ERRs Mediate a Metabolic Switch Required for Somatic Cell Reprogramming to Pluripotency
Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. Although glycolysis increases throughout the reprogramming process, we show that the estrogen-related nuclear receptors (ERRα and ERR...
Saved in:
Published in | Cell stem cell Vol. 16; no. 5; pp. 547 - 555 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. Although glycolysis increases throughout the reprogramming process, we show that the estrogen-related nuclear receptors (ERRα and ERRγ) and their partnered co-factors PGC-1α and PGC-1β are transiently induced at an early stage, resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Upregulation of ERRα or ERRγ is required for the OXPHOS burst in both human and mouse cells, respectively, as well as iPSC generation itself. Failure to induce this metabolic switch collapses the reprogramming process. Furthermore, we identify a rare pool of Sca1−/CD34− sortable cells that is highly enriched in bona fide reprogramming progenitors. Transcriptional profiling confirmed that these progenitors are ERRγ and PGC-1β positive and have undergone extensive metabolic reprogramming. These studies characterize a previously unrecognized, ERR-dependent metabolic gate prior to establishment of induced pluripotency.
[Display omitted]
•ERRα/γ are transiently induced during iPSC reprogramming•An ERR-mediated OXPHOS burst is essential for somatic cell reprogramming•ERRγ and PGC-1β are selectively expressed in a Sca1−/CD34− progenitor pool•Early reprogramming Sca1−/CD34− cells have enhanced reprogramming efficiency
Kida et al. show that upregulation of ERRα or ERRγ is required for a metabolic switch involving OXPHOS that is essential for iPSC generation and that early upregulation of ERRs marks cells that are destined to go on to be reprogrammed. |
---|---|
AbstractList | Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. Although glycolysis increases throughout the reprogramming process, we show that the estrogen-related nuclear receptors (ERRα and ERRγ) and their partnered co-factors PGC-1α and PGC-1β are transiently induced at an early stage, resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Upregulation of ERRα or ERRγ is required for the OXPHOS burst in both human and mouse cells, respectively, as well as iPSC generation itself. Failure to induce this metabolic switch collapses the reprogramming process. Furthermore, we identify a rare pool of Sca1(-)/CD34(-) sortable cells that is highly enriched in bona fide reprogramming progenitors. Transcriptional profiling confirmed that these progenitors are ERRγ and PGC-1β positive and have undergone extensive metabolic reprogramming. These studies characterize a previously unrecognized, ERR-dependent metabolic gate prior to establishment of induced pluripotency.Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. Although glycolysis increases throughout the reprogramming process, we show that the estrogen-related nuclear receptors (ERRα and ERRγ) and their partnered co-factors PGC-1α and PGC-1β are transiently induced at an early stage, resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Upregulation of ERRα or ERRγ is required for the OXPHOS burst in both human and mouse cells, respectively, as well as iPSC generation itself. Failure to induce this metabolic switch collapses the reprogramming process. Furthermore, we identify a rare pool of Sca1(-)/CD34(-) sortable cells that is highly enriched in bona fide reprogramming progenitors. Transcriptional profiling confirmed that these progenitors are ERRγ and PGC-1β positive and have undergone extensive metabolic reprogramming. These studies characterize a previously unrecognized, ERR-dependent metabolic gate prior to establishment of induced pluripotency. Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. Although glycolysis increases throughout the reprogramming process, we show that the estrogen-related nuclear receptors (ERRα and ERRγ) and their partnered co-factors PGC-1α and PGC-1β are transiently induced at an early stage, resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Upregulation of ERRα or ERRγ is required for the OXPHOS burst in both human and mouse cells, respectively, as well as iPSC generation itself. Failure to induce this metabolic switch collapses the reprogramming process. Furthermore, we identify a rare pool of Sca1−/CD34− sortable cells that is highly enriched in bona fide reprogramming progenitors. Transcriptional profiling confirmed that these progenitors are ERRγ and PGC-1β positive and have undergone extensive metabolic reprogramming. These studies characterize a previously unrecognized, ERR-dependent metabolic gate prior to establishment of induced pluripotency. [Display omitted] •ERRα/γ are transiently induced during iPSC reprogramming•An ERR-mediated OXPHOS burst is essential for somatic cell reprogramming•ERRγ and PGC-1β are selectively expressed in a Sca1−/CD34− progenitor pool•Early reprogramming Sca1−/CD34− cells have enhanced reprogramming efficiency Kida et al. show that upregulation of ERRα or ERRγ is required for a metabolic switch involving OXPHOS that is essential for iPSC generation and that early upregulation of ERRs marks cells that are destined to go on to be reprogrammed. Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. Although glycolysis increases throughout the reprogramming process, we show that the estrogen-related nuclear receptors (ERRα and ERRγ) and their partnered co-factors PGC-1α and PGC-1β are transiently induced at an early stage, resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Upregulation of ERRα or ERRγ is required for the OXPHOS burst in both human and mouse cells, respectively, as well as iPSC generation itself. Failure to induce this metabolic switch collapses the reprogramming process. Furthermore, we identify a rare pool of Sca1(-)/CD34(-) sortable cells that is highly enriched in bona fide reprogramming progenitors. Transcriptional profiling confirmed that these progenitors are ERRγ and PGC-1β positive and have undergone extensive metabolic reprogramming. These studies characterize a previously unrecognized, ERR-dependent metabolic gate prior to establishment of induced pluripotency. Cell metabolism is adaptive to extrinsic demands, however the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. While glycolysis increases throughout the reprogramming process, we show that the estrogen related nuclear receptors (ERRα and γ) and their partnered co-factors PGC-1α and β, are transiently induced at an early stage resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Up-regulation of ERRα or γ is required for both the OXPHOS burst in human and mouse cells, respectively, as well as iPSC generation itself. Failure to induce this metabolic switch collapses the reprogramming process. Furthermore, we identify a rare pool of Sca1 − /CD34 − sortable cells that is highly enriched in bona fide reprogramming progenitors. Transcriptional profiling confirmed that these progenitors are ERRγ and PGC-1β positive and have undergone extensive metabolic reprogramming. These studies characterize a previously unrecognized, ERR-dependent metabolic gate prior to establishment of induced pluripotency. |
Author | Kawamura, Teruhisa Downes, Michael Kushige, Hiroko Yu, Ruth T. Evans, Ronald M. Ecker, Joseph R. Atkins, Annette R. Jacinto, Sandra Liddle, Christopher Shigeno, Asako Wei, Zong Kida, Yasuyuki S. Yoshihara, Eiji Sogo, Takahiro |
AuthorAffiliation | 4 Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto 606-8501, Japan 1 Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA 6 Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-4 Higashi, Tsukuba 305-8562, Japan 5 Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia 3 Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA 2 Genomic Analysis Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA 7 Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan |
AuthorAffiliation_xml | – name: 7 Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan – name: 3 Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA – name: 4 Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto 606-8501, Japan – name: 1 Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA – name: 2 Genomic Analysis Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA – name: 5 Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia – name: 6 Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-4 Higashi, Tsukuba 305-8562, Japan |
Author_xml | – sequence: 1 givenname: Yasuyuki S. surname: Kida fullname: Kida, Yasuyuki S. organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA – sequence: 2 givenname: Teruhisa surname: Kawamura fullname: Kawamura, Teruhisa organization: Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto 606-8501, Japan – sequence: 3 givenname: Zong surname: Wei fullname: Wei, Zong organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA – sequence: 4 givenname: Takahiro surname: Sogo fullname: Sogo, Takahiro organization: Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto 606-8501, Japan – sequence: 5 givenname: Sandra surname: Jacinto fullname: Jacinto, Sandra organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA – sequence: 6 givenname: Asako surname: Shigeno fullname: Shigeno, Asako organization: Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Kyoto 606-8501, Japan – sequence: 7 givenname: Hiroko surname: Kushige fullname: Kushige, Hiroko organization: Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-4 