Neuronal representations of distance in human auditory cortex
Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to differentiate. Typically, the received intensity increases when sound sources approach us. However, we can also distinguish between soft-but-...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 27; pp. 11019 - 11024 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.07.2012
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1119496109 |
Cover
Loading…
Abstract | Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to differentiate. Typically, the received intensity increases when sound sources approach us. However, we can also distinguish between soft-but-nearby and loud-but-distant sounds, indicating that distance processing can also be based on intensity-independent cues. Here, we combined behavioral experiments, fMRI measurements, and computational analyses to identify the neural representation of distance independent of intensity. In a virtual reverberant environment, we simulated sound sources at varying distances (15–100 cm) along the right-side interaural axis. Our acoustic analysis suggested that, of the individual intensity-independent depth cues available for these stimuli, direct-to-reverberant ratio (D/R) is more reliable and robust than interaural level difference (ILD). However, on the basis of our behavioral results, subjects’ discrimination performance was more consistent with complex intensity-independent distance representations, combining both available cues, than with representations on the basis of either D/R or ILD individually. fMRI activations to sounds varying in distance (containing all cues, including intensity), compared with activations to sounds varying in intensity only, were significantly increased in the planum temporale and posterior superior temporal gyrus contralateral to the direction of stimulation. This fMRI result suggests that neurons in posterior nonprimary auditory cortices, in or near the areas processing other auditory spatial features, are sensitive to intensity-independent sound properties relevant for auditory distance perception. |
---|---|
AbstractList | Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to differentiate. Typically, the received intensity increases when sound sources approach us. However, we can also distinguish between soft-but-nearby and loud-but-distant sounds, indicating that distance processing can also be based on intensity-independent cues. Here, we combined behavioral experiments, fMRI measurements, and computational analyses to identify the neural representation of distance independent of intensity. In a virtual reverberant environment, we simulated sound sources at varying distances (15-100 cm) along the right-side interaural axis. Our acoustic analysis suggested that, of the individual intensity-independent depth cues available for these stimuli, direct-to-reverberant ratio (D/R) is more reliable and robust than interaural level difference (ILD). However, on the basis of our behavioral results, subjects' discrimination performance was more consistent with complex intensity-independent distance representations, combining both available cues, than with representations on the basis of either D/R or ILD individually. fMRI activations to sounds varying in distance (containing all cues, including intensity), compared with activations to sounds varying in intensity only, were significantly increased in the planum temporale and posterior superior temporal gyrus contralateral to the direction of stimulation. This fMRI result suggests that neurons in posterior nonprimary auditory cortices, in or near the areas processing other auditory spatial features, are sensitive to intensity-independent sound properties relevant for auditory distance perception. Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to differentiate. Typically, the received intensity increases when sound sources approach us. However, we can also distinguish between soft-but-nearby and loud-but-distant sounds, indicating that distance processing can also be based on intensity-independent cues. Here, we combined behavioral experiments, fMRI measurements, and computational analyses to identify the neural representation of distance independent of intensity. In a virtual reverberant environment, we simulated sound sources at varying distances (15-100 cm) along the right-side interaural axis. Our acoustic analysis suggested that, of the individual intensity-independent depth cues available for these stimuli, direct-to-reverberant ratio (D/R) is more reliable and robust than interaural level difference (ILD). However, on the basis of our behavioral results, subjects' discrimination performance was more consistent with complex intensity-independent distance representations, combining both available cues, than with representations on the basis of either D/R or ILD individually. fMRI activations to sounds varying in distance (containing all cues, including intensity), compared with activations to sounds varying in intensity only, were significantly increased in the planum temporale and posterior superior temporal gyrus contralateral to the direction of stimulation. This fMRI result suggests that neurons in posterior nonprimary auditory cortices, in or near the areas processing other auditory spatial features, are sensitive to intensity-independent sound properties relevant for auditory distance perception.Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to differentiate. Typically, the received intensity increases when sound sources approach us. However, we can also distinguish between soft-but-nearby and loud-but-distant sounds, indicating that distance processing can also be based on intensity-independent cues. Here, we combined behavioral experiments, fMRI measurements, and computational analyses to identify the neural representation of distance independent of intensity. In a virtual reverberant environment, we simulated sound sources at varying distances (15-100 cm) along the right-side interaural axis. Our acoustic analysis suggested that, of the individual intensity-independent depth cues available for these stimuli, direct-to-reverberant ratio (D/R) is more reliable and robust than interaural level difference (ILD). However, on the basis of our behavioral results, subjects' discrimination performance was more consistent with complex intensity-independent distance representations, combining both available cues, than with representations on the basis of either D/R or ILD individually. fMRI activations to sounds varying in distance (containing all cues, including intensity), compared with activations to sounds varying in intensity only, were significantly increased in the planum temporale and posterior superior temporal gyrus contralateral to the direction of stimulation. This fMRI result suggests that neurons in posterior nonprimary auditory cortices, in or near the areas processing other auditory spatial features, are sensitive to intensity-independent sound properties relevant for auditory distance perception. Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to differentiate. Typically, the received intensity increases when sound sources approach us. However, we can also distinguish between soft-but-nearby and loud-but-distant sounds, indicating that distance processing can also be based on intensity-independent cues. Here, we combined behavioral experiments, fMRI measurements, and computational analyses to identify the neural representation of distance independent of intensity. In a virtual reverberant environment, we simulated sound sources at varying distances (15-100 cm) along the right-side interaural axis. Our acoustic analysis suggested that, of the individual intensity-independent depth cues available for these stimuli, direct-to-reverberant ratio (D/R) is more reliable and robust than interaural level difference (ILD). However, on the basis of our behavioral results, subjects' discrimination performance was more consistent with complex intensity-independent distance representations, combining both available cues, than with representations on the basis of either D/R or ILD individually. fMRI activations to sounds varying in distance (containing all cues, including intensity), compared with activations to sounds varying in intensity only, were significantly increased in the planum temporale and posterior superior temporal gyrus contralateral to the direction of stimulation. This fMRI result suggests that neurons in posterior nonprimary auditory cortices, in or near the areas processing other auditory spatial features, are sensitive to intensity-independent sound properties relevant for auditory distance perception. [PUBLICATION ABSTRACT] |
Author | Tengshe, Chinmayi Belliveau, John W Kopčo, Norbert Ahveninen, Jyrki Huang, Samantha Raij, Tommi |
Author_xml | – sequence: 1 fullname: Kopčo, Norbert – sequence: 2 fullname: Huang, Samantha – sequence: 3 fullname: Belliveau, John W – sequence: 4 fullname: Raij, Tommi – sequence: 5 fullname: Tengshe, Chinmayi – sequence: 6 fullname: Ahveninen, Jyrki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22699495$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAYhC1URLcLZ05AJC5c0r62Yyc-FAlVfEkVHKBn661jt15l7cVOEP33OMq2hUqIi3OYZ8bjzBE5CDFYQp5TOKbQ8pNdwHxMKVWNkhTUI7IqJ61lo-CArABYW3cNaw7JUc4bAFCigyfkkDGpikWsyOkXO6UYcKiS3SWbbRhx9DHkKrqq93nEYGzlQ3U9bTFUOPV-jOmmMjGN9tdT8tjhkO2z_XdNLj68_372qT7_-vHz2bvz2ghFx7p1neIGDUPVddRZIY1wUEqWHhKlsY7KnvVgDbC-xUvueoqtYw4FF0IwviZvl9zddLm1vSktEw56l_wW042O6PXfSvDX-ir-1Jwr6KQoAW_2ASn-mGwe9dZnY4cBg41T1rQDTkVpyf-PAuOC87ad0dcP0E2cUvmZewokKyOtycs_y9-1vh2hAGIBTIo5J-u08csK5S1-KFl6HlvPY-v7sYvv5IHvNvrfjmpfZRbuaaVZWzigM_JiQTa5DH3HNFQCbdk8xatFdxg1XiWf9cU3BkUGyrpyEf8N-k7JRQ |
CitedBy_id | crossref_primary_10_1177_2331216520948390 crossref_primary_10_1371_journal_pone_0076003 crossref_primary_10_3389_fnins_2014_00220 crossref_primary_10_1111_ejn_12801 crossref_primary_10_1121_10_0007066 crossref_primary_10_1016_j_neuroimage_2019_116436 crossref_primary_10_1051_aacus_2021048 crossref_primary_10_1523_JNEUROSCI_3798_14_2015 crossref_primary_10_1007_s11055_024_01617_7 crossref_primary_10_1038_s41598_021_93151_6 crossref_primary_10_1051_aacus_2021001 crossref_primary_10_1016_j_heares_2014_01_010 crossref_primary_10_1155_2014_216731 crossref_primary_10_1038_ncomms3585 crossref_primary_10_1073_pnas_1712058115 crossref_primary_10_1121_10_0001954 crossref_primary_10_1134_S002209301405007X crossref_primary_10_3758_s13414_015_1015_1 crossref_primary_10_1017_S0022215124001002 crossref_primary_10_1177_23312165241285695 crossref_primary_10_3389_fnins_2014_00396 crossref_primary_10_3389_fnins_2022_958577 crossref_primary_10_1007_s10162_014_0505_5 crossref_primary_10_1016_j_apacoust_2023_109223 crossref_primary_10_1111_ejn_12318 crossref_primary_10_3389_fnhum_2016_00443 crossref_primary_10_1016_j_brainres_2021_147489 crossref_primary_10_7868_S0044452918050046 crossref_primary_10_1016_j_apacoust_2018_11_030 crossref_primary_10_1371_journal_pone_0061577 crossref_primary_10_1016_j_heares_2013_07_008 crossref_primary_10_31857_S0235009223040054 crossref_primary_10_4236_jqis_2015_52007 crossref_primary_10_1097_WNR_0000000000000006 crossref_primary_10_1016_j_heares_2024_108968 crossref_primary_10_1073_pnas_1703247114 crossref_primary_10_1134_S0022093014010095 crossref_primary_10_3389_fnins_2022_1010211 crossref_primary_10_1086_716926 crossref_primary_10_1134_S036211972370055X crossref_primary_10_1093_cercor_bhac501 crossref_primary_10_1134_S0022093018050046 |
Cites_doi | 10.1007/s00221-003-1616-0 10.1016/S0960-9822(03)00034-4 10.1038/23390 10.1073/pnas.0510480103 10.3758/BF03204113 10.1126/science.7701330 10.1016/j.neuron.2007.08.019 10.1016/j.neuropsychologia.2005.05.021 10.1121/1.427943 10.1523/JNEUROSCI.5044-07.2008 10.1016/S0960-9822(02)01356-8 10.1038/17115 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 10.1016/j.tins.2007.09.003 10.1006/nimg.1998.0396 10.1016/0006-8993(92)90475-O 10.1016/0013-4694(88)90164-2 10.1152/physrev.00026.2009 10.1121/1.1490592 10.1007/978-3-662-22594-3 10.1016/j.neuron.2004.06.027 10.1073/pnas.97.22.11800 10.1523/JNEUROSCI.0330-07.2007 10.1121/1.1872572 10.1002/(SICI)1097-0193(1999)8:2/3<109::AID-HBM7>3.0.CO;2-W 10.1016/S0959-4388(98)80040-8 10.1016/j.heares.2006.03.002 10.1016/j.neuroimage.2008.07.046 10.1007/s00221-005-0183-y 10.1126/science.1058911 10.1121/1.2936368 10.1038/82931 10.1093/cercor/12.2.140 10.1121/1.390163 10.1371/journal.pone.0007600 10.1016/S0001-6918(01)00019-1 10.1073/pnas.242469699 10.1121/1.1506692 10.1121/1.1386633 10.1016/j.brainres.2006.03.095 10.1002/hbm.20164 10.1152/jn.1990.63.6.1448 10.1093/cercor/bhh133 10.1121/1.3613705 10.1121/1.428212 10.3109/00016489709126142 10.1016/S0896-6273(02)00637-2 10.1121/1.1458027 10.1038/86049 10.1038/nn1032 10.1162/089892901564108 10.1038/25862 10.1016/j.neuroimage.2006.11.011 10.1523/JNEUROSCI.23-13-05799.2003 10.1016/j.neuropsychologia.2010.05.008 10.1016/j.conb.2004.06.005 10.1016/j.cogbrainres.2005.02.013 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jul 3, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jul 3, 2012 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1119496109 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef AGRICOLA Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Distance representations in human auditory cortex |
EISSN | 1091-6490 |
EndPage | 11024 |
ExternalDocumentID | PMC3390865 2703870161 22699495 10_1073_pnas_1119496109 109_27_11019 41601722 US201600128949 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: R21DC010060 – fundername: NINDS NIH HHS grantid: R01NS037462 – fundername: NCRR NIH HHS grantid: P41 RR014075 – fundername: NIDCD NIH HHS grantid: R21 DC010060 – fundername: NINDS NIH HHS grantid: R01 NS037462 – fundername: NCRR NIH HHS grantid: P41RR14075 – fundername: NCRR NIH HHS grantid: S10RR023043 – fundername: NICHD NIH HHS grantid: R01 HD040712 – fundername: NCRR NIH HHS grantid: S10 RR019307 – fundername: NIMH NIH HHS grantid: R01 MH083744 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c591t-7f893cac2a9881fe56c5f06492266a6cef16d2d0ec02d7ab3fd1a7f2fa5355523 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:09:03 EDT 2025 Fri Sep 05 09:30:52 EDT 2025 Thu Sep 04 19:07:57 EDT 2025 Mon Jun 30 08:10:00 EDT 2025 Mon Jul 21 05:50:08 EDT 2025 Tue Jul 01 03:39:20 EDT 2025 Thu Apr 24 23:10:06 EDT 2025 Wed Nov 11 00:30:11 EST 2020 Thu May 29 08:40:47 EDT 2025 Wed Dec 27 19:22:34 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c591t-7f893cac2a9881fe56c5f06492266a6cef16d2d0ec02d7ab3fd1a7f2fa5355523 |
Notes | http://dx.doi.org/10.1073/pnas.1119496109 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: N.K., S.H., T.R., and J.A. designed research; N.K., S.H., C.T., and J.A. performed research; J.W.B. contributed new reagents/analytic tools; N.K., S.H., and J.A. analyzed data; and N.K., T.R., and J.A. wrote the paper. Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved May 17, 2012 (received for review November 27, 2011) |
OpenAccessLink | https://www.pnas.org/content/pnas/109/27/11019.full.pdf |
PMID | 22699495 |
PQID | 1023506207 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_1119496109 pubmed_primary_22699495 proquest_miscellaneous_1023533773 proquest_journals_1023506207 pnas_primary_109_27_11019 fao_agris_US201600128949 crossref_primary_10_1073_pnas_1119496109 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3390865 proquest_miscellaneous_1803158933 jstor_primary_41601722 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-03 |
PublicationDateYYYYMMDD | 2012-07-03 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 Zahorik P (e_1_3_3_1_2) 2005; 91 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 11388140 - Acta Psychol (Amst). 2001 Apr;107(1-3):293-321 17175176 - Neuroimage. 2007 Feb 15;34(4):1637-42 12498691 - Curr Biol. 2002 Dec 23;12(24):2147-51 11276230 - Nat Neurosci. 2001 Apr;4(4):396-401 17981345 - Trends Neurosci. 2007 Dec;30(12):653-61 9989407 - Nature. 1999 Feb 4;397(6718):428-30 12002867 - J Acoust Soc Am. 2002 Apr;111(4):1832-46 18646989 - J Acoust Soc Am. 2008 Jul;124(1):450-61 16099350 - Brain Res Cogn Brain Res. 2005 Aug;24(3):364-79 2358885 - J Neurophysiol. 1990 Jun;63(6):1448-66 10530020 - J Acoust Soc Am. 1999 Oct;106(4 Pt 1):1956-68 9931269 - Neuroimage. 1999 Feb;9(2):195-207 11931748 - Neuron. 2002 Mar 28;34(1):139-48 11519579 - J Acoust Soc Am. 2001 Aug;110(2):1118-29 12429855 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15755-7 1611518 - Brain Res. 1992 Feb 14;572(1-2):236-41 15297367 - Cereb Cortex. 2005 Mar;15(3):317-24 21895092 - J Acoust Soc Am. 2011 Sep;130(3):1530-41 10524601 - Hum Brain Mapp. 1999;8(2-3):109-14 17880900 - Neuron. 2007 Sep 20;55(6):985-96 11050212 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11800-6 9442842 - Acta Otolaryngol Suppl. 1997;532:34-8 11739262 - Cereb Cortex. 2002 Feb;12(2):140-9 9751652 - Curr Opin Neurobiol. 1998 Aug;8(4):516-21 15957778 - J Acoust Soc Am. 2005 May;117(5):3100-15 11135648 - Nat Neurosci. 2001 Jan;4(1):78-83 14504861 - Exp Brain Res. 2003 Dec;153(4):591-604 17428987 - J Neurosci. 2007 Apr 11;27(15):4093-100 20664077 - Physiol Rev. 2010 Jul;90(3):983-1012 10615699 - J Acoust Soc Am. 1999 Dec;106(6):3589-602 16038950 - Neuropsychologia. 2006;44(3):454-61 15321068 - Curr Opin Neurobiol. 2004 Aug;14(4):474-80 12652303 - Nat Neurosci. 2003 Apr;6(4):391-8 16983092 - Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14608-13 11224904 - J Cogn Neurosci. 2001 Jan 1;13(1):1-7 12430822 - J Acoust Soc Am. 2002 Nov;112(5 Pt 1):2110-7 7701330 - Science. 1995 Apr 7;268(5207):111-4 16283399 - Exp Brain Res. 2005 Dec;167(3):481-6 15260954 - Neuron. 2004 Jul 22;43(2):177-81 11303104 - Science. 2001 Apr 13;292(5515):290-3 19855836 - PLoS One. 2009;4(10):e7600 16644153 - Hear Res. 2006 May;215(1-2):67-76 9744266 - Nature. 1998 Sep 10;395(6698):123-4 16684510 - Brain Res. 2006 May 30;1092(1):161-76 18385333 - J Neurosci. 2008 Apr 2;28(14):3747-58 6643850 - J Acoust Soc Am. 1983 Nov;74(5):1380-91 2453329 - Electroencephalogr Clin Neurophysiol. 1988 Jun;69(6):523-31 20466010 - Neuropsychologia. 2010 Jul;48(9):2610-9 18722535 - Neuroimage. 2008 Nov 1;43(2):321-8 12186046 - J Acoust Soc Am. 2002 Aug;112(2):664-76 12843284 - J Neurosci. 2003 Jul 2;23(13):5799-804 10619420 - Hum Brain Mapp. 1999;8(4):272-84 10466721 - Nature. 1999 Aug 19;400(6746):724-6 15954141 - Hum Brain Mapp. 2005 Dec;26(4):251-61 12573234 - Curr Biol. 2003 Feb 4;13(3):R91-3 |
References_xml | – ident: e_1_3_3_6_2 doi: 10.1007/s00221-003-1616-0 – ident: e_1_3_3_19_2 doi: 10.1016/S0960-9822(03)00034-4 – ident: e_1_3_3_37_2 doi: 10.1038/23390 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.0510480103 – ident: e_1_3_3_28_2 doi: 10.3758/BF03204113 – ident: e_1_3_3_8_2 doi: 10.1126/science.7701330 – ident: e_1_3_3_16_2 doi: 10.1016/j.neuron.2007.08.019 – ident: e_1_3_3_47_2 doi: 10.1016/j.neuropsychologia.2005.05.021 – ident: e_1_3_3_52_2 doi: 10.1121/1.427943 – ident: e_1_3_3_51_2 doi: 10.1523/JNEUROSCI.5044-07.2008 – ident: e_1_3_3_20_2 doi: 10.1016/S0960-9822(02)01356-8 – ident: e_1_3_3_39_2 doi: 10.1038/17115 – ident: e_1_3_3_58_2 doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – ident: e_1_3_3_34_2 doi: 10.1016/j.tins.2007.09.003 – ident: e_1_3_3_57_2 doi: 10.1006/nimg.1998.0396 – ident: e_1_3_3_36_2 doi: 10.1016/0006-8993(92)90475-O – ident: e_1_3_3_32_2 doi: 10.1016/0013-4694(88)90164-2 – ident: e_1_3_3_42_2 doi: 10.1152/physrev.00026.2009 – ident: e_1_3_3_4_2 doi: 10.1121/1.1490592 – ident: e_1_3_3_54_2 doi: 10.1007/978-3-662-22594-3 – ident: e_1_3_3_2_2 doi: 10.1016/j.neuron.2004.06.027 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.97.22.11800 – ident: e_1_3_3_22_2 doi: 10.1523/JNEUROSCI.0330-07.2007 – ident: e_1_3_3_27_2 doi: 10.1121/1.1872572 – ident: e_1_3_3_56_2 doi: 10.1002/(SICI)1097-0193(1999)8:2/3<109::AID-HBM7>3.0.CO;2-W – ident: e_1_3_3_11_2 doi: 10.1016/S0959-4388(98)80040-8 – ident: e_1_3_3_24_2 doi: 10.1016/j.heares.2006.03.002 – ident: e_1_3_3_25_2 doi: 10.1016/j.neuroimage.2008.07.046 – ident: e_1_3_3_15_2 doi: 10.1007/s00221-005-0183-y – ident: e_1_3_3_13_2 doi: 10.1126/science.1058911 – ident: e_1_3_3_53_2 doi: 10.1121/1.2936368 – ident: e_1_3_3_23_2 doi: 10.1038/82931 – ident: e_1_3_3_43_2 doi: 10.1093/cercor/12.2.140 – ident: e_1_3_3_29_2 doi: 10.1121/1.390163 – ident: e_1_3_3_41_2 doi: 10.1371/journal.pone.0007600 – ident: e_1_3_3_35_2 doi: 10.1016/S0001-6918(01)00019-1 – ident: e_1_3_3_21_2 doi: 10.1073/pnas.242469699 – ident: e_1_3_3_30_2 doi: 10.1121/1.1506692 – ident: e_1_3_3_5_2 doi: 10.1121/1.1386633 – ident: e_1_3_3_49_2 doi: 10.1016/j.brainres.2006.03.095 – ident: e_1_3_3_14_2 doi: 10.1002/hbm.20164 – ident: e_1_3_3_50_2 doi: 10.1152/jn.1990.63.6.1448 – ident: e_1_3_3_18_2 doi: 10.1093/cercor/bhh133 – ident: e_1_3_3_31_2 doi: 10.1121/1.3613705 – ident: e_1_3_3_26_2 doi: 10.1121/1.428212 – ident: e_1_3_3_9_2 doi: 10.3109/00016489709126142 – ident: e_1_3_3_17_2 doi: 10.1016/S0896-6273(02)00637-2 – ident: e_1_3_3_55_2 doi: 10.1121/1.1458027 – ident: e_1_3_3_40_2 doi: 10.1038/86049 – ident: e_1_3_3_33_2 doi: 10.1038/nn1032 – ident: e_1_3_3_44_2 doi: 10.1162/089892901564108 – ident: e_1_3_3_3_2 doi: 10.1038/25862 – ident: e_1_3_3_46_2 doi: 10.1016/j.neuroimage.2006.11.011 – ident: e_1_3_3_38_2 doi: 10.1523/JNEUROSCI.23-13-05799.2003 – ident: e_1_3_3_48_2 doi: 10.1016/j.neuropsychologia.2010.05.008 – volume: 91 start-page: 409 year: 2005 ident: e_1_3_3_1_2 article-title: Auditory distance perception in humans: A summary of past and present research. Acta Acust publication-title: United Ac – ident: e_1_3_3_7_2 doi: 10.1016/j.conb.2004.06.005 – ident: e_1_3_3_45_2 doi: 10.1016/j.cogbrainres.2005.02.013 – reference: 18385333 - J Neurosci. 2008 Apr 2;28(14):3747-58 – reference: 11224904 - J Cogn Neurosci. 2001 Jan 1;13(1):1-7 – reference: 16038950 - Neuropsychologia. 2006;44(3):454-61 – reference: 18722535 - Neuroimage. 2008 Nov 1;43(2):321-8 – reference: 15321068 - Curr Opin Neurobiol. 2004 Aug;14(4):474-80 – reference: 11135648 - Nat Neurosci. 2001 Jan;4(1):78-83 – reference: 12652303 - Nat Neurosci. 2003 Apr;6(4):391-8 – reference: 7701330 - Science. 1995 Apr 7;268(5207):111-4 – reference: 17981345 - Trends Neurosci. 2007 Dec;30(12):653-61 – reference: 10619420 - Hum Brain Mapp. 1999;8(4):272-84 – reference: 10615699 - J Acoust Soc Am. 1999 Dec;106(6):3589-602 – reference: 12498691 - Curr Biol. 2002 Dec 23;12(24):2147-51 – reference: 10530020 - J Acoust Soc Am. 1999 Oct;106(4 Pt 1):1956-68 – reference: 11519579 - J Acoust Soc Am. 2001 Aug;110(2):1118-29 – reference: 1611518 - Brain Res. 1992 Feb 14;572(1-2):236-41 – reference: 9442842 - Acta Otolaryngol Suppl. 1997;532:34-8 – reference: 19855836 - PLoS One. 2009;4(10):e7600 – reference: 12573234 - Curr Biol. 2003 Feb 4;13(3):R91-3 – reference: 21895092 - J Acoust Soc Am. 2011 Sep;130(3):1530-41 – reference: 16644153 - Hear Res. 2006 May;215(1-2):67-76 – reference: 12002867 - J Acoust Soc Am. 2002 Apr;111(4):1832-46 – reference: 15954141 - Hum Brain Mapp. 2005 Dec;26(4):251-61 – reference: 17880900 - Neuron. 2007 Sep 20;55(6):985-96 – reference: 11931748 - Neuron. 2002 Mar 28;34(1):139-48 – reference: 11050212 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11800-6 – reference: 9744266 - Nature. 1998 Sep 10;395(6698):123-4 – reference: 14504861 - Exp Brain Res. 2003 Dec;153(4):591-604 – reference: 11276230 - Nat Neurosci. 2001 Apr;4(4):396-401 – reference: 16283399 - Exp Brain Res. 2005 Dec;167(3):481-6 – reference: 16099350 - Brain Res Cogn Brain Res. 2005 Aug;24(3):364-79 – reference: 16684510 - Brain Res. 2006 May 30;1092(1):161-76 – reference: 20466010 - Neuropsychologia. 2010 Jul;48(9):2610-9 – reference: 17175176 - Neuroimage. 2007 Feb 15;34(4):1637-42 – reference: 16983092 - Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14608-13 – reference: 11739262 - Cereb Cortex. 2002 Feb;12(2):140-9 – reference: 17428987 - J Neurosci. 2007 Apr 11;27(15):4093-100 – reference: 12430822 - J Acoust Soc Am. 2002 Nov;112(5 Pt 1):2110-7 – reference: 11388140 - Acta Psychol (Amst). 2001 Apr;107(1-3):293-321 – reference: 9989407 - Nature. 1999 Feb 4;397(6718):428-30 – reference: 20664077 - Physiol Rev. 2010 Jul;90(3):983-1012 – reference: 12843284 - J Neurosci. 2003 Jul 2;23(13):5799-804 – reference: 9751652 - Curr Opin Neurobiol. 1998 Aug;8(4):516-21 – reference: 10524601 - Hum Brain Mapp. 1999;8(2-3):109-14 – reference: 10466721 - Nature. 1999 Aug 19;400(6746):724-6 – reference: 12186046 - J Acoust Soc Am. 2002 Aug;112(2):664-76 – reference: 2358885 - J Neurophysiol. 1990 Jun;63(6):1448-66 – reference: 2453329 - Electroencephalogr Clin Neurophysiol. 1988 Jun;69(6):523-31 – reference: 15260954 - Neuron. 2004 Jul 22;43(2):177-81 – reference: 6643850 - J Acoust Soc Am. 1983 Nov;74(5):1380-91 – reference: 15297367 - Cereb Cortex. 2005 Mar;15(3):317-24 – reference: 9931269 - Neuroimage. 1999 Feb;9(2):195-207 – reference: 12429855 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15755-7 – reference: 18646989 - J Acoust Soc Am. 2008 Jul;124(1):450-61 – reference: 11303104 - Science. 2001 Apr 13;292(5515):290-3 – reference: 15957778 - J Acoust Soc Am. 2005 May;117(5):3100-15 |
SSID | ssj0009580 |
Score | 2.2675672 |
Snippet | Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11019 |
SubjectTerms | acoustic properties Acoustic Stimulation - methods Acoustics Adaptation, Physiological - physiology Adult Auditory cortex Auditory Cortex - cytology Auditory Cortex - physiology Auditory Pathways - cytology Auditory Pathways - physiology Auditory perception Auditory Perception - physiology Biological Sciences Brain Mapping cortex Cues Distance perception Ears & hearing Experimentation Female Humans Imaging Magnetic Resonance Imaging Male Mental stimulation Models, Neurological Neurons Neurons - physiology NMR Nuclear magnetic resonance perceptions (cognitive) Psychoacoustics Sensory perception Social Sciences Sound Sound intensity Sound Localization - physiology Space Perception - physiology Young Adult |
Title | Neuronal representations of distance in human auditory cortex |
URI | https://www.jstor.org/stable/41601722 http://www.pnas.org/content/109/27/11019.abstract https://www.ncbi.nlm.nih.gov/pubmed/22699495 https://www.proquest.com/docview/1023506207 https://www.proquest.com/docview/1023533773 https://www.proquest.com/docview/1803158933 https://pubmed.ncbi.nlm.nih.gov/PMC3390865 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYeOEFbcBYYKAg8TBUZaRxHMePEx-aQKomaKW-RW4Ss0prUtF2Qvz13PkradkQ8BJF8UcS3_n8s33-HSGvQeQShgERxUxVUcryKhIp3KGxzAVnMEPQDrKj7GKSfpqyabeDr0-XrGdn5c9bz5X8j1ThGcgVT8n-g2R9pfAA7kG-cAUJw_WvZKyZNRpNzb_sjhEZx7YKgSH22nljA_FJPICBW-olOtj-6MPSSz-MrZzTwMitEp53Z06sIVgNosHlqItg_Lldakz6vrU7Qeis3emLW5GW8BHrq24BAKlAb2q5cR7BA7_c80WaTaVxu1jM--sSQ-PDamxVbWwpQJEoS000UG9sY9HTKkMLYG0nABFjPX-z6mCGMBRxI1do4UUqMltNT8bLhRYyoEkBGVg3vHmnQ5e0R-4nMKfQcT6mwx5Dcx477idO3-68DUmjbfktBLOnZOtcWZEfF0rdNlfZdbntYZjxAXloJx_hudGkQ3Kvbh6RQyfV8NRykL95TLxqhTuqFbYqdKoVzptQq1boVCs0qvWETD5-GL-7iGykjaiE3riOuALYWsoykSLPh6pmWckUgFUB_5zJrKzVMKuSKq7LOKm4nFFVDSVXiZIM8CpL6BHZb9qmPiZhVSqW5QC7GVXprJQyrZXIZyxXiiqpVEDOXOsVpaWhx2go14V2h-C0wDYsupYPyKkvsDQMLHdnPQZxFPIbjI_F5GuC7IkIwCA5IEdaRr4KmIjg8kcSkEDX0lUtioQXWhkDcuIkWdhuD69Dhqg4S2IekFc-GYwy7rTJpm43Ng-lnNM_5MkxwAq0O-R5apTDf4RTtYDwLbXxGZAUfjulmV9pcnhKRZxn7NmddT4nD7ruekL219839QsA1uvZS90hfgHDTcnx |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuronal+representations+of+distance+in+human+auditory+cortex&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kop%C4%8Do%2C+Norbert&rft.au=Huang%2C+Samantha&rft.au=Belliveau%2C+John+W&rft.au=Raij%2C+Tommi&rft.date=2012-07-03&rft.eissn=1091-6490&rft.volume=109&rft.issue=27&rft.spage=11019&rft_id=info:doi/10.1073%2Fpnas.1119496109&rft_id=info%3Apmid%2F22699495&rft.externalDocID=22699495 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F27.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F27.cover.gif |