Detection of Synchrony in the Activity of Auditory Nerve Fibers by Octopus Cells of the Mammalian Cochlear Nucleus

The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 97; no. 22; pp. 11773 - 11779
Main Authors Oertel, Donata, Bal, Ramazan, Gardner, Stephanie M., Smith, Philip H., Joris, Philip X.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences of the United States of America 24.10.2000
National Acad Sciences
National Academy of Sciences
The National Academy of Sciences
SeriesColloquium Paper
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, α -amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 MΩ ), and short time constants (about 200 μ sec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs.
AbstractList The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium- permeable, alpha -amino-3-hydroxy-5-methyl-4- isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 M Omega ), and short time constants (about 200 mu sec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs.
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 MΩ), and short time constants (about 200 μsec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs.
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 MΩ), and short time constants (about 200 μsec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs.
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 M Omega), and short time constants (about 200 microsec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs.
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, α -amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 MΩ ), and short time constants (about 200 μ sec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs.
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mamalian ventral cochlear nucleus.
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 MΩ), and short time constants (about 200 μsec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs.
Author Bal, Ramazan
Gardner, Stephanie M.
Oertel, Donata
Smith, Philip H.
Joris, Philip X.
AuthorAffiliation Departments of Physiology and ‡ Anatomy, University of Wisconsin Medical School, Madison, WI 53706; and § Division of Neurophysiology, Katholicke Universiteit Leuven, Leuven, B-3000 Belgium
AuthorAffiliation_xml – name: Departments of Physiology and ‡ Anatomy, University of Wisconsin Medical School, Madison, WI 53706; and § Division of Neurophysiology, Katholicke Universiteit Leuven, Leuven, B-3000 Belgium
Author_xml – sequence: 1
  givenname: Donata
  surname: Oertel
  fullname: Oertel, Donata
– sequence: 2
  givenname: Ramazan
  surname: Bal
  fullname: Bal, Ramazan
– sequence: 3
  givenname: Stephanie M.
  surname: Gardner
  fullname: Gardner, Stephanie M.
– sequence: 4
  givenname: Philip H.
  surname: Smith
  fullname: Smith, Philip H.
– sequence: 5
  givenname: Philip X.
  surname: Joris
  fullname: Joris, Philip X.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11050208$$D View this record in MEDLINE/PubMed
