ERRs Mediate a Metabolic Switch Required for Somatic Cell Reprogramming to Pluripotency

Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. Although glycolysis increases throughout the reprogramming process, we show that the estrogen-related nuclear receptors (ERRα and ERR...

Full description

Saved in:
Bibliographic Details
Published inCell stem cell Vol. 16; no. 5; pp. 547 - 555
Main Authors Kida, Yasuyuki S., Kawamura, Teruhisa, Wei, Zong, Sogo, Takahiro, Jacinto, Sandra, Shigeno, Asako, Kushige, Hiroko, Yoshihara, Eiji, Liddle, Christopher, Ecker, Joseph R., Yu, Ruth T., Atkins, Annette R., Downes, Michael, Evans, Ronald M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. Although glycolysis increases throughout the reprogramming process, we show that the estrogen-related nuclear receptors (ERRα and ERRγ) and their partnered co-factors PGC-1α and PGC-1β are transiently induced at an early stage, resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Upregulation of ERRα or ERRγ is required for the OXPHOS burst in both human and mouse cells, respectively, as well as iPSC generation itself. Failure to induce this metabolic switch collapses the reprogramming process. Furthermore, we identify a rare pool of Sca1−/CD34− sortable cells that is highly enriched in bona fide reprogramming progenitors. Transcriptional profiling confirmed that these progenitors are ERRγ and PGC-1β positive and have undergone extensive metabolic reprogramming. These studies characterize a previously unrecognized, ERR-dependent metabolic gate prior to establishment of induced pluripotency. [Display omitted] •ERRα/γ are transiently induced during iPSC reprogramming•An ERR-mediated OXPHOS burst is essential for somatic cell reprogramming•ERRγ and PGC-1β are selectively expressed in a Sca1−/CD34− progenitor pool•Early reprogramming Sca1−/CD34− cells have enhanced reprogramming efficiency Kida et al. show that upregulation of ERRα or ERRγ is required for a metabolic switch involving OXPHOS that is essential for iPSC generation and that early upregulation of ERRs marks cells that are destined to go on to be reprogrammed.
AbstractList Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. Although glycolysis increases throughout the reprogramming process, we show that the estrogen-related nuclear receptors (ERRα and ERRγ) and their partnered co-factors PGC-1α and PGC-1β are transiently induced at an early stage, resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Upregulation of ERRα or ERRγ is required for the OXPHOS burst in both human and mouse cells, respectively, as well as iPSC generation itself. Failure to induce this metabolic switch collapses the reprogramming process. Furthermore, we identify a rare pool of Sca1(-)/CD34(-) sortable cells that is highly enriched in bona fide reprogramming progenitors. Transcriptional profiling confirmed that these progenitors are ERRγ and PGC-1β positive and have undergone extensive metabolic reprogramming. These studies characterize a previously unrecognized, ERR-dependent metabolic gate prior to establishment of induced pluripotency.Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. Although glycolysis increases throughout the reprogramming process, we show that the estrogen-related nuclear receptors (ERRα and ERRγ) and their partnered co-factors PGC-1α and PGC-1β are transiently induced at an early stage, resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Upregulation of ERRα or ERRγ is required for the OXPHOS burst in both human and mouse cells, respectively, as well as iPSC generation itself. Failure to induce this metabolic switch collapses the reprogramming process. Furthermore, we identify a rare pool of Sca1(-)/CD34(-) sortable cells that is highly enriched in bona fide reprogramming progenitors. Transcriptional profiling confirmed that these progenitors are ERRγ and PGC-1β positive and have undergone extensive metabolic reprogramming. These studies characterize a previously unrecognized, ERR-dependent metabolic gate prior to establishment of induced pluripotency.
Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. Although glycolysis increases throughout the reprogramming process, we show that the estrogen-related nuclear receptors (ERRα and ERRγ) and their partnered co-factors PGC-1α and PGC-1β are transiently induced at an early stage, resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Upregulation of ERRα or ERRγ is required for the OXPHOS burst in both human and mouse cells, respectively, as well as iPSC generation itself. Failure to induce this metabolic switch collapses the reprogramming process. Furthermore, we identify a rare pool of Sca1−/CD34− sortable cells that is highly enriched in bona fide reprogramming progenitors. Transcriptional profiling confirmed that these progenitors are ERRγ and PGC-1β positive and have undergone extensive metabolic reprogramming. These studies characterize a previously unrecognized, ERR-dependent metabolic gate prior to establishment of induced pluripotency. [Display omitted] •ERRα/γ are transiently induced during iPSC reprogramming•An ERR-mediated OXPHOS burst is essential for somatic cell reprogramming•ERRγ and PGC-1β are selectively expressed in a Sca1−/CD34− progenitor pool•Early reprogramming Sca1−/CD34− cells have enhanced reprogramming efficiency Kida et al. show that upregulation of ERRα or ERRγ is required for a metabolic switch involving OXPHOS that is essential for iPSC generation and that early upregulation of ERRs marks cells that are destined to go on to be reprogrammed.
Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. Although glycolysis increases throughout the reprogramming process, we show that the estrogen-related nuclear receptors (ERRα and ERRγ) and their partnered co-factors PGC-1α and PGC-1β are transiently induced at an early stage, resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Upregulation of ERRα or ERRγ is required for the OXPHOS burst in both human and mouse cells, respectively, as well as iPSC generation itself. Failure to induce this metabolic switch collapses the reprogramming process. Furthermore, we identify a rare pool of Sca1(-)/CD34(-) sortable cells that is highly enriched in bona fide reprogramming progenitors. Transcriptional profiling confirmed that these progenitors are ERRγ and PGC-1β positive and have undergone extensive metabolic reprogramming. These studies characterize a previously unrecognized, ERR-dependent metabolic gate prior to establishment of induced pluripotency.
Cell metabolism is adaptive to extrinsic demands, however the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. While glycolysis increases throughout the reprogramming process, we show that the estrogen related nuclear receptors (ERRα and γ) and their partnered co-factors PGC-1α and β, are transiently induced at an early stage resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Up-regulation of ERRα or γ is required for both the OXPHOS burst in human and mouse cells, respectively, as well as iPSC generation itself. Failure to induce this metabolic switch collapses the reprogramming process. Furthermore, we identify a rare pool of Sca1 − /CD34 − sortable cells that is highly enriched in bona fide reprogramming progenitors. Transcriptional profiling confirmed that these progenitors are ERRγ and PGC-1β positive and have undergone extensive metabolic reprogramming. These studies characterize a previously unrecognized, ERR-dependent metabolic gate prior to establishment of induced pluripotency.
Author Kawamura, Teruhisa
Downes, Michael
Kushige, Hiroko
Yu, Ruth T.
Evans, Ronald M.
Ecker, Joseph R.
Atkins, Annette R.
Jacinto, Sandra
Liddle, Christopher
Shigeno, Asako
Wei, Zong
Kida, Yasuyuki S.
Yoshihara, Eiji
Sogo, Takahiro
AuthorAffiliation 4 Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto 606-8501, Japan
1 Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
6 Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-4 Higashi, Tsukuba 305-8562, Japan
5 Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
3 Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
2 Genomic Analysis Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
7 Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
AuthorAffiliation_xml – name: 7 Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
– name: 3 Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
– name: 4 Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto 606-8501, Japan
– name: 1 Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
– name: 2 Genomic Analysis Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
– name: 5 Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
– name: 6 Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-4 Higashi, Tsukuba 305-8562, Japan
Author_xml – sequence: 1
  givenname: Yasuyuki S.
  surname: Kida
  fullname: Kida, Yasuyuki S.
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
– sequence: 2
  givenname: Teruhisa
  surname: Kawamura
  fullname: Kawamura, Teruhisa
  organization: Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto 606-8501, Japan
– sequence: 3
  givenname: Zong
  surname: Wei
  fullname: Wei, Zong
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
– sequence: 4
  givenname: Takahiro
  surname: Sogo
  fullname: Sogo, Takahiro
  organization: Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto 606-8501, Japan
– sequence: 5
  givenname: Sandra
  surname: Jacinto
  fullname: Jacinto, Sandra
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
– sequence: 6
  givenname: Asako
  surname: Shigeno
  fullname: Shigeno, Asako
  organization: Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto 606-8501, Japan
– sequence: 7
  givenname: Hiroko
  surname: Kushige
  fullname: Kushige, Hiroko
  organization: Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-4 Higashi, Tsukuba 305-8562, Japan
– sequence: 8
  givenname: Eiji
  surname: Yoshihara
  fullname: Yoshihara, Eiji
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
– sequence: 9
  givenname: Christopher
  surname: Liddle
  fullname: Liddle, Christopher
  organization: Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
– sequence: 10
  givenname: Joseph R.
  surname: Ecker
  fullname: Ecker, Joseph R.
  organization: Genomic Analysis Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
– sequence: 11
  givenname: Ruth T.
  surname: Yu
  fullname: Yu, Ruth T.
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
– sequence: 12
  givenname: Annette R.
  surname: Atkins
  fullname: Atkins, Annette R.
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
– sequence: 13
  givenname: Michael
  surname: Downes
  fullname: Downes, Michael
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
– sequence: 14
  givenname: Ronald M.
  surname: Evans
  fullname: Evans, Ronald M.
