Role of Circadian Clock Genes in Sudden Cardiac Death: A Pilot Study

The present study deals with the circadian expression of clock genes in acute cardiac death to examine any correlation between clock gene expression and catecholamines. A total of 36 subjects, who died of acute ischemic heart disease (AIHD, n = 10), acute myocardial infarction (AMI, n = 11), and rec...

Full description

Saved in:
Bibliographic Details
Published inJournal of Hard Tissue Biology Vol. 26; no. 4; pp. 347 - 354
Main Authors Ikeda, Tomoya, Ishikawa, Takaki, Oritani, Shigeki, Michiue, Tomomi, Tani, Naoto
Format Journal Article
LanguageEnglish
Published Tokyo THE SOCIETY FOR HARD TISSUE REGENERATIVE BIOLOGY 01.10.2017
The Society for Hard Tissue Regenerative Biology
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1341-7649
1880-828X
DOI10.2485/jhtb.26.347

Cover

Abstract The present study deals with the circadian expression of clock genes in acute cardiac death to examine any correlation between clock gene expression and catecholamines. A total of 36 subjects, who died of acute ischemic heart disease (AIHD, n = 10), acute myocardial infarction (AMI, n = 11), and recurrent myocardial infarction (RMI, n = 15) and underwent autopsy within 2 days after death, were included in this study. The mRNA expression levels of the clock genes BMAL1, PER2, and REV-ERBα were determined in the post-mortem heart tissue. Catecholamine levels in blood obtained from the right heart were measured. Furthermore, the cellular localization of clock proteins was assessed by immunohistochemistry, and protein levels in the heart tissue were also measured by Western blotting. In our cases of AIHD death, BMAL1 and PER2 exhibited trimodal expression patterns; however, the trimodal expression pattern of PER2 was antiphasic to that of BMAL1. PER2 expression correlated with adrenaline and noradrenaline levels. In deaths from AMI, BMAL1 and PER2 exhibited antiphasic trimodal and bimodal expressions, respectively, and BMAL1 expression correlated with adrenaline and noradrenaline levels. In RMI, both BMAL1 and PER2 exhibited antiphasic unimodal expression patterns, which were not correlated with adrenaline and noradrenaline levels. REV-ERBα expression varied, and no correlations were found between dopamine levels and clock gene expression in any group. We concluded that catecholamine levels are decreased in AIHD and raised in AMI as a function of BMAL1 expression and that BMAL1 and PER2 modulate and suppress catecholamine levels respectively.
AbstractList The present study deals with the circadian expression of clock genes in acute cardiac death to examine any correlation between clock gene expression and catecholamines. A total of 36 subjects, who died of acute ischemic heart disease (AIHD, n = 10), acute myocardial infarction (AMI, n = 11), and recurrent myocardial infarction (RMI, n = 15) and underwent autopsy within 2 days after death, were included in this study. The mRNA expression levels of the clock genes BMAL1, PER2, and REV-ERBα were determined in the post-mortem heart tissue. Catecholamine levels in blood obtained from the right heart were measured. Furthermore, the cellular localization of clock proteins was assessed by immunohistochemistry, and protein levels in the heart tissue were also measured by Western blotting. In our cases of AIHD death, BMAL1 and PER2 exhibited trimodal expression patterns; however, the trimodal expression pattern of PER2 was antiphasic to that of BMAL1. PER2 expression correlated with adrenaline and noradrenaline levels. In deaths from AMI, BMAL1 and PER2 exhibited antiphasic trimodal and bimodal expressions, respectively, and BMAL1 expression correlated with adrenaline and noradrenaline levels. In RMI, both BMAL1 and PER2 exhibited antiphasic unimodal expression patterns, which were not correlated with adrenaline and noradrenaline levels. REV-ERBα expression varied, and no correlations were found between dopamine levels and clock gene expression in any group. We concluded that catecholamine levels are decreased in AIHD and raised in AMI as a function of BMAL1 expression and that BMAL1 and PER2 modulate and suppress catecholamine levels respectively.
Abstract: The present study deals with the circadian expression of clock genes in acute cardiac death to examine any correlation between clock gene expression and catecholamines. A total of 36 subjects, who died of acute ischemic heart disease (AIHD, n=10), acute myocardial infarction (AMI, n=11), and recurrent myocardial infarction (RMI, n=15) and underwent autopsy within 2 days after death, were included in this study. The mRNA expression levels of the clock genes BMAL1, PER2, and REV-ERBα were determined in the post-mortem heart tissue. Catecholamine levels in blood obtained from the right heart were measured. Furthermore, the cellular localization of clock proteins was assessed by immunohistochemistry, and protein levels in the heart tissue were also measured by Western blotting. In our cases of AIHD death, BMAL1 and PER2 exhibited trimodal expression patterns; however, the trimodal expression pattern of PER2 was antiphasic to that of BMAL1. PER2 expression correlated with adrenaline and noradrenaline levels. In deaths from AMI, BMAL1 and PER2 exhibited antiphasic trimodal and bimodal expressions, respectively, and BMAL1 expression correlated with adrenaline and noradrenaline levels. In RMI, both BMAL1 and PER2 exhibited antiphasic unimodal expression patterns, which were not correlated with adrenaline and noradrenaline levels. REV-ERBα expression varied, and no correlations were found between dopamine levels and clock gene expression in any group. We concluded that catecholamine levels are decreased in AIHD and raised in AMI as a function of BMAL1 expression and that BMAL1 and PER2 modulate and suppress catecholamine levels respectively.
Author Michiue, Tomomi
Tani, Naoto
Ishikawa, Takaki
Ikeda, Tomoya
Oritani, Shigeki
Author_xml – sequence: 1
  fullname: Ikeda, Tomoya
  organization: Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC)
– sequence: 1
  fullname: Ishikawa, Takaki
  organization: Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC)
– sequence: 1
  fullname: Oritani, Shigeki
  organization: Department of Legal Medicine, Osaka City University Medical School
– sequence: 1
  fullname: Michiue, Tomomi
  organization: Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC)
– sequence: 1
  fullname: Tani, Naoto
  organization: Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC)
BookMark eNp1UEtrGzEQFsGFJk5P_QOCHMO6eq2kzSEQnNYJBFKSFHoTsjSO5aylRCsf8u8r18aBQi8zw8z3Yk7QKKYICH2lZMKEbr-tlmU-YXLChTpCx1Rr0mimf4_qzAVtlBTdZ3QyDCtCJFVdd4yuH1IPOC3wNGRnfbART_vkXvAMIgw4RPy48R7q1uZ6dfgabFle4Cv8M_Sp4Mey8e-n6NPC9gN82fcx-vXj-9P0prm7n91Or-4a13a0NMpJRxWhmnLbOib5ArgVQqlOd9o6IN55L73UvKWsVi_AKTGfg_CMAmF8jM52uq85vW1gKGaVNjlWS8MIbYlkUqiKOt-hXE7DkGFhXnNY2_xuKDHbN5ntmwyThv9F03_QLhRbQool29D_hzPbcdbgg7N9in2I8BHGv4mlL2G-TaUMIUwSUVtrSGXX0grWaUIJrUqXO6XVUOwzHJLaXILr4eAq9taHg1vabCDyPzwmmIc
CitedBy_id crossref_primary_10_1177_09603271221124092
crossref_primary_10_1371_journal_pone_0198673
crossref_primary_10_1007_s13577_019_00248_2
crossref_primary_10_1177_0960327119864139
Cites_doi 10.1161/CIRCULATIONAHA.113.002885
10.1007/s00414-010-0527-4
10.1161/CIRCULATIONAHA.106.653303
10.1016/j.legalmed.2007.06.002
10.1186/1756-0500-4-275
10.1177/35.2.3098834
10.1016/j.forsciint.2013.09.010
10.1161/HYPERTENSIONAHA.106.083568
10.1371/journal.pone.0057921
10.1016/j.jjcc.2011.02.006
10.1172/JCI36908
10.1007/s00213-012-2941-4
10.1128/CVI.00716-12
10.1007/s00414-008-0235-5
10.1093/cvr/14.3.125
10.1007/s004410050553
10.1016/0009-8981(74)90014-X
10.2310/JIM.0b013e31829f91c0
10.1136/hrt.67.1.97
10.1016/j.forsciint.2013.02.008
10.1080/07853890600995010
10.1016/j.forsciint.2007.02.013
10.1073/pnas.1112998108
10.1038/nsmb1344
10.1038/nature744
10.1161/01.CIR.79.4.733
10.1161/CIRCULATIONAHA.108.827477
10.3109/10428194.2012.658792
10.1016/j.legalmed.2014.07.006
10.1093/hmg/ddl207
10.3389/fphar.2015.00071
10.1007/s11626-015-9987-7
10.1056/NEJM198706113162405
10.1016/j.biochi.2004.12.006
10.1073/pnas.0611680104
10.1161/01.ATV.20.8.1857
ContentType Journal Article
Copyright 2017 by The Hard Tissue Biology Network Association(JHTBNet)
Copyright Japan Science and Technology Agency 2017
Copyright_xml – notice: 2017 by The Hard Tissue Biology Network Association(JHTBNet)
– notice: Copyright Japan Science and Technology Agency 2017
CorporateAuthor Department of Legal Medicine
Osaka City University Medical School
Forensic Autopsy Section
Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC
CorporateAuthor_xml – name: Forensic Autopsy Section
– name: Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC
– name: Department of Legal Medicine
– name: Osaka City University Medical School
DBID AAYXX
CITATION
7QP
7U7
8FD
C1K
FR3
P64
RC3
DOI 10.2485/jhtb.26.347
DatabaseName CrossRef
Calcium & Calcified Tissue Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Genetics Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 1880-828X
EndPage 354
ExternalDocumentID 10_2485_jhtb_26_347
dq4hdtib_2017_002604_005_0347_03542980101
article_jhtb_26_4_26_347_article_char_en
GroupedDBID 5GY
ACPRK
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
DU5
JMI
JSF
JSH
KQ8
MOJWN
RJT
RZJ
2WC
7.U
AAYXX
CITATION
TKC
7QP
7U7
8FD
C1K
FR3
P64
RC3
ID FETCH-LOGICAL-c591t-7c6c1701813a5c263fe3a44779898ace0dcdd6d683512683d4ec74bbe4d21e023
ISSN 1341-7649
IngestDate Mon Jun 30 12:03:50 EDT 2025
Tue Jul 01 02:56:10 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
Thu Jul 10 16:11:30 EDT 2025
Wed Sep 03 06:30:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c591t-7c6c1701813a5c263fe3a44779898ace0dcdd6d683512683d4ec74bbe4d21e023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jhtb/26/4/26_347/_article/-char/en
PQID 2015062647
PQPubID 2048453
PageCount 8
ParticipantIDs proquest_journals_2015062647
crossref_primary_10_2485_jhtb_26_347
crossref_citationtrail_10_2485_jhtb_26_347
medicalonline_journals_dq4hdtib_2017_002604_005_0347_03542980101
jstage_primary_article_jhtb_26_4_26_347_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Hard Tissue Biology
PublicationTitleAlternate J. Hard Tissue Biology.
PublicationYear 2017
Publisher THE SOCIETY FOR HARD TISSUE REGENERATIVE BIOLOGY
The Society for Hard Tissue Regenerative Biology
Japan Science and Technology Agency
Publisher_xml – name: THE SOCIETY FOR HARD TISSUE REGENERATIVE BIOLOGY
– name: The Society for Hard Tissue Regenerative Biology
– name: Japan Science and Technology Agency
References 29. Laitinen S, Fontaine C, Fruchart JC and Staels B. The role of the orphan nuclear receptor Rev-Erb alpha in adipocyte differentiation and function Biochimie 87: 21-25, 2005
31. Furumura M and Ishikawa H. Actin bundles in human hair follicles as revealed by confocal laser microscopy. Cell Tissue Res 283: 425-434, 1996
22. Zhu BL, Tanaka S, Ishikawa T, Zhao D, Li DR, Michiue T, Quan L and Maeda H. Forensic pathological investigation of myocardial hypoxia-inducible factor-1 alpha, erythropoietin and vascular endothelial growth factor in cardiac death. Leg Med (Tokyo) 10: 11-19, 2008
39. Ishikawa T, Inamori-Kawamoto O, Quan L, Michiue T, Chen JH, Wang Q, Zhu BL and Maeda H. Postmortem urinary catecholamine levels with regard to the cause of death. Leg Med (Tokyo) 16: 344-349, 2014
9. Muller JE, Tofler GH and Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 79: 733-743, 1989
21. Remmer S, Kuudeberg A, Tõnisson M, Lepik D and Väli M. Cardiac troponin T in forensic autopsy cases. Forensic Sci Int 233: 154-157, 2013
1. Chen L and Yang G. Recent advances in circadian rhythms in cardiovascular system. Front Pharmacol 6: 71, 2015
4. Takeda N and Maemura K. Circadian clock and cardiovascular disease. J Cardiol 57: 249-256, 2011
16. Curtis AM and Fitzgerald GA. Central and peripheral clocks in cardiovascular and metabolic function. Ann Med 38: 552-559, 2006
26. Pfister C, Tatabiga MS and Roser F. Selection of suitable reference genes for quantitative real-time polymerase chain reaction in human meningiomas and arachnoidea. BMC Res Notes 4: 275, 2011
32. Nakahara T, Tominaga N, Toyomura J, Tachibana T, Ide Y and Ishikawa H. Isolation and characterization of embryonic ameloblast lineage cells derived from tooth buds of fetal miniature swine. In Vitro Cell Dev Biol Anim 52: 445-453, 2016
42. Bounameaux H and Kruithof EK. On the association of elevated tPA/PAI-1 complex and von Willebrand factor with recurrent myocardial infarction. Arterioscler Thromb Vasc Biol 20: 1857-9, 2000
10. Viswambharan H, Carvas JM, Antic V, Marecic A, Jud C, Zaugg CE, Ming XF, Montani JP, Albrecht U and Yang Z. Mutation of the circadian clock gene Per2 alters vascular endothelial function. Circulation 115: 2188-2195, 2007
18. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH and Weitz CJ. Extensive and divergent circadian gene expression in liver and heart. Nature 417: 78-83, 2002
35. Escribano LM, Gabriel LC, Villa E and Navarro JL. Endogenous peroxidase activity in human cutaneous and adenoidal mast cells. J Histochem Cytochem 35: 213-220, 1987
23. Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Quan L, Oritani S, Bessho Y and Maeda H. Postmortem serum catecholamine levels in relation to the cause of death. Forensic Sci Int 173: 122-129, 2007
38. Ishikawa T, Quan L, Michiue T, Kawamoto O, Wang Q, Chen JH, Zhu BL and Maeda H. Postmortem catecholamine levels in pericardial and cerebrospinal fluids with regard to the cause of death in medicolegal autopsy. Forensic Sci Int 228: 52-60, 2013
19. Gumz ML, Stow LR, Lynch IJ, Greenlee MM, Rudin A, Cain BD, Weaver DR and Wingo CS. The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. J Clin Invest 119: 2423-2434, 2009
28. Sangoram AM, Saez L, Antoch MP, Gekakis N, Staknis D, Whiteley A, Fruechte EM, Vitaterna MH, Shimomura K, King DP, Young MW, Weitz CJ and Takahashi JS. Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. Neuron 21: 1101-1113, 1998
25. Kimura A, Ishida Y, Hayashi T, Nosaka M and Kondo T. Estimating time of death based on the biological clock. Int J Legal Med 125: 385-391, 2011
13. Durgan DJ, Pulinilkunnil T, Villegas-Montoya C, Garvey ME, Frangogiannis NG, Michael LH, Chow CW, Dyck JR and Young ME. Short communication: ischemia/reperfusion tolerance is time-of-day-dependent: mediation by the cardiomyocyte circadian clock. Circ Res 106: 546-550, 2010
20. Saukko P and Knight B. Knight’s Forensic Pathology. 3rd ed. Hodder Arnold, 1996. (ed, publisher, city, Nation)
8. Kadomatsu T, Uragami S, Akashi M, Tsuchiya Y, Nakajima H, Nakashima Y, Endo M, Miyata K, Terada K, Todo T, Node K and Oike Y. A molecular clock regulates angiopoietin-like protein 2 expression. PLoS One 8: e57921, 2013
24. Wang Q, Ishikawa T, Michiue T, Zhu BL, Guan DW and Maeda H. Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real-time PCR data: comprehensive evaluation using geNorm, NormFinder, and BestKeeper. Int J Legal Med 126: 943-952, 2012
11. Martino TA, Tata N, Belsham DD, Chalmers J, Straume M, Lee P, Pribiag H, Khaper N, Liu PP, Dawood F, Backx PH, Ralph MR and Sole MJ. Disturbed diurnal rhythm alters gene expression and exacerbates cardiovascular disease with rescue by resynchronization. Hypertension 49: 1104-13, 2007
34. Raghuram S, Stayrook KR, Huang P, Rogers PM, Nosie AK, McClure DB, Burris LL, Khorasanizadeh S, Burris TP and Rastinejad F. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat Struct Mol Biol 14: 1207-1213, 2007
2. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet 15: R271-R277, 2006
12. Anea CB, Zhang M, Stepp DW, Simkins GB, Reed G, Fulton DJ and Rudic RD. Vascular disease in mice with a dysfunctional circadian clock. Circulation 119: 1510-1517, 2009
33. Thoennissen NH, Thoennissen GB, Abbassi S, Nabavi-Nouis S, Sauer T, Doan NB, Gery S, Müller-Tidow C, Said JW and Koeffler HP. Transcription factor CCAAT/enhancer-binding protein alpha and critical circadian clock downstream target gene PER2 are highly deregulated in diffuse large B-cell lymphoma. Leuk Lymphoma 53: 1577-1585, 2012
7. Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, Willich SN, Gleason RE, Williams GH and Muller JE. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med 316: 1514-1518, 1987
27. Jiang WG, Li SX, Liu JF, Sun Y, Zhou SJ, Zhu WL, Shi J and Lu L. Hippocampal CLOCK protein participates in the persistence of depressive-like behavior induced by chronic unpredictable stress. Psychopharmacology (Berl) 227: 79-92, 2013
17. Young ME, Razeghi P and Taegtmeyer H. Clock genes in the heart: characterization and attenuation with hypertrophy. Circ Res 88: 1142-1150, 2011
37. Turton MB and Deegan T. Circadian variations of plasma catecholamine, cortisol and immunoreactive insulin concentrations in supine subjects. Clin Chim Acta 55: 389-397, 1974
5. Zülch KJ and Hossmann V. 24-hour rhythm of human blood pressure. Ger Med Mon 12: 513-518, 1967
14. Cheng B, Anea CB, Yao L, Chen F, Patel V, Merloiu A, Pati P, Caldwell RW, Fulton DJ and Rudic RD. Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis. Proc Natl Acad Sci USA 108: 17147-17152, 2011
15. Pan X, Jiang XC and Hussain MM. Impaired cholesterol metabolism and enhanced atherosclerosis in clock mutant mice. Circulation 128: 1758-1769, 2013
30. Ma X, You X, Zeng Y, He J, Liu L, Deng Z, Jiang C, Wu H, Zhu C, Yu M and Wu Y. Mycoplasma fermentans MALP-2 induces heme oxygenase-1 expression via mitogen-activated protein kinases and Nrf2 pathways to modulate cyclooxygenase 2 expression in human monocytes. Clin Vaccine Immunol 20: 827-834, 2013
41. McNeill AJ, Adgey AA and Wilson C. Recurrent ventricular arrhythmias complicating myocardial infarction in the presence of phaeochromocytoma. Br Heart J 67: 97-98, 1992
3. Yang YK, Peng XD, Li YH, Wang ZR, Chang-quan H, Hui W and Liu QX. The polymorphism of CLOCK gene 3111T/C C>T is associated with susceptibility of Alzheimer disease in Chinese population. J Investig Med 61: 1084-1087, 2013
36. Hayashi T, Ishida Y, Mizunuma S, Kimura A and Kondo T. Differential diagnosis between freshwater drowning and saltwater drowning based on intrapulmonary aquaporin-5 expression. Int J Legal Med 123: 7-13, 2009
40. Curtis AM, Cheng Y, Kapoor S, Reilly D, Price TS and Fitzgerald GA. Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc Natl Acad Sci USA 104: 3450-3455, 2007
6. Hossmann V, Fitzgerald GA and Dollery CT. Dollery Circadian rhythm of baroreflex reactivity and adrenergic vascular response. Cardiovasc Res 14: 125-129, 1980
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
References_xml – reference: 1. Chen L and Yang G. Recent advances in circadian rhythms in cardiovascular system. Front Pharmacol 6: 71, 2015
– reference: 38. Ishikawa T, Quan L, Michiue T, Kawamoto O, Wang Q, Chen JH, Zhu BL and Maeda H. Postmortem catecholamine levels in pericardial and cerebrospinal fluids with regard to the cause of death in medicolegal autopsy. Forensic Sci Int 228: 52-60, 2013
– reference: 2. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet 15: R271-R277, 2006
– reference: 21. Remmer S, Kuudeberg A, Tõnisson M, Lepik D and Väli M. Cardiac troponin T in forensic autopsy cases. Forensic Sci Int 233: 154-157, 2013
– reference: 9. Muller JE, Tofler GH and Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 79: 733-743, 1989
– reference: 35. Escribano LM, Gabriel LC, Villa E and Navarro JL. Endogenous peroxidase activity in human cutaneous and adenoidal mast cells. J Histochem Cytochem 35: 213-220, 1987
– reference: 31. Furumura M and Ishikawa H. Actin bundles in human hair follicles as revealed by confocal laser microscopy. Cell Tissue Res 283: 425-434, 1996
– reference: 10. Viswambharan H, Carvas JM, Antic V, Marecic A, Jud C, Zaugg CE, Ming XF, Montani JP, Albrecht U and Yang Z. Mutation of the circadian clock gene Per2 alters vascular endothelial function. Circulation 115: 2188-2195, 2007
– reference: 14. Cheng B, Anea CB, Yao L, Chen F, Patel V, Merloiu A, Pati P, Caldwell RW, Fulton DJ and Rudic RD. Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis. Proc Natl Acad Sci USA 108: 17147-17152, 2011
– reference: 25. Kimura A, Ishida Y, Hayashi T, Nosaka M and Kondo T. Estimating time of death based on the biological clock. Int J Legal Med 125: 385-391, 2011
– reference: 33. Thoennissen NH, Thoennissen GB, Abbassi S, Nabavi-Nouis S, Sauer T, Doan NB, Gery S, Müller-Tidow C, Said JW and Koeffler HP. Transcription factor CCAAT/enhancer-binding protein alpha and critical circadian clock downstream target gene PER2 are highly deregulated in diffuse large B-cell lymphoma. Leuk Lymphoma 53: 1577-1585, 2012
– reference: 5. Zülch KJ and Hossmann V. 24-hour rhythm of human blood pressure. Ger Med Mon 12: 513-518, 1967
– reference: 12. Anea CB, Zhang M, Stepp DW, Simkins GB, Reed G, Fulton DJ and Rudic RD. Vascular disease in mice with a dysfunctional circadian clock. Circulation 119: 1510-1517, 2009
– reference: 16. Curtis AM and Fitzgerald GA. Central and peripheral clocks in cardiovascular and metabolic function. Ann Med 38: 552-559, 2006
– reference: 4. Takeda N and Maemura K. Circadian clock and cardiovascular disease. J Cardiol 57: 249-256, 2011
– reference: 40. Curtis AM, Cheng Y, Kapoor S, Reilly D, Price TS and Fitzgerald GA. Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc Natl Acad Sci USA 104: 3450-3455, 2007
– reference: 6. Hossmann V, Fitzgerald GA and Dollery CT. Dollery Circadian rhythm of baroreflex reactivity and adrenergic vascular response. Cardiovasc Res 14: 125-129, 1980
– reference: 3. Yang YK, Peng XD, Li YH, Wang ZR, Chang-quan H, Hui W and Liu QX. The polymorphism of CLOCK gene 3111T/C C>T is associated with susceptibility of Alzheimer disease in Chinese population. J Investig Med 61: 1084-1087, 2013
– reference: 15. Pan X, Jiang XC and Hussain MM. Impaired cholesterol metabolism and enhanced atherosclerosis in clock mutant mice. Circulation 128: 1758-1769, 2013
– reference: 26. Pfister C, Tatabiga MS and Roser F. Selection of suitable reference genes for quantitative real-time polymerase chain reaction in human meningiomas and arachnoidea. BMC Res Notes 4: 275, 2011
– reference: 8. Kadomatsu T, Uragami S, Akashi M, Tsuchiya Y, Nakajima H, Nakashima Y, Endo M, Miyata K, Terada K, Todo T, Node K and Oike Y. A molecular clock regulates angiopoietin-like protein 2 expression. PLoS One 8: e57921, 2013
– reference: 22. Zhu BL, Tanaka S, Ishikawa T, Zhao D, Li DR, Michiue T, Quan L and Maeda H. Forensic pathological investigation of myocardial hypoxia-inducible factor-1 alpha, erythropoietin and vascular endothelial growth factor in cardiac death. Leg Med (Tokyo) 10: 11-19, 2008
– reference: 32. Nakahara T, Tominaga N, Toyomura J, Tachibana T, Ide Y and Ishikawa H. Isolation and characterization of embryonic ameloblast lineage cells derived from tooth buds of fetal miniature swine. In Vitro Cell Dev Biol Anim 52: 445-453, 2016
– reference: 19. Gumz ML, Stow LR, Lynch IJ, Greenlee MM, Rudin A, Cain BD, Weaver DR and Wingo CS. The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. J Clin Invest 119: 2423-2434, 2009
– reference: 24. Wang Q, Ishikawa T, Michiue T, Zhu BL, Guan DW and Maeda H. Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real-time PCR data: comprehensive evaluation using geNorm, NormFinder, and BestKeeper. Int J Legal Med 126: 943-952, 2012
– reference: 28. Sangoram AM, Saez L, Antoch MP, Gekakis N, Staknis D, Whiteley A, Fruechte EM, Vitaterna MH, Shimomura K, King DP, Young MW, Weitz CJ and Takahashi JS. Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. Neuron 21: 1101-1113, 1998
– reference: 23. Zhu BL, Ishikawa T, Michiue T, Li DR, Zhao D, Quan L, Oritani S, Bessho Y and Maeda H. Postmortem serum catecholamine levels in relation to the cause of death. Forensic Sci Int 173: 122-129, 2007
– reference: 34. Raghuram S, Stayrook KR, Huang P, Rogers PM, Nosie AK, McClure DB, Burris LL, Khorasanizadeh S, Burris TP and Rastinejad F. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat Struct Mol Biol 14: 1207-1213, 2007
– reference: 17. Young ME, Razeghi P and Taegtmeyer H. Clock genes in the heart: characterization and attenuation with hypertrophy. Circ Res 88: 1142-1150, 2011
– reference: 18. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH and Weitz CJ. Extensive and divergent circadian gene expression in liver and heart. Nature 417: 78-83, 2002
– reference: 36. Hayashi T, Ishida Y, Mizunuma S, Kimura A and Kondo T. Differential diagnosis between freshwater drowning and saltwater drowning based on intrapulmonary aquaporin-5 expression. Int J Legal Med 123: 7-13, 2009
– reference: 20. Saukko P and Knight B. Knight’s Forensic Pathology. 3rd ed. Hodder Arnold, 1996. (ed, publisher, city, Nation)
– reference: 30. Ma X, You X, Zeng Y, He J, Liu L, Deng Z, Jiang C, Wu H, Zhu C, Yu M and Wu Y. Mycoplasma fermentans MALP-2 induces heme oxygenase-1 expression via mitogen-activated protein kinases and Nrf2 pathways to modulate cyclooxygenase 2 expression in human monocytes. Clin Vaccine Immunol 20: 827-834, 2013
– reference: 29. Laitinen S, Fontaine C, Fruchart JC and Staels B. The role of the orphan nuclear receptor Rev-Erb alpha in adipocyte differentiation and function Biochimie 87: 21-25, 2005
– reference: 11. Martino TA, Tata N, Belsham DD, Chalmers J, Straume M, Lee P, Pribiag H, Khaper N, Liu PP, Dawood F, Backx PH, Ralph MR and Sole MJ. Disturbed diurnal rhythm alters gene expression and exacerbates cardiovascular disease with rescue by resynchronization. Hypertension 49: 1104-13, 2007
– reference: 41. McNeill AJ, Adgey AA and Wilson C. Recurrent ventricular arrhythmias complicating myocardial infarction in the presence of phaeochromocytoma. Br Heart J 67: 97-98, 1992
– reference: 42. Bounameaux H and Kruithof EK. On the association of elevated tPA/PAI-1 complex and von Willebrand factor with recurrent myocardial infarction. Arterioscler Thromb Vasc Biol 20: 1857-9, 2000
– reference: 13. Durgan DJ, Pulinilkunnil T, Villegas-Montoya C, Garvey ME, Frangogiannis NG, Michael LH, Chow CW, Dyck JR and Young ME. Short communication: ischemia/reperfusion tolerance is time-of-day-dependent: mediation by the cardiomyocyte circadian clock. Circ Res 106: 546-550, 2010
– reference: 39. Ishikawa T, Inamori-Kawamoto O, Quan L, Michiue T, Chen JH, Wang Q, Zhu BL and Maeda H. Postmortem urinary catecholamine levels with regard to the cause of death. Leg Med (Tokyo) 16: 344-349, 2014
– reference: 27. Jiang WG, Li SX, Liu JF, Sun Y, Zhou SJ, Zhu WL, Shi J and Lu L. Hippocampal CLOCK protein participates in the persistence of depressive-like behavior induced by chronic unpredictable stress. Psychopharmacology (Berl) 227: 79-92, 2013
– reference: 7. Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, Willich SN, Gleason RE, Williams GH and Muller JE. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med 316: 1514-1518, 1987
– reference: 37. Turton MB and Deegan T. Circadian variations of plasma catecholamine, cortisol and immunoreactive insulin concentrations in supine subjects. Clin Chim Acta 55: 389-397, 1974
– ident: 15
  doi: 10.1161/CIRCULATIONAHA.113.002885
– ident: 25
  doi: 10.1007/s00414-010-0527-4
– ident: 10
  doi: 10.1161/CIRCULATIONAHA.106.653303
– ident: 22
  doi: 10.1016/j.legalmed.2007.06.002
– ident: 26
  doi: 10.1186/1756-0500-4-275
– ident: 35
  doi: 10.1177/35.2.3098834
– ident: 21
  doi: 10.1016/j.forsciint.2013.09.010
– ident: 11
  doi: 10.1161/HYPERTENSIONAHA.106.083568
– ident: 8
  doi: 10.1371/journal.pone.0057921
– ident: 4
  doi: 10.1016/j.jjcc.2011.02.006
– ident: 19
  doi: 10.1172/JCI36908
– ident: 28
– ident: 27
  doi: 10.1007/s00213-012-2941-4
– ident: 24
– ident: 30
  doi: 10.1128/CVI.00716-12
– ident: 36
  doi: 10.1007/s00414-008-0235-5
– ident: 6
  doi: 10.1093/cvr/14.3.125
– ident: 20
– ident: 31
  doi: 10.1007/s004410050553
– ident: 37
  doi: 10.1016/0009-8981(74)90014-X
– ident: 3
  doi: 10.2310/JIM.0b013e31829f91c0
– ident: 17
– ident: 41
  doi: 10.1136/hrt.67.1.97
– ident: 38
  doi: 10.1016/j.forsciint.2013.02.008
– ident: 5
– ident: 16
  doi: 10.1080/07853890600995010
– ident: 23
  doi: 10.1016/j.forsciint.2007.02.013
– ident: 14
  doi: 10.1073/pnas.1112998108
– ident: 34
  doi: 10.1038/nsmb1344
– ident: 13
– ident: 18
  doi: 10.1038/nature744
– ident: 9
  doi: 10.1161/01.CIR.79.4.733
– ident: 12
  doi: 10.1161/CIRCULATIONAHA.108.827477
– ident: 33
  doi: 10.3109/10428194.2012.658792
– ident: 39
  doi: 10.1016/j.legalmed.2014.07.006
– ident: 2
  doi: 10.1093/hmg/ddl207
– ident: 1
  doi: 10.3389/fphar.2015.00071
– ident: 32
  doi: 10.1007/s11626-015-9987-7
– ident: 7
  doi: 10.1056/NEJM198706113162405
– ident: 29
  doi: 10.1016/j.biochi.2004.12.006
– ident: 40
  doi: 10.1073/pnas.0611680104
– ident: 42
  doi: 10.1161/01.ATV.20.8.1857
SSID ssj0061799
ssib023157149
ssib058493224
Score 1.691197
Snippet The present study deals with the circadian expression of clock genes in acute cardiac death to examine any correlation between clock gene expression and...
Abstract: The present study deals with the circadian expression of clock genes in acute cardiac death to examine any correlation between clock gene expression...
SourceID proquest
crossref
medicalonline
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 347
SubjectTerms Acute cardiac death
Autopsies
Autopsy
BMAL1 protein
Cardiovascular diseases
Catecholamine
Catecholamines
Circadian clock
Circadian rhythm
Circadian rhythms
Clock gene
Coronary artery disease
Correlation
Death
Dopamine
Epinephrine
Fatalities
Gene expression
Genes
Heart
Heart attacks
Heart diseases
Immunohistochemistry
Ischemia
Localization
Mortality
Myocardial infarction
Noradrenaline
Norepinephrine
Period 2 protein
Proteins
Real-time polymerase chain reaction
Western blotting
Title Role of Circadian Clock Genes in Sudden Cardiac Death: A Pilot Study
URI https://www.jstage.jst.go.jp/article/jhtb/26/4/26_347/_article/-char/en
http://mol.medicalonline.jp/library/journal/download?GoodsID=dq4hdtib/2017/002604/005&name=0347-0354e
https://www.proquest.com/docview/2015062647
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Hard Tissue Biology, 2017/10/01, Vol.26(4), pp.347-354
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgIDEJIT5FYSA_7IkppUkcO-GJqQNNID7XSX2LEtuhoWszRvoAfz13tuOmow-DF7dKfImS-_l8ju9-R8i-kmD0k6IK0qSUAcs4CzKmVKBYWLCKyVKkmI384SM_PmXvpsl0vV1gskvacih_b80r-R-twjHQK2bJ_oNm_UXhAPwH_UILGob2Sjr-6kIDx_WFtBwDY5ib5oZL2sS5nqzQrmBUB5yVYFzA37O56J_rs6Y1UYQb-7o9_xTTsQ5ao5cDR9W0XuabQlBgmpu28eCaa2U80UmzaH55a_8Jvz7Y7iez-pue117HtZzVK92JLOr-FwiY1bpYts5owkwYCG6pR4faHgO7gCnq076ltbnxDlGsZzZjy7rpZuDY0kpfNu5IvobGfQb4iPjQy_QptC9NbT7gEJY6KJ6jcB7xHISvkxuREGZr__0Xv_PEkSHPLNLdM9mcThR-2bvzhhdz8zs48sjQcHthN9csyclfs7txWSZ3yR2nS3pogXOPXNPL--TWEcaHYYm_B-QIAUSbinoAUQMgagBE6yW1AKIOQNQA6BU9pAY-1MDnITl9-2YyPg5cWY1AJlnYBkJyiSz8aRgXiYx4XOm4YEwILCVaSD1SEsuMcfDNwwhaxbQUrCw1U1Gowcd7RHaWzVI_JrQqJC-k4aBksM6XaVbGo7KIsiLjJVx1QF50rymXjnMeS5-c5VsUMiD7vvO5pVrZ3k3Y9-07ufHnOzHX05_ABEawFwPyekNBuRvKP3P1g81UW4M0wDs3PHsMfpJ8hJcZxVjULUU2xgHZ63S6lo4MTSesLMSTqz3CU7K7Hkd7ZKe9WOln4Nu25XMDxj8MNqM_
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Circadian+Clock+Genes+in+Sudden+Cardiac+Death%3A+A+Pilot+Study&rft.jtitle=Journal+of+hard+tissue+biology&rft.au=Tani%2C+Naoto&rft.au=Ikeda%2C+Tomoya&rft.au=Oritani%2C+Shigeki&rft.au=Michiue%2C+Tomomi&rft.date=2017-10-01&rft.issn=1341-7649&rft.eissn=1880-828X&rft.volume=26&rft.issue=4&rft.spage=347&rft.epage=354&rft_id=info:doi/10.2485%2Fjhtb.26.347&rft.externalDBID=n%2Fa&rft.externalDocID=10_2485_jhtb_26_347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-7649&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-7649&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-7649&client=summon