BookMark eNqFksFvFCEYxYmpsdvq3cREiQfjZdYPmFmGxMtma9Wktgf1TIBh3NnMwgrMxvnvy7irrR70QDi83_vg8ThDJ847i9BTAnMCnL3ZORXngs8pnRPCOXuAZgQEKRalgBM0A6C8qEtanqKzGDcAIKoaHqFTQqACCvUMhQubrEmdd9i3-PPozDp4N-LO4bS2eJmlfZfGSVwOTZd8GPG1DXuLLzttQ8R6xDcm-d0Q8cr2fZzIyflJbbeq75TDK2_WvVUBXw-mt0N8jB62qo_2yXE_R18v331ZfSiubt5_XC2vClMJkgrFdFsbzQk1DdCaEsZY01jeCmg0UMHAVKVo81ro1githbaVUsC1rVnFKDtHbw9zd4Pe2sZYl4Lq5S50WxVG6VUn_1Rct5bf_F6ykpV1tr862oP_PtiY5LaLJkdUzvohSk7ZgtSw-C-YIZrJKoMv_wI3fgguv4GkQFiOWE3T4ACZ4GMMtv19YQJyKl1OpUvBJaXyZ-nZ8vx-0DvDseUMvD4Ck_WXfG-EbIe-T_ZHyuiLf6OZeHYgNjH_hrvDKOMlY7cdPM0a
CitedBy_id crossref_primary_10_1016_j_heares_2010_03_083
crossref_primary_10_1007_s00422_021_00881_x
crossref_primary_10_1152_jn_00435_2020
crossref_primary_10_1002_cne_23623
crossref_primary_10_1016_j_jtbi_2019_01_043
crossref_primary_10_1016_j_heares_2010_03_002
crossref_primary_10_1369_jhc_2008_950303
crossref_primary_10_1523_JNEUROSCI_1475_16_2016
crossref_primary_10_1007_s10827_005_1847_0
crossref_primary_10_1016_j_heares_2005_02_012
crossref_primary_10_1371_journal_pgen_1008925
crossref_primary_10_1152_jn_00601_2014
crossref_primary_10_1159_000046825
crossref_primary_10_1007_s10162_020_00757_0
crossref_primary_10_1007_s00422_008_0276_3
crossref_primary_10_1121_1_5009563
crossref_primary_10_1152_jn_00020_2005
crossref_primary_10_1002_cpa_21469
crossref_primary_10_1038_s41467_018_07757_y
crossref_primary_10_1152_jn_90322_2008
crossref_primary_10_1002_cne_21788
crossref_primary_10_1152_jn_00015_2010
crossref_primary_10_1007_s00422_006_0091_7
crossref_primary_10_1074_jbc_M110_186486
crossref_primary_10_1242_jeb_02080
crossref_primary_10_1134_S0022093020010081
crossref_primary_10_1152_jn_00395_2010
crossref_primary_10_1162_NECO_a_00323
crossref_primary_10_1073_pnas_1108912108
crossref_primary_10_1152_jn_00052_2007
crossref_primary_10_1016_j_tins_2016_09_006
crossref_primary_10_1152_jn_00635_2002
crossref_primary_10_1007_s00232_017_0011_x
crossref_primary_10_1016_j_neuroscience_2005_02_007
crossref_primary_10_1002_cne_20407
crossref_primary_10_1016_j_tins_2017_08_001
crossref_primary_10_1016_S0006_8993_03_03038_5
crossref_primary_10_3389_fncir_2021_747472
crossref_primary_10_1016_j_neuroscience_2008_03_013
crossref_primary_10_1016_S0925_2312_02_00808_1
crossref_primary_10_1016_j_mbs_2014_08_015
crossref_primary_10_1002_ar_a_20303
crossref_primary_10_1016_S0959_4388_01_00276_8
crossref_primary_10_1111_j_0953_816X_2003_03133_x
crossref_primary_10_1080_03601234_2012_663311
crossref_primary_10_1371_journal_pone_0056822
crossref_primary_10_1523_JNEUROSCI_1760_10_2010
crossref_primary_10_1113_JP279189
crossref_primary_10_1556_APhysiol_89_2002_4_1
crossref_primary_10_1137_07068775X
crossref_primary_10_1152_jn_00396_2010
crossref_primary_10_1016_j_heares_2017_01_001
crossref_primary_10_1007_s00232_018_0048_5
crossref_primary_10_1152_jn_00717_2003
crossref_primary_10_1038_ncomms13229
crossref_primary_10_1007_s00422_005_0571_1
crossref_primary_10_1152_jn_00399_2006
crossref_primary_10_1152_physrev_00029_2003
crossref_primary_10_1371_journal_pone_0126500
crossref_primary_10_1007_s13295_014_0060_x
crossref_primary_10_1523_JNEUROSCI_2107_17_2018
crossref_primary_10_1152_jn_00985_2004
crossref_primary_10_3389_fncom_2022_889992
crossref_primary_10_1016_j_apacoust_2023_109507
crossref_primary_10_1016_j_heares_2009_06_004
crossref_primary_10_1152_jn_00427_2007
crossref_primary_10_1002_cne_10713
crossref_primary_10_1159_000063565
crossref_primary_10_1371_journal_pone_0180174
crossref_primary_10_1152_jn_01049_2004
crossref_primary_10_1016_j_heares_2024_109026
crossref_primary_10_1152_jn_2001_86_5_2299
crossref_primary_10_1097_SHK_0000000000001453
crossref_primary_10_1088_1741_2560_6_6_065003
crossref_primary_10_1007_s10162_009_0159_x
crossref_primary_10_1371_journal_pcbi_1004860
crossref_primary_10_1073_pnas_2203748119
crossref_primary_10_1097_AUD_0000000000000890
crossref_primary_10_1016_j_cbpa_2007_04_012
crossref_primary_10_1007_s00422_009_0353_2
crossref_primary_10_1515_s13295_014_0060_x
crossref_primary_10_1016_j_heares_2015_06_014
crossref_primary_10_1152_jn_00160_2012
crossref_primary_10_3389_fnhum_2015_00655
crossref_primary_10_1016_j_jmaa_2004_10_070
crossref_primary_10_1098_rspb_2019_1607
crossref_primary_10_1523_JNEUROSCI_5333_10_2011
crossref_primary_10_1016_j_heares_2014_12_012
crossref_primary_10_1016_j_clinph_2007_12_010
crossref_primary_10_1121_1_5088504
crossref_primary_10_1152_jn_01041_2012
crossref_primary_10_1007_s10162_023_00898_y
crossref_primary_10_1152_jn_2002_87_6_2915
crossref_primary_10_1016_j_heares_2018_12_011
crossref_primary_10_1016_j_neuroscience_2008_03_002
crossref_primary_10_1111_ejn_14073
crossref_primary_10_1152_jn_00472_2016
crossref_primary_10_1371_journal_pcbi_1006476
crossref_primary_10_1016_j_neuroscience_2008_08_068
crossref_primary_10_1007_s10162_007_0091_x
crossref_primary_10_1016_j_specom_2013_09_007
crossref_primary_10_1113_jphysiol_2005_094763
crossref_primary_10_1016_j_jphysparis_2004_03_003
crossref_primary_10_1242_jeb_082651
crossref_primary_10_1002_cne_24575
crossref_primary_10_1038_s41598_020_60266_1
crossref_primary_10_1113_jphysiol_2012_229328
crossref_primary_10_3389_fncom_2016_00057
crossref_primary_10_1523_ENEURO_0465_22_2023
crossref_primary_10_7554_eLife_45573
crossref_primary_10_1371_journal_pcbi_1004997
crossref_primary_10_3389_fncir_2017_00037
crossref_primary_10_1016_j_neuroscience_2020_08_029
crossref_primary_10_33549_physiolres_931954
crossref_primary_10_1016_j_heares_2022_108592
crossref_primary_10_1016_j_neuroscience_2013_11_021
crossref_primary_10_1016_j_biosystems_2015_05_007
crossref_primary_10_1038_nn_2530
crossref_primary_10_3389_fncom_2018_00036
crossref_primary_10_1152_jn_00167_2005
crossref_primary_10_1073_pnas_0610368104
crossref_primary_10_1121_10_0023969
crossref_primary_10_1152_jn_00587_2001
crossref_primary_10_1162_neco_a_01085
crossref_primary_10_1016_j_heares_2015_01_003
crossref_primary_10_1523_JNEUROSCI_2552_21_2022
crossref_primary_10_1016_j_brainresbull_2021_02_009
crossref_primary_10_1111_ejn_12116
crossref_primary_10_1152_jn_00451_2010
crossref_primary_10_1371_journal_pcbi_1003775
crossref_primary_10_1016_j_jtbi_2013_05_022
crossref_primary_10_1523_JNEUROSCI_1958_11_2012
crossref_primary_10_1016_j_ejphar_2020_173163
crossref_primary_10_1152_jn_00624_2005
crossref_primary_10_1523_JNEUROSCI_1016_05_2005
crossref_primary_10_1016_j_heares_2006_02_006
crossref_primary_10_1016_j_brainres_2011_08_048
crossref_primary_10_1016_j_heares_2006_02_007
Cites_doi 10.1007/BF00724522
10.1016/0306-4522(83)90109-4
10.1152/jn.1997.78.2.872
10.1152/jn.2000.84.2.806
10.1016/0896-6273(95)90087-X
10.1523/JNEUROSCI.14-08-04588.1994
10.1002/cne.901970409
10.1016/S0896-6273(00)80388-8
10.1002/cne.902920305
10.1002/(SICI)1096-9861(19960819)372:2<245::AID-CNE7>3.0.CO;2-3
10.1016/S0006-3495(95)80168-2
10.1523/JNEUROSCI.15-04-03138.1995
10.1146/annurev.physiol.61.1.497
10.1121/1.383532
10.1002/cne.902130408
10.1523/JNEUROSCI.19-08-02897.1999
10.1152/jn.2000.83.1.301
10.1523/JNEUROSCI.04-07-01781.1984
10.1002/cne.903600110
10.1097/00001756-199911080-00031
10.1002/cne.902950112
10.1113/jphysiol.1995.sp020737
10.1523/JNEUROSCI.06-10-02926.1986
10.1073/pnas.96.16.9391
10.1016/S0378-5955(98)00002-1
10.1002/cne.901830107
10.1002/cne.903390302
10.1002/(SICI)1096-9861(19970317)379:3<363::AID-CNE4>3.0.CO;2-1
10.1152/jn.1999.82.2.648
10.1016/0896-6273(92)90232-3
10.1016/S0896-6273(00)80508-5
10.1126/science.270.5234.303
10.1002/cne.901620206
10.1523/JNEUROSCI.19-20-08721.1999
10.1002/(SICI)1096-9861(19970922)386:2<178::AID-CNE2>3.0.CO;2-Z
10.1016/0378-5955(90)90098-A
10.1007/978-1-4615-2932-3_27
10.1016/0896-6273(95)90076-4
10.1016/0378-5955(94)90252-6
10.3109/00016486909125462
10.1523/JNEUROSCI.17-01-00058.1997
10.1002/cne.903000106
10.1288/00005537-193304000-00014
10.1002/j.1460-2075.1989.tb08483.x
10.1111/j.1460-9568.1996.tb01169.x
10.1146/annurev.physiol.61.1.477
10.1016/S0896-6273(00)80643-1
10.1152/jn.1986.56.2.261
ContentType Journal Article
Copyright Copyright 1993-2000 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Oct 24, 2000
Copyright © 2000, The National Academy of Sciences 2000
Copyright_xml – notice: Copyright 1993-2000 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Oct 24, 2000
– notice: Copyright © 2000, The National Academy of Sciences 2000
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.97.22.11773
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts

CrossRef
MEDLINE
MEDLINE - Academic

Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 11779
ExternalDocumentID 63455544
10_1073_pnas_97_22_11773
11050208
97_22_11773
123743
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
Feature
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: R01 DC000176
– fundername: NIDCD NIH HHS
  grantid: F32 DC000176
– fundername: NIDCD NIH HHS
  grantid: DC00116
– fundername: NIDCD NIH HHS
  grantid: DC00176
– fundername: NIDCD NIH HHS
  grantid: P01 DC000116
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
08R
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AFDAS
AJYGW
AS
ASUFR
DNJUQ
DWIUU
DZ
F20
GJ
KM
OHM
PQEST
X
XFK
XHC
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c591t-a3bf8cb712cd02821333dde7f90db02930c549f5496bfc9bb9be5aa07be835323
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:28:00 EDT 2024
Fri Oct 25 05:47:31 EDT 2024
Fri Oct 25 01:48:53 EDT 2024
Thu Nov 21 03:55:52 EST 2024
Fri Dec 06 04:29:19 EST 2024
Sat Sep 28 07:36:40 EDT 2024
Thu May 30 08:51:15 EDT 2019
Wed Nov 11 00:29:34 EST 2020
Tue Dec 10 23:05:47 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c591t-a3bf8cb712cd02821333dde7f90db02930c549f5496bfc9bb9be5aa07be835323
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
To whom reprint requests should be addressed at: Department of Physiology, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706. E-mail: oertel@physiology.wisc.edu.
OpenAccessLink https://europepmc.org/articles/pmc34348?pdf=render
PMID 11050208
PQID 201382156
PQPubID 42026
PageCount 7
ParticipantIDs proquest_miscellaneous_18026185
proquest_journals_201382156
proquest_miscellaneous_72361806
pnas_primary_97_22_11773
pubmedcentral_primary_oai_pubmedcentral_nih_gov_34348
pubmed_primary_11050208
crossref_primary_10_1073_pnas_97_22_11773
jstor_primary_123743
pnas_primary_97_22_11773_fulltext
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 20001024
2000-10-24
2000-Oct-24
PublicationDateYYYYMMDD 2000-10-24
PublicationDate_xml – month: 10
  year: 2000
  text: 20001024
  day: 24
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle Colloquium Paper
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2000
Publisher National Academy of Sciences of the United States of America
National Acad Sciences
National Academy of Sciences
The National Academy of Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences of the United States of America
– name: National Acad Sciences
– name: National Academy of Sciences
– name: The National Academy of Sciences
References 8132865 - J Comp Neurol. 1994 Jan 15;339(3):311-27
9390510 - Neuron. 1997 Nov;19(5):959-62
10516291 - J Neurosci. 1999 Oct 15;19(20):8721-9
10430953 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9391-6
7569981 - Science. 1995 Oct 13;270(5234):303-4
758336 - J Comp Neurol. 1979 Jan 1;183(1):73-88
2341631 - J Comp Neurol. 1990 May 1;295(1):136-54
6300200 - J Comp Neurol. 1983 Feb 1;213(4):448-63
1150921 - J Comp Neurol. 1975 Jul 15;162(2):247-68
6664491 - Neuroscience. 1983 Dec;10(4):1203-32
1692850 - J Comp Neurol. 1990 Feb 15;292(3):373-95
500976 - J Acoust Soc Am. 1979 Nov;66(5):1381-1403
9307120 - J Neurophysiol. 1997 Aug;78(2):872-83
10191307 - J Neurosci. 1999 Apr 15;19(8):2897-905
7928738 - Hear Res. 1994 Jun 15;77(1-2):43-68
7711235 - Biophys J. 1995 Jan;68(1):137-46
9295146 - J Comp Neurol. 1997 Sep 22;386(2):178-202
10599857 - Neuroreport. 1999 Nov 8;10(16):3429-35
7619522 - Neuron. 1995 Jul;15(1):193-204
10099698 - Annu Rev Physiol. 1999;61:477-96
1963423 - Hear Res. 1990 Nov;49(1-3):105-18
2555158 - EMBO J. 1989 Nov;8(11):3235-44
3760921 - J Neurophysiol. 1986 Aug;56(2):261-86
7545230 - J Physiol. 1995 Jun 1;485 ( Pt 2):383-402
10938307 - J Neurophysiol. 2000 Aug;84(2):806-17
8046438 - J Neurosci. 1994 Aug;14(8):4588-99
7816560 - Pflugers Arch. 1994 Oct;428(3-4):382-90
2229488 - J Comp Neurol. 1990 Oct 1;300(1):61-81
9067830 - J Comp Neurol. 1997 Mar 17;379(3):363-85
7229133 - J Comp Neurol. 1981 Apr 20;197(4):673-703
3020188 - J Neurosci. 1986 Oct;6(10):2926-40
10099699 - Annu Rev Physiol. 1999;61:497-519
8713452 - Eur J Neurosci. 1996 Jan;8(1):79-91
9557977 - Hear Res. 1998 Mar;117(1-2):39-56
9883717 - Neuron. 1998 Dec;21(6):1235-8
7576666 - Neuron. 1995 Nov;15(5):987-90
10634873 - J Neurophysiol. 2000 Jan;83(1):301-14
7499559 - J Comp Neurol. 1995 Sep 11;360(1):135-49
8863129 - J Comp Neurol. 1996 Aug 19;372(2):245-63
9697846 - Neuron. 1998 Jul;21(1):5-7
8987736 - J Neurosci. 1997 Jan 1;17(1):58-69
6737040 - J Neurosci. 1984 Jul;4(7):1781-6
5374653 - Acta Otolaryngol. 1969 Feb-Mar;67(2):352-9
7722652 - J Neurosci. 1995 Apr;15(4):3138-53
10444663 - J Neurophysiol. 1999 Aug;82(2):648-63
1352983 - Neuron. 1992 Jul;9(1):173-86
e_1_3_3_50_2
Adams J C (e_1_3_3_8_2) 1997; 3
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
Lorente de No R (e_1_3_3_25_2) 1933; 43
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
Ehret G (e_1_3_3_22_2) 1983
e_1_3_3_11_2
e_1_3_3_30_2
Carr C E (e_1_3_3_10_2) 2000
e_1_3_3_6_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_44_2
  doi: 10.1007/BF00724522
– ident: e_1_3_3_14_2
  doi: 10.1016/0306-4522(83)90109-4
– ident: e_1_3_3_51_2
  doi: 10.1152/jn.1997.78.2.872
– ident: e_1_3_3_36_2
  doi: 10.1152/jn.2000.84.2.806
– ident: e_1_3_3_32_2
  doi: 10.1016/0896-6273(95)90087-X
– ident: e_1_3_3_45_2
  doi: 10.1523/JNEUROSCI.14-08-04588.1994
– ident: e_1_3_3_12_2
  doi: 10.1002/cne.901970409
– ident: e_1_3_3_41_2
  doi: 10.1016/S0896-6273(00)80388-8
– ident: e_1_3_3_7_2
  doi: 10.1002/cne.902920305
– ident: e_1_3_3_15_2
  doi: 10.1002/(SICI)1096-9861(19960819)372:2<245::AID-CNE7>3.0.CO;2-3
– ident: e_1_3_3_34_2
  doi: 10.1016/S0006-3495(95)80168-2
– ident: e_1_3_3_19_2
  doi: 10.1523/JNEUROSCI.15-04-03138.1995
– ident: e_1_3_3_2_2
  doi: 10.1146/annurev.physiol.61.1.497
– ident: e_1_3_3_5_2
  doi: 10.1121/1.383532
– ident: e_1_3_3_37_2
  doi: 10.1002/cne.902130408
– ident: e_1_3_3_20_2
  doi: 10.1523/JNEUROSCI.19-08-02897.1999
– ident: e_1_3_3_47_2
  doi: 10.1152/jn.2000.83.1.301
– ident: e_1_3_3_4_2
  doi: 10.1523/JNEUROSCI.04-07-01781.1984
– ident: e_1_3_3_11_2
  doi: 10.1002/cne.903600110
– ident: e_1_3_3_16_2
  doi: 10.1097/00001756-199911080-00031
– ident: e_1_3_3_21_2
  doi: 10.1002/cne.902950112
– start-page: 197
  volume-title: The Central Auditory System of Reptiles and Birds
  year: 2000
  ident: e_1_3_3_10_2
  contributor:
    fullname: Carr C E
– ident: e_1_3_3_33_2
  doi: 10.1113/jphysiol.1995.sp020737
– ident: e_1_3_3_13_2
  doi: 10.1523/JNEUROSCI.06-10-02926.1986
– start-page: 13
  volume-title: Psychoacoustics
  year: 1983
  ident: e_1_3_3_22_2
  contributor:
    fullname: Ehret G
– ident: e_1_3_3_40_2
  doi: 10.1073/pnas.96.16.9391
– ident: e_1_3_3_50_2
  doi: 10.1016/S0378-5955(98)00002-1
– ident: e_1_3_3_24_2
  doi: 10.1002/cne.901830107
– ident: e_1_3_3_18_2
  doi: 10.1002/cne.903390302
– ident: e_1_3_3_9_2
  doi: 10.1002/(SICI)1096-9861(19970317)379:3<363::AID-CNE4>3.0.CO;2-1
– ident: e_1_3_3_3_2
  doi: 10.1152/jn.1999.82.2.648
– ident: e_1_3_3_29_2
  doi: 10.1016/0896-6273(92)90232-3
– ident: e_1_3_3_39_2
  doi: 10.1016/S0896-6273(00)80508-5
– volume: 3
  start-page: 335
  year: 1997
  ident: e_1_3_3_8_2
  publication-title: Aud Neurosci
  contributor:
    fullname: Adams J C
– ident: e_1_3_3_6_2
  doi: 10.1126/science.270.5234.303
– ident: e_1_3_3_48_2
  doi: 10.1002/cne.901620206
– ident: e_1_3_3_31_2
  doi: 10.1523/JNEUROSCI.19-20-08721.1999
– ident: e_1_3_3_46_2
  doi: 10.1002/(SICI)1096-9861(19970922)386:2<178::AID-CNE2>3.0.CO;2-Z
– ident: e_1_3_3_26_2
  doi: 10.1016/0378-5955(90)90098-A
– ident: e_1_3_3_38_2
  doi: 10.1007/978-1-4615-2932-3_27
– ident: e_1_3_3_30_2
  doi: 10.1016/0896-6273(95)90076-4
– ident: e_1_3_3_49_2
  doi: 10.1016/0378-5955(94)90252-6
– ident: e_1_3_3_17_2
  doi: 10.3109/00016486909125462
– ident: e_1_3_3_35_2
  doi: 10.1523/JNEUROSCI.17-01-00058.1997
– ident: e_1_3_3_23_2
  doi: 10.1002/cne.903000106
– volume: 43
  start-page: 327
  year: 1933
  ident: e_1_3_3_25_2
  publication-title: Laryngoscope
  doi: 10.1288/00005537-193304000-00014
  contributor:
    fullname: Lorente de No R
– ident: e_1_3_3_43_2
  doi: 10.1002/j.1460-2075.1989.tb08483.x
– ident: e_1_3_3_28_2
  doi: 10.1111/j.1460-9568.1996.tb01169.x
– ident: e_1_3_3_42_2
  doi: 10.1146/annurev.physiol.61.1.477
– ident: e_1_3_3_1_2
  doi: 10.1016/S0896-6273(00)80643-1
– ident: e_1_3_3_27_2
  doi: 10.1152/jn.1986.56.2.261
SSID ssj0009580
Score 2.1504912
Snippet The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the...
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11773
SubjectTerms Acoustic Stimulation
Action potentials
Animals
Aquatic life
Auditory nerve
Cats
Cell nucleus
Cells
Cochlear Nerve - physiology
Cochlear nucleus
Cochlear Nucleus - cytology
Cochlear Nucleus - physiology
Ears & hearing
Electric current
Electric potential
Giant cells
Membrane potential
Nerve Fibers - physiology
Nervous system
Neurons
Octopuses
Papers from the National Academy of Sciences Colloquium on Auditory Neuroscience: Development, Transduction, and Integration
Sound
Synaptic Transmission
Title Detection of Synchrony in the Activity of Auditory Nerve Fibers by Octopus Cells of the Mammalian Cochlear Nucleus
URI https://www.jstor.org/stable/123743
http://www.pnas.org/content/97/22/11773.abstract
https://www.ncbi.nlm.nih.gov/pubmed/11050208
https://www.proquest.com/docview/201382156
https://search.proquest.com/docview/18026185
https://search.proquest.com/docview/72361806
https://pubmed.ncbi.nlm.nih.gov/PMC34348
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3Rnrgg2gJNS4uRONBDdrN2Po-oUFVIIA5U6s2KHUddiTirdfaw_54Zx9myiF445BKPo8gZe97Ez28APuhMl6ludNxg-hCjUyRx2SzyOEsaXBoTg7c9QfZ7fnuXfr3P7sM5bhdolVar5cz-6mZ2-eC5latOzyee2PzHt2uRirScH8ABBt8pQd_p7JbjqROOi2_K07AziY48X9nazapixrnfqfQVdBBdUJXKvaA08hJJ7BQ7_At4_s2f_CMg3byEFwFJsk_jGx_BM2OP4SjMVcc-BkHpqxNYfzaDZ1xZ1rfMba0mRdwtW1qG8I_R0QaqIEGNNR3S6NdbZokJyVrikzimsE0P_WrjGP3od2RJPbu66_x_EobL6gMVoGCW9JE37hXc3Xz5eX0bh1oLsc6qxRDXQrWlVsWC64bSMExdBa58RVsljUoQEyQaM8kWr1y1ulKqUiar66RQBjGc4OI1HNremlNgCBoafEhD1a7SSos6KxEX5BpjpNZ5YSK4mgZbrkZJDem3wgshachlVUjOvQq5iODEf41HQy4Q80Rw6i2nu3s93j_VJNvAp4ngfPqoMkxZJznt2SIAyiN4t2vFuUbjWlvTb5wktbwcAc7TFgVp2ZQJPuPN6CKPLx5cLYJsz3l2BqTzvd-C7u_1vr27n_1nv3N47tUDMNzy9C0cDuuNuUAcNahLimLZpZ8_vwHWWR5k
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BOcAFUQo0FKiRONBDdrN2Po-oUC3QVhxaqTcrdhJ1pcZZrbOH_ffMOM6WRfTCIZfMOIqcGfs5fn4D8EknOo91pcMKlw8hBkUU5tUsDZOowqExqvG2I8hepvPr-MdNcuPPcVtPqzRaLSbmrp2Yxa3jVi5bPR15YtNfF6ciFnE-fQxPEpEVs3GJvlXazYdzJxyH35jHfm8SQ3m6NKWdFNmEc7dX6WroIL6gOpU709LATCS5U2zwL-j5N4Pyjynp7AU891iSfRneeR8e1eYl7Ptsteyzl5Q-OYDV17p3nCvDuobZjdGkibthC8MQADI63EA1JMhY0jGNbrVhhriQrCFGiWUKbbrvlmvL6Fe_JU9q2ZZt6_6UMBxYb6kEBTOkkLy2r-D67NvV6Tz01RZCnRSzPiyFanKtshnXFS3EcPEqcOzLmiKqVISoINK4lmzwSlWjC6UKVSdlGWWqRhQnuHgNe6Yz9SEwhA0VPqSieldxoUWZ5IgMUo2zpNZpVgdwMna2XA6iGtJthmdCUpfLIpOcOx1yEcCB-xr3jlwg6gng0HmOd3dafHzIJBvPqAngaPyo0ietlZx2bRECpQEcb62YbdSvpam7tZWkl5cixHnYIyM1mzzCZ7wZQuT-xX2oBZDsBM_WgZS-dy2YAE7x2wX82_9sdwxP51cX5_L8--XPI3jmtARw8uXxO9jrV-v6PaKqXn1wWfQbRNgg0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgLainQ0EKNxIEessnaeR5Ry6q8qh6o1JsVO466EnGidfaw_54Zx9myiF445JIZR5E9Y39jj78h5INKVZGoWoU1hA8hGEUcFvU8C9O4hqkx1vDaJcheZZc3ydfb9NZvXVifVmmUXM7Mr3Zmlncut7JvVTTliUXXP855wpMi6usmekyepBxMbArTt2y7xXj3hMEUnLDEn0-COUe9qeyszGeMufNKV0cHMAbWqtxZmsbsRKQ8hQb_gp9_Z1H-sSwt9slzjyfpp_G_D8gjbV6QA--xln70tNJnh2R1oQeXd2Vo11C7MQp5cTd0aSiAQIoXHLCOBAorvKrRrTbUYD4kbTCrxFIJMjV0_dpS3O63qIkt26pt3W4Jhcn1DstQUIMsyWv7ktwsPv88vwx9xYVQpeV8CCsum0LJfM5UjcEYBLAc5r-8KeNaxoAMYgXxZANPJhtVSllKnVZVnEsNSI4z_orsmc7oI0IBOtTwkRprXiWl4lVaADrIFKyUSmW5DsjZ1NmiH4k1hDsQz7nALhdlLhhzXOQ8IIduNO4VGQfkE5Ajpzm93Wnx_iGRaHxWTUCOp0EV3nGtYHhyCzAoC8jpVgoeh_1aGd2trUDOvAxgzsMaOTLaFDF84_VoIvc_7k0tIOmO8WwVkO17VwJO4Fi_ndG_-c92p-Tp9cVCfP9y9e2YPHN0ArD-suSE7A2rtX4LwGqQ75wT_QZfHyHm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Synchrony+in+the+Activity+of+Auditory+Nerve+Fibers+by+Octopus+Cells+of+the+Mammalian+Cochlear+Nucleus&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Oertel%2C+Donata&rft.au=Bal%2C+Ramazan&rft.au=Gardner%2C+Stephanie+M.&rft.au=Smith%2C+Philip+H.&rft.date=2000-10-24&rft.pub=National+Academy+of+Sciences+of+the+United+States+of+America&rft.issn=0027-8424&rft.volume=97&rft.issue=22&rft.spage=11773&rft.epage=11779&rft_id=info:doi/10.1073%2Fpnas.97.22.11773&rft.externalDocID=123743
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F22.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F22.cover.gif