dynamic pause-unpackaging state, an off-translocation recovery state of a DNA packaging motor from bacteriophage T4

Tailed bacteriophages and herpes viruses use powerful ATP-driven molecular motors to translocate their viral genomes into a preformed capsid shell. The bacteriophage T4 motor, a pentamer of the large terminase protein (gp17) assembled at the portal vertex of the prohead, is the fastest and most powe...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 49; pp. 20000 - 20005
Main Authors Kottadiel, Vishal I, Rao, Venigalla B, Chemla, Yann R
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 04.12.2012
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tailed bacteriophages and herpes viruses use powerful ATP-driven molecular motors to translocate their viral genomes into a preformed capsid shell. The bacteriophage T4 motor, a pentamer of the large terminase protein (gp17) assembled at the portal vertex of the prohead, is the fastest and most powerful known, consistent with the need to package a ∼170-kb viral genome in approximately 5 min. Although much is known about the mechanism of DNA translocation, very little is known about how ATP modulates motor–DNA interactions. Here, we report single-molecule measurements of the phage T4 gp17 motor by using dual-trap optical tweezers under different conditions of perturbation. Unexpectedly, the motor pauses randomly when ATP is limiting, for an average of 1 s, and then resumes translocation. During pausing, DNA is unpackaged, a phenomenon so far observed only in T4, where some of the packaged DNA is slowly released. We propose that the motor pauses whenever it encounters a subunit in the apo state with the DNA bound weakly and incorrectly. Pausing allows the subunit to capture ATP, whereas unpackaging allows scanning of DNA until a correct registry is established. Thus, the “pause-unpackaging” state is an off-translocation recovery state wherein the motor, sometimes by taking a few steps backward, can bypass the impediments encountered along the translocation path. These results lead to a four-state mechanochemical model that provides insights into the mechanisms of translocation of an intricately branched concatemeric viral genome.
AbstractList Tailed bacteriophages and herpes viruses use powerful ATP-driven molecular motors to translocate their viral genomes into a preformed capsid shell. The bacteriophage T4 motor, a pentamer of the large terminase protein (gp17) assembled at the portal vertex of the prohead, is the fastest and most powerful known, consistent with the need to package a ~170-kb viral genome in approximately 5 min. Although much is known about the mechanism of DNA translocation, very little is known about how ATP modulates motor-DNA interactions. Here, we report single-molecule measurements of the phage T4 gp17 motor by using dual-trap optical tweezers under different conditions of perturbation. Unexpectedly, the motor pauses randomly when ATP is limiting, for an average of 1 s, and then resumes translocation. During pausing, DNA is unpackaged, a phenomenon so far observed only in T4, where some of the packaged DNA is slowly released. We propose that the motor pauses whenever it encounters a subunit in the apo state with the DNA bound weakly and incorrectly. Pausing allows the subunit to capture ATP, whereas unpackaging allows scanning of DNA until a correct registry is established. Thus, the "pause-unpackaging" state is an offtranslocation recovery state wherein the motor, sometimes by taking a few steps backward, can bypass the impediments encountered along the translocation path. These results lead to a four-state mechanochemical model that provides insights into the mechanisms of translocation of an intricately branched concatemeric viral genome.