Higashi, Tsukuba 305-8562, Japan – sequence: 8 givenname: Eiji surname: Yoshihara fullname: Yoshihara, Eiji organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA – sequence: 9 givenname: Christopher surname: Liddle fullname: Liddle, Christopher organization: Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia – sequence: 10 givenname: Joseph R. surname: Ecker fullname: Ecker, Joseph R. organization: Genomic Analysis Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA – sequence: 11 givenname: Ruth T. surname: Yu fullname: Yu, Ruth T. organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA – sequence: 12 givenname: Annette R. surname: Atkins fullname: Atkins, Annette R. organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA – sequence: 13 givenname: Michael surname: Downes fullname: Downes, Michael organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA – sequence: 14 givenname: Ronald M. surname: Evans fullname: Evans, Ronald M. email: evans@salk.edu organization: Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25865501$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1r3DAUFCWl-Wj-QA7Bx17sPkmWZUMplCVpCyktm5YchVZ-3mixrY0kJ-TfR-4mIe0hJz14M_NGM4dkb3QjEnJCoaBAq4-bIkQcCgZUFMALAPqGHNBairyRUu6lueFlLhpo9slhCBsAISnId2SfiboSAugBuTpbLkP2A1urI2Y6TVGvXG9Ndnlno7nOlngzWY9t1jmfXbpBx7RbYN-nzda7tdfDYMd1Fl32q5-83bqIo7l_T952ug94_PgekT_nZ78X3_KLn1-_L75c5EY0NOa0Al4Do5zJqtWyTAa7lrOuYp2WjcS2Mii55jXHDlZVRw2VJUPOBOfIOPIj8nmnu51WA7YGx-h1r7beDtrfK6et-ncz2mu1dreqLJkUvEkCHx4FvLuZMEQ12GDS__SIbgqKVrO_lK1I0NOXt56PPKWZAGwHMN6F4LF7hlBQc2Vqo-bK1FyZAq7gL6n-j2RsTCm72a_tX6d-2lExJXxr0atgbEo_tenRRNU6-xr9AQLCsgs |
CitedBy_id | crossref_primary_10_3892_etm_2019_8209 crossref_primary_10_1074_jbc_RA118_003469 crossref_primary_10_1016_j_stem_2015_11_012 crossref_primary_10_1016_j_semcdb_2021_05_028 crossref_primary_10_1007_s40778_017_0071_y crossref_primary_10_1016_j_bbrep_2022_101267 crossref_primary_10_3389_fonc_2022_881252 crossref_primary_10_1038_srep42138 crossref_primary_10_1016_j_mce_2015_07_019 crossref_primary_10_3389_fbioe_2021_623886 crossref_primary_10_1016_j_gde_2016_05_004 crossref_primary_10_1038_s41419_025_07460_z crossref_primary_10_1007_s10522_023_10018_1 crossref_primary_10_1016_j_cmet_2018_08_001 crossref_primary_10_1093_hmg_ddac096 crossref_primary_10_3390_ijms20092254 crossref_primary_10_3390_ijms24054862 crossref_primary_10_1186_s13287_020_01664_0 crossref_primary_10_1016_j_isci_2024_110811 crossref_primary_10_1016_j_exger_2020_110870 crossref_primary_10_1186_s10020_021_00270_x crossref_primary_10_3389_fcell_2020_00087 crossref_primary_10_18632_oncotarget_25878 crossref_primary_10_1016_j_cell_2016_08_008 crossref_primary_10_4252_wjsc_v10_i11_172 crossref_primary_10_1016_j_gde_2017_06_008 crossref_primary_10_3389_fcell_2021_714370 crossref_primary_10_3389_fnmol_2019_00151 crossref_primary_10_1016_j_celrep_2018_02_061 crossref_primary_10_1038_s41598_018_20057_1 crossref_primary_10_1242_dev_143420 crossref_primary_10_3390_cells9112490 crossref_primary_10_1016_j_stem_2024_04_016 crossref_primary_10_1089_genbio_2022_0001 crossref_primary_10_1053_j_gastro_2022_04_013 crossref_primary_10_3390_biomedicines11061737 crossref_primary_10_3389_fonc_2020_624079 crossref_primary_10_1155_2022_5283388 crossref_primary_10_1007_s12015_024_10681_y crossref_primary_10_1016_j_stemcr_2020_06_018 crossref_primary_10_1002_jcp_27977 crossref_primary_10_1038_s41598_020_65193_9 crossref_primary_10_1152_physiolgenomics_00103_2016 crossref_primary_10_1371_journal_pone_0246847 crossref_primary_10_1016_j_bbagen_2016_09_008 crossref_primary_10_1074_jbc_REV118_000828 crossref_primary_10_1186_s13046_023_02834_7 crossref_primary_10_1016_j_stemcr_2017_01_026 crossref_primary_10_1111_gtc_12626 crossref_primary_10_1016_j_semcdb_2016_02_010 crossref_primary_10_1186_s12967_024_05041_w crossref_primary_10_3390_ijms17020253 crossref_primary_10_1007_s40778_017_0073_9 crossref_primary_10_1038_s44161_023_00377_w crossref_primary_10_3390_epigenomes3030013 crossref_primary_10_1016_j_cmet_2017_04_017 crossref_primary_10_1016_j_isci_2022_103736 crossref_primary_10_1074_jbc_TM117_000832 crossref_primary_10_1016_j_tem_2016_12_005 crossref_primary_10_3389_fcell_2023_1328522 crossref_primary_10_3390_jpm11090905 crossref_primary_10_1016_j_stem_2015_12_003 crossref_primary_10_1016_j_reth_2019_06_003 crossref_primary_10_3390_ijms231810924 crossref_primary_10_1111_febs_15024 crossref_primary_10_1007_s11926_016_0615_7 crossref_primary_10_1016_j_heliyon_2024_e38551 crossref_primary_10_3390_ijms25094796 crossref_primary_10_1002_adhm_202101215 crossref_primary_10_15252_embr_201745432 crossref_primary_10_3390_metabo11030154 crossref_primary_10_1186_s13287_018_0792_6 crossref_primary_10_1242_dev_131110 crossref_primary_10_3390_ijms222010946 