Detection of Synchrony in the Activity of Auditory Nerve Fibers by Octopus Cells of the Mammalian Cochlear Nucleus
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 97; no. 22; pp. 11773 - 11779 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences of the United States of America
24.10.2000
National Acad Sciences National Academy of Sciences The National Academy of Sciences |
Series | Colloquium Paper |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, α -amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 MΩ ), and short time constants (about 200 μ sec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs. |
---|---|
AbstractList | The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium- permeable, alpha -amino-3-hydroxy-5-methyl-4- isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 M Omega ), and short time constants (about 200 mu sec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs. The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 MΩ), and short time constants (about 200 μsec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs. The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 MΩ), and short time constants (about 200 μsec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs. The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 M Omega), and short time constants (about 200 microsec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs. The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, α -amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 MΩ ), and short time constants (about 200 μ sec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs. The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mamalian ventral cochlear nucleus. The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 MΩ), and short time constants (about 200 μsec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs. |
Author | Bal, Ramazan Gardner, Stephanie M. Oertel, Donata Smith, Philip H. Joris, Philip X. |
AuthorAffiliation | Departments of Physiology and ‡ Anatomy, University of Wisconsin Medical School, Madison, WI 53706; and § Division of Neurophysiology, Katholicke Universiteit Leuven, Leuven, B-3000 Belgium |
AuthorAffiliation_xml | – name: Departments of Physiology and ‡ Anatomy, University of Wisconsin Medical School, Madison, WI 53706; and § Division of Neurophysiology, Katholicke Universiteit Leuven, Leuven, B-3000 Belgium |
Author_xml | – sequence: 1 givenname: Donata surname: Oertel fullname: Oertel, Donata – sequence: 2 givenname: Ramazan surname: Bal fullname: Bal, Ramazan – sequence: 3 givenname: Stephanie M. surname: Gardner fullname: Gardner, Stephanie M. – sequence: 4 givenname: Philip H. surname: Smith fullname: Smith, Philip H. – sequence: 5 givenname: Philip X. surname: Joris fullname: Joris, Philip X. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11050208$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFvFCEYxYmpsdvq3cREiQfjZdYPmFmGxMtma9Wktgf1TIBh3NnMwgrMxvnvy7irrR70QDi83_vg8ThDJ847i9BTAnMCnL3ZORXngs8pnRPCOXuAZgQEKRalgBM0A6C8qEtanqKzGDcAIKoaHqFTQqACCvUMhQubrEmdd9i3-PPozDp4N-LO4bS2eJmlfZfGSVwOTZd8GPG1DXuLLzttQ8R6xDcm-d0Q8cr2fZzIyflJbbeq75TDK2_WvVUBXw-mt0N8jB62qo_2yXE_R18v331ZfSiubt5_XC2vClMJkgrFdFsbzQk1DdCaEsZY01jeCmg0UMHAVKVo81ro1githbaVUsC1rVnFKDtHbw9zd4Pe2sZYl4Lq5S50WxVG6VUn_1Rct5bf_F6ykpV1tr862oP_PtiY5LaLJkdUzvohSk7ZgtSw-C-YIZrJKoMv_wI3fgguv4GkQFiOWE3T4ACZ4GMMtv19YQJyKl1OpUvBJaXyZ-nZ8vx-0DvDseUMvD4Ck_WXfG-EbIe-T_ZHyuiLf6OZeHYgNjH_hrvDKOMlY7cdPM0a |
CitedBy_id | crossref_primary_10_1016_j_heares_2010_03_083 crossref_primary_10_1007_s00422_021_00881_x crossref_primary_10_1152_jn_00435_2020 crossref_primary_10_1002_cne_23623 crossref_primary_10_1016_j_jtbi_2019_01_043 crossref_primary_10_1016_j_heares_2010_03_002 crossref_primary_10_1369_jhc_2008_950303 crossref_primary_10_1523_JNEUROSCI_1475_16_2016 crossref_primary_10_1007_s10827_005_1847_0 crossref_primary_10_1016_j_heares_2005_02_012 crossref_primary_10_1371_journal_pgen_1008925 crossref_primary_10_1152_jn_00601_2014 crossref_primary_10_1159_000046825 crossref_primary_10_1007_s10162_020_00757_0 crossref_primary_10_1007_s00422_008_0276_3 crossref_primary_10_1121_1_5009563 crossref_primary_10_1152_jn_00020_2005 crossref_primary_10_1002_cpa_21469 crossref_primary_10_1038_s41467_018_07757_y crossref_primary_10_1152_jn_90322_2008 crossref_primary_10_1002_cne_21788 crossref_primary_10_1152_jn_00015_2010 crossref_primary_10_1007_s00422_006_0091_7 crossref_primary_10_1074_jbc_M110_186486 crossref_primary_10_1242_jeb_02080 crossref_primary_10_1134_S0022093020010081 crossref_primary_10_1152_jn_00395_2010 crossref_primary_10_1162_NECO_a_00323 crossref_primary_10_1073_pnas_1108912108 crossref_primary_10_1152_jn_00052_2007 crossref_primary_10_1016_j_tins_2016_09_006 crossref_primary_10_1152_jn_00635_2002 crossref_primary_10_1007_s00232_017_0011_x crossref_primary_10_1016_j_neuroscience_2005_02_007 crossref_primary_10_1002_cne_20407 crossref_primary_10_1016_j_tins_2017_08_001 crossref_primary_10_1016_S0006_8993_03_03038_5 crossref_primary_10_3389_fncir_2021_747472 crossref_primary_10_1016_j_neuroscience_2008_03_013 crossref_primary_10_1016_S0925_2312_02_00808_1 crossref_primary_10_1016_j_mbs_2014_08_015 crossref_primary_10_1002_ar_a_20303 crossref_primary_10_1016_S0959_4388_01_00276_8 crossref_primary_10_1111_j_0953_816X_2003_03133_x crossref_primary_10_1080_03601234_2012_663311 crossref_primary_10_1371_journal_pone_0056822 crossref_primary_10_1523_JNEUROSCI_1760_10_2010 crossref_primary_10_1113_JP279189 crossref_primary_10_1556_APhysiol_89_2002_4_1 crossref_primary_10_1137_07068775X crossref_primary_10_1152_jn_00396_2010 crossref_primary_10_1016_j_heares_2017_01_001 crossref_primary_10_1007_s00232_018_0048_5 crossref_primary_10_1152_jn_00717_2003 crossref_primary_10_1038_ncomms13229 crossref_primary_10_1007_s00422_005_0571_1 crossref_primary_10_1152_jn_00399_2006 crossref_primary_10_1152_physrev_00029_2003 crossref_primary_10_1371_journal_pone_0126500 crossref_primary_10_1007_s13295_014_0060_x crossref_primary_10_1523_JNEUROSCI_2107_17_2018 crossref_primary_10_1152_jn_00985_2004 crossref_primary_10_3389_fncom_2022_889992 crossref_primary_10_1016_j_apacoust_2023_109507 crossref_primary_10_1016_j_heares_2009_06_004 crossref_primary_10_1152_jn_00427_2007 crossref_primary_10_1002_cne_10713 crossref_primary_10_1159_000063565 crossref_primary_10_1371_journal_pone_0180174 crossref_primary_10_1152_jn_01049_2004 crossref_primary_10_1016_j_heares_2024_109026 crossref_primary_10_1152_jn_2001_86_5_2299 crossref_primary_10_1097_SHK_0000000000001453 crossref_primary_10_1088_1741_2560_6_6_065003 crossref_primary_10_1007_s10162_009_0159_x crossref_primary_10_1371_journal_pcbi_1004860 crossref_primary_10_1073_pnas_2203748119 crossref_primary_10_1097_AUD_0000000000000890 crossref_primary_10_1016_j_cbpa_2007_04_012 crossref_primary_10_1007_s00422_009_0353_2 crossref_primary_10_1515_s13295_014_0060_x crossref_primary_10_1016_j_heares_2015_06_014 crossref_primary_10_1152_jn_00160_2012 crossref_primary_10_3389_fnhum_2015_00655 crossref_primary_10_1016_j_jmaa_2004_10_070 crossref_primary_10_1098_rspb_2019_1607 crossref_primary_10_1523_JNEUROSCI_5333_10_2011 crossref_primary_10_1016_j_heares_2014_12_012 crossref_primary_10_1016_j_clinph_2007_12_010 crossref_primary_10_1121_1_5088504 crossref_primary_10_1152_jn_01041_2012 crossref_primary_10_1007_s10162_023_00898_y crossref_primary_10_1152_jn_2002_87_6_2915 crossref_primary_10_1016_j_heares_2018_12_011 crossref_primary_10_1016_j_neuroscience_2008_03_002 crossref_primary_10_1111_ejn_14073 crossref_primary_10_1152_jn_00472_2016 crossref_primary_10_1371_journal_pcbi_1006476 crossref_primary_10_1016_j_neuroscience_2008_08_068 crossref_primary_10_1007_s10162_007_0091_x crossref_primary_10_1016_j_specom_2013_09_007 crossref_primary_10_1113_jphysiol_2005_094763 crossref_primary_10_1016_j_jphysparis_2004_03_003 crossref_primary_10_1242_jeb_082651 crossref_primary_10_1002_cne_24575 crossref_primary_10_1038_s41598_020_60266_1 crossref_primary_10_1113_jphysiol_2012_229328 crossref_primary_10_3389_fncom_2016_00057 crossref_primary_10_1523_ENEURO_0465_22_2023 crossref_primary_10_7554_eLife_45573 crossref_primary_10_1371_journal_pcbi_1004997 crossref_primary_10_3389_fncir_2017_00037 crossref_primary_10_1016_j_neuroscience_2020_08_029 crossref_primary_10_33549_physiolres_931954 crossref_primary_10_1016_j_heares_2022_108592 crossref_primary_10_1016_j_neuroscience_2013_11_021 crossref_primary_10_1016_j_biosystems_2015_05_007 crossref_primary_10_1038_nn_2530 crossref_primary_10_3389_fncom_2018_00036 crossref_primary_10_1152_jn_00167_2005 crossref_primary_10_1073_pnas_0610368104 crossref_primary_10_1121_10_0023969 crossref_primary_10_1152_jn_00587_2001 crossref_primary_10_1162_neco_a_01085 crossref_primary_10_1016_j_heares_2015_01_003 crossref_primary_10_1523_JNEUROSCI_2552_21_2022 crossref_primary_10_1016_j_brainresbull_2021_02_009 crossref_primary_10_1111_ejn_12116 crossref_primary_10_1152_jn_00451_2010 crossref_primary_10_1371_journal_pcbi_1003775 crossref_primary_10_1016_j_jtbi_2013_05_022 crossref_primary_10_1523_JNEUROSCI_1958_11_2012 crossref_primary_10_1016_j_ejphar_2020_173163 crossref_primary_10_1152_jn_00624_2005 crossref_primary_10_1523_JNEUROSCI_1016_05_2005 crossref_primary_10_1016_j_heares_2006_02_006 crossref_primary_10_1016_j_brainres_2011_08_048 crossref_primary_10_1016_j_heares_2006_02_007 |
Cites_doi | 10.1007/BF00724522 10.1016/0306-4522(83)90109-4 10.1152/jn.1997.78.2.872 10.1152/jn.2000.84.2.806 10.1016/0896-6273(95)90087-X 10.1523/JNEUROSCI.14-08-04588.1994 10.1002/cne.901970409 10.1016/S0896-6273(00)80388-8 10.1002/cne.902920305 10.1002/(SICI)1096-9861(19960819)372:2<245::AID-CNE7>3.0.CO;2-3 10.1016/S0006-3495(95)80168-2 10.1523/JNEUROSCI.15-04-03138.1995 10.1146/annurev.physiol.61.1.497 10.1121/1.383532 10.1002/cne.902130408 10.1523/JNEUROSCI.19-08-02897.1999 10.1152/jn.2000.83.1.301 10.1523/JNEUROSCI.04-07-01781.1984 10.1002/cne.903600110 10.1097/00001756-199911080-00031 10.1002/cne.902950112 10.1113/jphysiol.1995.sp020737 10.1523/JNEUROSCI.06-10-02926.1986 10.1073/pnas.96.16.9391 10.1016/S0378-5955(98)00002-1 10.1002/cne.901830107 10.1002/cne.903390302 10.1002/(SICI)1096-9861(19970317)379:3<363::AID-CNE4>3.0.CO;2-1 10.1152/jn.1999.82.2.648 10.1016/0896-6273(92)90232-3 10.1016/S0896-6273(00)80508-5 10.1126/science.270.5234.303 10.1002/cne.901620206 10.1523/JNEUROSCI.19-20-08721.1999 10.1002/(SICI)1096-9861(19970922)386:2<178::AID-CNE2>3.0.CO;2-Z 10.1016/0378-5955(90)90098-A 10.1007/978-1-4615-2932-3_27 10.1016/0896-6273(95)90076-4 10.1016/0378-5955(94)90252-6 10.3109/00016486909125462 10.1523/JNEUROSCI.17-01-00058.1997 10.1002/cne.903000106 10.1288/00005537-193304000-00014 10.1002/j.1460-2075.1989.tb08483.x 10.1111/j.1460-9568.1996.tb01169.x 10.1146/annurev.physiol.61.1.477 10.1016/S0896-6273(00)80643-1 10.1152/jn.1986.56.2.261 |
ContentType | Journal Article |
Copyright | Copyright 1993-2000 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Oct 24, 2000 Copyright © 2000, The National Academy of Sciences 2000 |
Copyright_xml | – notice: Copyright 1993-2000 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Oct 24, 2000 – notice: Copyright © 2000, The National Academy of Sciences 2000 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.97.22.11773 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts CrossRef MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 11779 |
ExternalDocumentID | 63455544 10_1073_pnas_97_22_11773 11050208 97_22_11773 123743 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Feature |
GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: R01 DC000176 – fundername: NIDCD NIH HHS grantid: F32 DC000176 – fundername: NIDCD NIH HHS grantid: DC00116 – fundername: NIDCD NIH HHS grantid: DC00176 – fundername: NIDCD NIH HHS grantid: P01 DC000116 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS EJD F5P FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 08R 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AFDAS AJYGW AS ASUFR DNJUQ DWIUU DZ F20 GJ KM OHM PQEST X XFK XHC ZA5 CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c591t-a3bf8cb712cd02821333dde7f90db02930c549f5496bfc9bb9be5aa07be835323 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:28:00 EDT 2024 Fri Oct 25 05:47:31 EDT 2024 Fri Oct 25 01:48:53 EDT 2024 Thu Nov 21 03:55:52 EST 2024 Fri Dec 06 04:29:19 EST 2024 Sat Sep 28 07:36:40 EDT 2024 Thu May 30 08:51:15 EDT 2019 Wed Nov 11 00:29:34 EST 2020 Tue Dec 10 23:05:47 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c591t-a3bf8cb712cd02821333dde7f90db02930c549f5496bfc9bb9be5aa07be835323 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 To whom reprint requests should be addressed at: Department of Physiology, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706. E-mail: oertel@physiology.wisc.edu. |
OpenAccessLink | https://europepmc.org/articles/pmc34348?pdf=render |
PMID | 11050208 |
PQID | 201382156 |
PQPubID | 42026 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_18026185 proquest_journals_201382156 proquest_miscellaneous_72361806 pnas_primary_97_22_11773 pubmedcentral_primary_oai_pubmedcentral_nih_gov_34348 pubmed_primary_11050208 crossref_primary_10_1073_pnas_97_22_11773 jstor_primary_123743 pnas_primary_97_22_11773_fulltext |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 20001024 2000-10-24 2000-Oct-24 |
PublicationDateYYYYMMDD | 2000-10-24 |
PublicationDate_xml | – month: 10 year: 2000 text: 20001024 day: 24 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | Colloquium Paper |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2000 |
Publisher | National Academy of Sciences of the United States of America National Acad Sciences National Academy of Sciences The National Academy of Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences of the United States of America – name: National Acad Sciences – name: National Academy of Sciences – name: The National Academy of Sciences |
References | 8132865 - J Comp Neurol. 1994 Jan 15;339(3):311-27 9390510 - Neuron. 1997 Nov;19(5):959-62 10516291 - J Neurosci. 1999 Oct 15;19(20):8721-9 10430953 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9391-6 7569981 - Science. 1995 Oct 13;270(5234):303-4 758336 - J Comp Neurol. 1979 Jan 1;183(1):73-88 2341631 - J Comp Neurol. 1990 May 1;295(1):136-54 6300200 - J Comp Neurol. 1983 Feb 1;213(4):448-63 1150921 - J Comp Neurol. 1975 Jul 15;162(2):247-68 6664491 - Neuroscience. 1983 Dec;10(4):1203-32 1692850 - J Comp Neurol. 1990 Feb 15;292(3):373-95 500976 - J Acoust Soc Am. 1979 Nov;66(5):1381-1403 9307120 - J Neurophysiol. 1997 Aug;78(2):872-83 10191307 - J Neurosci. 1999 Apr 15;19(8):2897-905 7928738 - Hear Res. 1994 Jun 15;77(1-2):43-68 7711235 - Biophys J. 1995 Jan;68(1):137-46 9295146 - J Comp Neurol. 1997 Sep 22;386(2):178-202 10599857 - Neuroreport. 1999 Nov 8;10(16):3429-35 7619522 - Neuron. 1995 Jul;15(1):193-204 10099698 - Annu Rev Physiol. 1999;61:477-96 1963423 - Hear Res. 1990 Nov;49(1-3):105-18 2555158 - EMBO J. 1989 Nov;8(11):3235-44 3760921 - J Neurophysiol. 1986 Aug;56(2):261-86 7545230 - J Physiol. 1995 Jun 1;485 ( Pt 2):383-402 10938307 - J Neurophysiol. 2000 Aug;84(2):806-17 8046438 - J Neurosci. 1994 Aug;14(8):4588-99 7816560 - Pflugers Arch. 1994 Oct;428(3-4):382-90 2229488 - J Comp Neurol. 1990 Oct 1;300(1):61-81 9067830 - J Comp Neurol. 1997 Mar 17;379(3):363-85 7229133 - J Comp Neurol. 1981 Apr 20;197(4):673-703 3020188 - J Neurosci. 1986 Oct;6(10):2926-40 10099699 - Annu Rev Physiol. 1999;61:497-519 8713452 - Eur J Neurosci. 1996 Jan;8(1):79-91 9557977 - Hear Res. 1998 Mar;117(1-2):39-56 9883717 - Neuron. 1998 Dec;21(6):1235-8 7576666 - Neuron. 1995 Nov;15(5):987-90 10634873 - J Neurophysiol. 2000 Jan;83(1):301-14 7499559 - J Comp Neurol. 1995 Sep 11;360(1):135-49 8863129 - J Comp Neurol. 1996 Aug 19;372(2):245-63 9697846 - Neuron. 1998 Jul;21(1):5-7 8987736 - J Neurosci. 1997 Jan 1;17(1):58-69 6737040 - J Neurosci. 1984 Jul;4(7):1781-6 5374653 - Acta Otolaryngol. 1969 Feb-Mar;67(2):352-9 7722652 - J Neurosci. 1995 Apr;15(4):3138-53 10444663 - J Neurophysiol. 1999 Aug;82(2):648-63 1352983 - Neuron. 1992 Jul;9(1):173-86 e_1_3_3_50_2 Adams J C (e_1_3_3_8_2) 1997; 3 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 Lorente de No R (e_1_3_3_25_2) 1933; 43 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 Ehret G (e_1_3_3_22_2) 1983 e_1_3_3_11_2 e_1_3_3_30_2 Carr C E (e_1_3_3_10_2) 2000 e_1_3_3_6_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_44_2 doi: 10.1007/BF00724522 – ident: e_1_3_3_14_2 doi: 10.1016/0306-4522(83)90109-4 – ident: e_1_3_3_51_2 doi: 10.1152/jn.1997.78.2.872 – ident: e_1_3_3_36_2 doi: 10.1152/jn.2000.84.2.806 – ident: e_1_3_3_32_2 doi: 10.1016/0896-6273(95)90087-X – ident: e_1_3_3_45_2 doi: 10.1523/JNEUROSCI.14-08-04588.1994 – ident: e_1_3_3_12_2 doi: 10.1002/cne.901970409 – ident: e_1_3_3_41_2 doi: 10.1016/S0896-6273(00)80388-8 – ident: e_1_3_3_7_2 doi: 10.1002/cne.902920305 – ident: e_1_3_3_15_2 doi: 10.1002/(SICI)1096-9861(19960819)372:2<245::AID-CNE7>3.0.CO;2-3 – ident: e_1_3_3_34_2 doi: 10.1016/S0006-3495(95)80168-2 – ident: e_1_3_3_19_2 doi: 10.1523/JNEUROSCI.15-04-03138.1995 – ident: e_1_3_3_2_2 doi: 10.1146/annurev.physiol.61.1.497 – ident: e_1_3_3_5_2 doi: 10.1121/1.383532 – ident: e_1_3_3_37_2 doi: 10.1002/cne.902130408 – ident: e_1_3_3_20_2 doi: 10.1523/JNEUROSCI.19-08-02897.1999 – ident: e_1_3_3_47_2 doi: 10.1152/jn.2000.83.1.301 – ident: e_1_3_3_4_2 doi: 10.1523/JNEUROSCI.04-07-01781.1984 – ident: e_1_3_3_11_2 doi: 10.1002/cne.903600110 – ident: e_1_3_3_16_2 doi: 10.1097/00001756-199911080-00031 – ident: e_1_3_3_21_2 doi: 10.1002/cne.902950112 – start-page: 197 volume-title: The Central Auditory System of Reptiles and Birds year: 2000 ident: e_1_3_3_10_2 contributor: fullname: Carr C E – ident: e_1_3_3_33_2 doi: 10.1113/jphysiol.1995.sp020737 – ident: e_1_3_3_13_2 doi: 10.1523/JNEUROSCI.06-10-02926.1986 – start-page: 13 volume-title: Psychoacoustics year: 1983 ident: e_1_3_3_22_2 contributor: fullname: Ehret G – ident: e_1_3_3_40_2 doi: 10.1073/pnas.96.16.9391 – ident: e_1_3_3_50_2 doi: 10.1016/S0378-5955(98)00002-1 – ident: e_1_3_3_24_2 doi: 10.1002/cne.901830107 – ident: e_1_3_3_18_2 doi: 10.1002/cne.903390302 – ident: e_1_3_3_9_2 doi: 10.1002/(SICI)1096-9861(19970317)379:3<363::AID-CNE4>3.0.CO;2-1 – ident: e_1_3_3_3_2 doi: 10.1152/jn.1999.82.2.648 – ident: e_1_3_3_29_2 doi: 10.1016/0896-6273(92)90232-3 – ident: e_1_3_3_39_2 doi: 10.1016/S0896-6273(00)80508-5 – volume: 3 start-page: 335 year: 1997 ident: e_1_3_3_8_2 publication-title: Aud Neurosci contributor: fullname: Adams J C – ident: e_1_3_3_6_2 doi: 10.1126/science.270.5234.303 – ident: e_1_3_3_48_2 doi: 10.1002/cne.901620206 – ident: e_1_3_3_31_2 doi: 10.1523/JNEUROSCI.19-20-08721.1999 – ident: e_1_3_3_46_2 doi: 10.1002/(SICI)1096-9861(19970922)386:2<178::AID-CNE2>3.0.CO;2-Z – ident: e_1_3_3_26_2 doi: 10.1016/0378-5955(90)90098-A – ident: e_1_3_3_38_2 doi: 10.1007/978-1-4615-2932-3_27 – ident: e_1_3_3_30_2 doi: 10.1016/0896-6273(95)90076-4 – ident: e_1_3_3_49_2 doi: 10.1016/0378-5955(94)90252-6 – ident: e_1_3_3_17_2 doi: 10.3109/00016486909125462 – ident: e_1_3_3_35_2 doi: 10.1523/JNEUROSCI.17-01-00058.1997 – ident: e_1_3_3_23_2 doi: 10.1002/cne.903000106 – volume: 43 start-page: 327 year: 1933 ident: e_1_3_3_25_2 publication-title: Laryngoscope doi: 10.1288/00005537-193304000-00014 contributor: fullname: Lorente de No R – ident: e_1_3_3_43_2 doi: 10.1002/j.1460-2075.1989.tb08483.x – ident: e_1_3_3_28_2 doi: 10.1111/j.1460-9568.1996.tb01169.x – ident: e_1_3_3_42_2 doi: 10.1146/annurev.physiol.61.1.477 – ident: e_1_3_3_1_2 doi: 10.1016/S0896-6273(00)80643-1 – ident: e_1_3_3_27_2 doi: 10.1152/jn.1986.56.2.261 |
SSID | ssj0009580 |
Score | 2.1504912 |
Snippet | The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the... The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11773 |
SubjectTerms | Acoustic Stimulation Action potentials Animals Aquatic life Auditory nerve Cats Cell nucleus Cells Cochlear Nerve - physiology Cochlear nucleus Cochlear Nucleus - cytology Cochlear Nucleus - physiology Ears & hearing Electric current Electric potential Giant cells Membrane potential Nerve Fibers - physiology Nervous system Neurons Octopuses Papers from the National Academy of Sciences Colloquium on Auditory Neuroscience: Development, Transduction, and Integration Sound Synaptic Transmission |
Title | Detection of Synchrony in the Activity of Auditory Nerve Fibers by Octopus Cells of the Mammalian Cochlear Nucleus |
URI | https://www.jstor.org/stable/123743 http://www.pnas.org/content/97/22/11773.abstract https://www.ncbi.nlm.nih.gov/pubmed/11050208 https://www.proquest.com/docview/201382156 https://search.proquest.com/docview/18026185 https://search.proquest.com/docview/72361806 https://pubmed.ncbi.nlm.nih.gov/PMC34348 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3Rnrgg2gJNS4uRONBDdrN2Po-oUFVIIA5U6s2KHUddiTirdfaw_54Zx9myiF445BKPo8gZe97Ez28APuhMl6ludNxg-hCjUyRx2SzyOEsaXBoTg7c9QfZ7fnuXfr3P7sM5bhdolVar5cz-6mZ2-eC5latOzyee2PzHt2uRirScH8ABBt8pQd_p7JbjqROOi2_K07AziY48X9nazapixrnfqfQVdBBdUJXKvaA08hJJ7BQ7_At4_s2f_CMg3byEFwFJsk_jGx_BM2OP4SjMVcc-BkHpqxNYfzaDZ1xZ1rfMba0mRdwtW1qG8I_R0QaqIEGNNR3S6NdbZokJyVrikzimsE0P_WrjGP3od2RJPbu66_x_EobL6gMVoGCW9JE37hXc3Xz5eX0bh1oLsc6qxRDXQrWlVsWC64bSMExdBa58RVsljUoQEyQaM8kWr1y1ulKqUiar66RQBjGc4OI1HNremlNgCBoafEhD1a7SSos6KxEX5BpjpNZ5YSK4mgZbrkZJDem3wgshachlVUjOvQq5iODEf41HQy4Q80Rw6i2nu3s93j_VJNvAp4ngfPqoMkxZJznt2SIAyiN4t2vFuUbjWlvTb5wktbwcAc7TFgVp2ZQJPuPN6CKPLx5cLYJsz3l2BqTzvd-C7u_1vr27n_1nv3N47tUDMNzy9C0cDuuNuUAcNahLimLZpZ8_vwHWWR5k |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BOcAFUQo0FKiRONBDdrN2Po-oUC3QVhxaqTcrdhJ1pcZZrbOH_ffMOM6WRfTCIZfMOIqcGfs5fn4D8EknOo91pcMKlw8hBkUU5tUsDZOowqExqvG2I8hepvPr-MdNcuPPcVtPqzRaLSbmrp2Yxa3jVi5bPR15YtNfF6ciFnE-fQxPEpEVs3GJvlXazYdzJxyH35jHfm8SQ3m6NKWdFNmEc7dX6WroIL6gOpU709LATCS5U2zwL-j5N4Pyjynp7AU891iSfRneeR8e1eYl7Ptsteyzl5Q-OYDV17p3nCvDuobZjdGkibthC8MQADI63EA1JMhY0jGNbrVhhriQrCFGiWUKbbrvlmvL6Fe_JU9q2ZZt6_6UMBxYb6kEBTOkkLy2r-D67NvV6Tz01RZCnRSzPiyFanKtshnXFS3EcPEqcOzLmiKqVISoINK4lmzwSlWjC6UKVSdlGWWqRhQnuHgNe6Yz9SEwhA0VPqSieldxoUWZ5IgMUo2zpNZpVgdwMna2XA6iGtJthmdCUpfLIpOcOx1yEcCB-xr3jlwg6gng0HmOd3dafHzIJBvPqAngaPyo0ietlZx2bRECpQEcb62YbdSvpam7tZWkl5cixHnYIyM1mzzCZ7wZQuT-xX2oBZDsBM_WgZS-dy2YAE7x2wX82_9sdwxP51cX5_L8--XPI3jmtARw8uXxO9jrV-v6PaKqXn1wWfQbRNgg0w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgLainQ0EKNxIEessnaeR5Ry6q8qh6o1JsVO466EnGidfaw_54Zx9myiF445JIZR5E9Y39jj78h5INKVZGoWoU1hA8hGEUcFvU8C9O4hqkx1vDaJcheZZc3ydfb9NZvXVifVmmUXM7Mr3Zmlncut7JvVTTliUXXP855wpMi6usmekyepBxMbArTt2y7xXj3hMEUnLDEn0-COUe9qeyszGeMufNKV0cHMAbWqtxZmsbsRKQ8hQb_gp9_Z1H-sSwt9slzjyfpp_G_D8gjbV6QA--xln70tNJnh2R1oQeXd2Vo11C7MQp5cTd0aSiAQIoXHLCOBAorvKrRrTbUYD4kbTCrxFIJMjV0_dpS3O63qIkt26pt3W4Jhcn1DstQUIMsyWv7ktwsPv88vwx9xYVQpeV8CCsum0LJfM5UjcEYBLAc5r-8KeNaxoAMYgXxZANPJhtVSllKnVZVnEsNSI4z_orsmc7oI0IBOtTwkRprXiWl4lVaADrIFKyUSmW5DsjZ1NmiH4k1hDsQz7nALhdlLhhzXOQ8IIduNO4VGQfkE5Ajpzm93Wnx_iGRaHxWTUCOp0EV3nGtYHhyCzAoC8jpVgoeh_1aGd2trUDOvAxgzsMaOTLaFDF84_VoIvc_7k0tIOmO8WwVkO17VwJO4Fi_ndG_-c92p-Tp9cVCfP9y9e2YPHN0ArD-suSE7A2rtX4LwGqQ75wT_QZfHyHm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Synchrony+in+the+Activity+of+Auditory+Nerve+Fibers+by+Octopus+Cells+of+the+Mammalian+Cochlear+Nucleus&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Oertel%2C+Donata&rft.au=Bal%2C+Ramazan&rft.au=Gardner%2C+Stephanie+M.&rft.au=Smith%2C+Philip+H.&rft.date=2000-10-24&rft.pub=National+Academy+of+Sciences+of+the+United+States+of+America&rft.issn=0027-8424&rft.volume=97&rft.issue=22&rft.spage=11773&rft.epage=11779&rft_id=info:doi/10.1073%2Fpnas.97.22.11773&rft.externalDocID=123743 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F22.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F22.cover.gif |