Tailed bacteriophages and herpes viruses use powerful ATP-driven molecular motors to translocate their viral genomes into a preformed capsid shell. The bacteriophage T4 motor, a pentamer of the large terminase protein (gp17) assembled at the portal vertex of the prohead, is the fastest and most powerful known, consistent with the need to package a ~170-kb viral genome in approximately 5 min. Although much is known about the mechanism of DNA translocation, very little is known about how ATP modulates motor-DNA interactions. Here, we report single-molecule measurements of the phage T4 gp17 motor by using dual-trap optical tweezers under different conditions of perturbation. Unexpectedly, the motor pauses randomly when ATP is limiting, for an average of 1 s, and then resumes translocation. During pausing, DNA is unpackaged, a phenomenon so far observed only in T4, where some of the packaged DNA is slowly released. We propose that the motor pauses whenever it encounters a subunit in the apo state with the DNA bound weakly and incorrectly. Pausing allows the subunit to capture ATP, whereas unpackaging allows scanning of DNA until a correct registry is established. Thus, the "pause-unpackaging" state is an off-translocation recovery state wherein the motor, sometimes by taking a few steps backward, can bypass the impediments encountered along the translocation path. These results lead to a four-state mechanochemical model that provides insights into the mechanisms of translocation of an intricately branched concatemeric viral genome. [PUBLICATION ABSTRACT]
Tailed bacteriophages and herpes viruses use powerful ATP-driven molecular motors to translocate their viral genomes into a preformed capsid shell. The bacteriophage T4 motor, a pentamer of the large terminase protein (gp17) assembled at the portal vertex of the prohead, is the fastest and most powerful known, consistent with the need to package a ∼170-kb viral genome in approximately 5 min. Although much is known about the mechanism of DNA translocation, very little is known about how ATP modulates motor–DNA interactions. Here, we report single-molecule measurements of the phage T4 gp17 motor by using dual-trap optical tweezers under different conditions of perturbation. Unexpectedly, the motor pauses randomly when ATP is limiting, for an average of 1 s, and then resumes translocation. During pausing, DNA is unpackaged, a phenomenon so far observed only in T4, where some of the packaged DNA is slowly released. We propose that the motor pauses whenever it encounters a subunit in the apo state with the DNA bound weakly and incorrectly. Pausing allows the subunit to capture ATP, whereas unpackaging allows scanning of DNA until a correct registry is established. Thus, the “pause-unpackaging” state is an off-translocation recovery state wherein the motor, sometimes by taking a few steps backward, can bypass the impediments encountered along the translocation path. These results lead to a four-state mechanochemical model that provides insights into the mechanisms of translocation of an intricately branched concatemeric viral genome.
Tailed bacteriophages and herpes viruses use powerful ATP-driven molecular motors to translocate their viral genomes into a preformed capsid shell. The bacteriophage T4 motor, a pentamer of the large terminase protein (gp17) assembled at the portal vertex of the prohead, is the fastest and most powerful known, consistent with the need to package a ~170-kb viral genome in approximately 5 min. Although much is known about the mechanism of DNA translocation, very little is known about how ATP modulates motor-DNA interactions. Here, we report single-molecule measurements of the phage T4 gp17 motor by using dual-trap optical tweezers under different conditions of perturbation. Unexpectedly, the motor pauses randomly when ATP is limiting, for an average of 1 s, and then resumes translocation. During pausing, DNA is unpackaged, a phenomenon so far observed only in T4, where some of the packaged DNA is slowly released. We propose that the motor pauses whenever it encounters a subunit in the apo state with the DNA bound weakly and incorrectly. Pausing allows the subunit to capture ATP, whereas unpackaging allows scanning of DNA until a correct registry is established. Thus, the "pause-unpackaging" state is an off-translocation recovery state wherein the motor, sometimes by taking a few steps backward, can bypass the impediments encountered along the translocation path. These results lead to a four-state mechanochemical model that provides insights into the mechanisms of translocation of an intricately branched concatemeric viral genome.
Tailed bacteriophages and herpes viruses use powerful ATP-driven molecular motors to translocate their viral genomes into a preformed capsid shell. The bacteriophage T4 motor, a pentamer of the large terminase protein (gp17) assembled at the portal vertex of the prohead, is the fastest and most powerful known, consistent with the need to package a ~170-kb viral genome in approximately 5 min. Although much is known about the mechanism of DNA translocation, very little is known about how ATP modulates motor-DNA interactions. Here, we report single-molecule measurements of the phage T4 gp17 motor by using dual-trap optical tweezers under different conditions of perturbation. Unexpectedly, the motor pauses randomly when ATP is limiting, for an average of 1 s, and then resumes translocation. During pausing, DNA is unpackaged, a phenomenon so far observed only in T4, where some of the packaged DNA is slowly released. We propose that the motor pauses whenever it encounters a subunit in the apo state with the DNA bound weakly and incorrectly. Pausing allows the subunit to capture ATP, whereas unpackaging allows scanning of DNA until a correct registry is established. Thus, the "pause-unpackaging" state is an off-translocation recovery state wherein the motor, sometimes by taking a few steps backward, can bypass the impediments encountered along the translocation path. These results lead to a four-state mechanochemical model that provides insights into the mechanisms of translocation of an intricately branched concatemeric viral genome.Tailed bacteriophages and herpes viruses use powerful ATP-driven molecular motors to translocate their viral genomes into a preformed capsid shell. The bacteriophage T4 motor, a pentamer of the large terminase protein (gp17) assembled at the portal vertex of the prohead, is the fastest and most powerful known, consistent with the need to package a ~170-kb viral genome in approximately 5 min. Although much is known about the mechanism of DNA translocation, very little is known about how ATP modulates motor-DNA interactions. Here, we report single-molecule measurements of the phage T4 gp17 motor by using dual-trap optical tweezers under different conditions of perturbation. Unexpectedly, the motor pauses randomly when ATP is limiting, for an average of 1 s, and then resumes translocation. During pausing, DNA is unpackaged, a phenomenon so far observed only in T4, where some of the packaged DNA is slowly released. We propose that the motor pauses whenever it encounters a subunit in the apo state with the DNA bound weakly and incorrectly. Pausing allows the subunit to capture ATP, whereas unpackaging allows scanning of DNA until a correct registry is established. Thus, the "pause-unpackaging" state is an off-translocation recovery state wherein the motor, sometimes by taking a few steps backward, can bypass the impediments encountered along the translocation path. These results lead to a four-state mechanochemical model that provides insights into the mechanisms of translocation of an intricately branched concatemeric viral genome.
Author Rao, Venigalla B
Kottadiel, Vishal I
Chemla, Yann R
Author_xml – sequence: 1
  fullname: Kottadiel, Vishal I
– sequence: 2
  fullname: Rao, Venigalla B
– sequence: 3
  fullname: Chemla, Yann R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23169641$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxSNURLeFMyfAEhcOpPVnYl-QqvIpVXBgOVsTr7P1ktjBTirtf4-32XahEkKy7MP7zdM8z5wURz54WxTPCT4juGbng4d0RihWlHCC1aNikW9SVlzho2KBMa1LySk_Lk5S2mCMlZD4SXFMGalUxcmiSKuth94ZNMCUbDn5AcxPWDu_RmmE0b5F4FFo23KM4FMXDIwueBStCTc2bmcoAwjQ-68X6FDdhzFE1MbQowbMaKMLwzWsLVryp8XjFrpkn-3f02L58cPy8nN59e3Tl8uLq9IIRcaSWiugMTkQa8yqhhqUWNGqrZqmlW1lGgDZKEYak2OSWilVS45rQdp8amCnxbvZdpia3q6M9TlDp4foeohbHcDpvxXvrvU63GgmKJM1zgZv9gYx_JpsGnXvkrFdB96GKWkiMcOyrkT1f5RSxqnKs8no6wfoJkzR54-4pSSTktSZevln8_dd300uA2IGTAwpRdtq48bb4eQsrtME692G6N2G6MOG5LrzB3V31v-uQPtWdsKBVporTfNS7X7qxYxsUp76PcOJZJgLkfVXs95C0LCOLukf3ykmFcaEYYEr9hsWm9ve
CitedBy_id crossref_primary_10_1261_rna_057471_116
crossref_primary_10_1021_cm401999f
crossref_primary_10_1007_s12551_017_0336_9
crossref_primary_10_1016_j_coviro_2022_101255
crossref_primary_10_1016_j_jmb_2013_10_011
crossref_primary_10_1126_science_1256359
crossref_primary_10_1016_j_virol_2014_08_033
crossref_primary_10_3390_v7030899
crossref_primary_10_1038_s41467_018_07834_2
crossref_primary_10_3390_v15020527
crossref_primary_10_1016_j_bpj_2014_03_029
crossref_primary_10_1002_EXP_20210056
crossref_primary_10_1016_j_bpj_2014_11_3469
crossref_primary_10_1038_s41467_021_26800_z
crossref_primary_10_1142_S1793048013500069
crossref_primary_10_1093_nar_gkx809
crossref_primary_10_1007_s40042_020_00030_w
crossref_primary_10_1016_j_biotechadv_2014_01_006
crossref_primary_10_1063_1_5110428
crossref_primary_10_1038_ncomms5173
crossref_primary_10_1103_PhysRevE_87_032721
crossref_primary_10_1093_nar_gkaa875
crossref_primary_10_1002_wnan_1517
crossref_primary_10_1016_j_isci_2023_106922
crossref_primary_10_1093_nar_gky1217
crossref_primary_10_1063_5_0145382
crossref_primary_10_1146_annurev_virology_100114_055212
crossref_primary_10_1073_pnas_1407235111
crossref_primary_10_1016_j_bpj_2020_03_030
crossref_primary_10_1128_MMBR_00056_15
crossref_primary_10_1021_acs_macromol_1c00857
Cites_doi 10.1128/JVI.07197-11
10.1186/1743-422X-7-358
10.1038/35099581
10.1073/pnas.0704008104
10.1016/j.cell.2005.06.024
10.1128/jvi.28.2.643-655.1978
10.1016/j.cell.2008.11.015
10.1016/S0022-2836(03)00636-3
10.1146/annurev.biophys.35.040405.101933
10.1016/j.jmb.2005.01.016
10.1093/nar/gkf524
10.1006/jmbi.1998.2399
10.1073/pnas.75.10.4779
10.1038/nature08443
10.1016/j.jmb.2007.12.041
10.1016/j.jmb.2007.09.011
10.1529/biophysj.104.047134
10.1146/annurev.genet.42.110807.091545
10.1016/j.molcel.2007.02.013
10.1073/pnas.1110224109
10.1016/j.jmb.2008.05.074
10.1006/jmbi.2001.5169
10.1038/35047129
10.1074/jbc.M403647200
10.1074/jbc.M111.222828
10.1074/jbc.M109.025007
10.1038/sj.emboj.7601643
10.1074/jbc.M603314200
10.1038/nature07637
10.1016/j.jmb.2006.08.054
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Dec 4, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Dec 4, 2012
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1209214109
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Virology and AIDS Abstracts

MEDLINE

CrossRef
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Pause-unpackaging state of phage T4 motor
EISSN 1091-6490
EndPage 20005
ExternalDocumentID PMC3523870
2836337281
23169641
10_1073_pnas_1209214109
109_49_20000
41830455
US201600130506
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI011676
– fundername: NIAID NIH HHS
  grantid: R01AI081726
– fundername: NIAID NIH HHS
  grantid: R56 AI081726
– fundername: NIAID NIH HHS
  grantid: R01 AI081726
– fundername: NIAID NIH HHS
  grantid: R01 AI011219
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c591t-2ee5abc1093bcd7a7a95d26f6bbf8f6cbaa8b931bc027179997840751f51f7a3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:34:42 EDT 2025
Thu Jul 10 18:29:40 EDT 2025
Fri Jul 11 02:08:15 EDT 2025
Mon Jun 30 08:42:53 EDT 2025
Mon Jul 21 05:45:14 EDT 2025
Tue Jul 01 03:39:31 EDT 2025
Thu Apr 24 23:04:52 EDT 2025
Wed Nov 11 00:30:04 EST 2020
Thu May 29 08:40:43 EDT 2025
Thu Apr 03 09:43:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c591t-2ee5abc1093bcd7a7a95d26f6bbf8f6cbaa8b931bc027179997840751f51f7a3
Notes http://dx.doi.org/10.1073/pnas.1209214109
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: V.I.K., V.B.R., and Y.R.C. designed research; V.I.K. performed research; V.B.R. and Y.R.C. contributed new reagents/analytic tools; V.I.K., V.B.R., and Y.R.C. analyzed data; and V.I.K., V.B.R., and Y.R.C. wrote the paper.