crossref_primary_10_1016_j_devcel_2023_08_015 crossref_primary_10_1002_1873_3468_12826 crossref_primary_10_3390_cells10082040 crossref_primary_10_1002_biot_201900052 crossref_primary_10_1007_s12015_021_10239_2 crossref_primary_10_1016_j_gde_2018_06_002 crossref_primary_10_1016_j_stemcr_2018_10_018 crossref_primary_10_18632_aging_103611 crossref_primary_10_1038_s41467_019_13830_x crossref_primary_10_1186_s13287_021_02578_1 crossref_primary_10_1186_s41232_020_00117_8 crossref_primary_10_1242_dev_199604 crossref_primary_10_1016_j_scib_2022_04_003 crossref_primary_10_1016_j_celrep_2020_107903 crossref_primary_10_1016_j_celrep_2023_112590 crossref_primary_10_1186_s41232_021_00156_9 crossref_primary_10_1371_journal_pgen_1010610 crossref_primary_10_1016_j_stem_2017_08_018 crossref_primary_10_1242_dev_128389 crossref_primary_10_1016_j_celrep_2017_09_060 crossref_primary_10_1016_j_cmet_2018_01_008 crossref_primary_10_1016_j_yexcr_2019_111683 |
Cites_doi | 10.1242/dev.091777 10.1016/j.stem.2012.08.002 10.1016/j.stem.2012.06.008 10.1016/j.cmet.2011.01.019 10.1016/j.cmet.2007.06.007 10.1074/jbc.M212923200 10.1016/j.stem.2013.05.010 10.1016/j.stem.2012.10.005 10.1016/j.cmet.2011.06.011 10.1016/j.stem.2014.02.012 10.1016/j.stem.2012.10.002 10.1038/nmeth.1410 10.1016/j.cell.2012.11.039 10.1016/j.cell.2007.11.019 10.1016/j.cell.2006.06.050 10.1016/j.cell.2008.04.043 10.1016/j.cell.2006.07.024 10.1038/331091a0 10.1038/nature08311 10.1016/j.cmet.2012.06.001 10.1073/pnas.0910172106 10.1002/stem.231 10.1126/science.1226603 10.1126/science.1151526 10.1016/j.cell.2012.08.023 10.1016/j.cmet.2007.03.007 10.1038/cr.2011.177 10.1371/journal.pgen.1002143 10.1016/j.celrep.2012.10.014 10.1038/ncb1827 10.1016/0092-8674(95)90199-X 10.1038/nature12243 10.1016/j.stem.2014.05.002 10.1074/jbc.M803481200 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. 2015 Published by Elsevier Inc. 2015 |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: 2015 Published by Elsevier Inc. 2015 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.stem.2015.03.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-9777 |
EndPage | 555 |
ExternalDocumentID | PMC4427539 25865501 10_1016_j_stem_2015_03_001 S1934590915001125 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: U19 DK062434 – fundername: NIDDK NIH HHS grantid: R37 DK057978 – fundername: NIDDK NIH HHS grantid: DK062434 – fundername: Howard Hughes Medical Institute – fundername: NIDDK NIH HHS grantid: R01 DK057978 – fundername: NHLBI NIH HHS grantid: R01 HL105278 – fundername: NIDDK NIH HHS grantid: DK063491 – fundername: NIDDK NIH HHS grantid: P30 DK063491 – fundername: NICHD NIH HHS grantid: HD105278 |
GroupedDBID | --- --K 0R~ 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 WQ6 ZA5 ZBA 5VS AAIKJ AAMRU AAQFI AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c591t-160380213276da74571fd32f62fa797ed6ce73a383ef0b6f1c1742e32533e23e3 |
IEDL.DBID | IXB |
ISSN | 1934-5909 1875-9777 |
IngestDate | Thu Aug 21 14:15:41 EDT 2025 Fri Jul 11 16:17:43 EDT 2025 Mon Jul 21 05:57:18 EDT 2025 Thu Apr 24 22:52:25 EDT 2025 Tue Jul 01 01:08:26 EDT 2025 Fri Feb 23 02:30:30 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c591t-160380213276da74571fd32f62fa797ed6ce73a383ef0b6f1c1742e32533e23e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1934590915001125 |
PMID | 25865501 |
PQID | 1680210015 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4427539 proquest_miscellaneous_1680210015 pubmed_primary_25865501 crossref_primary_10_1016_j_stem_2015_03_001 crossref_citationtrail_10_1016_j_stem_2015_03_001 elsevier_sciencedirect_doi_10_1016_j_stem_2015_03_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-07 |
PublicationDateYYYYMMDD | 2015-05-07 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell stem cell |
PublicationTitleAlternate | Cell Stem Cell |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Narkar, Fan, Downes, Yu, Jonker, Alaynick, Banayo, Karunasiri, Lorca, Evans (bib18) 2011; 13 Dufour, Wilson, Huss, Kelly, Alaynick, Downes, Evans, Blanchette, Giguère (bib5) 2007; 5 Martello, Sugimoto, Diamanti, Joshi, Hannah, Ohtsuka, Göttgens, Niwa, Smith (bib16) 2012; 11 Dufour, Levasseur, Pham, Eichner, Wilson, Charest-Marcotte, Duguay, Poirier-Héon, Cermakian, Giguère (bib6) 2011; 7 Wei, Yang, Zhang, Andrianakos, Hasegawa, Lyu, Chen, Bai, Liu, Pera, Lu (bib29) 2009; 27 Mathieu, Zhou, Xing, Sperber, Ferreccio, Agoston, Kuppusamy, Moon, Ruohola-Baker (bib17) 2014; 14 Panopoulos, Yanes, Ruiz, Kida, Diep, Tautenhahn, Herrerías, Batchelder, Plongthongkum, Lutz (bib20) 2012; 22 Carey, Markoulaki, Beard, Hanna, Jaenisch (bib3) 2010; 7 Festuccia, Osorno, Halbritter, Karwacki-Neisius, Navarro, Colby, Wong, Yates, Tomlinson, Chambers (bib8) 2012; 11 Polo, Anderssen, Walsh, Schwarz, Nefzger, Lim, Borkent, Apostolou, Alaei, Cloutier (bib21) 2012; 151 Buganim, Faddah, Cheng, Itskovich, Markoulaki, Ganz, Klemm, van Oudenaarden, Jaenisch (bib2) 2012; 150 O’Malley, Skylaki, Iwabuchi, Chantzoura, Ruetz, Johnsson, Tomlinson, Linnarsson, Kaji (bib19) 2013; 499 Lu, Thompson (bib14) 2012; 16 Wei, Gao, Kim, Yang, Lyu, An, Wang, Lu (bib30) 2013; 13 Theunissen, Jaenisch (bib28) 2014; 14 Sugii, Kida, Kawamura, Suzuki, Vassena, Yin, Lutz, Berggren, Izpisúa Belmonte, Evans (bib25) 2010; 107 Yu, Vodyanik, Smuga-Otto, Antosiewicz-Bourget, Frane, Tian, Nie, Jonsdottir, Ruotti, Stewart (bib32) 2007; 318 Shyh-Chang, Locasale, Lyssiotis, Zheng, Teo, Ratanasirintrawoot, Zhang, Onder, Unternaehrer, Zhu (bib24) 2013; 339 Folmes, Nelson, Martinez-Fernandez, Arrell, Lindor, Dzeja, Ikeda, Perez-Terzic, Terzic (bib9) 2011; 14 Folmes, Dzeja, Nelson, Terzic (bib10) 2012; 11 Yang, Downes, Yu, Bookout, He, Straume, Mangelsdorf, Evans (bib31) 2006; 126 Takahashi, Yamanaka (bib26) 2006; 126 Feng, Jiang, Kraus, Ng, Heng, Chan, Yaw, Zhang, Loh, Han (bib7) 2009; 11 Takahashi, Tanabe, Ohnuki, Narita, Ichisaka, Tomoda, Yamanaka (bib27) 2007; 131 Zhang, Nuebel, Daley, Koehler, Teitell (bib34) 2012; 11 Hansson, Rafiee, Reiland, Polo, Gehring, Okawa, Huber, Hochedlinger, Krijgsveld (bib12) 2012; 2 Chen, Xu, Yuan, Fang, Huss, Vega, Wong, Orlov, Zhang, Jiang (bib4) 2008; 133 Alaynick, Kondo, Xie, He, Dufour, Downes, Jonker, Giles, Naviaux, Giguère, Evans (bib1) 2007; 6 Schreiber, Knutti, Brogli, Uhlmann, Kralli (bib22) 2003; 278 Zhang, Zhang, Wang, Esteban, Pei (bib33) 2008; 283 Mangelsdorf, Thummel, Beato, Herrlich, Schütz, Umesono, Blumberg, Kastner, Mark, Chambon, Evans (bib15) 1995; 83 Shyh-Chang, Daley, Cantley (bib23) 2013; 140 Kawamura, Suzuki, Wang, Menendez, Morera, Raya, Wahl, Izpisúa Belmonte (bib13) 2009; 460 Giguere, Yang, Segui, Evans (bib11) 1988; 331 Festuccia (10.1016/j.stem.2015.03.001_bib8) 2012; 11 Panopoulos (10.1016/j.stem.2015.03.001_bib20) 2012; 22 O’Malley (10.1016/j.stem.2015.03.001_bib19) 2013; 499 Mangelsdorf (10.1016/j.stem.2015.03.001_bib15) 1995; 83 Shyh-Chang (10.1016/j.stem.2015.03.001_bib23) 2013; 140 Zhang (10.1016/j.stem.2015.03.001_bib33) 2008; 283 Zhang (10.1016/j.stem.2015.03.001_bib34) 2012; 11 Sugii (10.1016/j.stem.2015.03.001_bib25) 2010; 107 Chen (10.1016/j.stem.2015.03.001_bib4) 2008; 133 Theunissen (10.1016/j.stem.2015.03.001_bib28) 2014; 14 Shyh-Chang (10.1016/j.stem.2015.03.001_bib24) 2013; 339 Dufour (10.1016/j.stem.2015.03.001_bib6) 2011; 7 Alaynick (10.1016/j.stem.2015.03.001_bib1) 2007; 6 Yu (10.1016/j.stem.2015.03.001_bib32) 2007; 318 Martello (10.1016/j.stem.2015.03.001_bib16) 2012; 11 Folmes (10.1016/j.stem.2015.03.001_bib10) 2012; 11 Lu (10.1016/j.stem.2015.03.001_bib14) 2012; 16 Kawamura (10.1016/j.stem.2015.03.001_bib13) 2009; 460 Wei (10.1016/j.stem.2015.03.001_bib30) 2013; 13 Dufour (10.1016/j.stem.2015.03.001_bib5) 2007; 5 Giguere (10.1016/j.stem.2015.03.001_bib11) 1988; 331 Wei (10.1016/j.stem.2015.03.001_bib29) 2009; 27 Yang (10.1016/j.stem.2015.03.001_bib31) 2006; 126 Takahashi (10.1016/j.stem.2015.03.001_bib27) 2007; 131 Takahashi (10.1016/j.stem.2015.03.001_bib26) 2006; 126 Feng (10.1016/j.stem.2015.03.001_bib7) 2009; 11 Mathieu (10.1016/j.stem.2015.03.001_bib17) 2014; 14 Hansson (10.1016/j.stem.2015.03.001_bib12) 2012; 2 Schreiber (10.1016/j.stem.2015.03.001_bib22) 2003; 278 Polo (10.1016/j.stem.2015.03.001_bib21) 2012; 151 Buganim (10.1016/j.stem.2015.03.001_bib2) 2012; 150 Narkar (10.1016/j.stem.2015.03.001_bib18) 2011; 13 Carey (10.1016/j.stem.2015.03.001_bib3) 2010; 7 Folmes (10.1016/j.stem.2015.03.001_bib9) 2011; 14 |
References_xml | – volume: 150 start-page: 1209 year: 2012 end-page: 1222 ident: bib2 article-title: Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase publication-title: Cell – volume: 2 start-page: 1579 year: 2012 end-page: 1592 ident: bib12 article-title: Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency publication-title: Cell Rep. – volume: 126 start-page: 663 year: 2006 end-page: 676 ident: bib26 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 13 start-page: 283 year: 2011 end-page: 293 ident: bib18 article-title: Exercise and PGC-1α-independent synchronization of type I muscle metabolism and vasculature by ERRγ publication-title: Cell Metab. – volume: 7 start-page: 56 year: 2010 end-page: 59 ident: bib3 article-title: Single-gene transgenic mouse strains for reprogramming adult somatic cells publication-title: Nat. Methods – volume: 11 start-page: 477 year: 2012 end-page: 490 ident: bib8 article-title: Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells publication-title: Cell Stem Cell – volume: 283 start-page: 35825 year: 2008 end-page: 35833 ident: bib33 article-title: Esrrb activates Oct4 transcription and sustains self-renewal and pluripotency in embryonic stem cells publication-title: J. Biol. Chem. – volume: 11 start-page: 491 year: 2012 end-page: 504 ident: bib16 article-title: Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal publication-title: Cell Stem Cell – volume: 151 start-page: 1617 year: 2012 end-page: 1632 ident: bib21 article-title: A molecular roadmap of reprogramming somatic cells into iPS cells publication-title: Cell – volume: 11 start-page: 197 year: 2009 end-page: 203 ident: bib7 article-title: Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb publication-title: Nat. Cell Biol. – volume: 27 start-page: 2969 year: 2009 end-page: 2978 ident: bib29 article-title: Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming publication-title: Stem Cells – volume: 11 start-page: 596 year: 2012 end-page: 606 ident: bib10 article-title: Metabolic plasticity in stem cell homeostasis and differentiation publication-title: Cell Stem Cell – volume: 126 start-page: 801 year: 2006 end-page: 810 ident: bib31 article-title: Nuclear receptor expression links the circadian clock to metabolism publication-title: Cell – volume: 107 start-page: 3558 year: 2010 end-page: 3563 ident: bib25 article-title: Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 460 start-page: 1140 year: 2009 end-page: 1144 ident: bib13 article-title: Linking the p53 tumour suppressor pathway to somatic cell reprogramming publication-title: Nature – volume: 83 start-page: 835 year: 1995 end-page: 839 ident: bib15 article-title: The nuclear receptor superfamily: the second decade publication-title: Cell – volume: 14 start-page: 264 year: 2011 end-page: 271 ident: bib9 article-title: Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming publication-title: Cell Metab. – volume: 14 start-page: 720 year: 2014 end-page: 734 ident: bib28 article-title: Molecular control of induced pluripotency publication-title: Cell Stem Cell – volume: 133 start-page: 1106 year: 2008 end-page: 1117 ident: bib4 article-title: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells publication-title: Cell – volume: 11 start-page: 589 year: 2012 end-page: 595 ident: bib34 article-title: Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal publication-title: Cell Stem Cell – volume: 16 start-page: 9 year: 2012 end-page: 17 ident: bib14 article-title: Metabolic regulation of epigenetics publication-title: Cell Metab. – volume: 131 start-page: 861 year: 2007 end-page: 872 ident: bib27 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell – volume: 318 start-page: 1917 year: 2007 end-page: 1920 ident: bib32 article-title: Induced pluripotent stem cell lines derived from human somatic cells publication-title: Science – volume: 7 start-page: e1002143 year: 2011 ident: bib6 article-title: Genomic convergence among ERRα, PROX1, and BMAL1 in the control of metabolic clock outputs publication-title: PLoS Genet. – volume: 499 start-page: 88 year: 2013 end-page: 91 ident: bib19 article-title: High-resolution analysis with novel cell-surface markers identifies routes to iPS cells publication-title: Nature – volume: 22 start-page: 168 year: 2012 end-page: 177 ident: bib20 article-title: The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming publication-title: Cell Res. – volume: 14 start-page: 592 year: 2014 end-page: 605 ident: bib17 article-title: Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency publication-title: Cell Stem Cell – volume: 339 start-page: 222 year: 2013 end-page: 226 ident: bib24 article-title: Influence of threonine metabolism on S-adenosylmethionine and histone methylation publication-title: Science – volume: 331 start-page: 91 year: 1988 end-page: 94 ident: bib11 article-title: Identification of a new class of steroid hormone receptors publication-title: Nature – volume: 5 start-page: 345 year: 2007 end-page: 356 ident: bib5 article-title: Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma publication-title: Cell Metab. – volume: 140 start-page: 2535 year: 2013 end-page: 2547 ident: bib23 article-title: Stem cell metabolism in tissue development and aging publication-title: Development – volume: 13 start-page: 36 year: 2013 end-page: 47 ident: bib30 article-title: Klf4 Organizes Long-Range Chromosomal Interactions with the Oct4 Locus in Reprogramming and Pluripotency publication-title: Cell Stem Cell – volume: 278 start-page: 9013 year: 2003 end-page: 9018 ident: bib22 article-title: The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha) publication-title: J. Biol. Chem. – volume: 6 start-page: 13 year: 2007 end-page: 24 ident: bib1 article-title: ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart publication-title: Cell Metab. – volume: 140 start-page: 2535 year: 2013 ident: 10.1016/j.stem.2015.03.001_bib23 article-title: Stem cell metabolism in tissue development and aging publication-title: Development doi: 10.1242/dev.091777 – volume: 11 start-page: 477 year: 2012 ident: 10.1016/j.stem.2015.03.001_bib8 article-title: Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.08.002 – volume: 11 start-page: 491 year: 2012 ident: 10.1016/j.stem.2015.03.001_bib16 article-title: Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.06.008 – volume: 13 start-page: 283 year: 2011 ident: 10.1016/j.stem.2015.03.001_bib18 article-title: Exercise and PGC-1α-independent synchronization of type I muscle metabolism and vasculature by ERRγ publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.01.019 – volume: 6 start-page: 13 year: 2007 ident: 10.1016/j.stem.2015.03.001_bib1 article-title: ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart publication-title: Cell Metab. doi: 10.1016/j.cmet.2007.06.007 – volume: 278 start-page: 9013 year: 2003 ident: 10.1016/j.stem.2015.03.001_bib22 article-title: The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M212923200 – volume: 13 start-page: 36 year: 2013 ident: 10.1016/j.stem.2015.03.001_bib30 article-title: Klf4 Organizes Long-Range Chromosomal Interactions with the Oct4 Locus in Reprogramming and Pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.05.010 – volume: 11 start-page: 589 year: 2012 ident: 10.1016/j.stem.2015.03.001_bib34 article-title: Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.10.005 – volume: 14 start-page: 264 year: 2011 ident: 10.1016/j.stem.2015.03.001_bib9 article-title: Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.06.011 – volume: 14 start-page: 592 year: 2014 ident: 10.1016/j.stem.2015.03.001_bib17 article-title: Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.02.012 – volume: 11 start-page: 596 year: 2012 ident: 10.1016/j.stem.2015.03.001_bib10 article-title: Metabolic plasticity in stem cell homeostasis and differentiation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.10.002 – volume: 7 start-page: 56 year: 2010 ident: 10.1016/j.stem.2015.03.001_bib3 article-title: Single-gene transgenic mouse strains for reprogramming adult somatic cells publication-title: Nat. Methods doi: 10.1038/nmeth.1410 – volume: 151 start-page: 1617 year: 2012 ident: 10.1016/j.stem.2015.03.001_bib21 article-title: A molecular roadmap of reprogramming somatic cells into iPS cells publication-title: Cell doi: 10.1016/j.cell.2012.11.039 – volume: 131 start-page: 861 year: 2007 ident: 10.1016/j.stem.2015.03.001_bib27 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 126 start-page: 801 year: 2006 ident: 10.1016/j.stem.2015.03.001_bib31 article-title: Nuclear receptor expression links the circadian clock to metabolism publication-title: Cell doi: 10.1016/j.cell.2006.06.050 – volume: 133 start-page: 1106 year: 2008 ident: 10.1016/j.stem.2015.03.001_bib4 article-title: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2008.04.043 – volume: 126 start-page: 663 year: 2006 ident: 10.1016/j.stem.2015.03.001_bib26 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 331 start-page: 91 year: 1988 ident: 10.1016/j.stem.2015.03.001_bib11 article-title: Identification of a new class of steroid hormone receptors publication-title: Nature doi: 10.1038/331091a0 – volume: 460 start-page: 1140 year: 2009 ident: 10.1016/j.stem.2015.03.001_bib13 article-title: Linking the p53 tumour suppressor pathway to somatic cell reprogramming publication-title: Nature doi: 10.1038/nature08311 – volume: 16 start-page: 9 year: 2012 ident: 10.1016/j.stem.2015.03.001_bib14 article-title: Metabolic regulation of epigenetics publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.06.001 – volume: 107 start-page: 3558 year: 2010 ident: 10.1016/j.stem.2015.03.001_bib25 article-title: Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0910172106 – volume: 27 start-page: 2969 year: 2009 ident: 10.1016/j.stem.2015.03.001_bib29 article-title: Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming publication-title: Stem Cells doi: 10.1002/stem.231 – volume: 339 start-page: 222 year: 2013 ident: 10.1016/j.stem.2015.03.001_bib24 article-title: Influence of threonine metabolism on S-adenosylmethionine and histone methylation publication-title: Science doi: 10.1126/science.1226603 – volume: 318 start-page: 1917 year: 2007 ident: 10.1016/j.stem.2015.03.001_bib32 article-title: Induced pluripotent stem cell lines derived from human somatic cells publication-title: Science doi: 10.1126/science.1151526 – volume: 150 start-page: 1209 year: 2012 ident: 10.1016/j.stem.2015.03.001_bib2 article-title: Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase publication-title: Cell doi: 10.1016/j.cell.2012.08.023 – volume: 5 start-page: 345 year: 2007 ident: 10.1016/j.stem.2015.03.001_bib5 article-title: Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma publication-title: Cell Metab. doi: 10.1016/j.cmet.2007.03.007 – volume: 22 start-page: 168 year: 2012 ident: 10.1016/j.stem.2015.03.001_bib20 article-title: The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming publication-title: Cell Res. doi: 10.1038/cr.2011.177 – volume: 7 start-page: e1002143 year: 2011 ident: 10.1016/j.stem.2015.03.001_bib6 article-title: Genomic convergence among ERRα, PROX1, and BMAL1 in the control of metabolic clock outputs publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002143 – volume: 2 start-page: 1579 year: 2012 ident: 10.1016/j.stem.2015.03.001_bib12 article-title: Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.10.014 – volume: 11 start-page: 197 year: 2009 ident: 10.1016/j.stem.2015.03.001_bib7 article-title: Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb publication-title: Nat. Cell Biol. doi: 10.1038/ncb1827 – volume: 83 start-page: 835 year: 1995 ident: 10.1016/j.stem.2015.03.001_bib15 article-title: The nuclear receptor superfamily: the second decade publication-title: Cell doi: 10.1016/0092-8674(95)90199-X – volume: 499 start-page: 88 year: 2013 ident: 10.1016/j.stem.2015.03.001_bib19 article-title: High-resolution analysis with novel cell-surface markers identifies routes to iPS cells publication-title: Nature doi: 10.1038/nature12243 – volume: 14 start-page: 720 year: 2014 ident: 10.1016/j.stem.2015.03.001_bib28 article-title: Molecular control of induced pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.05.002 – volume: 283 start-page: 35825 year: 2008 ident: 10.1016/j.stem.2015.03.001_bib33 article-title: Esrrb activates Oct4 transcription and sustains self-renewal and pluripotency in embryonic stem cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M803481200 |
SSID | ssj0057107 |
Score | 2.4882264 |
Snippet | Cell metabolism is adaptive to extrinsic demands; however, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain... Cell metabolism is adaptive to extrinsic demands, however the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 547 |
SubjectTerms | Adult Stem Cells - physiology Animals Antigens, CD34 - metabolism Ataxin-1 - metabolism Cell Line Cellular Reprogramming ERRalpha Estrogen-Related Receptor Humans Mice Mice, Knockout Oxidative Phosphorylation Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha Pluripotent Stem Cells - physiology Receptors, Estrogen - genetics Receptors, Estrogen - metabolism Transcription Factors - metabolism |
Title | ERRs Mediate a Metabolic Switch Required for Somatic Cell Reprogramming to Pluripotency |
URI | https://dx.doi.org/10.1016/j.stem.2015.03.001 https://www.ncbi.nlm.nih.gov/pubmed/25865501 https://www.proquest.com/docview/1680210015 https://pubmed.ncbi.nlm.nih.gov/PMC4427539 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOilNH1u0wYVcgtm13pY62O7JIRCS9hN6N6ELI-oi2uHxEvIv--MZS_dhubQm2xJIGakmU_omxnGjguTzZxOPVq_AImaF9gSWiZlQKwQSpeGyPL9lp1fqS9rvd5jizEWhmiVg-2PNr231sOf6SDN6XVVTVcIPZTO0d9pwjWCAs2lmvdBfOvPozXW6EFNfFlWCY0eAmcix4tyJRO9S8dEp-m_nNND8Pk3h_IPp3T2nD0b0CT_FBd8wPagecGexPqS9y_Z99Pl8pZ_7atxAHfY6lDndeX56q5CdfElEBEYSo7Qla_aPn0rX0BdY8_A3PqFvo13Lb-oN2hfWoLY96_Y1dnp5eI8GSopJF7naZdQLek5enMpTFY6o1AqoZQiZCI4kxsoMw9GOrytQpgVWUg9XlQESNSaBCFBvmb7TdvAW8YLxBjeEGoBrxxkufJOiBJEWsqQazFh6ShC64c041TtorYjn-ynJbFbErudSSLVTdjJds51TLLx6Gg9asbubBWLXuDReR9HNVo8Q_Qw4hpoN7c2zUg4BB8n7E1U63YdQlPoLs02OwrfDqD83Ls9TfWjz9OtlMDLYP7uP9d7yJ7SV8-uNO_ZfnezgQ-IgLriqN_ivwFCYgP_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4s3yNBKcULQbO46bAwcorXbpQ2i3FXtzHWcsgkJSsVlV-7v4g8zksWJB9IDUmxXbkTNjz3xWvplh7HWq45FVoUPr5yGIdlJsCSWDzCNW8JkNfcvyPY7Hp9GnuZpvsZ99LAzRKjvb39r0xlp3T4adNIfneT6cIfSIVIL-ThGuET2z8gBWF3hvW7ybfEQlvxFif-9kdxx0pQUCp5KwDqi48g66Nyl0nFkdKR36TAofC291oiGLHWhp8foGfpTGPnSI3AVI_AwJQoLE915j1xF9aLIGk_mH3vzjm5oYbVpdQMvrInVaUhklZyY-mWozq4b_8oZ_o90_SZu_ecH9O-x2B1_5-1ZCd9kWlPfYjbag5eo--7I3nS74UVP-A7jFVo2brMgdn13kuD_4FIh5DBlHrMxnVZMvlu9CUWBPRxX7js6U1xX_XCzRoFWE6VcP2OmVyPch2y6rEh4zniKocZpgErjIQpxEzgqRgQgz6RMlBizsRWhcl9ecymsUpiewfTMkdkNiNyNJLL4Be7uec95m9bh0tOo1Yzb2pkG3c-m8V70aDR5a-hNjS6iWCxPGJBzCqwP2qFXreh1CUawwzdYbCl8PoITgmz1l_rVJDB5FAm-fyZP_XO9LdnN8cnRoDifHB0_ZLeppqJ36GduufyzhOcKvOn3RbHfOzq76fP0CWtk_bw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ERRs+Mediate+a+Metabolic+Switch+Required+for+Somatic+Cell+Reprogramming+to+Pluripotency&rft.jtitle=Cell+stem+cell&rft.au=Kida%2C+Yasuyuki%C2%A0S.&rft.au=Kawamura%2C+Teruhisa&rft.au=Wei%2C+Zong&rft.au=Sogo%2C+Takahiro&rft.date=2015-05-07&rft.issn=1934-5909&rft.volume=16&rft.issue=5&rft.spage=547&rft.epage=555&rft_id=info:doi/10.1016%2Fj.stem.2015.03.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_stem_2015_03_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon |