Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau
Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitiv...
Saved in:
Published in | Global Change Biology Vol. 16; no. 5; pp. 1606 - 1617 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.05.2010
Blackwell Publishing Ltd Wiley Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitivity of litter and dung mass loss. Experiments were conducted for 1-2 years under a controlled warming-grazing system and along an elevation gradient from 3200 to 3800 m. A free-air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures (average 0.5-1.6 °C) from 0 to 40 cm depth, but neither warming nor grazing affected soil moisture except early in the growing seasons at 30 cm soil depth. Heaters caused greater soil warming at night-time compared with daytime, but grazing resulted in greater soil warming during daytime compared with night-time. Annual average values of the soil temperature at 5 cm were 3.2, 2.4 and 0.3 °C at 3200, 3600 and 3800 m, respectively. Neither warming nor grazing caused changes of litter quality for the first year of the controlled warming-grazing experiment. The effects of warming and grazing on litter mass losses were additive, increasing litter mass losses by about 19.3% and 8.3%, respectively, for the 2-year decomposition periods. The temperature sensitivity of litter mass losses was approximately 11% °C⁻¹ based on the controlled warming-grazing experiment. The annual cumulative litter mass loss was approximately 2.5 times that of dung along the elevation gradient. However, the temperature sensitivity (about 18% °C⁻¹) of the dung mass loss was about three times that of the litter mass loss. These results suggest greater warming at night-time compared with daytime may accelerate litter mass loss, and grazing will enhance carbon loss to atmosphere in the region through a decrease of litter biomass and an increase of dung production with an increase of stocking rate in future warmer conditions. |
---|---|
AbstractList | Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitivity of litter and dung mass loss. Experiments were conducted for 1–2 years under a controlled warming–grazing system and along an elevation gradient from 3200 to 3800 m. A free‐air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures (average 0.5–1.6 °C) from 0 to 40 cm depth, but neither warming nor grazing affected soil moisture except early in the growing seasons at 30 cm soil depth. Heaters caused greater soil warming at night‐time compared with daytime, but grazing resulted in greater soil warming during daytime compared with night‐time. Annual average values of the soil temperature at 5 cm were 3.2, 2.4 and 0.3 °C at 3200, 3600 and 3800 m, respectively. Neither warming nor grazing caused changes of litter quality for the first year of the controlled warming–grazing experiment. The effects of warming and grazing on litter mass losses were additive, increasing litter mass losses by about 19.3% and 8.3%, respectively, for the 2‐year decomposition periods. The temperature sensitivity of litter mass losses was approximately 11% °C
−1
based on the controlled warming–grazing experiment. The annual cumulative litter mass loss was approximately 2.5 times that of dung along the elevation gradient. However, the temperature sensitivity (about 18% °C
−1
) of the dung mass loss was about three times that of the litter mass loss. These results suggest greater warming at night‐time compared with daytime may accelerate litter mass loss, and grazing will enhance carbon loss to atmosphere in the region through a decrease of litter biomass and an increase of dung production with an increase of stocking rate in future warmer conditions. Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitivity of litter and dung mass loss. Experiments were conducted for 1-2 years under a controlled warming-grazing system and along an elevation gradient from 3200 to 3800 m. A free-air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures (average 0.5-1.6 °C) from 0 to 40 cm depth, but neither warming nor grazing affected soil moisture except early in the growing seasons at 30 cm soil depth. Heaters caused greater soil warming at night-time compared with daytime, but grazing resulted in greater soil warming during daytime compared with night-time. Annual average values of the soil temperature at 5 cm were 3.2, 2.4 and 0.3 °C at 3200, 3600 and 3800 m, respectively. Neither warming nor grazing caused changes of litter quality for the first year of the controlled warming-grazing experiment. The effects of warming and grazing on litter mass losses were additive, increasing litter mass losses by about 19.3% and 8.3%, respectively, for the 2-year decomposition periods. The temperature sensitivity of litter mass losses was approximately 11% °C⁻¹ based on the controlled warming-grazing experiment. The annual cumulative litter mass loss was approximately 2.5 times that of dung along the elevation gradient. However, the temperature sensitivity (about 18% °C⁻¹) of the dung mass loss was about three times that of the litter mass loss. These results suggest greater warming at night-time compared with daytime may accelerate litter mass loss, and grazing will enhance carbon loss to atmosphere in the region through a decrease of litter biomass and an increase of dung production with an increase of stocking rate in future warmer conditions. Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitivity of litter and dung mass loss. Experiments were conducted for 1-2 years under a controlled warming-grazing system and along an elevation gradient from 3200 to 3800 m. A free-air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures (average 0.5-1.6 degrees C) from 0 to 40 cm depth, but neither warming nor grazing affected soil moisture except early in the growing seasons at 30 cm soil depth. Heaters caused greater soil warming at night-time compared with daytime, but grazing resulted in greater soil warming during daytime compared with night-time. Annual average values of the soil temperature at 5 cm were 3.2, 2.4 and 0.3 degrees C at 3200, 3600 and 3800 m, respectively. Neither warming nor grazing caused changes of litter quality for the first year of the controlled warming-grazing experiment. The effects of warming and grazing on litter mass losses were additive, increasing litter mass losses by about 19.3% and 8.3%, respectively, for the 2-year decomposition periods. The temperature sensitivity of litter mass losses was approximately 11% degrees C-1 based on the controlled warming-grazing experiment. The annual cumulative litter mass loss was approximately 2.5 times that of dung along the elevation gradient. However, the temperature sensitivity (about 18% degrees C-1) of the dung mass loss was about three times that of the litter mass loss. These results suggest greater warming at night-time compared with daytime may accelerate litter mass loss, and grazing will enhance carbon loss to atmosphere in the region through a decrease of litter biomass and an increase of dung production with an increase of stocking rate in future warmer conditions. [PUBLICATION ABSTRACT] Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitivity of litter and dung mass loss. Experiments were conducted for 1–2 years under a controlled warming–grazing system and along an elevation gradient from 3200 to 3800 m. A free‐air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures (average 0.5–1.6 °C) from 0 to 40 cm depth, but neither warming nor grazing affected soil moisture except early in the growing seasons at 30 cm soil depth. Heaters caused greater soil warming at night‐time compared with daytime, but grazing resulted in greater soil warming during daytime compared with night‐time. Annual average values of the soil temperature at 5 cm were 3.2, 2.4 and 0.3 °C at 3200, 3600 and 3800 m, respectively. Neither warming nor grazing caused changes of litter quality for the first year of the controlled warming–grazing experiment. The effects of warming and grazing on litter mass losses were additive, increasing litter mass losses by about 19.3% and 8.3%, respectively, for the 2‐year decomposition periods. The temperature sensitivity of litter mass losses was approximately 11% °C−1 based on the controlled warming–grazing experiment. The annual cumulative litter mass loss was approximately 2.5 times that of dung along the elevation gradient. However, the temperature sensitivity (about 18% °C−1) of the dung mass loss was about three times that of the litter mass loss. These results suggest greater warming at night‐time compared with daytime may accelerate litter mass loss, and grazing will enhance carbon loss to atmosphere in the region through a decrease of litter biomass and an increase of dung production with an increase of stocking rate in future warmer conditions. AbstractKnowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitivity of litter and dung mass loss. Experiments were conducted for 1-2 years under a controlled warming-grazing system and along an elevation gradient from 3200 