  email: evans@salk.edu
  organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25865501$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1r3DAUFCWl-Wj-QA7Bx17sPkmWZUMplCVpCyktm5YchVZ-3mixrY0kJ-TfR-4mIe0hJz14M_NGM4dkb3QjEnJCoaBAq4-bIkQcCgZUFMALAPqGHNBairyRUu6lueFlLhpo9slhCBsAISnId2SfiboSAugBuTpbLkP2A1urI2Y6TVGvXG9Ndnlno7nOlngzWY9t1jmfXbpBx7RbYN-nzda7tdfDYMd1Fl32q5-83bqIo7l_T952ug94_PgekT_nZ78X3_KLn1-_L75c5EY0NOa0Al4Do5zJqtWyTAa7lrOuYp2WjcS2Mii55jXHDlZVRw2VJUPOBOfIOPIj8nmnu51WA7YGx-h1r7beDtrfK6et-ncz2mu1dreqLJkUvEkCHx4FvLuZMEQ12GDS__SIbgqKVrO_lK1I0NOXt56PPKWZAGwHMN6F4LF7hlBQc2Vqo-bK1FyZAq7gL6n-j2RsTCm72a_tX6d-2lExJXxr0atgbEo_tenRRNU6-xr9AQLCsgs
CitedBy_id crossref_primary_10_3892_etm_2019_8209
crossref_primary_10_1074_jbc_RA118_003469
crossref_primary_10_1016_j_stem_2015_11_012
crossref_primary_10_1016_j_semcdb_2021_05_028
crossref_primary_10_1007_s40778_017_0071_y
crossref_primary_10_1016_j_bbrep_2022_101267
crossref_primary_10_3389_fonc_2022_881252
crossref_primary_10_1038_srep42138
crossref_primary_10_1016_j_mce_2015_07_019
crossref_primary_10_3389_fbioe_2021_623886
crossref_primary_10_1016_j_gde_2016_05_004
crossref_primary_10_1038_s41419_025_07460_z
crossref_primary_10_1007_s10522_023_10018_1
crossref_primary_10_1016_j_cmet_2018_08_001
crossref_primary_10_1093_hmg_ddac096
crossref_primary_10_3390_ijms20092254
crossref_primary_10_3390_ijms24054862
crossref_primary_10_1186_s13287_020_01664_0
crossref_primary_10_1016_j_isci_2024_110811
crossref_primary_10_1016_j_exger_2020_110870
crossref_primary_10_1186_s10020_021_00270_x
crossref_primary_10_3389_fcell_2020_00087
crossref_primary_10_18632_oncotarget_25878
crossref_primary_10_1016_j_cell_2016_08_008
crossref_primary_10_4252_wjsc_v10_i11_172
crossref_primary_10_1016_j_gde_2017_06_008
crossref_primary_10_3389_fcell_2021_714370
crossref_primary_10_3389_fnmol_2019_00151
crossref_primary_10_1016_j_celrep_2018_02_061
crossref_primary_10_1038_s41598_018_20057_1
crossref_primary_10_1242_dev_143420
crossref_primary_10_3390_cells9112490
crossref_primary_10_1016_j_stem_2024_04_016
crossref_primary_10_1089_genbio_2022_0001
crossref_primary_10_1053_j_gastro_2022_04_013
crossref_primary_10_3390_biomedicines11061737
crossref_primary_10_3389_fonc_2020_624079
crossref_primary_10_1155_2022_5283388
crossref_primary_10_1007_s12015_024_10681_y
crossref_primary_10_1016_j_stemcr_2020_06_018
crossref_primary_10_1002_jcp_27977
crossref_primary_10_1038_s41598_020_65193_9
crossref_primary_10_1152_physiolgenomics_00103_2016
crossref_primary_10_1371_journal_pone_0246847
crossref_primary_10_1016_j_bbagen_2016_09_008
crossref_primary_10_1074_jbc_REV118_000828
crossref_primary_10_1186_s13046_023_02834_7
crossref_primary_10_1016_j_stemcr_2017_01_026
crossref_primary_10_1111_gtc_12626
crossref_primary_10_1016_j_semcdb_2016_02_010
crossref_primary_10_1186_s12967_024_05041_w
crossref_primary_10_3390_ijms17020253
crossref_primary_10_1007_s40778_017_0073_9
crossref_primary_10_1038_s44161_023_00377_w
crossref_primary_10_3390_epigenomes3030013
crossref_primary_10_1016_j_cmet_2017_04_017
crossref_primary_10_1016_j_isci_2022_103736
crossref_primary_10_1074_jbc_TM117_000832
crossref_primary_10_1016_j_tem_2016_12_005
crossref_primary_10_3389_fcell_2023_1328522
crossref_primary_10_3390_jpm11090905
crossref_primary_10_1016_j_stem_2015_12_003
crossref_primary_10_1016_j_reth_2019_06_003
crossref_primary_10_3390_ijms231810924
crossref_primary_10_1111_febs_15024
crossref_primary_10_1007_s11926_016_0615_7
crossref_primary_10_1016_j_heliyon_2024_e38551
crossref_primary_10_3390_ijms25094796
crossref_primary_10_1002_adhm_202101215
crossref_primary_10_15252_embr_201745432
crossref_primary_10_3390_metabo11030154
crossref_primary_10_1186_s13287_018_0792_6
crossref_primary_10_1242_dev_131110
crossref_primary_10_3390_ijms222010946
crossref_primary_10_1016_j_devcel_2023_08_015
crossref_primary_10_1002_1873_3468_12826
crossref_primary_10_3390_cells10082040
crossref_primary_10_1002_biot_201900052
crossref_primary_10_1007_s12015_021_10239_2
crossref_primary_10_1016_j_gde_2018_06_002
crossref_primary_10_1016_j_stemcr_2018_10_018
crossref_primary_10_18632_aging_103611
crossref_primary_10_1038_s41467_019_13830_x
crossref_primary_10_1186_s13287_021_02578_1
crossref_primary_10_1186_s41232_020_00117_8
crossref_primary_10_1242_dev_199604
