The putative tumour suppressor miR-1-3p modulates prostate cancer cell aggressiveness by repressing E2F5 and PFTK1

Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa). In this study, the expr...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental & clinical cancer research Vol. 37; no. 1; pp. 219 - 15
Main Authors Li, Sen-Mao, Wu, Huan-Lei, Yu, Xiao, Tang, Kun, Wang, Shao-Gang, Ye, Zhang-Qun, Hu, Jia
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 05.09.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa). In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations. We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3'- untranslated region (3'- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone. These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics.
AbstractList Background Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa). Methods In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations. Results We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3'- untranslated region (3'- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone. Conclusion These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics. Keywords: microRNA, Prostate cancer, Proliferation, Target gene
Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa). In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations. We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3'- untranslated region (3'- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone. These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics.
Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa). In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations. We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3'- untranslated region (3'- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone. These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics.
Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa).BACKGROUNDPrevious studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa).In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations.METHODSIn this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations.We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3'- untranslated region (3'- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone.RESULTSWe found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3'- untranslated region (3'- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone.These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics.CONCLUSIONThese data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics.
Background Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa). Methods In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations. Results We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3′- untranslated region (3′- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone. Conclusion These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics.
Abstract Background Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa). Methods In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations. Results We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3′- untranslated region (3′- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone. Conclusion These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics.
ArticleNumber 219
Audience Academic
Author Hu, Jia
Ye, Zhang-Qun
Li, Sen-Mao
Wu, Huan-Lei
Tang, Kun
Yu, Xiao
Wang, Shao-Gang
Author_xml – sequence: 1
  givenname: Sen-Mao
  surname: Li
  fullname: Li, Sen-Mao
– sequence: 2
  givenname: Huan-Lei
  surname: Wu
  fullname: Wu, Huan-Lei
– sequence: 3
  givenname: Xiao
  surname: Yu
  fullname: Yu, Xiao
– sequence: 4
  givenname: Kun
  surname: Tang
  fullname: Tang, Kun
– sequence: 5
  givenname: Shao-Gang
  surname: Wang
  fullname: Wang, Shao-Gang
– sequence: 6
  givenname: Zhang-Qun
  surname: Ye
  fullname: Ye, Zhang-Qun
– sequence: 7
  givenname: Jia
  surname: Hu
  fullname: Hu, Jia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30185212$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAUhU1JaR7tD-imCAqhG6eSZcnyphBCpg0NtJTpWmika48GW3IlO5D8-sqZPGZCKV7ISN85Fx2d4-zAeQdZ9p7gM0IE_xwJxSXPMRE5FjXL715lR6RiPK9rzg92_g-z4xg3GHNSk_pNdkiThBWkOMrCcg1omEY12htA49T7KaA4DUOAGH1Avf2Vk5wOqPdm6tQIEQ3Bx8QD0sppCEhD1yHVtrMimbi0oNUtCnDvYV2LLosFQ8oZ9HOx_E7eZq8b1UV497CeZL8Xl8uLb_n1j69XF-fXuWY1GXOmNcNMr3CNgRgsSGlEabipQGOlFWa8pLRgpFlVmpKGq4qCwpoZjJWAdHiSXW19jVcbOQTbq3ArvbLyfsOHVqowWt2BLDkFDLQwRvCywVzpqiZNmlinaaZkyevL1muYVj0YDW4Mqtsz3T9xdi1bfyM5KZjgdTL49GAQ_J8J4ih7G-fklAM_RVkQjCnFjPKEfnyBbtKjuBTVTAlRiIJVz1Sr0gWsa3yaq2dTec5YVVFWljhRZ_-g0megtzq1qbFpf09wuiNYg-rGdfTdNFrv4j74YTeRpygeq5UAsgV06ksM0DwhBMu5vnJbX5kEcq6vvEua6oVG27mafg7Vdv9R_gXYzfJO
CitedBy_id crossref_primary_10_1016_j_prp_2023_154343
crossref_primary_10_3389_fcell_2022_831329
crossref_primary_10_1093_nar_gkaa687
crossref_primary_10_1016_j_psj_2024_103728
crossref_primary_10_1186_s12935_021_02331_x
crossref_primary_10_3390_biomedicines10020428
crossref_primary_10_1016_j_rec_2022_02_008
crossref_primary_10_1016_j_recesp_2022_02_019
crossref_primary_10_1089_gtmb_2020_0166
crossref_primary_10_1097_CAD_0000000000001034
crossref_primary_10_3390_cancers15092437
crossref_primary_10_1186_s13046_021_02193_1
crossref_primary_10_3390_biomedicines12071477
crossref_primary_10_1016_j_bbrc_2019_01_087
crossref_primary_10_1186_s10020_020_00259_y
crossref_primary_10_1007_s13577_022_00842_x
crossref_primary_10_3390_cancers14236009
crossref_primary_10_1002_jgm_3309
crossref_primary_10_17776_csj_976510
crossref_primary_10_3390_jcm11030500
crossref_primary_10_1016_j_tranon_2022_101542
crossref_primary_10_3390_ijms232415904
crossref_primary_10_1016_j_biopha_2020_110903
crossref_primary_10_1038_s41598_019_51578_y
crossref_primary_10_1016_j_urolonc_2020_03_007
crossref_primary_10_3389_fphar_2024_1483186
crossref_primary_10_1186_s12967_023_04649_8
crossref_primary_10_3390_jpm14050482
crossref_primary_10_1007_s10528_024_10837_y
crossref_primary_10_1093_bib_bbab115
crossref_primary_10_1038_s41598_019_47189_2
crossref_primary_10_1016_j_xcrm_2022_100871
crossref_primary_10_1016_j_cyto_2022_155922
crossref_primary_10_3233_CBM_182111
crossref_primary_10_1016_j_clgc_2024_102294
crossref_primary_10_2174_1389450120666190402145325
crossref_primary_10_1073_pnas_1922864118
crossref_primary_10_3389_fimmu_2023_1086907
crossref_primary_10_1016_j_mito_2023_04_004
crossref_primary_10_1007_s11010_020_03759_x
crossref_primary_10_1016_j_lfs_2020_117746
crossref_primary_10_1007_s13738_020_01931_0
crossref_primary_10_1016_j_mrrev_2019_05_005
crossref_primary_10_1186_s13046_022_02438_7
crossref_primary_10_1007_s12033_024_01248_w
crossref_primary_10_1021_acsnano_4c11630
crossref_primary_10_1038_s41417_020_00244_x
crossref_primary_10_1007_s10528_021_10118_y
crossref_primary_10_1038_s42003_024_07339_3
crossref_primary_10_1038_s41419_020_03138_w
crossref_primary_10_3390_biomedicines12092108
crossref_primary_10_1016_j_ijbiomac_2021_12_141
crossref_primary_10_1186_s12935_023_03187_z
crossref_primary_10_1186_s12876_022_02203_2
crossref_primary_10_1093_toxres_tfab047
crossref_primary_10_1186_s12935_023_03034_1
crossref_primary_10_2106_JBJS_19_00896
crossref_primary_10_3389_fonc_2019_00120
crossref_primary_10_3389_fonc_2022_997457
crossref_primary_10_1016_j_gene_2024_148785
crossref_primary_10_3389_fonc_2022_940926
Cites_doi 10.1038/nature03049
10.1139/bcb-2017-0015
10.1007/s11010-016-2910-z
10.3892/mmr.2017.6560
10.1177/1010428317691674
10.1016/j.canlet.2017.08.011
10.1038/onc.2012.58
10.1530/REP-17-0322
10.3322/caac.21387
10.1159/000464379
10.1186/1479-5876-12-66
10.1158/0008-5472.CAN-09-2183
10.1038/s41419-018-0293-7
10.1158/1078-0432.CCR-04-0713
10.1007/s00018-016-2176-3
10.1186/s12894-017-0206-6
10.1016/j.devcel.2006.09.009
10.1073/pnas.1619170114
10.1038/nrc1997
10.1016/j.ajur.2017.11.004
10.1371/journal.pone.0140451
10.1158/1541-7786.MCR-17-0655
10.1158/0008-5472.CAN-14-3380
10.1158/0008-5472.CAN-16-1589
10.1111/imb.12375
10.1186/s12943-016-0523-5
10.1002/j.1460-2075.1995.tb07182.x
10.1042/BC20070078
10.1038/ncb1109-1275
10.3390/ijms12128947
10.1038/cdd.2011.190
10.1016/j.jdiacomp.2016.02.008
10.1096/fj.201701237RR
10.1016/j.cell.2009.02.005
10.1016/S0140-6736(14)60525-0
10.1016/j.eururo.2015.12.054
10.1146/annurev.cellbio.23.090506.123406
10.1159/000445252
10.1038/nrg1379
10.1016/j.yexmp.2015.06.014
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2018
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13046-018-0895-z
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1756-9966
EndPage 15
ExternalDocumentID oai_doaj_org_article_463e0e32dd864f06ac791f14d97ecd45
PMC6125869
A557735440
30185212
10_1186_s13046_018_0895_z
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 81302218
– fundername: National Natural Science Foundation of China
  grantid: 81772729
– fundername: ;
  grantid: 81772729; 81302218
GroupedDBID ---
0R~
29K
2WC
4.4
5GY
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
D-I
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
H13
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
TR2
TUS
UKHRP
~8M
-5E
-5G
-A0
-BR
3V.
ACRMQ
ADINQ
C24
NPM
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c591t-5cc505cb090e1d0814d84d6d7ec0aca056433251fb7c31f6a73ea0c5d00a8e643
IEDL.DBID M48
ISSN 1756-9966
0392-9078
IngestDate Wed Aug 27 01:31:35 EDT 2025
Thu Aug 21 14:10:55 EDT 2025
Tue Aug 05 10:51:05 EDT 2025
Fri Jul 25 04:36:17 EDT 2025
Tue Jun 17 22:04:45 EDT 2025
Tue Jun 10 21:02:50 EDT 2025
Thu May 22 21:24:09 EDT 2025
Wed Feb 19 02:42:40 EST 2025
Tue Jul 01 02:26:33 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords microRNA
Proliferation
Prostate cancer
Target gene
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c591t-5cc505cb090e1d0814d84d6d7ec0aca056433251fb7c31f6a73ea0c5d00a8e643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13046-018-0895-z
PMID 30185212
PQID 2108828257
PQPubID 105475
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_463e0e32dd864f06ac791f14d97ecd45
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6125869
proquest_miscellaneous_2100330536
proquest_journals_2108828257
gale_infotracmisc_A557735440
gale_infotracacademiconefile_A557735440
gale_healthsolutions_A557735440
pubmed_primary_30185212
crossref_primary_10_1186_s13046_018_0895_z
crossref_citationtrail_10_1186_s13046_018_0895_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-05
PublicationDateYYYYMMDD 2018-09-05
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-05
  day: 05
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of experimental & clinical cancer research
PublicationTitleAlternate J Exp Clin Cancer Res
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References L Wang (895_CR11) 2009; 69
YN Liu (895_CR18) 2013; 32
L Xie (895_CR10) 2018; 5
L Fabris (895_CR15) 2016; 70
Y Zhang (895_CR43) 2018; 9
YS Chang (895_CR19) 2015; 75
TJ Liban (895_CR40) 2017; 114
A Shang (895_CR22) 2017; 41
RL Siegel (895_CR7) 2017; 67
895_CR33
V Doldi (895_CR9) 2016; 73
T Ishimoto (895_CR31) 2013; 33
895_CR35
C Massillo (895_CR12) 2017; 154
L Yang (895_CR29) 2015; 10
895_CR37
895_CR38
L He (895_CR1) 2004; 5
R Kanwal (895_CR17) 2017; 407
JY Wang (895_CR20) 2018; 17
M Hazar-Rethinam (895_CR24) 2011; 12
C Thangavel (895_CR41) 2017; 77
F Gerlinger-Romero (895_CR36) 2017; 427
FH Schroder (895_CR8) 2014; 384
RL Camp (895_CR23) 2004; 10
M Kato (895_CR5) 2008; 100
Y Zheng (895_CR27) 2017; 98
H Xu (895_CR28) 2016; 8
Y Mao (895_CR30) 2017; 16
WP Kloosterman (895_CR4) 2006; 11
HN Luu (895_CR16) 2017; 17
895_CR21
E Endzelins (895_CR14) 2016; 15
L Zhu (895_CR42) 1995; 14
W Zhang (895_CR13) 2014; 12
S Donzelli (895_CR34) 2012; 19
AM Denli (895_CR2) 2004; 432
M Malumbres (895_CR25) 2009; 11
N Bushati (895_CR26) 2007; 23
A Ventura (895_CR6) 2009; 136
J Polesel (895_CR39) 2016; 30
GA Calin (895_CR3) 2006; 6
G Lu (895_CR32) 2015; 99
28351331 - Tumour Biol. 2017 Mar;39(3):1010428317691674
29466052 - FASEB J. 2018 Jul;32(7):3957-3967
26071255 - Cancer Res. 2015 Aug 1;75(15):3077-86
24618011 - J Transl Med. 2014 Mar 11;12:66
18199046 - Biol Cell. 2008 Feb;100(2):71-81
28498444 - Mol Med Rep. 2017 Jul;16(1):224-230
22272113 - Int J Mol Sci. 2011;12(12):8947-60
22370643 - Oncogene. 2013 Jan 17;32(3):296-306
25108889 - Lancet. 2014 Dec 6;384(9959):2027-35
7743997 - EMBO J. 1995 May 1;14(9):1904-13
15211354 - Nat Rev Genet. 2004 Jul;5(7):522-31
27189160 - Mol Cancer. 2016 May 18;15(1):41
26936307 - J Diabetes Complications. 2016 May-Jun;30(4):591-6
19239879 - Cell. 2009 Feb 20;136(4):586-91
19884882 - Nat Cell Biol. 2009 Nov;11(11):1275-6
17060945 - Nat Rev Cancer. 2006 Nov;6(11):857-66
29467540 - Cell Death Dis. 2018 Feb 21;9(3):301
29453320 - Mol Cancer Res. 2018 Apr;16(4):696-706
28439018 - Proc Natl Acad Sci U S A. 2017 May 9;114(19):4942-4947
17506695 - Annu Rev Cell Dev Biol. 2007;23:175-205
26488471 - PLoS One. 2015 Oct 21;10(10):e0140451
28268231 - Cell Physiol Biochem. 2017;41(3):1179-1188
15531879 - Nature. 2004 Nov 11;432(7014):231-5
28763625 - Biochem Cell Biol. 2018 Jun;96(3):355-364
28878093 - Reproduction. 2017 Oct;154(4):R81-R97
28320379 - BMC Urol. 2017 Mar 20;17(1):18
28055103 - CA Cancer J Clin. 2017 Jan;67(1):7-30
29393467 - Mol Med Rep. 2018 Apr;17(4):5013-5020
29424082 - Insect Mol Biol. 2018 Jun;27(3):352-364
17011485 - Dev Cell. 2006 Oct;11(4):441-50
28823964 - Cancer Lett. 2017 Oct 28;407:9-20
29379727 - Asian J Urol. 2018 Jan;5(1):3-7
27923835 - Cancer Res. 2017 Feb 15;77(4):982-995
22193543 - Cell Death Differ. 2012 Jun;19(6):1038-48
26806656 - Eur Urol. 2016 Aug;70(2):312-22
26970978 - Cell Mol Life Sci. 2016 Jul;73(13):2531-42
19996289 - Cancer Res. 2009 Dec 15;69(24):9490-7
24324077 - Anticancer Res. 2013 Dec;33(12):5415-20
26103003 - Exp Mol Pathol. 2015 Aug;99(1):173-9
28000044 - Mol Cell Biochem. 2017 Mar;427(1-2):187-199
27074041 - Urol Int. 2017;98(1):102-110
15534099 - Clin Cancer Res. 2004 Nov 1;10(21):7252-9
27398145 - Am J Transl Res. 2016 Jun 15;8(6):2620-30
References_xml – volume: 432
  start-page: 231
  issue: 7014
  year: 2004
  ident: 895_CR2
  publication-title: Nature
  doi: 10.1038/nature03049
– volume: 33
  start-page: 5415
  issue: 12
  year: 2013
  ident: 895_CR31
  publication-title: Anticancer Res
– ident: 895_CR21
  doi: 10.1139/bcb-2017-0015
– volume: 427
  start-page: 187
  issue: 1–2
  year: 2017
  ident: 895_CR36
  publication-title: Mol Cell Biochem
  doi: 10.1007/s11010-016-2910-z
– volume: 16
  start-page: 224
  issue: 1
  year: 2017
  ident: 895_CR30
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2017.6560
– ident: 895_CR33
  doi: 10.1177/1010428317691674
– volume: 407
  start-page: 9
  year: 2017
  ident: 895_CR17
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2017.08.011
– volume: 32
  start-page: 296
  issue: 3
  year: 2013
  ident: 895_CR18
  publication-title: Oncogene
  doi: 10.1038/onc.2012.58
– volume: 154
  start-page: R81
  issue: 4
  year: 2017
  ident: 895_CR12
  publication-title: Reproduction
  doi: 10.1530/REP-17-0322
– volume: 67
  start-page: 7
  issue: 1
  year: 2017
  ident: 895_CR7
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21387
– volume: 17
  start-page: 5013
  issue: 4
  year: 2018
  ident: 895_CR20
  publication-title: Mol Med Rep
– volume: 41
  start-page: 1179
  issue: 3
  year: 2017
  ident: 895_CR22
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000464379
– volume: 12
  start-page: 66
  year: 2014
  ident: 895_CR13
  publication-title: J Transl Med
  doi: 10.1186/1479-5876-12-66
– volume: 69
  start-page: 9490
  issue: 24
  year: 2009
  ident: 895_CR11
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-2183
– volume: 9