Edited* by Michael G. Rossmann, Purdue University, West Lafayette, IN, and approved October 19, 2012 (received for review May 30, 2012)
OpenAccessLink https://www.pnas.org/content/pnas/109/49/20000.full.pdf
PMID 23169641
PQID 1223838817
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_109_49_20000
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3523870
crossref_primary_10_1073_pnas_1209214109
jstor_primary_41830455
proquest_miscellaneous_1803087656
crossref_citationtrail_10_1073_pnas_1209214109
pubmed_primary_23169641
fao_agris_US201600130506
proquest_miscellaneous_1223429091
proquest_journals_1223838817
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-04
PublicationDateYYYYMMDD 2012-12-04
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Bustamante C (e_1_3_3_21_2) 2007
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
Mosig G (e_1_3_3_27_2) 1994
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
References_xml – ident: e_1_3_3_8_2
  doi: 10.1128/JVI.07197-11
– ident: e_1_3_3_31_2
  doi: 10.1186/1743-422X-7-358
– ident: e_1_3_3_3_2
  doi: 10.1038/35099581
– ident: e_1_3_3_4_2
  doi: 10.1073/pnas.0704008104
– ident: e_1_3_3_18_2
  doi: 10.1016/j.cell.2005.06.024
– ident: e_1_3_3_29_2
  doi: 10.1128/jvi.28.2.643-655.1978
– ident: e_1_3_3_6_2
  doi: 10.1016/j.cell.2008.11.015
– ident: e_1_3_3_15_2
  doi: 10.1016/S0022-2836(03)00636-3
– ident: e_1_3_3_7_2
  doi: 10.1146/annurev.biophys.35.040405.101933
– start-page: 297
  volume-title: Single-Molecule Techniques: A Laboratory Manual
  year: 2007
  ident: e_1_3_3_21_2
– ident: e_1_3_3_23_2
  doi: 10.1016/j.jmb.2005.01.016
– start-page: 54
  volume-title: Molecular Biology of Bacteriophage T4
  year: 1994
  ident: e_1_3_3_27_2
– ident: e_1_3_3_14_2
  doi: 10.1093/nar/gkf524
– ident: e_1_3_3_28_2
  doi: 10.1006/jmbi.1998.2399
– ident: e_1_3_3_1_2
  doi: 10.1073/pnas.75.10.4779
– ident: e_1_3_3_25_2
  doi: 10.1038/nature08443
– ident: e_1_3_3_16_2
  doi: 10.1016/j.jmb.2007.12.041
– ident: e_1_3_3_19_2
  doi: 10.1016/j.jmb.2007.09.011
– ident: e_1_3_3_26_2
  doi: 10.1529/biophysj.104.047134
– ident: e_1_3_3_2_2
  doi: 10.1146/annurev.genet.42.110807.091545
– ident: e_1_3_3_13_2
  doi: 10.1016/j.molcel.2007.02.013
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.1110224109
– ident: e_1_3_3_30_2
  doi: 10.1016/j.jmb.2008.05.074
– ident: e_1_3_3_5_2
  doi: 10.1006/jmbi.2001.5169
– ident: e_1_3_3_10_2
  doi: 10.1038/35047129
– ident: e_1_3_3_12_2
  doi: 10.1074/jbc.M403647200
– ident: e_1_3_3_9_2
  doi: 10.1074/jbc.M111.222828
– ident: e_1_3_3_22_2
  doi: 10.1074/jbc.M109.025007
– ident: e_1_3_3_32_2
  doi: 10.1038/sj.emboj.7601643
– ident: e_1_3_3_24_2
  doi: 10.1074/jbc.M603314200
– ident: e_1_3_3_17_2
  doi: 10.1038/nature07637
– ident: e_1_3_3_20_2
  doi: 10.1016/j.jmb.2006.08.054
SSID ssj0009580
Score 2.2640064
Snippet Tailed bacteriophages and herpes viruses use powerful ATP-driven molecular motors to translocate their viral genomes into a preformed capsid shell. The...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20000
SubjectTerms Adenosine triphosphatase
Adenosine triphosphatases
adenosine triphosphate
Adenosine Triphosphate - metabolism
ATP
Bacteriophage T4
Bacteriophage T4 - physiology
Bacteriophages
Biological Sciences
Capsid
Deoxyribonucleic acid
DNA
DNA packaging
DNA Packaging - physiology
genome
Genomes
Herpes viruses
kinesin
Kinetics
Models, Biological
Molecular Dynamics Simulation
Molecular Motor Proteins - metabolism
Molecules
Motors
optical traps
Optical Tweezers
Packaging
Proteins
Translocation
Velocity
Viral genomes
Viral Proteins - metabolism
Virus Assembly - physiology
Title dynamic pause-unpackaging state, an off-translocation recovery state of a DNA packaging motor from bacteriophage T4
URI https://www.jstor.org/stable/41830455
http://www.pnas.org/content/109/49/20000.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23169641
https://www.proquest.com/docview/1223838817
https://www.proquest.com/docview/1223429091
https://www.proquest.com/docview/1803087656
https://pubmed.ncbi.nlm.nih.gov/PMC3523870
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAsMJCReBgqGU1iJ_ZjxYcmENUE3TSeIjtNtokqqdb0Af4i_kzu7CROt24CpCpq07OT-q6-j9z9jpBXcc6DIo-0L0JZ-CxUykc72WdC8xmPs0wqjEN-mcSHx-zTKT8dDH73spZWtT7Ifm2sK_kfrsI54CtWyf4DZ7tJ4QS8B_7CETgMx7_i8cy2kx8u1GqZ-6sS_N8ftuuQRaQwmZmIEuHXqJJQbxl2oxcMP_anJbMlku8n46EbDwysLm3tibZ4ztXiHNN7pqxvzh516m_ZJhtM2uji2NWqNBvIcugPjyau8_Hnqq4x48xEoU-wDfTcBXG_KhPEPcnLC0wOUK49NGIczI3N-12VZZPx2AQuAtNDZeQCl7fdTn_HDkGLMltn3e3YI9kTTQt52m7AqIB72hw_842qAvY27G9cquUB1g-HmPAqnVbschWPv4WIwodPeDliu98NwSGJ2rhQB-8sbLFTc7ctiFQSvb1yhTX7506hqjYRFtF1gXSTp3M1YbdnAU0fkPuN60LHVg63ySAvH5LtdjHpfoNg_voRWTaCSa8JJjUS94aqkl4TS9qKpSUCAqooiCV1o41YUhRLuiaWdMoek-nHD9N3h37T3cPPuAxqP8xzrnSGcGY6myUqUZLPwriItS5EEWdaKaFlFOgMFhVxC2UiGBi4QQGvREU7ZKusynyXUB1lBc-YSsDUZ2ykwOTWTIQCnJtAwFQeOWiXPM0a5HtswDJPTQZGEqW48KnjkUf2uwELC_pyM-ku8DBVZ6CS03VR8ciOYWw3BQP1CR4U94hnZnFTy5TJ1IiuR_Za9qfNToOXA8M6EiJIPPKy-xr0AD7cU2VerSwN2JZg_t9CIwwAKLhwHnliJaq7CfDzYhkzGJ2syVpHgDj069-UF-cGjx58uAjU_tObl-IZued2gD2yVV-u8udgzNf6hfkf_QGmMvHI
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=dynamic+pause-unpackaging+state%2C+an+off-translocation+recovery+state+of+a+DNA+packaging+motor+from+bacteriophage+T4&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kottadiel%2C+Vishal+I&rft.au=Rao%2C+Venigalla+B&rft.au=Chemla%2C+Yann+R&rft.date=2012-12-04&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=109&rft.issue=49&rft.spage=20000&rft.epage=20005&rft_id=info:doi/10.1073%2Fpnas.1209214109&rft.externalDocID=US201600130506
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F49.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F49.cover.gif