=2023-06-03&rft.pub=MDPI+AG&rft.eissn=2223-7747&rft.volume=12&rft.issue=11&rft.spage=2215&rft_id=info:doi/10.3390%2Fplants12112215&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon |