The putative tumour suppressor miR-1-3p modulates prostate cancer cell aggressiveness by repressing E2F5 and PFTK1
Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa). In this study, the expr...
Saved in:
Published in | Journal of experimental & clinical cancer research Vol. 37; no. 1; pp. 219 - 15 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
05.09.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa).
In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations.
We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3'- untranslated region (3'- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone.
These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics. |
---|---|
AbstractList | Background Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa). Methods In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations. Results We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3'- untranslated region (3'- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone. Conclusion These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics. Keywords: microRNA, Prostate cancer, Proliferation, Target gene Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa). In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations. We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3'- untranslated region (3'- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone. These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics. Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa). In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations. We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3'- untranslated region (3'- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone. These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics. Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa).BACKGROUNDPrevious studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa).In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations.METHODSIn this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations.We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3'- untranslated region (3'- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone.RESULTSWe found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3'- untranslated region (3'- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone.These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics.CONCLUSIONThese data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics. Background Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa). Methods In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations. Results We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3′- untranslated region (3′- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone. Conclusion These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics. Abstract Background Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa). Methods In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations. Results We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3′- untranslated region (3′- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone. Conclusion These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics. |
ArticleNumber | 219 |
Audience | Academic |
Author | Hu, Jia Ye, Zhang-Qun Li, Sen-Mao Wu, Huan-Lei Tang, Kun Yu, Xiao Wang, Shao-Gang |
Author_xml | – sequence: 1 givenname: Sen-Mao surname: Li fullname: Li, Sen-Mao – sequence: 2 givenname: Huan-Lei surname: Wu fullname: Wu, Huan-Lei – sequence: 3 givenname: Xiao surname: Yu fullname: Yu, Xiao – sequence: 4 givenname: Kun surname: Tang fullname: Tang, Kun – sequence: 5 givenname: Shao-Gang surname: Wang fullname: Wang, Shao-Gang – sequence: 6 givenname: Zhang-Qun surname: Ye fullname: Ye, Zhang-Qun – sequence: 7 givenname: Jia surname: Hu fullname: Hu, Jia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30185212$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktr3DAUhU1JaR7tD-imCAqhG6eSZcnyphBCpg0NtJTpWmika48GW3IlO5D8-sqZPGZCKV7ISN85Fx2d4-zAeQdZ9p7gM0IE_xwJxSXPMRE5FjXL715lR6RiPK9rzg92_g-z4xg3GHNSk_pNdkiThBWkOMrCcg1omEY12htA49T7KaA4DUOAGH1Avf2Vk5wOqPdm6tQIEQ3Bx8QD0sppCEhD1yHVtrMimbi0oNUtCnDvYV2LLosFQ8oZ9HOx_E7eZq8b1UV497CeZL8Xl8uLb_n1j69XF-fXuWY1GXOmNcNMr3CNgRgsSGlEabipQGOlFWa8pLRgpFlVmpKGq4qCwpoZjJWAdHiSXW19jVcbOQTbq3ArvbLyfsOHVqowWt2BLDkFDLQwRvCywVzpqiZNmlinaaZkyevL1muYVj0YDW4Mqtsz3T9xdi1bfyM5KZjgdTL49GAQ_J8J4ih7G-fklAM_RVkQjCnFjPKEfnyBbtKjuBTVTAlRiIJVz1Sr0gWsa3yaq2dTec5YVVFWljhRZ_-g0megtzq1qbFpf09wuiNYg-rGdfTdNFrv4j74YTeRpygeq5UAsgV06ksM0DwhBMu5vnJbX5kEcq6vvEua6oVG27mafg7Vdv9R_gXYzfJO |
CitedBy_id | crossref_primary_10_1016_j_prp_2023_154343 crossref_primary_10_3389_fcell_2022_831329 crossref_primary_10_1093_nar_gkaa687 crossref_primary_10_1016_j_psj_2024_103728 crossref_primary_10_1186_s12935_021_02331_x crossref_primary_10_3390_biomedicines10020428 crossref_primary_10_1016_j_rec_2022_02_008 crossref_primary_10_1016_j_recesp_2022_02_019 crossref_primary_10_1089_gtmb_2020_0166 crossref_primary_10_1097_CAD_0000000000001034 crossref_primary_10_3390_cancers15092437 crossref_primary_10_1186_s13046_021_02193_1 crossref_primary_10_3390_biomedicines12071477 crossref_primary_10_1016_j_bbrc_2019_01_087 crossref_primary_10_1186_s10020_020_00259_y crossref_primary_10_1007_s13577_022_00842_x crossref_primary_10_3390_cancers14236009 crossref_primary_10_1002_jgm_3309 crossref_primary_10_17776_csj_976510 crossref_primary_10_3390_jcm11030500 crossref_primary_10_1016_j_tranon_2022_101542 crossref_primary_10_3390_ijms232415904 crossref_primary_10_1016_j_biopha_2020_110903 crossref_primary_10_1038_s41598_019_51578_y crossref_primary_10_1016_j_urolonc_2020_03_007 crossref_primary_10_3389_fphar_2024_1483186 crossref_primary_10_1186_s12967_023_04649_8 crossref_primary_10_3390_jpm14050482 crossref_primary_10_1007_s10528_024_10837_y crossref_primary_10_1093_bib_bbab115 crossref_primary_10_1038_s41598_019_47189_2 crossref_primary_10_1016_j_xcrm_2022_100871 crossref_primary_10_1016_j_cyto_2022_155922 crossref_primary_10_3233_CBM_182111 crossref_primary_10_1016_j_clgc_2024_102294 crossref_primary_10_2174_1389450120666190402145325 crossref_primary_10_1073_pnas_1922864118 crossref_primary_10_3389_fimmu_2023_1086907 crossref_primary_10_1016_j_mito_2023_04_004 crossref_primary_10_1007_s11010_020_03759_x crossref_primary_10_1016_j_lfs_2020_117746 crossref_primary_10_1007_s13738_020_01931_0 crossref_primary_10_1016_j_mrrev_2019_05_005 crossref_primary_10_1186_s13046_022_02438_7 crossref_primary_10_1007_s12033_024_01248_w crossref_primary_10_1021_acsnano_4c11630 crossref_primary_10_1038_s41417_020_00244_x crossref_primary_10_1007_s10528_021_10118_y crossref_primary_10_1038_s42003_024_07339_3 crossref_primary_10_1038_s41419_020_03138_w crossref_primary_10_3390_biomedicines12092108 crossref_primary_10_1016_j_ijbiomac_2021_12_141 crossref_primary_10_1186_s12935_023_03187_z crossref_primary_10_1186_s12876_022_02203_2 crossref_primary_10_1093_toxres_tfab047 crossref_primary_10_1186_s12935_023_03034_1 crossref_primary_10_2106_JBJS_19_00896 crossref_primary_10_3389_fonc_2019_00120 crossref_primary_10_3389_fonc_2022_997457 crossref_primary_10_1016_j_gene_2024_148785 crossref_primary_10_3389_fonc_2022_940926 |
Cites_doi | 10.1038/nature03049 10.1139/bcb-2017-0015 10.1007/s11010-016-2910-z 10.3892/mmr.2017.6560 10.1177/1010428317691674 10.1016/j.canlet.2017.08.011 10.1038/onc.2012.58 10.1530/REP-17-0322 10.3322/caac.21387 10.1159/000464379 10.1186/1479-5876-12-66 10.1158/0008-5472.CAN-09-2183 10.1038/s41419-018-0293-7 10.1158/1078-0432.CCR-04-0713 10.1007/s00018-016-2176-3 10.1186/s12894-017-0206-6 10.1016/j.devcel.2006.09.009 10.1073/pnas.1619170114 10.1038/nrc1997 10.1016/j.ajur.2017.11.004 10.1371/journal.pone.0140451 10.1158/1541-7786.MCR-17-0655 10.1158/0008-5472.CAN-14-3380 10.1158/0008-5472.CAN-16-1589 10.1111/imb.12375 10.1186/s12943-016-0523-5 10.1002/j.1460-2075.1995.tb07182.x 10.1042/BC20070078 10.1038/ncb1109-1275 10.3390/ijms12128947 10.1038/cdd.2011.190 10.1016/j.jdiacomp.2016.02.008 10.1096/fj.201701237RR 10.1016/j.cell.2009.02.005 10.1016/S0140-6736(14)60525-0 10.1016/j.eururo.2015.12.054 10.1146/annurev.cellbio.23.090506.123406 10.1159/000445252 10.1038/nrg1379 10.1016/j.yexmp.2015.06.014 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. The Author(s). 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2018 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s13046-018-0895-z |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1756-9966 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_463e0e32dd864f06ac791f14d97ecd45 PMC6125869 A557735440 30185212 10_1186_s13046_018_0895_z |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 81302218 – fundername: National Natural Science Foundation of China grantid: 81772729 – fundername: ; grantid: 81772729; 81302218 |
GroupedDBID | --- 0R~ 29K 2WC 4.4 5GY 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 D-I DIK DU5 E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ H13 HMCUK HYE IAO IEA IHR IHW INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SMD SOJ TR2 TUS UKHRP ~8M -5E -5G -A0 -BR 3V. ACRMQ ADINQ C24 NPM PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c591t-5cc505cb090e1d0814d84d6d7ec0aca056433251fb7c31f6a73ea0c5d00a8e643 |
IEDL.DBID | M48 |
ISSN | 1756-9966 0392-9078 |
IngestDate | Wed Aug 27 01:31:35 EDT 2025 Thu Aug 21 14:10:55 EDT 2025 Tue Aug 05 10:51:05 EDT 2025 Fri Jul 25 04:36:17 EDT 2025 Tue Jun 17 22:04:45 EDT 2025 Tue Jun 10 21:02:50 EDT 2025 Thu May 22 21:24:09 EDT 2025 Wed Feb 19 02:42:40 EST 2025 Tue Jul 01 02:26:33 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | microRNA Proliferation Prostate cancer Target gene |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c591t-5cc505cb090e1d0814d84d6d7ec0aca056433251fb7c31f6a73ea0c5d00a8e643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13046-018-0895-z |
PMID | 30185212 |
PQID | 2108828257 |
PQPubID | 105475 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_463e0e32dd864f06ac791f14d97ecd45 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6125869 proquest_miscellaneous_2100330536 proquest_journals_2108828257 gale_infotracmisc_A557735440 gale_infotracacademiconefile_A557735440 gale_healthsolutions_A557735440 pubmed_primary_30185212 crossref_primary_10_1186_s13046_018_0895_z crossref_citationtrail_10_1186_s13046_018_0895_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-05 |
PublicationDateYYYYMMDD | 2018-09-05 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of experimental & clinical cancer research |
PublicationTitleAlternate | J Exp Clin Cancer Res |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | L Wang (895_CR11) 2009; 69 YN Liu (895_CR18) 2013; 32 L Xie (895_CR10) 2018; 5 L Fabris (895_CR15) 2016; 70 Y Zhang (895_CR43) 2018; 9 YS Chang (895_CR19) 2015; 75 TJ Liban (895_CR40) 2017; 114 A Shang (895_CR22) 2017; 41 RL Siegel (895_CR7) 2017; 67 895_CR33 V Doldi (895_CR9) 2016; 73 T Ishimoto (895_CR31) 2013; 33 895_CR35 C Massillo (895_CR12) 2017; 154 L Yang (895_CR29) 2015; 10 895_CR37 895_CR38 L He (895_CR1) 2004; 5 R Kanwal (895_CR17) 2017; 407 JY Wang (895_CR20) 2018; 17 M Hazar-Rethinam (895_CR24) 2011; 12 C Thangavel (895_CR41) 2017; 77 F Gerlinger-Romero (895_CR36) 2017; 427 FH Schroder (895_CR8) 2014; 384 RL Camp (895_CR23) 2004; 10 M Kato (895_CR5) 2008; 100 Y Zheng (895_CR27) 2017; 98 H Xu (895_CR28) 2016; 8 Y Mao (895_CR30) 2017; 16 WP Kloosterman (895_CR4) 2006; 11 HN Luu (895_CR16) 2017; 17 895_CR21 E Endzelins (895_CR14) 2016; 15 L Zhu (895_CR42) 1995; 14 W Zhang (895_CR13) 2014; 12 S Donzelli (895_CR34) 2012; 19 AM Denli (895_CR2) 2004; 432 M Malumbres (895_CR25) 2009; 11 N Bushati (895_CR26) 2007; 23 A Ventura (895_CR6) 2009; 136 J Polesel (895_CR39) 2016; 30 GA Calin (895_CR3) 2006; 6 G Lu (895_CR32) 2015; 99 28351331 - Tumour Biol. 2017 Mar;39(3):1010428317691674 29466052 - FASEB J. 2018 Jul;32(7):3957-3967 26071255 - Cancer Res. 2015 Aug 1;75(15):3077-86 24618011 - J Transl Med. 2014 Mar 11;12:66 18199046 - Biol Cell. 2008 Feb;100(2):71-81 28498444 - Mol Med Rep. 2017 Jul;16(1):224-230 22272113 - Int J Mol Sci. 2011;12(12):8947-60 22370643 - Oncogene. 2013 Jan 17;32(3):296-306 25108889 - Lancet. 2014 Dec 6;384(9959):2027-35 7743997 - EMBO J. 1995 May 1;14(9):1904-13 15211354 - Nat Rev Genet. 2004 Jul;5(7):522-31 27189160 - Mol Cancer. 2016 May 18;15(1):41 26936307 - J Diabetes Complications. 2016 May-Jun;30(4):591-6 19239879 - Cell. 2009 Feb 20;136(4):586-91 19884882 - Nat Cell Biol. 2009 Nov;11(11):1275-6 17060945 - Nat Rev Cancer. 2006 Nov;6(11):857-66 29467540 - Cell Death Dis. 2018 Feb 21;9(3):301 29453320 - Mol Cancer Res. 2018 Apr;16(4):696-706 28439018 - Proc Natl Acad Sci U S A. 2017 May 9;114(19):4942-4947 17506695 - Annu Rev Cell Dev Biol. 2007;23:175-205 26488471 - PLoS One. 2015 Oct 21;10(10):e0140451 28268231 - Cell Physiol Biochem. 2017;41(3):1179-1188 15531879 - Nature. 2004 Nov 11;432(7014):231-5 28763625 - Biochem Cell Biol. 2018 Jun;96(3):355-364 28878093 - Reproduction. 2017 Oct;154(4):R81-R97 28320379 - BMC Urol. 2017 Mar 20;17(1):18 28055103 - CA Cancer J Clin. 2017 Jan;67(1):7-30 29393467 - Mol Med Rep. 2018 Apr;17(4):5013-5020 29424082 - Insect Mol Biol. 2018 Jun;27(3):352-364 17011485 - Dev Cell. 2006 Oct;11(4):441-50 28823964 - Cancer Lett. 2017 Oct 28;407:9-20 29379727 - Asian J Urol. 2018 Jan;5(1):3-7 27923835 - Cancer Res. 2017 Feb 15;77(4):982-995 22193543 - Cell Death Differ. 2012 Jun;19(6):1038-48 26806656 - Eur Urol. 2016 Aug;70(2):312-22 26970978 - Cell Mol Life Sci. 2016 Jul;73(13):2531-42 19996289 - Cancer Res. 2009 Dec 15;69(24):9490-7 24324077 - Anticancer Res. 2013 Dec;33(12):5415-20 26103003 - Exp Mol Pathol. 2015 Aug;99(1):173-9 28000044 - Mol Cell Biochem. 2017 Mar;427(1-2):187-199 27074041 - Urol Int. 2017;98(1):102-110 15534099 - Clin Cancer Res. 2004 Nov 1;10(21):7252-9 27398145 - Am J Transl Res. 2016 Jun 15;8(6):2620-30 |
References_xml | – volume: 432 start-page: 231 issue: 7014 year: 2004 ident: 895_CR2 publication-title: Nature doi: 10.1038/nature03049 – volume: 33 start-page: 5415 issue: 12 year: 2013 ident: 895_CR31 publication-title: Anticancer Res – ident: 895_CR21 doi: 10.1139/bcb-2017-0015 – volume: 427 start-page: 187 issue: 1–2 year: 2017 ident: 895_CR36 publication-title: Mol Cell Biochem doi: 10.1007/s11010-016-2910-z – volume: 16 start-page: 224 issue: 1 year: 2017 ident: 895_CR30 publication-title: Mol Med Rep doi: 10.3892/mmr.2017.6560 – ident: 895_CR33 doi: 10.1177/1010428317691674 – volume: 407 start-page: 9 year: 2017 ident: 895_CR17 publication-title: Cancer Lett doi: 10.1016/j.canlet.2017.08.011 – volume: 32 start-page: 296 issue: 3 year: 2013 ident: 895_CR18 publication-title: Oncogene doi: 10.1038/onc.2012.58 – volume: 154 start-page: R81 issue: 4 year: 2017 ident: 895_CR12 publication-title: Reproduction doi: 10.1530/REP-17-0322 – volume: 67 start-page: 7 issue: 1 year: 2017 ident: 895_CR7 publication-title: CA Cancer J Clin doi: 10.3322/caac.21387 – volume: 17 start-page: 5013 issue: 4 year: 2018 ident: 895_CR20 publication-title: Mol Med Rep – volume: 41 start-page: 1179 issue: 3 year: 2017 ident: 895_CR22 publication-title: Cell Physiol Biochem doi: 10.1159/000464379 – volume: 12 start-page: 66 year: 2014 ident: 895_CR13 publication-title: J Transl Med doi: 10.1186/1479-5876-12-66 – volume: 69 start-page: 9490 issue: 24 year: 2009 ident: 895_CR11 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-2183 – volume: 9 start-page: 301 issue: 3 year: 2018 ident: 895_CR43 publication-title: Cell Death Dis doi: 10.1038/s41419-018-0293-7 – volume: 10 start-page: 7252 issue: 21 year: 2004 ident: 895_CR23 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-0713 – volume: 73 start-page: 2531 issue: 13 year: 2016 ident: 895_CR9 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-016-2176-3 – volume: 17 start-page: 18 issue: 1 year: 2017 ident: 895_CR16 publication-title: BMC Urol doi: 10.1186/s12894-017-0206-6 – volume: 11 start-page: 441 issue: 4 year: 2006 ident: 895_CR4 publication-title: Dev Cell doi: 10.1016/j.devcel.2006.09.009 – volume: 114 start-page: 4942 issue: 19 year: 2017 ident: 895_CR40 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1619170114 – volume: 6 start-page: 857 issue: 11 year: 2006 ident: 895_CR3 publication-title: Nat Rev Cancer doi: 10.1038/nrc1997 – volume: 5 start-page: 3 issue: 1 year: 2018 ident: 895_CR10 publication-title: Asian J Urol doi: 10.1016/j.ajur.2017.11.004 – volume: 10 start-page: e0140451 issue: 10 year: 2015 ident: 895_CR29 publication-title: PLoS One doi: 10.1371/journal.pone.0140451 – ident: 895_CR37 doi: 10.1158/1541-7786.MCR-17-0655 – volume: 75 start-page: 3077 issue: 15 year: 2015 ident: 895_CR19 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-3380 – volume: 77 start-page: 982 issue: 4 year: 2017 ident: 895_CR41 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-16-1589 – ident: 895_CR35 doi: 10.1111/imb.12375 – volume: 15 start-page: 41 issue: 1 year: 2016 ident: 895_CR14 publication-title: Mol Cancer doi: 10.1186/s12943-016-0523-5 – volume: 14 start-page: 1904 issue: 9 year: 1995 ident: 895_CR42 publication-title: EMBO J doi: 10.1002/j.1460-2075.1995.tb07182.x – volume: 100 start-page: 71 issue: 2 year: 2008 ident: 895_CR5 publication-title: Biol Cell doi: 10.1042/BC20070078 – volume: 11 start-page: 1275 issue: 11 year: 2009 ident: 895_CR25 publication-title: Nat Cell Biol doi: 10.1038/ncb1109-1275 – volume: 12 start-page: 8947 issue: 12 year: 2011 ident: 895_CR24 publication-title: Int J Mol Sci doi: 10.3390/ijms12128947 – volume: 8 start-page: 2620 issue: 6 year: 2016 ident: 895_CR28 publication-title: Am J Transl Res – volume: 19 start-page: 1038 issue: 6 year: 2012 ident: 895_CR34 publication-title: Cell Death Differ doi: 10.1038/cdd.2011.190 – volume: 30 start-page: 591 issue: 4 year: 2016 ident: 895_CR39 publication-title: J Diabetes Complicat doi: 10.1016/j.jdiacomp.2016.02.008 – ident: 895_CR38 doi: 10.1096/fj.201701237RR – volume: 136 start-page: 586 issue: 4 year: 2009 ident: 895_CR6 publication-title: Cell doi: 10.1016/j.cell.2009.02.005 – volume: 384 start-page: 2027 issue: 9959 year: 2014 ident: 895_CR8 publication-title: Lancet doi: 10.1016/S0140-6736(14)60525-0 – volume: 70 start-page: 312 issue: 2 year: 2016 ident: 895_CR15 publication-title: Eur Urol doi: 10.1016/j.eururo.2015.12.054 – volume: 23 start-page: 175 year: 2007 ident: 895_CR26 publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.23.090506.123406 – volume: 98 start-page: 102 issue: 1 year: 2017 ident: 895_CR27 publication-title: Urol Int doi: 10.1159/000445252 – volume: 5 start-page: 522 issue: 7 year: 2004 ident: 895_CR1 publication-title: Nat Rev Genet doi: 10.1038/nrg1379 – volume: 99 start-page: 173 issue: 1 year: 2015 ident: 895_CR32 publication-title: Exp Mol Pathol doi: 10.1016/j.yexmp.2015.06.014 – reference: 29453320 - Mol Cancer Res. 2018 Apr;16(4):696-706 – reference: 7743997 - EMBO J. 1995 May 1;14(9):1904-13 – reference: 29467540 - Cell Death Dis. 2018 Feb 21;9(3):301 – reference: 28351331 - Tumour Biol. 2017 Mar;39(3):1010428317691674 – reference: 28878093 - Reproduction. 2017 Oct;154(4):R81-R97 – reference: 28763625 - Biochem Cell Biol. 2018 Jun;96(3):355-364 – reference: 26806656 - Eur Urol. 2016 Aug;70(2):312-22 – reference: 15531879 - Nature. 2004 Nov 11;432(7014):231-5 – reference: 28000044 - Mol Cell Biochem. 2017 Mar;427(1-2):187-199 – reference: 27923835 - Cancer Res. 2017 Feb 15;77(4):982-995 – reference: 27074041 - Urol Int. 2017;98(1):102-110 – reference: 28439018 - Proc Natl Acad Sci U S A. 2017 May 9;114(19):4942-4947 – reference: 17011485 - Dev Cell. 2006 Oct;11(4):441-50 – reference: 26936307 - J Diabetes Complications. 2016 May-Jun;30(4):591-6 – reference: 29379727 - Asian J Urol. 2018 Jan;5(1):3-7 – reference: 18199046 - Biol Cell. 2008 Feb;100(2):71-81 – reference: 28498444 - Mol Med Rep. 2017 Jul;16(1):224-230 – reference: 22193543 - Cell Death Differ. 2012 Jun;19(6):1038-48 – reference: 28268231 - Cell Physiol Biochem. 2017;41(3):1179-1188 – reference: 17060945 - Nat Rev Cancer. 2006 Nov;6(11):857-66 – reference: 29466052 - FASEB J. 2018 Jul;32(7):3957-3967 – reference: 19996289 - Cancer Res. 2009 Dec 15;69(24):9490-7 – reference: 28055103 - CA Cancer J Clin. 2017 Jan;67(1):7-30 – reference: 15534099 - Clin Cancer Res. 2004 Nov 1;10(21):7252-9 – reference: 26488471 - PLoS One. 2015 Oct 21;10(10):e0140451 – reference: 26103003 - Exp Mol Pathol. 2015 Aug;99(1):173-9 – reference: 24618011 - J Transl Med. 2014 Mar 11;12:66 – reference: 17506695 - Annu Rev Cell Dev Biol. 2007;23:175-205 – reference: 28823964 - Cancer Lett. 2017 Oct 28;407:9-20 – reference: 27398145 - Am J Transl Res. 2016 Jun 15;8(6):2620-30 – reference: 29393467 - Mol Med Rep. 2018 Apr;17(4):5013-5020 – reference: 19239879 - Cell. 2009 Feb 20;136(4):586-91 – reference: 29424082 - Insect Mol Biol. 2018 Jun;27(3):352-364 – reference: 15211354 - Nat Rev Genet. 2004 Jul;5(7):522-31 – reference: 26071255 - Cancer Res. 2015 Aug 1;75(15):3077-86 – reference: 25108889 - Lancet. 2014 Dec 6;384(9959):2027-35 – reference: 22272113 - Int J Mol Sci. 2011;12(12):8947-60 – reference: 19884882 - Nat Cell Biol. 2009 Nov;11(11):1275-6 – reference: 24324077 - Anticancer Res. 2013 Dec;33(12):5415-20 – reference: 22370643 - Oncogene. 2013 Jan 17;32(3):296-306 – reference: 26970978 - Cell Mol Life Sci. 2016 Jul;73(13):2531-42 – reference: 28320379 - BMC Urol. 2017 Mar 20;17(1):18 – reference: 27189160 - Mol Cancer. 2016 May 18;15(1):41 |
SSID | ssj0061919 |
Score | 2.4545648 |
Snippet | Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However,... Background Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers.... Abstract Background Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 219 |
SubjectTerms | Apoptosis Cell growth Diagnosis Gene expression Kinases MicroRNA Patient outcomes Proliferation Prostate cancer Target gene |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA-yB_FF_LY6NYIgCGXJbZImj1N2GYoissHeQpqkc7D1lt72wf31npP2llsEffGtNKfQnq-cX3PyCyHvFA-FCFLlqlYOAIovc-N0lTsWuNY-6KJOXb7f1Om5-HwhL_aO-sKesJEeeFTckVBFZLFYhaCVqJlyvjS85iKYMvogEnspzHk7MDXmYEAF3ExrmFyroy3HBUCAzcjGbGR-u5iFEln_nyl5b05a9kvuTUDrB-T-VDnS4_GNH5I7sXlE7n6d1sYfkw4sTtuhT0zetB8A03d0O7Sp03XT0ZurHwDkipbebAKe2RW3tMUtH3BFPdq-o_gXn7rLBMGnLEirX7SbumWbS3qyWkvqmkC_r8--8CfkfH1y9uk0n05UyL00vM-l91Dx-IoZFnmAakAELYIKoErmvINiCOnMJK-r0hccrFcW0TEvA2NORxh8Sg6aTROfE4rAOlYVVDOIacAuzgceWTC61sI4kxG207D1E904nnpxbRPs0MqORrFgFItGsbcZ-TA_0o5cG38T_ohmmwWRJjvdAOexk_PYfzlPRt6g0e2453QOdnssZVkWUgiWkfdJAsMdXt-7adcCKAGJsxaShwtJCFO_HN45lp3SxNYC3gaEAyC9zMjbeRifxNa3Jm6GJMMKyMqFysiz0Q_nj4bsrHHzdUbKhYcutLIcaa5-JhJxrGy1Mi_-hxpfknurFFsmZ_KQHPTdEF9BrdZXr1NY_gY1bDr1 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA5aQXwRf7u1agRBEJYmt5ts8iRVehRFEWnh3kI2yV4Ldnfdu3to_3pncrm1i9C34zILSWYymS-ZfEPIe8l9UXohc9lICwDFVbm2qs4t81wp51XRxCzfH_LkrPy6EIt04LZKaZU7nxgdte8cnpEfAjSBYBDwTPWp_5Nj1Si8XU0lNO6Se0hdhlZdLUbABdggFvaAHVLmGNenW02u5OGK45UgAGnkZ9Yiv57sS5G-_38nfWOXmmZQ3tiS5o_IwxRL0qOt8h-TO6F9Qu5_T7flT8kANkD7zTpye9P1BlD-QFebPua-dgO9vPgF0K7o6WXnsYpXWNEeH4HAL-rQGgaK5_rULiMoT36R1ld0SPmz7ZIez-aC2tbTn_PTb_wZOZsfn345yVONhdwJzde5cA5iIFczzQL3EB-UXpVe-io4Zp2F8AgJzgRv6soVHPRZFcEyJzxjVgVofE722q4NLwlFqB3qGuIbRDlMWus8D8xr1ahSW50Rtpth4xIBOdbB-G0iEFHSbJViQCkGlWKuM_Jx_KTfsm_cJvwZ1TYKInF2_KMbliatQ1PKIrBQzLxXsmygk67SvIFRaxixL0VG3qLSzfYV6rj8zZEQVVWIsmQZ-RAl0AFA951N7xhgEpBKayJ5MJGEheumzTvDMslxrMw_M8_Iu7EZv8RkuDZ0myjDCvDThczIi60djoMGf63wOXZGqomFTmZl2tJenEdacYx1ldT7t3frFXkwi6tG50wckL31sAmvIS5b12_i4vsLnxc0Pg priority: 102 providerName: ProQuest |
Title | The putative tumour suppressor miR-1-3p modulates prostate cancer cell aggressiveness by repressing E2F5 and PFTK1 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30185212 https://www.proquest.com/docview/2108828257 https://www.proquest.com/docview/2100330536 https://pubmed.ncbi.nlm.nih.gov/PMC6125869 https://doaj.org/article/463e0e32dd864f06ac791f14d97ecd45 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9swEBd9wNiXsffcdpkGg8HAmxzr-WGMZiSUjZYSGgj7ImRJzgqtkzkJrP3rd1IcU7OyfTHBOgfrXrqfdbpD6B3PXE4d4ykvuQGAYkWqjCxSQ1wmpXUyL2OW7xk_mdBvUzbdQdv2Vg0Dl_dCu9BPalJfffz96-YLGPznaPCSf1pmYXsPQHGotaxYeruL9mFhEqGhwSltNxUAKsQ-HwRCghQwoWw2Oe_9i84yFav5_-2z7yxa3YTKOyvU6DF61ISW-HijC0_Qjq-eogenzeb5M1SDSuDFehVLfePVGkB_jZfrRUyFndf4-nIMSC9f4Ou5C029_BIvwpkQ-IVtUI4ah8_82MwiRm_cJC5ucN2k01YzPOyPGDaVw-eji-_ZczQZDS--nqRNy4XUMpWtUmYthES2IIr4zEG4QJ2kjjvhLTHWQLQU6p2xrCyEzTMQr8i9IZY5Qoz0MPgC7VXzyr9COCBvXxQQ7gTQQ7gx1mWeOCVLSZVRCSJbDmvb1CMPbTGudMQlkuuNUDQIRQeh6NsEfWgfWWyKcfyLeBDE1hKGOtrxxrye6cYsNeW5Jz7vOyc5LeElrVBZCbNWMGNHWYLeBKHrzaHU1hvoY8aEyBmlJEHvI0XQUHh9a5pjDcCEUFmrQ3nUoQQ7tt3hrWLprRloAOQAgQDFiwS9bYfDkyE3rvLzdaQhObjtnCfo5UYP20mD-5bhdHaCREdDO1zpjlSXP2OV8RD6Sq4O_suBQ_SwHw1HpYQdob1VvfavIVJbFT20K6aih_YHw7PzcS9-7-hFm4TrePDjDzMiPRY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGkIAXxH8CgxkJhIQUzWlix3lAaMCqjm4TQp3UN-PYbplEk5C2QtuH4jNy56RhEdLe9hbF58j2ne_uF5_vCHktIhsnlotQzIQGgGLSMNMyDzWzkZTGynjmo3xPxOg0-TLl0y3yZ3MXBsMqNzrRK2pbGvxHvgfQBJxBwDPph-pXiFWj8HR1U0KjEYuxO_8NkG35_vAz8PfNYDA8mHwahW1VgdDwLFqF3Biw-iZnGXORBYuYWJlYYVNnmDYaHAJM6cWjWZ6aOIIZpLHTzHDLmJYOGuG7N8hNMLwMwV467QAeYBFfSAQssggRR7SnqJEUe8sIjyABuGM-6IyHFz076MsF_G8ULlnFfsTmJRM4vEfutr4r3W-E7T7ZcsUDcuu4PZ1_SGqQOVqtVz6XOF2tF9CBLteVj7Uta7o4-wZQMq7oorRYNcwtaYWXTuCJGpS-muI5AtVz_xOg1cM0P6d1G69bzOnBYMipLiz9OpyMo0fk9FpW_zHZLsrCPSUUob3Lc_CnEFUxobWxkWM2kzOZZDoLCNussDJtwnOsu_FTeeAjhWqYooApCpmiLgLyrutSNdk-riL-iGzrCDFRt39R1nPV7nuViNgxFw-slSKZwSBNmkUzmHUGM7YJD8guMl01t147daP2OU_TmCcJC8hbT4EKB4ZvdHtvAhYBU3f1KHd6lKAoTL95I1iqVVRL9W9bBeRV14w9MfiucOXa07AY7EIsAvKkkcNu0mAfJF7_Dkjak9DeqvRbirMfPo05-tZSZM-uHtYuuT2aHB-po8OT8XNyZ-B3UBYyvkO2V_XavQCfcJW_9BuRku_XvfP_AnwScPk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+putative+tumour+suppressor+miR-1-3p+modulates+prostate+cancer+cell+aggressiveness+by+repressing+E2F5+and+PFTK1&rft.jtitle=Journal+of+experimental+%26+clinical+cancer+research&rft.au=Tang%2C+Kun&rft.au=Wang%2C+Shao-Gang&rft.au=Li%2C+Sen-Mao&rft.au=Yu%2C+Xiao&rft.date=2018-09-05&rft.pub=BioMed+Central+Ltd&rft.issn=0392-9078&rft.volume=37&rft.issue=1&rft_id=info:doi/10.1186%2Fs13046-018-0895-z&rft.externalDBID=n%2Fa&rft.externalDocID=A557735440 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-9966&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-9966&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-9966&client=summon |