  start-page: 301
  issue: 3
  year: 2018
  ident: 895_CR43
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-018-0293-7
– volume: 10
  start-page: 7252
  issue: 21
  year: 2004
  ident: 895_CR23
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-04-0713
– volume: 73
  start-page: 2531
  issue: 13
  year: 2016
  ident: 895_CR9
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-016-2176-3
– volume: 17
  start-page: 18
  issue: 1
  year: 2017
  ident: 895_CR16
  publication-title: BMC Urol
  doi: 10.1186/s12894-017-0206-6
– volume: 11
  start-page: 441
  issue: 4
  year: 2006
  ident: 895_CR4
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2006.09.009
– volume: 114
  start-page: 4942
  issue: 19
  year: 2017
  ident: 895_CR40
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1619170114
– volume: 6
  start-page: 857
  issue: 11
  year: 2006
  ident: 895_CR3
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1997
– volume: 5
  start-page: 3
  issue: 1
  year: 2018
  ident: 895_CR10
  publication-title: Asian J Urol
  doi: 10.1016/j.ajur.2017.11.004
– volume: 10
  start-page: e0140451
  issue: 10
  year: 2015
  ident: 895_CR29
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0140451
– ident: 895_CR37
  doi: 10.1158/1541-7786.MCR-17-0655
– volume: 75
  start-page: 3077
  issue: 15
  year: 2015
  ident: 895_CR19
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-3380
– volume: 77
  start-page: 982
  issue: 4
  year: 2017
  ident: 895_CR41
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-16-1589
– ident: 895_CR35
  doi: 10.1111/imb.12375
– volume: 15
  start-page: 41
  issue: 1
  year: 2016
  ident: 895_CR14
  publication-title: Mol Cancer
  doi: 10.1186/s12943-016-0523-5
– volume: 14
  start-page: 1904
  issue: 9
  year: 1995
  ident: 895_CR42
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1995.tb07182.x
– volume: 100
  start-page: 71
  issue: 2
  year: 2008
  ident: 895_CR5
  publication-title: Biol Cell
  doi: 10.1042/BC20070078
– volume: 11
  start-page: 1275
  issue: 11
  year: 2009
  ident: 895_CR25
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1109-1275
– volume: 12
  start-page: 8947
  issue: 12
  year: 2011
  ident: 895_CR24
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms12128947
– volume: 8
  start-page: 2620
  issue: 6
  year: 2016
  ident: 895_CR28
  publication-title: Am J Transl Res
– volume: 19
  start-page: 1038
  issue: 6
  year: 2012
  ident: 895_CR34
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2011.190
– volume: 30
  start-page: 591
  issue: 4
  year: 2016
  ident: 895_CR39
  publication-title: J Diabetes Complicat
  doi: 10.1016/j.jdiacomp.2016.02.008
– ident: 895_CR38
  doi: 10.1096/fj.201701237RR
– volume: 136
  start-page: 586
  issue: 4
  year: 2009
  ident: 895_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.005
– volume: 384
  start-page: 2027
  issue: 9959
  year: 2014
  ident: 895_CR8
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)60525-0
– volume: 70
  start-page: 312
  issue: 2
  year: 2016
  ident: 895_CR15
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2015.12.054
– volume: 23
  start-page: 175
  year: 2007
  ident: 895_CR26
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev.cellbio.23.090506.123406
– volume: 98
  start-page: 102
  issue: 1
  year: 2017
  ident: 895_CR27
  publication-title: Urol Int
  doi: 10.1159/000445252
– volume: 5
  start-page: 522
  issue: 7
  year: 2004
  ident: 895_CR1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1379
– volume: 99
  start-page: 173
  issue: 1
  year: 2015
  ident: 895_CR32
  publication-title: Exp Mol Pathol
  doi: 10.1016/j.yexmp.2015.06.014
– reference: 29453320 - Mol Cancer Res. 2018 Apr;16(4):696-706
– reference: 7743997 - EMBO J. 1995 May 1;14(9):1904-13
– reference: 29467540 - Cell Death Dis. 2018 Feb 21;9(3):301
– reference: 28351331 - Tumour Biol. 2017 Mar;39(3):1010428317691674
– reference: 28878093 - Reproduction. 2017 Oct;154(4):R81-R97
– reference: 28763625 - Biochem Cell Biol. 2018 Jun;96(3):355-364
– reference: 26806656 - Eur Urol. 2016 Aug;70(2):312-22
– reference: 15531879 - Nature. 2004 Nov 11;432(7014):231-5
– reference: 28000044 - Mol Cell Biochem. 2017 Mar;427(1-2):187-199
– reference: 27923835 - Cancer Res. 2017 Feb 15;77(4):982-995
– reference: 27074041 - Urol Int. 2017;98(1):102-110
– reference: 28439018 - Proc Natl Acad Sci U S A. 2017 May 9;114(19):4942-4947
– reference: 17011485 - Dev Cell. 2006 Oct;11(4):441-50
– reference: 26936307 - J Diabetes Complications. 2016 May-Jun;30(4):591-6
– reference: 29379727 - Asian J Urol. 2018 Jan;5(1):3-7
– reference: 18199046 - Biol Cell. 2008 Feb;100(2):71-81
– reference: 28498444 - Mol Med Rep. 2017 Jul;16(1):224-230
– reference: 22193543 - Cell Death Differ. 2012 Jun;19(6):1038-48
– reference: 28268231 - Cell Physiol Biochem. 2017;41(3):1179-1188
– reference: 17060945 - Nat Rev Cancer. 2006 Nov;6(11):857-66
– reference: 29466052 - FASEB J. 2018 Jul;32(7):3957-3967
– reference: 19996289 - Cancer Res. 2009 Dec 15;69(24):9490-7
– reference: 28055103 - CA Cancer J Clin. 2017 Jan;67(1):7-30
– reference: 15534099 - Clin Cancer Res. 2004 Nov 1;10(21):7252-9
– reference: 26488471 - PLoS One. 2015 Oct 21;10(10):e0140451
– reference: 26103003 - Exp Mol Pathol. 2015 Aug;99(1):173-9
– reference: 24618011 - J Transl Med. 2014 Mar 11;12:66
– reference: 17506695 - Annu Rev Cell Dev Biol. 2007;23:175-205
– reference: 28823964 - Cancer Lett. 2017 Oct 28;407:9-20
– reference: 27398145 - Am J Transl Res. 2016 Jun 15;8(6):2620-30
– reference: 29393467 - Mol Med Rep. 2018 Apr;17(4):5013-5020
– reference: 19239879 - Cell. 2009 Feb 20;136(4):586-91
– reference: 29424082 - Insect Mol Biol. 2018 Jun;27(3):352-364
– reference: 15211354 - Nat Rev Genet. 2004 Jul;5(7):522-31
– reference: 26071255 - Cancer Res. 2015 Aug 1;75(15):3077-86
– reference: 25108889 - Lancet. 2014 Dec 6;384(9959):2027-35
– reference: 22272113 - Int J Mol Sci. 2011;12(12):8947-60
– reference: 19884882 - Nat Cell Biol. 2009 Nov;11(11):1275-6
– reference: 24324077 - Anticancer Res. 2013 Dec;33(12):5415-20
– reference: 22370643 - Oncogene. 2013 Jan 17;32(3):296-306
– reference: 26970978 - Cell Mol Life Sci. 2016 Jul;73(13):2531-42
– reference: 28320379 - BMC Urol. 2017 Mar 20;17(1):18
– reference: 27189160 - Mol Cancer. 2016 May 18;15(1):41
SSID ssj0061919
Score 2.4545648
Snippet Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However,...
Background Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers....
Abstract Background Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 219
SubjectTerms Apoptosis
Cell growth
Diagnosis
Gene expression
Kinases
MicroRNA
Patient outcomes
Proliferation
Prostate cancer
Target gene
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA-yB_FF_LY6NYIgCGXJbZImj1N2GYoissHeQpqkc7D1lt72wf31npP2llsEffGtNKfQnq-cX3PyCyHvFA-FCFLlqlYOAIovc-N0lTsWuNY-6KJOXb7f1Om5-HwhL_aO-sKesJEeeFTckVBFZLFYhaCVqJlyvjS85iKYMvogEnspzHk7MDXmYEAF3ExrmFyroy3HBUCAzcjGbGR-u5iFEln_nyl5b05a9kvuTUDrB-T-VDnS4_GNH5I7sXlE7n6d1sYfkw4sTtuhT0zetB8A03d0O7Sp03XT0ZurHwDkipbebAKe2RW3tMUtH3BFPdq-o_gXn7rLBMGnLEirX7SbumWbS3qyWkvqmkC_r8--8CfkfH1y9uk0n05UyL00vM-l91Dx-IoZFnmAakAELYIKoErmvINiCOnMJK-r0hccrFcW0TEvA2NORxh8Sg6aTROfE4rAOlYVVDOIacAuzgceWTC61sI4kxG207D1E904nnpxbRPs0MqORrFgFItGsbcZ-TA_0o5cG38T_ohmmwWRJjvdAOexk_PYfzlPRt6g0e2453QOdnssZVkWUgiWkfdJAsMdXt-7adcCKAGJsxaShwtJCFO_HN45lp3SxNYC3gaEAyC9zMjbeRifxNa3Jm6GJMMKyMqFysiz0Q_nj4bsrHHzdUbKhYcutLIcaa5-JhJxrGy1Mi_-hxpfknurFFsmZ_KQHPTdEF9BrdZXr1NY_gY1bDr1
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA5aQXwRf7u1agRBEJYmt5ts8iRVehRFEWnh3kI2yV4Ldnfdu3to_3pncrm1i9C34zILSWYymS-ZfEPIe8l9UXohc9lICwDFVbm2qs4t81wp51XRxCzfH_LkrPy6EIt04LZKaZU7nxgdte8cnpEfAjSBYBDwTPWp_5Nj1Si8XU0lNO6Se0hdhlZdLUbABdggFvaAHVLmGNenW02u5OGK45UgAGnkZ9Yiv57sS5G-_38nfWOXmmZQ3tiS5o_IwxRL0qOt8h-TO6F9Qu5_T7flT8kANkD7zTpye9P1BlD-QFebPua-dgO9vPgF0K7o6WXnsYpXWNEeH4HAL-rQGgaK5_rULiMoT36R1ld0SPmz7ZIez-aC2tbTn_PTb_wZOZsfn345yVONhdwJzde5cA5iIFczzQL3EB-UXpVe-io4Zp2F8AgJzgRv6soVHPRZFcEyJzxjVgVofE722q4NLwlFqB3qGuIbRDlMWus8D8xr1ahSW50Rtpth4xIBOdbB-G0iEFHSbJViQCkGlWKuM_Jx_KTfsm_cJvwZ1TYKInF2_KMbliatQ1PKIrBQzLxXsmygk67SvIFRaxixL0VG3qLSzfYV6rj8zZEQVVWIsmQZ-RAl0AFA951N7xhgEpBKayJ5MJGEheumzTvDMslxrMw_M8_Iu7EZv8RkuDZ0myjDCvDThczIi60djoMGf63wOXZGqomFTmZl2tJenEdacYx1ldT7t3frFXkwi6tG50wckL31sAmvIS5b12_i4vsLnxc0Pg
  priority: 102
  providerName: ProQuest
Title The putative tumour suppressor miR-1-3p modulates prostate cancer cell aggressiveness by repressing E2F5 and PFTK1
URI https://www.ncbi.nlm.nih.gov/pubmed/30185212
https://www.proquest.com/docview/2108828257
https://www.proquest.com/docview/2100330536
https://pubmed.ncbi.nlm.nih.gov/PMC6125869
https://doaj.org/article/463e0e32dd864f06ac791f14d97ecd45
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9swEBd9wNiXsffcdpkGg8HAmxzr-WGMZiSUjZYSGgj7ImRJzgqtkzkJrP3rd1IcU7OyfTHBOgfrXrqfdbpD6B3PXE4d4ykvuQGAYkWqjCxSQ1wmpXUyL2OW7xk_mdBvUzbdQdv2Vg0Dl_dCu9BPalJfffz96-YLGPznaPCSf1pmYXsPQHGotaxYeruL9mFhEqGhwSltNxUAKsQ-HwRCghQwoWw2Oe_9i84yFav5_-2z7yxa3YTKOyvU6DF61ISW-HijC0_Qjq-eogenzeb5M1SDSuDFehVLfePVGkB_jZfrRUyFndf4-nIMSC9f4Ou5C029_BIvwpkQ-IVtUI4ah8_82MwiRm_cJC5ucN2k01YzPOyPGDaVw-eji-_ZczQZDS--nqRNy4XUMpWtUmYthES2IIr4zEG4QJ2kjjvhLTHWQLQU6p2xrCyEzTMQr8i9IZY5Qoz0MPgC7VXzyr9COCBvXxQQ7gTQQ7gx1mWeOCVLSZVRCSJbDmvb1CMPbTGudMQlkuuNUDQIRQeh6NsEfWgfWWyKcfyLeBDE1hKGOtrxxrye6cYsNeW5Jz7vOyc5LeElrVBZCbNWMGNHWYLeBKHrzaHU1hvoY8aEyBmlJEHvI0XQUHh9a5pjDcCEUFmrQ3nUoQQ7tt3hrWLprRloAOQAgQDFiwS9bYfDkyE3rvLzdaQhObjtnCfo5UYP20mD-5bhdHaCREdDO1zpjlSXP2OV8RD6Sq4O_suBQ_SwHw1HpYQdob1VvfavIVJbFT20K6aih_YHw7PzcS9-7-hFm4TrePDjDzMiPRY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGkIAXxH8CgxkJhIQUzWlix3lAaMCqjm4TQp3UN-PYbplEk5C2QtuH4jNy56RhEdLe9hbF58j2ne_uF5_vCHktIhsnlotQzIQGgGLSMNMyDzWzkZTGynjmo3xPxOg0-TLl0y3yZ3MXBsMqNzrRK2pbGvxHvgfQBJxBwDPph-pXiFWj8HR1U0KjEYuxO_8NkG35_vAz8PfNYDA8mHwahW1VgdDwLFqF3Biw-iZnGXORBYuYWJlYYVNnmDYaHAJM6cWjWZ6aOIIZpLHTzHDLmJYOGuG7N8hNMLwMwV467QAeYBFfSAQssggRR7SnqJEUe8sIjyABuGM-6IyHFz076MsF_G8ULlnFfsTmJRM4vEfutr4r3W-E7T7ZcsUDcuu4PZ1_SGqQOVqtVz6XOF2tF9CBLteVj7Uta7o4-wZQMq7oorRYNcwtaYWXTuCJGpS-muI5AtVz_xOg1cM0P6d1G69bzOnBYMipLiz9OpyMo0fk9FpW_zHZLsrCPSUUob3Lc_CnEFUxobWxkWM2kzOZZDoLCNussDJtwnOsu_FTeeAjhWqYooApCpmiLgLyrutSNdk-riL-iGzrCDFRt39R1nPV7nuViNgxFw-slSKZwSBNmkUzmHUGM7YJD8guMl01t147daP2OU_TmCcJC8hbT4EKB4ZvdHtvAhYBU3f1KHd6lKAoTL95I1iqVVRL9W9bBeRV14w9MfiucOXa07AY7EIsAvKkkcNu0mAfJF7_Dkjak9DeqvRbirMfPo05-tZSZM-uHtYuuT2aHB-po8OT8XNyZ-B3UBYyvkO2V_XavQCfcJW_9BuRku_XvfP_AnwScPk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+putative+tumour+suppressor+miR-1-3p+modulates+prostate+cancer+cell+aggressiveness+by+repressing+E2F5+and+PFTK1&rft.jtitle=Journal+of+experimental+%26+clinical+cancer+research&rft.au=Tang%2C+Kun&rft.au=Wang%2C+Shao-Gang&rft.au=Li%2C+Sen-Mao&rft.au=Yu%2C+Xiao&rft.date=2018-09-05&rft.pub=BioMed+Central+Ltd&rft.issn=0392-9078&rft.volume=37&rft.issue=1&rft_id=info:doi/10.1186%2Fs13046-018-0895-z&rft.externalDBID=n%2Fa&rft.externalDocID=A557735440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-9966&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-9966&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-9966&client=summon