crossref_primary_10_1016_j_scib_2022_04_003
crossref_primary_10_1016_j_celrep_2020_107903
crossref_primary_10_1016_j_celrep_2023_112590
crossref_primary_10_1186_s41232_021_00156_9
crossref_primary_10_1371_journal_pgen_1010610
crossref_primary_10_1016_j_stem_2017_08_018
crossref_primary_10_1242_dev_128389
crossref_primary_10_1016_j_celrep_2017_09_060
crossref_primary_10_1016_j_cmet_2018_01_008
crossref_primary_10_1016_j_yexcr_2019_111683
Cites_doi 10.1242/dev.091777
10.1016/j.stem.2012.08.002
10.1016/j.stem.2012.06.008
10.1016/j.cmet.2011.01.019
10.1016/j.cmet.2007.06.007
10.1074/jbc.M212923200
10.1016/j.stem.2013.05.010
10.1016/j.stem.2012.10.005
10.1016/j.cmet.2011.06.011
10.1016/j.stem.2014.02.012
10.1016/j.stem.2012.10.002
10.1038/nmeth.1410
10.1016/j.cell.2012.11.039
10.1016/j.cell.2007.11.019
10.1016/j.cell.2006.06.050
10.1016/j.cell.2008.04.043
10.1016/j.cell.2006.07.024
10.1038/331091a0
10.1038/nature08311
10.1016/j.cmet.2012.06.001
10.1073/pnas.0910172106
10.1002/stem.231
10.1126/science.1226603
10.1126/science.1151526
10.1016/j.cell.2012.08.023
10.1016/j.cmet.2007.03.007
10.1038/cr.2011.177
10.1371/journal.pgen.1002143
10.1016/j.celrep.2012.10.014
10.1038/ncb1827
10.1016/0092-8674(95)90199-X
10.1038/nature12243
10.1016/j.stem.2014.05.002
10.1074/jbc.M803481200
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
2015 Published by Elsevier Inc. 2015
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
– notice: 2015 Published by Elsevier Inc. 2015
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.stem.2015.03.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-9777
EndPage 555
ExternalDocumentID PMC4427539
25865501
10_1016_j_stem_2015_03_001
S1934590915001125
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: U19 DK062434
– fundername: NIDDK NIH HHS
  grantid: R37 DK057978
– fundername: NIDDK NIH HHS
  grantid: DK062434
– fundername: Howard Hughes Medical Institute
– fundername: NIDDK NIH HHS
  grantid: R01 DK057978
– fundername: NHLBI NIH HHS
  grantid: R01 HL105278
– fundername: NIDDK NIH HHS
  grantid: DK063491
– fundername: NIDDK NIH HHS
  grantid: P30 DK063491
– fundername: NICHD NIH HHS
  grantid: HD105278
GroupedDBID ---
--K
0R~
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
WQ6
ZA5
ZBA
5VS
AAIKJ
AAMRU
AAQFI
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c591t-160380213276da74571fd32f62fa797ed6ce73a383ef0b6f1c1742e32533e23e3
IEDL.DBID IXB
ISSN 1934-5909
1875-9777
IngestDate Thu Aug 21 14:15:41 EDT 2025
Fri Jul 11 16:17:43 EDT 2025
Mon Jul 21 05:57:18 EDT 2025
Thu Apr 24 22:52:25 EDT 2025
Tue Jul 01 01:08:26 EDT 2025
Fri Feb 23 02:30:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c591t-160380213276da74571fd32f62fa797ed6ce73a383ef0b6f1c1742e32533e23e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1934590915001125
PMID 25865501
PQID 1680210015
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4427539
proquest_miscellaneous_1680210015
pubmed_primary_25865501
crossref_primary_10_1016_j_stem_2015_03_001
crossref_citationtrail_10_1016_j_stem_2015_03_001
elsevier_sciencedirect_doi_10_1016_j_stem_2015_03_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-07
PublicationDateYYYYMMDD 2015-05-07
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell stem cell
PublicationTitleAlternate Cell Stem Cell
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Narkar, Fan, Downes, Yu, Jonker, Alaynick, Banayo, Karunasiri, Lorca, Evans (bib18) 2011; 13
Dufour, Wilson, Huss, Kelly, Alaynick, Downes, Evans, Blanchette, Giguère (bib5) 2007; 5
Martello, Sugimoto, Diamanti, Joshi, Hannah, Ohtsuka, Göttgens, Niwa, Smith (bib16) 2012; 11
Dufour, Levasseur, Pham, Eichner, Wilson, Charest-Marcotte, Duguay, Poirier-Héon, Cermakian, Giguère (bib6) 2011; 7
Wei, Yang, Zhang, Andrianakos, Hasegawa, Lyu, Chen, Bai, Liu, Pera, Lu (bib29) 2009; 27
Mathieu, Zhou, Xing, Sperber, Ferreccio, Agoston, Kuppusamy, Moon, Ruohola-Baker (bib17) 2014; 14
Panopoulos, Yanes, Ruiz, Kida, Diep, Tautenhahn, Herrerías, Batchelder, Plongthongkum, Lutz (bib20) 2012; 22
Carey, Markoulaki, Beard, Hanna, Jaenisch (bib3) 2010; 7
Festuccia, Osorno, Halbritter, Karwacki-Neisius, Navarro, Colby, Wong, Yates, Tomlinson, Chambers (bib8) 2012; 11
Polo, Anderssen, Walsh, Schwarz, Nefzger, Lim, Borkent, Apostolou, Alaei, Cloutier (bib21) 2012; 151
Buganim, Faddah, Cheng, Itskovich, Markoulaki, Ganz, Klemm, van Oudenaarden, Jaenisch (bib2) 2012; 150
O’Malley, Skylaki, Iwabuchi, Chantzoura, Ruetz, Johnsson, Tomlinson, Linnarsson, Kaji (bib19) 2013; 499
Lu, Thompson (bib14) 2012; 16
Wei, Gao, Kim, Yang, Lyu, An, Wang, Lu (bib30) 2013; 13
Theunissen, Jaenisch (bib28) 2014; 14
Sugii, Kida, Kawamura, Suzuki, Vassena, Yin, Lutz, Berggren, Izpisúa Belmonte, Evans (bib25) 2010; 107
Yu, Vodyanik, Smuga-Otto, Antosiewicz-Bourget, Frane, Tian, Nie, Jonsdottir, Ruotti, Stewart (bib32) 2007; 318
Shyh-Chang, Locasale, Lyssiotis, Zheng, Teo, Ratanasirintrawoot, Zhang, Onder, Unternaehrer, Zhu (bib24) 2013; 339
Folmes, Nelson, Martinez-Fernandez, Arrell, Lindor, Dzeja, Ikeda, Perez-Terzic, Terzic (bib9) 2011; 14
Folmes, Dzeja, Nelson, Terzic (bib10) 2012; 11
Yang, Downes, Yu, Bookout, He, Straume, Mangelsdorf, Evans (bib31) 2006; 126
Takahashi, Yamanaka (bib26) 2006; 126
Feng, Jiang, Kraus, Ng, Heng, Chan, Yaw, Zhang, Loh, Han (bib7) 2009; 11
Takahashi, Tanabe, Ohnuki, Narita, Ichisaka, Tomoda, Yamanaka (bib27) 2007; 131
Zhang, Nuebel, Daley, Koehler, Teitell (bib34) 2012; 11
Hansson, Rafiee, Reiland, Polo, Gehring, Okawa, Huber, Hochedlinger, Krijgsveld (bib12) 2012; 2
Chen, Xu, Yuan, Fang, Huss, Vega, Wong, Orlov, Zhang, Jiang (bib4) 2008; 133
Alaynick, Kondo, Xie, He, Dufour, Downes, Jonker, Giles, Naviaux, Giguère, Evans (bib1) 2007; 6
Schreiber, Knutti, Brogli, Uhlmann, Kralli (bib22) 2003; 278
Zhang, Zhang, Wang, Esteban, Pei (bib33) 2008; 283
Mangelsdorf, Thummel, Beato, Herrlich, Schütz, Umesono, Blumberg, Kastner, Mark, Chambon, Evans (bib15) 1995; 83
Shyh-Chang, Daley, Cantley (bib23) 2013; 140
Kawamura, Suzuki, Wang, Menendez, Morera, Raya, Wahl, Izpisúa Belmonte (bib13) 2009; 460
Giguere, Yang, Segui, Evans (bib11) 1988; 331
Festuccia (10.1016/j.stem.2015.03.001_bib8) 2012; 11
Panopoulos (10.1016/j.stem.2015.03.001_bib20) 2012; 22
O’Malley (10.1016/j.stem.2015.03.001_bib19) 2013; 499
Mangelsdorf (10.1016/j.stem.2015.03.001_bib15) 1995; 83
Shyh-Chang (10.1016/j.stem.2015.03.001_bib23) 2013; 140
Zhang (10.1016/j.stem.2015.03.001_bib33) 2008; 283
Zhang (10.1016/j.stem.2015.03.001_bib34) 2012; 11
Sugii (10.1016/j.stem.2015.03.001_bib25) 2010; 107
Chen (10.1016/j.stem.2015.03.001_bib4) 2008; 133
Theunissen (10.1016/j.stem.2015.03.001_bib28) 2014; 14
Shyh-Chang (10.1016/j.stem.2015.03.001_bib24) 2013; 339
Dufour (10.1016/j.stem.2015.03.001_bib6) 2011; 7
Alaynick (10.1016/j.stem.2015.03.001_bib1) 2007; 6
Yu (10.1016/j.stem.2015.03.001_bib32) 2007; 318
Martello (10.1016/j.stem.2015.03.001_bib16) 2012; 11
Folmes (10.1016/j.stem.2015.03.001_bib10) 2012; 11
Lu (10.1016/j.stem.2015.03.001_bib14) 2012; 16
Kawamura (10.1016/j.stem.2015.03.001_bib13) 2009; 460
Wei (10.1016/j.stem.2015.03.001_bib30) 2013; 13
Dufour (10.1016/j.stem.2015.03.001_bib5) 2007; 5
Giguere (10.1016/j.stem.2015.03.001_bib11) 1988; 331
Wei (10.1016/j.stem.2015.03.001_bib29) 2009; 27
Yang (10.1016/j.stem.2015.03.001_bib31) 2006; 126
Takahashi (10.1016/j.stem.2015.03.001_bib27) 2007; 131
Takahashi (10.1016/j.stem.2015.03.001_bib26) 2006; 126
Feng (10.1016/j.stem.2015.03.001_bib7) 2009; 11
Mathieu (10.1016/j.stem.2015.03.001_bib17) 2014; 14
Hansson (10.1016/j.stem.2015.03.001_bib12) 2012; 2
Schreiber (10.1016/j.stem.2015.03.001_bib22) 2003; 278
Polo (10.1016/j.stem.2015.03.001_bib21) 2012; 151
Buganim (10.1016/j.stem.2015.03.001_bib2) 2012; 150
Narkar (10.1016/j.stem.2015.03.001_bib18) 2011; 13
Carey (10.1016/j.stem.2015.03.001_bib3) 2010; 7
Folmes (10.1016/j.stem.2015.03.001_bib9) 2011; 14
References_xml – volume: 150
  start-page: 1209
  year: 2012
  end-page: 1222
  ident: bib2
  article-title: Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase
  publication-title: Cell
– volume: 2
  start-page: 1579
  year: 2012
  end-page: 1592
  ident: bib12
  article-title: Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency
  publication-title: Cell Rep.
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  ident: bib26
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 13
  start-page: 283
  year: 2011
  end-page: 293
  ident: bib18
  article-title: Exercise and PGC-1α-independent synchronization of type I muscle metabolism and vasculature by ERRγ
  publication-title: Cell Metab.
– volume: 7
  start-page: 56
  year: 2010
  end-page: 59
  ident: bib3
  article-title: Single-gene transgenic mouse strains for reprogramming adult somatic cells
  publication-title: Nat. Methods
– volume: 11
  start-page: 477
  year: 2012
  end-page: 490
  ident: bib8
  article-title: Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells
  publication-title: Cell Stem Cell
– volume: 283
  start-page: 35825
  year: 2008
  end-page: 35833
  ident: bib33
  article-title: Esrrb activates Oct4 transcription and sustains self-renewal and pluripotency in embryonic stem cells
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 491
  year: 2012
  end-page: 504
  ident: bib16
  article-title: Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal
  publication-title: Cell Stem Cell
– volume: 151
  start-page: 1617
  year: 2012
  end-page: 1632
  ident: bib21
  article-title: A molecular roadmap of reprogramming somatic cells into iPS cells
  publication-title: Cell
– volume: 11
  start-page: 197
  year: 2009
  end-page: 203
  ident: bib7
  article-title: Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb
  publication-title: Nat. Cell Biol.
– volume: 27
  start-page: 2969
  year: 2009
  end-page: 2978
  ident: bib29
  article-title: Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming
  publication-title: Stem Cells
– volume: 11
  start-page: 596
  year: 2012
  end-page: 606
  ident: bib10
  article-title: Metabolic plasticity in stem cell homeostasis and differentiation
  publication-title: Cell Stem Cell
– volume: 126
  start-page: 801
  year: 2006
  end-page: 810
  ident: bib31
  article-title: Nuclear receptor expression links the circadian clock to metabolism
  publication-title: Cell
– volume: 107
  start-page: 3558
  year: 2010
  end-page: 3563
  ident: bib25
  article-title: Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 460
  start-page: 1140
  year: 2009
  end-page: 1144
  ident: bib13
  article-title: Linking the p53 tumour suppressor pathway to somatic cell reprogramming
  publication-title: Nature
– volume: 83
  start-page: 835
  year: 1995
  end-page: 839
  ident: bib15
  article-title: The nuclear receptor superfamily: the second decade
  publication-title: Cell
– volume: 14
  start-page: 264
  year: 2011
  end-page: 271
  ident: bib9
  article-title: Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
  publication-title: Cell Metab.
– volume: 14
  start-page: 720
  year: 2014
  end-page: 734
  ident: bib28
  article-title: Molecular control of induced pluripotency
  publication-title: Cell Stem Cell
– volume: 133
  start-page: 1106
  year: 2008
  end-page: 1117
  ident: bib4
  article-title: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells
  publication-title: Cell
– volume: 11
  start-page: 589
  year: 2012
  end-page: 595
  ident: bib34
  article-title: Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal
  publication-title: Cell Stem Cell
– volume: 16
  start-page: 9
  year: 2012
  end-page: 17
  ident: bib14
  article-title: Metabolic regulation of epigenetics
  publication-title: Cell Metab.
– volume: 131
  start-page: 861
  year: 2007
  end-page: 872
  ident: bib27
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
– volume: 318
  start-page: 1917
  year: 2007
  end-page: 1920
  ident: bib32
  article-title: Induced pluripotent stem cell lines derived from human somatic cells
  publication-title: Science
– volume: 7
  start-page: e1002143
  year: 2011
  ident: bib6
  article-title: Genomic convergence among ERRα, PROX1, and BMAL1 in the control of metabolic clock outputs
  publication-title: PLoS Genet.
– volume: 499
  start-page: 88
  year: 2013
  end-page: 91
  ident: bib19
  article-title: High-resolution analysis with novel cell-surface markers identifies routes to iPS cells
  publication-title: Nature
– volume: 22
  start-page: 168
  year: 2012
  end-page: 177
  ident: bib20
  article-title: The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming
  publication-title: Cell Res.
– volume: 14
  start-page: 592
  year: 2014
  end-page: 605
  ident: bib17
  article-title: Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency
  publication-title: Cell Stem Cell
– volume: 339
  start-page: 222
  year: 2013
  end-page: 226
  ident: bib24
  article-title: Influence of threonine metabolism on S-adenosylmethionine and histone methylation
  publication-title: Science
– volume: 331
  start-page: 91
  year: 1988
  end-page: 94
  ident: bib11
  article-title: Identification of a new class of steroid hormone receptors
  publication-title: Nature
– volume: 5
  start-page: 345
  year: 2007
  end-page: 356
  ident: bib5
  article-title: Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma
  publication-title: Cell Metab.
– volume: 140
  start-page: 2535
  year: 2013
  end-page: 2547
  ident: bib23
  article-title: Stem cell metabolism in tissue development and aging
  publication-title: Development
– volume: 13
  start-page: 36
  year: 2013
  end-page: 47
  ident: bib30
  article-title: Klf4 Organizes Long-Range Chromosomal Interactions with the Oct4 Locus in Reprogramming and Pluripotency
  publication-title: Cell Stem Cell
– volume: 278
  start-page: 9013
  year: 2003
  end-page: 9018
  ident: bib22
  article-title: The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha)
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 13
  year: 2007
  end-page: 24
  ident: bib1
  article-title: ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart
  publication-title: Cell Metab.
– volume: 140
  start-page: 2535
  year: 2013
  ident: 10.1016/j.stem.2015.03.001_bib23
  article-title: Stem cell metabolism in tissue development and aging
  publication-title: Development
  doi: 10.1242/dev.091777
– volume: 11
  start-page: 477
  year: 2012
  ident: 10.1016/j.stem.2015.03.001_bib8
  article-title: Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.08.002
– volume: 11
  start-page: 491
  year: 2012
  ident: 10.1016/j.stem.2015.03.001_bib16
  article-title: Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.06.008
– volume: 13
  start-page: 283
  year: 2011
  ident: 10.1016/j.stem.2015.03.001_bib18
  article-title: Exercise and PGC-1α-independent synchronization of type I muscle metabolism and vasculature by ERRγ
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.01.019
– volume: 6
  start-page: 13
  year: 2007
  ident: 10.1016/j.stem.2015.03.001_bib1
  article-title: ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.06.007
– volume: 278
  start-page: 9013
  year: 2003
  ident: 10.1016/j.stem.2015.03.001_bib22
  article-title: The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M212923200
– volume: 13
  start-page: 36
  year: 2013
  ident: 10.1016/j.stem.2015.03.001_bib30
  article-title: Klf4 Organizes Long-Range Chromosomal Interactions with the Oct4 Locus in Reprogramming and Pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.05.010
– volume: 11
  start-page: 589
  year: 2012
  ident: 10.1016/j.stem.2015.03.001_bib34
  article-title: Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.10.005
– volume: 14
  start-page: 264
  year: 2011
  ident: 10.1016/j.stem.2015.03.001_bib9
  article-title: Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.06.011
– volume: 14
  start-page: 592
  year: 2014
  ident: 10.1016/j.stem.2015.03.001_bib17
  article-title: Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.02.012
– volume: 11
  start-page: 596
  year: 2012
  ident: 10.1016/j.stem.2015.03.001_bib10
  article-title: Metabolic plasticity in stem cell homeostasis and differentiation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.10.002
– volume: 7
  start-page: 56
  year: 2010
  ident: 10.1016/j.stem.2015.03.001_bib3
  article-title: Single-gene transgenic mouse strains for reprogramming adult somatic cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1410
– volume: 151
  start-page: 1617
  year: 2012
  ident: 10.1016/j.stem.2015.03.001_bib21
  article-title: A molecular roadmap of reprogramming somatic cells into iPS cells
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.039
– volume: 131
  start-page: 861
  year: 2007
  ident: 10.1016/j.stem.2015.03.001_bib27
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 126
  start-page: 801
  year: 2006
  ident: 10.1016/j.stem.2015.03.001_bib31
  article-title: Nuclear receptor expression links the circadian clock to metabolism
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.050
– volume: 133
  start-page: 1106
  year: 2008
  ident: 10.1016/j.stem.2015.03.001_bib4
  article-title: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2008.04.043
– volume: 126
  start-page: 663
  year: 2006
  ident: 10.1016/j.stem.2015.03.001_bib26
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 331
  start-page: 91
  year: 1988
  ident: 10.1016/j.stem.2015.03.001_bib11
  article-title: Identification of a new class of steroid hormone receptors
  publication-title: Nature
  doi: 10.1038/331091a0
– volume: 460
  start-page: 1140
  year: 2009
  ident: 10.1016/j.stem.2015.03.001_bib13
  article-title: Linking the p53 tumour suppressor pathway to somatic cell reprogramming
  publication-title: Nature
  doi: 10.1038/nature08311
– volume: 16
  start-page: 9
  year: 2012
  ident: 10.1016/j.stem.2015.03.001_bib14
  article-title: Metabolic regulation of epigenetics
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.06.001
– volume: 107
  start-page: 3558
  year: 2010
  ident: 10.1016/j.stem.2015.03.001_bib25
  article-title: Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0910172106
– volume: 27
  start-page: 2969
  year: 2009
  ident: 10.1016/j.stem.2015.03.001_bib29
  article-title: Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming
  publication-title: Stem Cells
  doi: 10.1002/stem.231
– volume: 339
  start-page: 222
  year: 2013
  ident: 10.1016/j.stem.2015.03.001_bib24
  article-title: Influence of threonine metabolism on S-adenosylmethionine and histone methylation
  publication-title: Science
  doi: 10.1126/science.1226603
– volume: 318
  start-page: 1917
  year: 2007
  ident: 10.1016/j.stem.2015.03.001_bib32
  article-title: Induced pluripotent stem cell lines derived from human somatic cells
  publication-title: Science
  doi: 10.1126/science.1151526
– volume: 150
  start-page: 1209
  year: 2012
  ident: 10.1016/j.stem.2015.03.001_bib2
  article-title: Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.023
– volume: 5
  start-page: 345
  year: 2007
  ident: 10.1016/j.stem.2015.03.001_bib5
  article-title: Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.03.007
– volume: 22
  start-page: 168
  year: 2012
  ident: 10.1016/j.stem.2015.03.001_bib20
  article-title: The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.177
– volume: 7
  start-page: e1002143
  year: 2011
  ident: 10.1016/j.stem.2015.03.001_bib6
  article-title: Genomic convergence among ERRα, PROX1, and BMAL1 in the control of metabolic clock outputs
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002143
– volume: 2
  start-page: 1579
  year: 2012
  ident: 10.1016/j.stem.2015.03.001_bib12
  article-title: Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.10.014
– volume: 11
  start-page: 197
  year: 2009
  ident: 10.1016/j.stem.2015.03.001_bib7
  article-title: Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1827
– volume: 83
  start-page: 835
  year: 1995
  ident: 10.1016/j.stem.2015.03.001_bib15
  article-title: The nuclear receptor superfamily: the second decade
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90199-X
– volume: 499
  start-page: 88
  year: 2013
  ident: 10.1016/j.stem.2015.03.001_bib19
  article-title: High-resolution analysis with novel cell-surface markers identifies routes to iPS cells
  publication-title: Nature
  doi: 10.1038/nature12243
– volume: 14
  start-page: 720
  year: 2014
  ident: 10.1016/j.stem.2015.03.001_bib28
  article-title: Molecular control of induced pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.05.002
– volume: 283
  start-page: 35825
  year: 2008
  ident: 10.1016/j.stem.2015.03.001_bib33
  article-title: Esrrb activates Oct4 transcription and sustains self-renewal and pluripotency in embryonic stem cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M803481200
SSID ssj0057107
Score 2.4882264
Snippet Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain...
Cell metabolism is adaptive to extrinsic demands, however the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 547
SubjectTerms Adult Stem Cells - physiology
Animals
Antigens, CD34 - metabolism
Ataxin-1 - metabolism
Cell Line
Cellular Reprogramming
ERRalpha Estrogen-Related Receptor
Humans
Mice
Mice, Knockout
Oxidative Phosphorylation
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Pluripotent Stem Cells - physiology
Receptors, Estrogen - genetics
Receptors, Estrogen - metabolism
Transcription Factors - metabolism
Title ERRs Mediate a Metabolic Switch Required for Somatic Cell Reprogramming to Pluripotency
URI https://dx.doi.org/10.1016/j.stem.2015.03.001
https://www.ncbi.nlm.nih.gov/pubmed/25865501
https://www.proquest.com/docview/1680210015
https://pubmed.ncbi.nlm.nih.gov/PMC4427539
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOilNH1u0wYVcgtm13pY62O7JIRCS9hN6N6ELI-oi2uHxEvIv--MZS_dhubQm2xJIGakmU_omxnGjguTzZxOPVq_AImaF9gSWiZlQKwQSpeGyPL9lp1fqS9rvd5jizEWhmiVg-2PNr231sOf6SDN6XVVTVcIPZTO0d9pwjWCAs2lmvdBfOvPozXW6EFNfFlWCY0eAmcix4tyJRO9S8dEp-m_nNND8Pk3h_IPp3T2nD0b0CT_FBd8wPagecGexPqS9y_Z99Pl8pZ_7atxAHfY6lDndeX56q5CdfElEBEYSo7Qla_aPn0rX0BdY8_A3PqFvo13Lb-oN2hfWoLY96_Y1dnp5eI8GSopJF7naZdQLek5enMpTFY6o1AqoZQiZCI4kxsoMw9GOrytQpgVWUg9XlQESNSaBCFBvmb7TdvAW8YLxBjeEGoBrxxkufJOiBJEWsqQazFh6ShC64c041TtorYjn-ynJbFbErudSSLVTdjJds51TLLx6Gg9asbubBWLXuDReR9HNVo8Q_Qw4hpoN7c2zUg4BB8n7E1U63YdQlPoLs02OwrfDqD83Ls9TfWjz9OtlMDLYP7uP9d7yJ7SV8-uNO_ZfnezgQ-IgLriqN_ivwFCYgP_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4s3yNBKcULQbO46bAwcorXbpQ2i3FXtzHWcsgkJSsVlV-7v4g8zksWJB9IDUmxXbkTNjz3xWvplh7HWq45FVoUPr5yGIdlJsCSWDzCNW8JkNfcvyPY7Hp9GnuZpvsZ99LAzRKjvb39r0xlp3T4adNIfneT6cIfSIVIL-ThGuET2z8gBWF3hvW7ybfEQlvxFif-9kdxx0pQUCp5KwDqi48g66Nyl0nFkdKR36TAofC291oiGLHWhp8foGfpTGPnSI3AVI_AwJQoLE915j1xF9aLIGk_mH3vzjm5oYbVpdQMvrInVaUhklZyY-mWozq4b_8oZ_o90_SZu_ecH9O-x2B1_5-1ZCd9kWlPfYjbag5eo--7I3nS74UVP-A7jFVo2brMgdn13kuD_4FIh5DBlHrMxnVZMvlu9CUWBPRxX7js6U1xX_XCzRoFWE6VcP2OmVyPch2y6rEh4zniKocZpgErjIQpxEzgqRgQgz6RMlBizsRWhcl9ecymsUpiewfTMkdkNiNyNJLL4Be7uec95m9bh0tOo1Yzb2pkG3c-m8V70aDR5a-hNjS6iWCxPGJBzCqwP2qFXreh1CUawwzdYbCl8PoITgmz1l_rVJDB5FAm-fyZP_XO9LdnN8cnRoDifHB0_ZLeppqJ36GduufyzhOcKvOn3RbHfOzq76fP0CWtk_bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ERRs+Mediate+a+Metabolic+Switch+Required+for+Somatic+Cell+Reprogramming+to+Pluripotency&rft.jtitle=Cell+stem+cell&rft.au=Kida%2C+Yasuyuki%C2%A0S.&rft.au=Kawamura%2C+Teruhisa&rft.au=Wei%2C+Zong&rft.au=Sogo%2C+Takahiro&rft.date=2015-05-07&rft.issn=1934-5909&rft.volume=16&rft.issue=5&rft.spage=547&rft.epage=555&rft_id=info:doi/10.1016%2Fj.stem.2015.03.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_stem_2015_03_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon