Neuronal representations of distance in human auditory cortex

Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to differentiate. Typically, the received intensity increases when sound sources approach us. However, we can also distinguish between soft-but-...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 27; pp. 11019 - 11024
Main Authors Kopčo, Norbert, Huang, Samantha, Belliveau, John W, Raij, Tommi, Tengshe, Chinmayi, Ahveninen, Jyrki
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.07.2012
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1119496109

Cover

Loading…
Abstract Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to differentiate. Typically, the received intensity increases when sound sources approach us. However, we can also distinguish between soft-but-nearby and loud-but-distant sounds, indicating that distance processing can also be based on intensity-independent cues. Here, we combined behavioral experiments, fMRI measurements, and computational analyses to identify the neural representation of distance independent of intensity. In a virtual reverberant environment, we simulated sound sources at varying distances (15–100 cm) along the right-side interaural axis. Our acoustic analysis suggested that, of the individual intensity-independent depth cues available for these stimuli, direct-to-reverberant ratio (D/R) is more reliable and robust than interaural level difference (ILD). However, on the basis of our behavioral results, subjects’ discrimination performance was more consistent with complex intensity-independent distance representations, combining both available cues, than with representations on the basis of either D/R or ILD individually. fMRI activations to sounds varying in distance (containing all cues, including intensity), compared with activations to sounds varying in intensity only, were significantly increased in the planum temporale and posterior superior temporal gyrus contralateral to the direction of stimulation. This fMRI result suggests that neurons in posterior nonprimary auditory cortices, in or near the areas processing other auditory spatial features, are sensitive to intensity-independent sound properties relevant for auditory distance perception.
AbstractList Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to differentiate. Typically, the received intensity increases when sound sources approach us. However, we can also distinguish between soft-but-nearby and loud-but-distant sounds, indicating that distance processing can also be based on intensity-independent cues. Here, we combined behavioral experiments, fMRI measurements, and computational analyses to identify the neural representation of distance independent of intensity. In a virtual reverberant environment, we simulated sound sources at varying distances (15-100 cm) along the right-side interaural axis. Our acoustic analysis suggested that, of the individual intensity-independent depth cues available for these stimuli, direct-to-reverberant ratio (D/R) is more reliable and robust than interaural level difference (ILD). However, on the basis of our behavioral results, subjects' discrimination performance was more consistent with complex intensity-independent distance representations, combining both available cues, than with representations on the basis of either D/R or ILD individually. fMRI activations to sounds varying in distance (containing all cues, including intensity), compared with activations to sounds varying in intensity only, were significantly increased in the planum temporale and posterior superior temporal gyrus contralateral to the direction of stimulation. This fMRI result suggests that neurons in posterior nonprimary auditory cortices, in or near the areas processing other auditory spatial features, are sensitive to intensity-independent sound properties relevant for auditory distance perception.
Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to differentiate. Typically, the received intensity increases when sound sources approach us. However, we can also distinguish between soft-but-nearby and loud-but-distant sounds, indicating that distance processing can also be based on intensity-independent cues. Here, we combined behavioral experiments, fMRI measurements, and computational analyses to identify the neural representation of distance independent of intensity. In a virtual reverberant environment, we simulated sound sources at varying distances (15-100 cm) along the right-side interaural axis. Our acoustic analysis suggested that, of the individual intensity-independent depth cues available for these stimuli, direct-to-reverberant ratio (D/R) is more reliable and robust than interaural level difference (ILD). However, on the basis of our behavioral results, subjects' discrimination performance was more consistent with complex intensity-independent distance representations, combining both available cues, than with representations on the basis of either D/R or ILD individually. fMRI activations to sounds varying in distance (containing all cues, including intensity), compared with activations to sounds varying in intensity only, were significantly increased in the planum temporale and posterior superior temporal gyrus contralateral to the direction of stimulation. This fMRI result suggests that neurons in posterior nonprimary auditory cortices, in or near the areas processing other auditory spatial features, are sensitive to intensity-independent sound properties relevant for auditory distance perception.Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to differentiate. Typically, the received intensity increases when sound sources approach us. However, we can also distinguish between soft-but-nearby and loud-but-distant sounds, indicating that distance processing can also be based on intensity-independent cues. Here, we combined behavioral experiments, fMRI measurements, and computational analyses to identify the neural representation of distance independent of intensity. In a virtual reverberant environment, we simulated sound sources at varying distances (15-100 cm) along the right-side interaural axis. Our acoustic analysis suggested that, of the individual intensity-independent depth cues available for these stimuli, direct-to-reverberant ratio (D/R) is more reliable and robust than interaural level difference (ILD). However, on the basis of our behavioral results, subjects' discrimination performance was more consistent with complex intensity-independent distance representations, combining both available cues, than with representations on the basis of either D/R or ILD individually. fMRI activations to sounds varying in distance (containing all cues, including intensity), compared with activations to sounds varying in intensity only, were significantly increased in the planum temporale and posterior superior temporal gyrus contralateral to the direction of stimulation. This fMRI result suggests that neurons in posterior nonprimary auditory cortices, in or near the areas processing other auditory spatial features, are sensitive to intensity-independent sound properties relevant for auditory distance perception.
Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to differentiate. Typically, the received intensity increases when sound sources approach us. However, we can also distinguish between soft-but-nearby and loud-but-distant sounds, indicating that distance processing can also be based on intensity-independent cues. Here, we combined behavioral experiments, fMRI measurements, and computational analyses to identify the neural representation of distance independent of intensity. In a virtual reverberant environment, we simulated sound sources at varying distances (15-100 cm) along the right-side interaural axis. Our acoustic analysis suggested that, of the individual intensity-independent depth cues available for these stimuli, direct-to-reverberant ratio (D/R) is more reliable and robust than interaural level difference (ILD). However, on the basis of our behavioral results, subjects' discrimination performance was more consistent with complex intensity-independent distance representations, combining both available cues, than with representations on the basis of either D/R or ILD individually. fMRI activations to sounds varying in distance (containing all cues, including intensity), compared with activations to sounds varying in intensity only, were significantly increased in the planum temporale and posterior superior temporal gyrus contralateral to the direction of stimulation. This fMRI result suggests that neurons in posterior nonprimary auditory cortices, in or near the areas processing other auditory spatial features, are sensitive to intensity-independent sound properties relevant for auditory distance perception. [PUBLICATION ABSTRACT]
Author Tengshe, Chinmayi
Belliveau, John W
Kopčo, Norbert
Ahveninen, Jyrki
Huang, Samantha
Raij, Tommi
Author_xml – sequence: 1
  fullname: Kopčo, Norbert
– sequence: 2
  fullname: Huang, Samantha
– sequence: 3
  fullname: Belliveau, John W
– sequence: 4
  fullname: Raij, Tommi
– sequence: 5
  fullname: Tengshe, Chinmayi
– sequence: 6
  fullname: Ahveninen, Jyrki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22699495$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAYhC1URLcLZ05AJC5c0r62Yyc-FAlVfEkVHKBn661jt15l7cVOEP33OMq2hUqIi3OYZ8bjzBE5CDFYQp5TOKbQ8pNdwHxMKVWNkhTUI7IqJ61lo-CArABYW3cNaw7JUc4bAFCigyfkkDGpikWsyOkXO6UYcKiS3SWbbRhx9DHkKrqq93nEYGzlQ3U9bTFUOPV-jOmmMjGN9tdT8tjhkO2z_XdNLj68_372qT7_-vHz2bvz2ghFx7p1neIGDUPVddRZIY1wUEqWHhKlsY7KnvVgDbC-xUvueoqtYw4FF0IwviZvl9zddLm1vSktEw56l_wW042O6PXfSvDX-ir-1Jwr6KQoAW_2ASn-mGwe9dZnY4cBg41T1rQDTkVpyf-PAuOC87ad0dcP0E2cUvmZewokKyOtycs_y9-1vh2hAGIBTIo5J-u08csK5S1-KFl6HlvPY-v7sYvv5IHvNvrfjmpfZRbuaaVZWzigM_JiQTa5DH3HNFQCbdk8xatFdxg1XiWf9cU3BkUGyrpyEf8N-k7JRQ
CitedBy_id crossref_primary_10_1177_2331216520948390
crossref_primary_10_1371_journal_pone_0076003
crossref_primary_10_3389_fnins_2014_00220
crossref_primary_10_1111_ejn_12801
crossref_primary_10_1121_10_0007066
crossref_primary_10_1016_j_neuroimage_2019_116436
crossref_primary_10_1051_aacus_2021048
crossref_primary_10_1523_JNEUROSCI_3798_14_2015
crossref_primary_10_1007_s11055_024_01617_7
crossref_primary_10_1038_s41598_021_93151_6
crossref_primary_10_1051_aacus_2021001
crossref_primary_10_1016_j_heares_2014_01_010
crossref_primary_10_1155_2014_216731
crossref_primary_10_1038_ncomms3585
crossref_primary_10_1073_pnas_1712058115
crossref_primary_10_1121_10_0001954
crossref_primary_10_1134_S002209301405007X
crossref_primary_10_3758_s13414_015_1015_1
crossref_primary_10_1017_S0022215124001002
crossref_primary_10_1177_23312165241285695
crossref_primary_10_3389_fnins_2014_00396
crossref_primary_10_3389_fnins_2022_958577
crossref_primary_10_1007_s10162_014_0505_5
crossref_primary_10_1016_j_apacoust_2023_109223
crossref_primary_10_1111_ejn_12318
crossref_primary_10_3389_fnhum_2016_00443
crossref_primary_10_1016_j_brainres_2021_147489
crossref_primary_10_7868_S0044452918050046
crossref_primary_10_1016_j_apacoust_2018_11_030
crossref_primary_10_1371_journal_pone_0061577
crossref_primary_10_1016_j_heares_2013_07_008
crossref_primary_10_31857_S0235009223040054
crossref_primary_10_4236_jqis_2015_52007
crossref_primary_10_1097_WNR_0000000000000006
crossref_primary_10_1016_j_heares_2024_108968
crossref_primary_10_1073_pnas_1703247114
crossref_primary_10_1134_S0022093014010095
crossref_primary_10_3389_fnins_2022_1010211
crossref_primary_10_1086_716926
crossref_primary_10_1134_S036211972370055X
crossref_primary_10_1093_cercor_bhac501
crossref_primary_10_1134_S0022093018050046
Cites_doi 10.1007/s00221-003-1616-0
10.1016/S0960-9822(03)00034-4
10.1038/23390
10.1073/pnas.0510480103
10.3758/BF03204113
10.1126/science.7701330
10.1016/j.neuron.2007.08.019
10.1016/j.neuropsychologia.2005.05.021
10.1121/1.427943
10.1523/JNEUROSCI.5044-07.2008
10.1016/S0960-9822(02)01356-8
10.1038/17115
10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
10.1016/j.tins.2007.09.003
10.1006/nimg.1998.0396
10.1016/0006-8993(92)90475-O
10.1016/0013-4694(88)90164-2
10.1152/physrev.00026.2009
10.1121/1.1490592
10.1007/978-3-662-22594-3
10.1016/j.neuron.2004.06.027
10.1073/pnas.97.22.11800
10.1523/JNEUROSCI.0330-07.2007
10.1121/1.1872572
10.1002/(SICI)1097-0193(1999)8:2/3<109::AID-HBM7>3.0.CO;2-W
10.1016/S0959-4388(98)80040-8
10.1016/j.heares.2006.03.002
10.1016/j.neuroimage.2008.07.046
10.1007/s00221-005-0183-y
10.1126/science.1058911
10.1121/1.2936368
10.1038/82931
10.1093/cercor/12.2.140
10.1121/1.390163
10.1371/journal.pone.0007600
10.1016/S0001-6918(01)00019-1
10.1073/pnas.242469699
10.1121/1.1506692
10.1121/1.1386633
10.1016/j.brainres.2006.03.095
10.1002/hbm.20164
10.1152/jn.1990.63.6.1448
10.1093/cercor/bhh133
10.1121/1.3613705
10.1121/1.428212
10.3109/00016489709126142
10.1016/S0896-6273(02)00637-2
10.1121/1.1458027
10.1038/86049
10.1038/nn1032
10.1162/089892901564108
10.1038/25862
10.1016/j.neuroimage.2006.11.011
10.1523/JNEUROSCI.23-13-05799.2003
10.1016/j.neuropsychologia.2010.05.008
10.1016/j.conb.2004.06.005
10.1016/j.cogbrainres.2005.02.013
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jul 3, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jul 3, 2012
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1119496109
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef


AGRICOLA


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Distance representations in human auditory cortex
EISSN 1091-6490
EndPage 11024
ExternalDocumentID PMC3390865
2703870161
22699495
10_1073_pnas_1119496109
109_27_11019
41601722
US201600128949
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: R21DC010060
– fundername: NINDS NIH HHS
  grantid: R01NS037462
– fundername: NCRR NIH HHS
  grantid: P41 RR014075
– fundername: NIDCD NIH HHS
  grantid: R21 DC010060
– fundername: NINDS NIH HHS
  grantid: R01 NS037462
– fundername: NCRR NIH HHS
  grantid: P41RR14075
– fundername: NCRR NIH HHS
  grantid: S10RR023043
– fundername: NICHD NIH HHS
  grantid: R01 HD040712
– fundername: NCRR NIH HHS
  grantid: S10 RR019307
– fundername: NIMH NIH HHS
  grantid: R01 MH083744
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c591t-7f893cac2a9881fe56c5f06492266a6cef16d2d0ec02d7ab3fd1a7f2fa5355523
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:09:03 EDT 2025
Fri Sep 05 09:30:52 EDT 2025
Thu Sep 04 19:07:57 EDT 2025
Mon Jun 30 08:10:00 EDT 2025
Mon Jul 21 05:50:08 EDT 2025
Tue Jul 01 03:39:20 EDT 2025
Thu Apr 24 23:10:06 EDT 2025
Wed Nov 11 00:30:11 EST 2020
Thu May 29 08:40:47 EDT 2025
Wed Dec 27 19:22:34 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c591t-7f893cac2a9881fe56c5f06492266a6cef16d2d0ec02d7ab3fd1a7f2fa5355523
Notes http://dx.doi.org/10.1073/pnas.1119496109
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: N.K., S.H., T.R., and J.A. designed research; N.K., S.H., C.T., and J.A. performed research; J.W.B. contributed new reagents/analytic tools; N.K., S.H., and J.A. analyzed data; and N.K., T.R., and J.A. wrote the paper.
Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved May 17, 2012 (received for review November 27, 2011)
OpenAccessLink https://www.pnas.org/content/pnas/109/27/11019.full.pdf
PMID 22699495
PQID 1023506207
PQPubID 42026
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_1119496109
pubmed_primary_22699495
proquest_miscellaneous_1023533773
proquest_journals_1023506207
pnas_primary_109_27_11019
fao_agris_US201600128949
crossref_primary_10_1073_pnas_1119496109
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3390865
proquest_miscellaneous_1803158933
jstor_primary_41601722
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-03
PublicationDateYYYYMMDD 2012-07-03
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
Zahorik P (e_1_3_3_1_2) 2005; 91
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
11388140 - Acta Psychol (Amst). 2001 Apr;107(1-3):293-321
17175176 - Neuroimage. 2007 Feb 15;34(4):1637-42
12498691 - Curr Biol. 2002 Dec 23;12(24):2147-51
11276230 - Nat Neurosci. 2001 Apr;4(4):396-401
17981345 - Trends Neurosci. 2007 Dec;30(12):653-61
9989407 - Nature. 1999 Feb 4;397(6718):428-30
12002867 - J Acoust Soc Am. 2002 Apr;111(4):1832-46
18646989 - J Acoust Soc Am. 2008 Jul;124(1):450-61
16099350 - Brain Res Cogn Brain Res. 2005 Aug;24(3):364-79
2358885 - J Neurophysiol. 1990 Jun;63(6):1448-66
10530020 - J Acoust Soc Am. 1999 Oct;106(4 Pt 1):1956-68
9931269 - Neuroimage. 1999 Feb;9(2):195-207
11931748 - Neuron. 2002 Mar 28;34(1):139-48
11519579 - J Acoust Soc Am. 2001 Aug;110(2):1118-29
12429855 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15755-7
1611518 - Brain Res. 1992 Feb 14;572(1-2):236-41
15297367 - Cereb Cortex. 2005 Mar;15(3):317-24
21895092 - J Acoust Soc Am. 2011 Sep;130(3):1530-41
10524601 - Hum Brain Mapp. 1999;8(2-3):109-14
17880900 - Neuron. 2007 Sep 20;55(6):985-96
11050212 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11800-6
9442842 - Acta Otolaryngol Suppl. 1997;532:34-8
11739262 - Cereb Cortex. 2002 Feb;12(2):140-9
9751652 - Curr Opin Neurobiol. 1998 Aug;8(4):516-21
15957778 - J Acoust Soc Am. 2005 May;117(5):3100-15
11135648 - Nat Neurosci. 2001 Jan;4(1):78-83
14504861 - Exp Brain Res. 2003 Dec;153(4):591-604
17428987 - J Neurosci. 2007 Apr 11;27(15):4093-100
20664077 - Physiol Rev. 2010 Jul;90(3):983-1012
10615699 - J Acoust Soc Am. 1999 Dec;106(6):3589-602
16038950 - Neuropsychologia. 2006;44(3):454-61
15321068 - Curr Opin Neurobiol. 2004 Aug;14(4):474-80
12652303 - Nat Neurosci. 2003 Apr;6(4):391-8
16983092 - Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14608-13
11224904 - J Cogn Neurosci. 2001 Jan 1;13(1):1-7
12430822 - J Acoust Soc Am. 2002 Nov;112(5 Pt 1):2110-7
7701330 - Science. 1995 Apr 7;268(5207):111-4
16283399 - Exp Brain Res. 2005 Dec;167(3):481-6
15260954 - Neuron. 2004 Jul 22;43(2):177-81
11303104 - Science. 2001 Apr 13;292(5515):290-3
19855836 - PLoS One. 2009;4(10):e7600
16644153 - Hear Res. 2006 May;215(1-2):67-76
9744266 - Nature. 1998 Sep 10;395(6698):123-4
16684510 - Brain Res. 2006 May 30;1092(1):161-76
18385333 - J Neurosci. 2008 Apr 2;28(14):3747-58
6643850 - J Acoust Soc Am. 1983 Nov;74(5):1380-91
2453329 - Electroencephalogr Clin Neurophysiol. 1988 Jun;69(6):523-31
20466010 - Neuropsychologia. 2010 Jul;48(9):2610-9
18722535 - Neuroimage. 2008 Nov 1;43(2):321-8
12186046 - J Acoust Soc Am. 2002 Aug;112(2):664-76
12843284 - J Neurosci. 2003 Jul 2;23(13):5799-804
10619420 - Hum Brain Mapp. 1999;8(4):272-84
10466721 - Nature. 1999 Aug 19;400(6746):724-6
15954141 - Hum Brain Mapp. 2005 Dec;26(4):251-61
12573234 - Curr Biol. 2003 Feb 4;13(3):R91-3
References_xml – ident: e_1_3_3_6_2
  doi: 10.1007/s00221-003-1616-0
– ident: e_1_3_3_19_2
  doi: 10.1016/S0960-9822(03)00034-4
– ident: e_1_3_3_37_2
  doi: 10.1038/23390
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.0510480103
– ident: e_1_3_3_28_2
  doi: 10.3758/BF03204113
– ident: e_1_3_3_8_2
  doi: 10.1126/science.7701330
– ident: e_1_3_3_16_2
  doi: 10.1016/j.neuron.2007.08.019
– ident: e_1_3_3_47_2
  doi: 10.1016/j.neuropsychologia.2005.05.021
– ident: e_1_3_3_52_2
  doi: 10.1121/1.427943
– ident: e_1_3_3_51_2
  doi: 10.1523/JNEUROSCI.5044-07.2008
– ident: e_1_3_3_20_2
  doi: 10.1016/S0960-9822(02)01356-8
– ident: e_1_3_3_39_2
  doi: 10.1038/17115
– ident: e_1_3_3_58_2
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– ident: e_1_3_3_34_2
  doi: 10.1016/j.tins.2007.09.003
– ident: e_1_3_3_57_2
  doi: 10.1006/nimg.1998.0396
– ident: e_1_3_3_36_2
  doi: 10.1016/0006-8993(92)90475-O
– ident: e_1_3_3_32_2
  doi: 10.1016/0013-4694(88)90164-2
– ident: e_1_3_3_42_2
  doi: 10.1152/physrev.00026.2009
– ident: e_1_3_3_4_2
  doi: 10.1121/1.1490592
– ident: e_1_3_3_54_2
  doi: 10.1007/978-3-662-22594-3
– ident: e_1_3_3_2_2
  doi: 10.1016/j.neuron.2004.06.027
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.97.22.11800
– ident: e_1_3_3_22_2
  doi: 10.1523/JNEUROSCI.0330-07.2007
– ident: e_1_3_3_27_2
  doi: 10.1121/1.1872572
– ident: e_1_3_3_56_2
  doi: 10.1002/(SICI)1097-0193(1999)8:2/3<109::AID-HBM7>3.0.CO;2-W
– ident: e_1_3_3_11_2
  doi: 10.1016/S0959-4388(98)80040-8
– ident: e_1_3_3_24_2
  doi: 10.1016/j.heares.2006.03.002
– ident: e_1_3_3_25_2
  doi: 10.1016/j.neuroimage.2008.07.046
– ident: e_1_3_3_15_2
  doi: 10.1007/s00221-005-0183-y
– ident: e_1_3_3_13_2
  doi: 10.1126/science.1058911
– ident: e_1_3_3_53_2
  doi: 10.1121/1.2936368
– ident: e_1_3_3_23_2
  doi: 10.1038/82931
– ident: e_1_3_3_43_2
  doi: 10.1093/cercor/12.2.140
– ident: e_1_3_3_29_2
  doi: 10.1121/1.390163
– ident: e_1_3_3_41_2
  doi: 10.1371/journal.pone.0007600
– ident: e_1_3_3_35_2
  doi: 10.1016/S0001-6918(01)00019-1
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.242469699
– ident: e_1_3_3_30_2
  doi: 10.1121/1.1506692
– ident: e_1_3_3_5_2
  doi: 10.1121/1.1386633
– ident: e_1_3_3_49_2
  doi: 10.1016/j.brainres.2006.03.095
– ident: e_1_3_3_14_2
  doi: 10.1002/hbm.20164
– ident: e_1_3_3_50_2
  doi: 10.1152/jn.1990.63.6.1448
– ident: e_1_3_3_18_2
  doi: 10.1093/cercor/bhh133
– ident: e_1_3_3_31_2
  doi: 10.1121/1.3613705
– ident: e_1_3_3_26_2
  doi: 10.1121/1.428212
– ident: e_1_3_3_9_2
  doi: 10.3109/00016489709126142
– ident: e_1_3_3_17_2
  doi: 10.1016/S0896-6273(02)00637-2
– ident: e_1_3_3_55_2
  doi: 10.1121/1.1458027
– ident: e_1_3_3_40_2
  doi: 10.1038/86049
– ident: e_1_3_3_33_2
  doi: 10.1038/nn1032
– ident: e_1_3_3_44_2
  doi: 10.1162/089892901564108
– ident: e_1_3_3_3_2
  doi: 10.1038/25862
– ident: e_1_3_3_46_2
  doi: 10.1016/j.neuroimage.2006.11.011
– ident: e_1_3_3_38_2
  doi: 10.1523/JNEUROSCI.23-13-05799.2003
– ident: e_1_3_3_48_2
  doi: 10.1016/j.neuropsychologia.2010.05.008
– volume: 91
  start-page: 409
  year: 2005
  ident: e_1_3_3_1_2
  article-title: Auditory distance perception in humans: A summary of past and present research. Acta Acust
  publication-title: United Ac
– ident: e_1_3_3_7_2
  doi: 10.1016/j.conb.2004.06.005
– ident: e_1_3_3_45_2
  doi: 10.1016/j.cogbrainres.2005.02.013
– reference: 18385333 - J Neurosci. 2008 Apr 2;28(14):3747-58
– reference: 11224904 - J Cogn Neurosci. 2001 Jan 1;13(1):1-7
– reference: 16038950 - Neuropsychologia. 2006;44(3):454-61
– reference: 18722535 - Neuroimage. 2008 Nov 1;43(2):321-8
– reference: 15321068 - Curr Opin Neurobiol. 2004 Aug;14(4):474-80
– reference: 11135648 - Nat Neurosci. 2001 Jan;4(1):78-83
– reference: 12652303 - Nat Neurosci. 2003 Apr;6(4):391-8
– reference: 7701330 - Science. 1995 Apr 7;268(5207):111-4
– reference: 17981345 - Trends Neurosci. 2007 Dec;30(12):653-61
– reference: 10619420 - Hum Brain Mapp. 1999;8(4):272-84
– reference: 10615699 - J Acoust Soc Am. 1999 Dec;106(6):3589-602
– reference: 12498691 - Curr Biol. 2002 Dec 23;12(24):2147-51
– reference: 10530020 - J Acoust Soc Am. 1999 Oct;106(4 Pt 1):1956-68
– reference: 11519579 - J Acoust Soc Am. 2001 Aug;110(2):1118-29
– reference: 1611518 - Brain Res. 1992 Feb 14;572(1-2):236-41
– reference: 9442842 - Acta Otolaryngol Suppl. 1997;532:34-8
– reference: 19855836 - PLoS One. 2009;4(10):e7600
– reference: 12573234 - Curr Biol. 2003 Feb 4;13(3):R91-3
– reference: 21895092 - J Acoust Soc Am. 2011 Sep;130(3):1530-41
– reference: 16644153 - Hear Res. 2006 May;215(1-2):67-76
– reference: 12002867 - J Acoust Soc Am. 2002 Apr;111(4):1832-46
– reference: 15954141 - Hum Brain Mapp. 2005 Dec;26(4):251-61
– reference: 17880900 - Neuron. 2007 Sep 20;55(6):985-96
– reference: 11931748 - Neuron. 2002 Mar 28;34(1):139-48
– reference: 11050212 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11800-6
– reference: 9744266 - Nature. 1998 Sep 10;395(6698):123-4
– reference: 14504861 - Exp Brain Res. 2003 Dec;153(4):591-604
– reference: 11276230 - Nat Neurosci. 2001 Apr;4(4):396-401
– reference: 16283399 - Exp Brain Res. 2005 Dec;167(3):481-6
– reference: 16099350 - Brain Res Cogn Brain Res. 2005 Aug;24(3):364-79
– reference: 16684510 - Brain Res. 2006 May 30;1092(1):161-76
– reference: 20466010 - Neuropsychologia. 2010 Jul;48(9):2610-9
– reference: 17175176 - Neuroimage. 2007 Feb 15;34(4):1637-42
– reference: 16983092 - Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14608-13
– reference: 11739262 - Cereb Cortex. 2002 Feb;12(2):140-9
– reference: 17428987 - J Neurosci. 2007 Apr 11;27(15):4093-100
– reference: 12430822 - J Acoust Soc Am. 2002 Nov;112(5 Pt 1):2110-7
– reference: 11388140 - Acta Psychol (Amst). 2001 Apr;107(1-3):293-321
– reference: 9989407 - Nature. 1999 Feb 4;397(6718):428-30
– reference: 20664077 - Physiol Rev. 2010 Jul;90(3):983-1012
– reference: 12843284 - J Neurosci. 2003 Jul 2;23(13):5799-804
– reference: 9751652 - Curr Opin Neurobiol. 1998 Aug;8(4):516-21
– reference: 10524601 - Hum Brain Mapp. 1999;8(2-3):109-14
– reference: 10466721 - Nature. 1999 Aug 19;400(6746):724-6
– reference: 12186046 - J Acoust Soc Am. 2002 Aug;112(2):664-76
– reference: 2358885 - J Neurophysiol. 1990 Jun;63(6):1448-66
– reference: 2453329 - Electroencephalogr Clin Neurophysiol. 1988 Jun;69(6):523-31
– reference: 15260954 - Neuron. 2004 Jul 22;43(2):177-81
– reference: 6643850 - J Acoust Soc Am. 1983 Nov;74(5):1380-91
– reference: 15297367 - Cereb Cortex. 2005 Mar;15(3):317-24
– reference: 9931269 - Neuroimage. 1999 Feb;9(2):195-207
– reference: 12429855 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15755-7
– reference: 18646989 - J Acoust Soc Am. 2008 Jul;124(1):450-61
– reference: 11303104 - Science. 2001 Apr 13;292(5515):290-3
– reference: 15957778 - J Acoust Soc Am. 2005 May;117(5):3100-15
SSID ssj0009580
Score 2.2675672
Snippet Neuronal mechanisms of auditory distance perception are poorly understood, largely because contributions of intensity and distance processing are difficult to...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11019
SubjectTerms acoustic properties
Acoustic Stimulation - methods
Acoustics
Adaptation, Physiological - physiology
Adult
Auditory cortex
Auditory Cortex - cytology
Auditory Cortex - physiology
Auditory Pathways - cytology
Auditory Pathways - physiology
Auditory perception
Auditory Perception - physiology
Biological Sciences
Brain Mapping
cortex
Cues
Distance perception
Ears & hearing
Experimentation
Female
Humans
Imaging
Magnetic Resonance Imaging
Male
Mental stimulation
Models, Neurological
Neurons
Neurons - physiology
NMR
Nuclear magnetic resonance
perceptions (cognitive)
Psychoacoustics
Sensory perception
Social Sciences
Sound
Sound intensity
Sound Localization - physiology
Space Perception - physiology
Young Adult
Title Neuronal representations of distance in human auditory cortex
URI https://www.jstor.org/stable/41601722
http://www.pnas.org/content/109/27/11019.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22699495
https://www.proquest.com/docview/1023506207
https://www.proquest.com/docview/1023533773
https://www.proquest.com/docview/1803158933
https://pubmed.ncbi.nlm.nih.gov/PMC3390865
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYeOEFbcBYYKAg8TBUZaRxHMePEx-aQKomaKW-RW4Ss0prUtF2Qvz13PkradkQ8BJF8UcS3_n8s33-HSGvQeQShgERxUxVUcryKhIp3KGxzAVnMEPQDrKj7GKSfpqyabeDr0-XrGdn5c9bz5X8j1ThGcgVT8n-g2R9pfAA7kG-cAUJw_WvZKyZNRpNzb_sjhEZx7YKgSH22nljA_FJPICBW-olOtj-6MPSSz-MrZzTwMitEp53Z06sIVgNosHlqItg_Lldakz6vrU7Qeis3emLW5GW8BHrq24BAKlAb2q5cR7BA7_c80WaTaVxu1jM--sSQ-PDamxVbWwpQJEoS000UG9sY9HTKkMLYG0nABFjPX-z6mCGMBRxI1do4UUqMltNT8bLhRYyoEkBGVg3vHmnQ5e0R-4nMKfQcT6mwx5Dcx477idO3-68DUmjbfktBLOnZOtcWZEfF0rdNlfZdbntYZjxAXloJx_hudGkQ3Kvbh6RQyfV8NRykL95TLxqhTuqFbYqdKoVzptQq1boVCs0qvWETD5-GL-7iGykjaiE3riOuALYWsoykSLPh6pmWckUgFUB_5zJrKzVMKuSKq7LOKm4nFFVDSVXiZIM8CpL6BHZb9qmPiZhVSqW5QC7GVXprJQyrZXIZyxXiiqpVEDOXOsVpaWhx2go14V2h-C0wDYsupYPyKkvsDQMLHdnPQZxFPIbjI_F5GuC7IkIwCA5IEdaRr4KmIjg8kcSkEDX0lUtioQXWhkDcuIkWdhuD69Dhqg4S2IekFc-GYwy7rTJpm43Ng-lnNM_5MkxwAq0O-R5apTDf4RTtYDwLbXxGZAUfjulmV9pcnhKRZxn7NmddT4nD7ruekL219839QsA1uvZS90hfgHDTcnx
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuronal+representations+of+distance+in+human+auditory+cortex&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kop%C4%8Do%2C+Norbert&rft.au=Huang%2C+Samantha&rft.au=Belliveau%2C+John+W&rft.au=Raij%2C+Tommi&rft.date=2012-07-03&rft.eissn=1091-6490&rft.volume=109&rft.issue=27&rft.spage=11019&rft_id=info:doi/10.1073%2Fpnas.1119496109&rft_id=info%3Apmid%2F22699495&rft.externalDocID=22699495
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F27.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F27.cover.gif