to 3800 m. A free-air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures (average 0.5-1.6 C) from 0 to 40 cm depth, but neither warming nor grazing affected soil moisture except early in the growing seasons at 30 cm soil depth. Heaters caused greater soil warming at night-time compared with daytime, but grazing resulted in greater soil warming during daytime compared with night-time. Annual average values of the soil temperature at 5 cm were 3.2, 2.4 and 0.3 C at 3200, 3600 and 3800 m, respectively. Neither warming nor grazing caused changes of litter quality for the first year of the controlled warming-grazing experiment. The effects of warming and grazing on litter mass losses were additive, increasing litter mass losses by about 19.3% and 8.3%, respectively, for the 2-year decomposition periods. The temperature sensitivity of litter mass losses was approximately 11% C-1 based on the controlled warming-grazing experiment. The annual cumulative litter mass loss was approximately 2.5 times that of dung along the elevation gradient. However, the temperature sensitivity (about 18% C-1) of the dung mass loss was about three times that of the litter mass loss. These results suggest greater warming at night-time compared with daytime may accelerate litter mass loss, and grazing will enhance carbon loss to atmosphere in the region through a decrease of litter biomass and an increase of dung production with an increase of stocking rate in future warmer conditions. |
Author | CHANG, XIAOFENG SU, AILING KIMBALL, BRUCE HU, YIGANG DUAN, JICHUANG WANG, SHIPING ZHAO, XINQUAN LUO, CAIYUN XU, GUANGPING LIN, XINGWU TANG, YANGHONG LI, YINGNIAN CHAO, ZENGGUO DU, MINGYUAN ZHANG, ZHENHUA |
Author_xml | – sequence: 1 fullname: LUO, CAIYUN – sequence: 2 fullname: XU, GUANGPING – sequence: 3 fullname: CHAO, ZENGGUO – sequence: 4 fullname: WANG, SHIPING – sequence: 5 fullname: LIN, XINGWU – sequence: 6 fullname: HU, YIGANG – sequence: 7 fullname: ZHANG, ZHENHUA – sequence: 8 fullname: DUAN, JICHUANG – sequence: 9 fullname: CHANG, XIAOFENG – sequence: 10 fullname: SU, AILING – sequence: 11 fullname: LI, YINGNIAN – sequence: 12 fullname: ZHAO, XINQUAN – sequence: 13 fullname: DU, MINGYUAN – sequence: 14 fullname: TANG, YANGHONG – sequence: 15 fullname: KIMBALL, BRUCE |
BackLink | https://cir.nii.ac.jp/crid/1873398393068664064$$DView record in CiNii http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22764914$$DView record in Pascal Francis |
BookMark | eNqNksFv0zAUxiM0JLbB34CFQJxSnu3YtQ8gQTUK0hgHNnG0nMQpLqlTbIe13PjPsUkZ0k7NwXmSf9_37Pf5rDhxgzNFgTDMcPperWeYclaSSvAZAZAzIED4bPegOL3bOMk1q0oMmD4qzkJYAwAlwE-L3xddZ5qIhg7dar-xboW0a9HK61-5HhzqbYzGo40OAfVDWvJ-NJut8TqO3qBgXLDR_rRxn20OfKbaMVn8Fyaz-M2ga1ubqB3a9joaPT4uHna6D-bJ4X9e3Ly_uF58KC8_Lz8u3l6WDZOYlxzLTotaSwasxUAx1CCB1KQW0hApmJAgJGtZK2TbCAKatbSqoa6bjtOO0vPi5eS79cOP0YSoNjY0pu-1M8MY1LxiklYUqiNIwgXHDCfy2T1yPYzepWsoAoxwLjFL0IsDpEOj-85r19igtt5utN8rQua8kji3fTNxjU_T8qZTjY062sFFr22vMKicuFqrHKzKwaqcuPqbuNolA3HP4F-PI6SvJ-mt7c3-aJ1aLt7lKumfT3pnbTp2XrGYUyoFlRTStHgFPF-xnDAbotndtdH-u-JzOmfq69VSXX1aUgmcK5n4pxPf6UHplU9ju_lC0isGLNLYGKN_AM6J5lw |
CitedBy_id | crossref_primary_10_1002_joc_4013 crossref_primary_10_1016_j_scitotenv_2024_171288 crossref_primary_10_1002_ece3_3780 crossref_primary_10_1007_s10661_016_5663_y crossref_primary_10_1016_j_geoderma_2017_12_005 crossref_primary_10_1657_1938_4246_44_2_188 crossref_primary_10_1134_S1067413620030042 crossref_primary_10_1016_j_soilbio_2019_01_009 crossref_primary_10_1007_s11368_014_0867_7 crossref_primary_10_1007_s11368_019_02255_0 crossref_primary_10_1002_ece3_1646 crossref_primary_10_1007_s11284_014_1209_3 crossref_primary_10_1016_j_ecolind_2025_113344 crossref_primary_10_1016_j_scitotenv_2020_138106 crossref_primary_10_3390_agriculture14091581 crossref_primary_10_3390_plants10020294 crossref_primary_10_1111_gcb_12065 crossref_primary_10_1360_TB_2024_0304 crossref_primary_10_1007_s11104_019_04024_x crossref_primary_10_1002_eap_1770 crossref_primary_10_1016_j_fcr_2020_107903 crossref_primary_10_1093_jpe_rtt010 crossref_primary_10_1111_gcb_12855 crossref_primary_10_1016_j_agrformet_2017_08_034 crossref_primary_10_1016_j_actao_2021_103775 crossref_primary_10_1016_j_ecoleng_2017_11_001 crossref_primary_10_1126_sciadv_abl9526 crossref_primary_10_1016_j_agee_2017_07_041 crossref_primary_10_1016_j_ecolind_2015_10_054 crossref_primary_10_1038_ismej_2013_146 crossref_primary_10_1093_femsec_fiv152 crossref_primary_10_1016_j_agrformet_2015_10_002 crossref_primary_10_1002_ldr_3606 crossref_primary_10_1007_s12665_014_3597_7 crossref_primary_10_1139_cjps_2021_0141 crossref_primary_10_1016_j_scitotenv_2020_141344 crossref_primary_10_1128_AEM_00557_15 crossref_primary_10_1371_journal_pone_0103859 crossref_primary_10_1016_j_agee_2018_11_025 crossref_primary_10_1016_j_atmosenv_2017_03_024 crossref_primary_10_3390_agriculture13051084 crossref_primary_10_1016_j_soilbio_2012_08_009 crossref_primary_10_1007_s11104_020_04431_5 crossref_primary_10_1016_j_scitotenv_2023_164980 crossref_primary_10_1111_gfs_12065 crossref_primary_10_2134_agronj2012_0356 crossref_primary_10_1007_s00704_022_04049_w crossref_primary_10_1016_j_scitotenv_2022_159858 crossref_primary_10_1016_j_catena_2021_105803 crossref_primary_10_1016_j_agrformet_2015_09_008 crossref_primary_10_1016_j_apsoil_2023_105104 crossref_primary_10_1016_j_scitotenv_2022_155212 crossref_primary_10_1007_s11430_023_1370_1 crossref_primary_10_1093_femsec_fiy019 crossref_primary_10_1016_j_atmosenv_2017_11_053 crossref_primary_10_3389_fenvs_2021_702713 crossref_primary_10_1007_s11629_024_8853_z crossref_primary_10_1016_j_apsoil_2014_11_012 crossref_primary_10_34133_ehs_0178 crossref_primary_10_1186_s13007_019_0387_y crossref_primary_10_1371_journal_pone_0075503 crossref_primary_10_1371_journal_pone_0116834 crossref_primary_10_1007_s00704_011_0518_5 crossref_primary_10_1016_j_jhydrol_2012_10_031 crossref_primary_10_3389_fpls_2025_1455170 crossref_primary_10_1016_j_scitotenv_2022_154114 crossref_primary_10_1007_s00253_011_3535_5 crossref_primary_10_1080_15230430_2020_1712875 crossref_primary_10_1360_N072023_0312 crossref_primary_10_1890_11_1408_1 crossref_primary_10_1016_j_apsoil_2016_04_020 crossref_primary_10_3390_rs13040669 crossref_primary_10_1088_1755_1315_146_1_012005 crossref_primary_10_1007_s00374_022_01639_8 crossref_primary_10_1016_j_geoderma_2023_116725 crossref_primary_10_1007_s11769_017_0898_2 crossref_primary_10_1038_srep27781 crossref_primary_10_1890_14_1368_1 crossref_primary_10_5194_bg_11_1743_2014 crossref_primary_10_1007_s11104_021_05006_8 crossref_primary_10_1016_j_ecolind_2022_109561 crossref_primary_10_3389_ffgc_2022_877025 crossref_primary_10_1007_s11104_020_04438_y crossref_primary_10_1016_j_agrformet_2021_108408 crossref_primary_10_1016_j_apsoil_2023_105203 crossref_primary_10_1016_j_apsoil_2024_105566 crossref_primary_10_1038_s41598_019_43904_1 crossref_primary_10_1016_j_agee_2020_107256 crossref_primary_10_3390_su141912802 crossref_primary_10_1016_j_apsoil_2021_103935 crossref_primary_10_1016_j_soilbio_2022_108616 crossref_primary_10_1016_j_still_2015_12_012 crossref_primary_10_1016_j_scitotenv_2022_156531 crossref_primary_10_1016_j_agee_2014_04_021 crossref_primary_10_1111_jvs_12703 crossref_primary_10_1002_ecm_1632 crossref_primary_10_1111_gcb_13111 crossref_primary_10_3390_agriculture12101521 crossref_primary_10_1111_j_1365_2486_2011_02399_x crossref_primary_10_3389_fmicb_2016_01032 crossref_primary_10_1016_j_envres_2023_115333 crossref_primary_10_1007_s11104_019_04272_x crossref_primary_10_1093_jpe_rtac027 crossref_primary_10_1016_j_agrformet_2014_01_003 crossref_primary_10_1016_j_agrformet_2022_109167 crossref_primary_10_1007_s11258_014_0364_5 crossref_primary_10_1016_j_agee_2020_107119 crossref_primary_10_1016_j_soilbio_2019_02_018 crossref_primary_10_1186_s12870_024_04924_w crossref_primary_10_1007_s11104_020_04551_y crossref_primary_10_1016_j_agrformet_2019_107792 crossref_primary_10_1007_s12665_013_2547_0 crossref_primary_10_1007_s00374_018_1280_y crossref_primary_10_1016_j_atmosenv_2016_11_060 crossref_primary_10_3390_agriculture12101538 crossref_primary_10_1007_s11104_016_2791_7 crossref_primary_10_1016_j_ecoleng_2017_07_039 crossref_primary_10_5194_se_6_303_2015 crossref_primary_10_1371_journal_pone_0165212 crossref_primary_10_1371_journal_pone_0076447 crossref_primary_10_1007_s11104_019_04410_5 crossref_primary_10_1016_j_agrformet_2010_11_013 crossref_primary_10_1016_j_soilbio_2019_107690 crossref_primary_10_1016_j_coldregions_2015_03_012 crossref_primary_10_1016_j_ecoleng_2018_02_016 crossref_primary_10_1080_11956860_2019_1710908 crossref_primary_10_1007_s10705_020_10062_0 crossref_primary_10_1007_s11368_011_0388_6 crossref_primary_10_1126_sciadv_abc7358 crossref_primary_10_1007_s11104_020_04681_3 crossref_primary_10_1016_j_agrformet_2011_01_009 crossref_primary_10_1016_j_jclepro_2023_140144 crossref_primary_10_1002_ece3_4215 crossref_primary_10_1007_s11258_017_0746_6 crossref_primary_10_2134_agronj2011_0212 crossref_primary_10_1007_s11104_012_1132_8 crossref_primary_10_1002_ece3_1867 crossref_primary_10_1126_science_aal1319 crossref_primary_10_5194_bg_14_5455_2017 crossref_primary_10_1109_JSTARS_2022_3214224 crossref_primary_10_1016_j_geoderma_2019_07_034 crossref_primary_10_3389_fmicb_2023_1106739 crossref_primary_10_1371_journal_pone_0186980 crossref_primary_10_1007_s11104_020_04613_1 crossref_primary_10_1093_jpe_rtac009 crossref_primary_10_1016_j_catena_2020_104900 crossref_primary_10_1111_gcb_12277 crossref_primary_10_5194_bg_15_4447_2018 crossref_primary_10_1016_j_agee_2013_11_024 crossref_primary_10_1007_s11104_019_04278_5 crossref_primary_10_1038_srep34786 crossref_primary_10_1007_s10533_013_9844_2 crossref_primary_10_15377_2410_3624_2020_07_3 crossref_primary_10_1007_s11284_016_1385_4 crossref_primary_10_1038_s41598_022_25367_z crossref_primary_10_1007_s11104_019_03991_5 crossref_primary_10_3390_agronomy15010243 crossref_primary_10_1657_1938_4246_46_2_441 crossref_primary_10_1002_ldr_3343 crossref_primary_10_1016_j_soilbio_2019_107611 crossref_primary_10_1016_j_soilbio_2024_109675 crossref_primary_10_1073_pnas_1904990116 crossref_primary_10_1111_gfs_12280 crossref_primary_10_5194_bg_15_4233_2018 crossref_primary_10_1016_j_aoas_2024_07_003 crossref_primary_10_1016_j_agrformet_2018_04_006 |
Cites_doi | 10.1007/s100210000042 10.1007/978-94-010-0965-2 10.1034/j.1600-0706.2002.960312.x 10.1111/j.1365-2745.2006.01142.x 10.1111/j.1461-0248.2007.01051.x 10.2307/1939308 10.1016/S0169-5347(00)88978-8 10.1016/B978-0-12-233440-5.50014-2 10.1038/nature03226 10.2307/1936780 10.1890/05-0685 10.1007/s002480000071 10.1890/1051-0761(1998)008[1061:TEOLQA]2.0.CO;2 10.1890/1051-0761(2001)011[1206:COLDIA]2.0.CO;2 10.2307/3546886 10.1046/j.1469-8137.1998.00221.x 10.1038/nature04038 10.1023/B:PLSO.0000037044.63113.fe 10.1016/j.actao.2005.01.003 10.1007/BF00000785 10.2307/3545996 10.1034/j.1600-0889.1992.t01-1-00001.x 10.1139/x90-023 10.1023/A:1019681606112 10.1111/j.1365-2745.2001.00625.x 10.1016/S0038-0717(98)00069-8 10.1111/j.1461-0248.2008.01219.x 10.1046/j.1365-2486.1998.00196.x 10.1111/j.1744-697X.2005.00028.x 10.1038/35048672 10.1007/BF00378235 10.1038/35009076 10.1126/science.267.5199.876 10.1111/j.1365-2486.2007.01486.x 10.1046/j.1365-2486.2003.00605.x 10.2307/3565559 10.1038/nature02887 10.1046/j.1365-2486.2002.00510.x 10.2307/4002994 10.2136/sssaj1998.03615995006200040031x 10.1139/b96-084 10.1007/s10021-008-9160-1 10.1890/04-1254 10.2307/1936576 10.1038/nature03138 10.1126/science.1074153 10.1890/06-2138.1 10.2307/1938416 10.2307/3802368 10.1007/s003740050493 10.1007/s11434-006-1396-6 10.1007/s00442-004-1689-x 10.1029/2004GB002315 10.1111/j.1365-2486.2005.00994.x 10.1016/S0038-0717(03)00107-X 10.1016/0038-0717(70)90005-2 |
ContentType | Journal Article |
Copyright | 2009 Blackwell Publishing Ltd 2015 INIST-CNRS 2010 Blackwell Publishing |
Copyright_xml | – notice: 2009 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS – notice: 2010 Blackwell Publishing |
DBID | FBQ BSCLL RYH AAYXX CITATION IQODW 7SN 7UA C1K F1W H97 L.G 7S9 L.6 7ST 7TV 7U6 SOI |
DOI | 10.1111/j.1365-2486.2009.02026.x |
DatabaseName | AGRIS Istex CiNii Complete CrossRef Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic Environment Abstracts Pollution Abstracts Sustainability Science Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic Pollution Abstracts Environment Abstracts Sustainability Science Abstracts |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA Ecology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 1617 |
ExternalDocumentID | 2013654451 22764914 10_1111_j_1365_2486_2009_02026_x GCB2026 ark_67375_WNG_NMG39066_9 US201301827655 |
Genre | article Feature |
GeographicLocations | Tibetan Plateau China China, People's Rep., Xizang, Tibetan Plateau |
GeographicLocations_xml | – name: Tibetan Plateau – name: China – name: China, People's Rep., Xizang, Tibetan Plateau |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEYWJ AFWVQ AGQPQ AGYGG ALVPJ RYH AAYXX AGHNM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW 7SN 7UA C1K F1W H97 L.G 7S9 L.6 7ST 7TV 7U6 SOI |
ID | FETCH-LOGICAL-c5916-619fa8ba9505d10310b0902b2b89e2985890895d5d89dc820a5d34b0bbcf63f33 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 |
IngestDate | Fri Jul 11 01:06:05 EDT 2025 Fri Jul 11 08:52:55 EDT 2025 Fri Jul 25 10:39:21 EDT 2025 Mon Jul 21 09:14:37 EDT 2025 Thu Apr 24 23:06:20 EDT 2025 Tue Jul 01 03:52:44 EDT 2025 Wed Jan 22 16:34:11 EST 2025 Thu Jun 26 21:58:34 EDT 2025 Wed Oct 30 09:57:17 EDT 2024 Wed Dec 27 19:13:54 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Grassland Warming Modification Temperature Litter grazing dung Lawn Mass loss Environmental factor Decomposition infrared alpine meadow Dynamical climatology Climate change Alpine vegetation temperature sensitivity Global change Qinghai-Xizang Plateau Planetary scale |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5916-619fa8ba9505d10310b0902b2b89e2985890895d5d89dc820a5d34b0bbcf63f33 |
Notes | http://dx.doi.org/10.1111/j.1365-2486.2009.02026.x ark:/67375/WNG-NMG39066-9 istex:3D0EC751254AEE0E46226A245D4EA17CF8F3948F ArticleID:GCB2026 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0373-1661 |
PQID | 205266915 |
PQPubID | 30327 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_745934304 proquest_miscellaneous_742686151 proquest_journals_205266915 pascalfrancis_primary_22764914 crossref_citationtrail_10_1111_j_1365_2486_2009_02026_x crossref_primary_10_1111_j_1365_2486_2009_02026_x wiley_primary_10_1111_j_1365_2486_2009_02026_x_GCB2026 nii_cinii_1873398393068664064 istex_primary_ark_67375_WNG_NMG39066_9 fao_agris_US201301827655 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2010 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: May 2010 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Global Change Biology |
PublicationYear | 2010 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Wiley Wiley-Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Wiley – name: Wiley-Blackwell |
References | Duan Y-W, He Y-P, Liu J-Q (2005) Reproductive ecology of the Qinghai-Tibet Plateau endemic Gentiana straminea (Gentianaceae), a hermaphrodite perennial characterized by herkogamy and dichogamy. Acta Oecologica, 27, 225-232. Robinson CH (2002) Controls on decomposition and soil nitrogen availability at high latitudes. Plant and Soil, 242, 65-81. Wan S, Hui D, Wallace L, Luo Y (2005) Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycle, 19, GB2014, doi: DOI: 10.1029/2004GB002315. Kimball BA, Conley MM, Wang SP, Lin XW, Luo CY, Morgan J, Smith D (2008) Infrared heater arrays for warming ecosystem field plots. Global Change in Biology, 14, 309-320. Floate MJS (1970) Decomposition of organic materials from hill soils and pastures. II. Comparative studies on the mineralization of carbon, nitrogen, and phosphorus from plant materials and sheep faeces. Soil Biology and Biochemistry, 2, 173-185. Giardina PH, Loveland PJ, Bradley RI, Murray LR, Kirk G (2000) Evidence that decomposition rate of organic matter in mineral soil do not vary with temperature. Nature, 404, 858-861. Liski J, Nissinen A, Erhard M, Taskinen O (2003) Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Global Change in Biology, 9, 575-584. Melillo J, Steudler PA, Abler JD et al. (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2175. Rustad LE, Fernandez IJ (1998) Soil warming: consequences for foliar litter decay in a spruce-fir forest in Maine, USA. Soil Science Society of America Journal, 62, 1072-1080. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626. Yao J, Yang BH, Yan P et al. (2006) Analysis on habitat variance and behaviour of Bos gruiens in China. Acta Prataculturae Sinica, 15, 124-128. Kueppers LM, Southon J, Baer P et al. (2004) Dead wood biomass and turnover time, measured by radiocarbon, along a subalpine elevation gradient. Oecologia, 141, 641-651. Mack MC, Schnur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature, 431, 440-443. Cornelissen JHC, Callaghan TV, Alatalo JM et al. (2001) Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? Journal of Ecology, 89, 984-994. Ruess RW, Hik DS, Jefferies RL (1989) The role of lesser snow geese as nitrogen processors in a sub-arctic marsh. Oecologia, 79, 23-29. Pastor J, Dewey B, Naiman RJ et al. (1993) Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology, 74, 467-480. Duan AM, Wu GX, Zhang Q, Liu YM (2006) New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chinese Science Bulletin, 51, 1396-1400. ACIA (2005) Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK. Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465-472. Klein JA, Harte J, Zhao XQ (2007) Experimental warming, not grazing, decreases rangeland quality on the Tibetan plateau. Ecological Applications, 17, 541-557. Zhou HK, Zhao XQ, Tang YH, Gu S, Zhou L (2005) Alpine grassland degradation and its control in the source region of Yangtze and Yellow rivers, China. Japanese Journal of Grassland Science, 51, 191-203. Van Soest PJ (1963) Use of detergents in analysis of fibrous feeds: a rapid method for the determination of fiber and lignin. Association of Official Analytical Chemists, 46, 829-835. AOAC (1984) Official methods of analysis of the Association of Official Analytical Chemists, 14th edn. Association of Official Analytical Chemists, Washington, DC, USA. Zhao XQ, Zhou XM (1999) Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station. Ambio, 28, 642-647. Ryan M, Melillo J, Ricca A (1990) A comparison of methods for determining proximate carbon fractions of forest litter. Canadian Journal of Forest Research, 20, 166-171. Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 30, 1867-1878. Wan S, Luo Y, Wallace L (2002) Change in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change in Biology, 8, 754-768. Eiland F, Klamer M, Lind AM, Baath E (2001) Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microbial Ecology, 41, 272-280. Jones CD, Cox P, Huntingford C (2003) Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus Series B Chemical and Physical Meteorology, 55, 642-648. Wang SP, Wang YF, Chen ZZ (2003) Grazing Ecosystem and Management. Science Press, Beijing, China. Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends in Ecology and Evolution, 10, 63-66. IPCC (2007) Climate Change 2007: Summary for Policymaker. Valencia, Spain. Post E, Pedersen C, Wilmers CC, Forchhammer MC (2008) Phenological sequences reveal aggregate life history response to climatic warming. Ecology, 89, 363-370. Hobbie SE (2000) Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems, 3, 484-494. Berg B, Ekbohm G, Johansson ME, McClaugherty CA, Rutigliano F, Santo AV (1996) Maximum decomposition limits of forest litter types: a synthesis. Canadian Journal of Botany, 74, 659-672. Robinson CH, Wookey PA, Parsons AN et al. (1995) Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath. Oikos, 74, 503-512. Murphy KL, Klopatek JM, Klopatek CC (1998) The effects of litter quality and climate on decomposition along an elevational gradient. Ecological Applications, 8, 1061-1071. Knorr W, Pretice IC, House IJ, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298-301. Ruess RW, McNaughton SJ (1987) Grazing and the dynamics of nutrient and energy regulated microbial processes in the Serengeti grasslands. Oikos, 49, 101-110. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173. Fang C, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57-59. Sjögersten S, Wookey PA (2004) Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions. Plant and Soil, 262, 215-227. Berg B, Berg MP, Bottner P et al. (1993) Litter mass loss rates in pine forests of Europe and eastern United States: some relationships with climate and litter quality. Biogeochemistry, 20, 127-159. Hobbs NT (1996) Modification of ecosystems by ungulates. Journal of Wildlife Management, 60, 695-713. Houghton JT, Ding Y, Griggs DJ et al. (2001) Climate Change 2001: The Scientific Basis. Third IPCC Report. Cambridge University Press, Cambridge. Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology, 86, 320-326. Gerald W, Han JL, Long RJ (2003) The Yak-Second Edition. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand. Klein JA, Harte J, Zhao X-Q (2008) Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan plateau. Ecosystems, 11, 775-789. Aerts R (1997) Climate, leaf litter chemistry, and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449. Shaw MR, Harte J (2001) Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change. Ecological Applications, 11, 1206-1223. Shariff AR, Biondini ME, Grygiel CE (1994) Grazing intensity effects on litter decomposition and soil nitrogen mineralization. Journal of Range Management, 47, 444-449. Klein J, Harte J, Zhao XQ (2005) Dynamic and complex microclimate responses to warming and grazing manipulation. Global Change in Biology, 11, 1440-1451. Shaver GR, Canadell J, Chapin FS et al. (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience, 50, 871-882. Harte J, Shaw R (1995) Shifting dominance within a montane vegetation community, results of a climate-warming experiment. Science, 267, 876-880. McTiernan KB, Coüteaux MM, Berg B et al. (2003) Changes in chemical composition of Pinus sylvestris needle litter during decomposition along a European coniferous forest climatic transect. Soil Biology and Biochemistry, 35, 801-812. Olofsson J, Oksanen L (2002) Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer: a litterbag experiment. Oikos, 96, 507-515. Zheng D, Zhang QS, Wu SH (2000) Mountain Geoecology and Sustainable Development of the Tibetan Plateau. Kluwer Academic, Norwell, MA. Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99. Davidson EA, Trumbore SE, Amundson R (2000) Soil warming and organic matter content. Nature, 408, 789-790. Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70, 97-104. Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978-2003. Nature, 437, 245-248. Cornelissen JHC, Van Bodegom PM, Aerts R et al. (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biom 1963; 46 1995; 74 2002; 96 2000; 3 1993; 20 2000; 50 1996; 74 2001; 89 2005; 27 1992; 44B 2001; 41 2003; 55 1970; 2 2000; 408 2001 2000 1982; 63 2000; 404 1989; 70 2003; 9 1993; 74 1996; 60 2006; 440 1984 2001; 11 1989; 79 1987; 49 2007; 17 2006; 94 2006; 51 2005; 433 2004; 141 2004; 262 1999; 28 2002; 298 1995; 10 2002; 8 2006; 15 2005; 437 2008; 14 2003; 35 2005; 86 2007 1994; 47 2005 1994 2008; 11 1978; 59 1993 2003 2007; 10 1998; 62 1999; 5 2004; 431 1990; 20 2005; 19 2002; 242 1997; 79 2005; 51 2008; 89 1995; 267 1998; 30 2005; 11 1998; 8 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 Wang SP (e_1_2_7_64_1) 2003 Jones CD (e_1_2_7_29_1) 2003; 55 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 Van Soest PJ (e_1_2_7_60_1) 1963; 46 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 ACIA (e_1_2_7_2_1) 2005 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 Parton WJ (e_1_2_7_44_1) 1994 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 Yao J (e_1_2_7_65_1) 2006; 15 e_1_2_7_12_1 AOAC (e_1_2_7_5_1) 1984 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 Zhao XQ (e_1_2_7_66_1) 1999; 28 Gerald W (e_1_2_7_21_1) 2003 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Houghton JT (e_1_2_7_27_1) 2001 IPCC (e_1_2_7_28_1) 2007 |
References_xml | – reference: Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99. – reference: Kueppers LM, Southon J, Baer P et al. (2004) Dead wood biomass and turnover time, measured by radiocarbon, along a subalpine elevation gradient. Oecologia, 141, 641-651. – reference: Melillo J, Steudler PA, Abler JD et al. (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2175. – reference: Floate MJS (1970) Decomposition of organic materials from hill soils and pastures. II. Comparative studies on the mineralization of carbon, nitrogen, and phosphorus from plant materials and sheep faeces. Soil Biology and Biochemistry, 2, 173-185. – reference: Olofsson J, Oksanen L (2002) Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer: a litterbag experiment. Oikos, 96, 507-515. – reference: Sjögersten S, Wookey PA (2004) Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions. Plant and Soil, 262, 215-227. – reference: Duan Y-W, He Y-P, Liu J-Q (2005) Reproductive ecology of the Qinghai-Tibet Plateau endemic Gentiana straminea (Gentianaceae), a hermaphrodite perennial characterized by herkogamy and dichogamy. Acta Oecologica, 27, 225-232. – reference: Kimball BA, Conley MM, Wang SP, Lin XW, Luo CY, Morgan J, Smith D (2008) Infrared heater arrays for warming ecosystem field plots. Global Change in Biology, 14, 309-320. – reference: Knorr W, Pretice IC, House IJ, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298-301. – reference: Aerts R (1997) Climate, leaf litter chemistry, and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449. – reference: Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94, 713-724. – reference: Liski J, Nissinen A, Erhard M, Taskinen O (2003) Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Global Change in Biology, 9, 575-584. – reference: Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 30, 1867-1878. – reference: AOAC (1984) Official methods of analysis of the Association of Official Analytical Chemists, 14th edn. Association of Official Analytical Chemists, Washington, DC, USA. – reference: Zheng D, Zhang QS, Wu SH (2000) Mountain Geoecology and Sustainable Development of the Tibetan Plateau. Kluwer Academic, Norwell, MA. – reference: Wang SP, Wang YF, Chen ZZ (2003) Grazing Ecosystem and Management. Science Press, Beijing, China. – reference: Eiland F, Klamer M, Lind AM, Baath E (2001) Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microbial Ecology, 41, 272-280. – reference: Giardina PH, Loveland PJ, Bradley RI, Murray LR, Kirk G (2000) Evidence that decomposition rate of organic matter in mineral soil do not vary with temperature. Nature, 404, 858-861. – reference: IPCC (2007) Climate Change 2007: Summary for Policymaker. Valencia, Spain. – reference: Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626. – reference: Murphy KL, Klopatek JM, Klopatek CC (1998) The effects of litter quality and climate on decomposition along an elevational gradient. Ecological Applications, 8, 1061-1071. – reference: Van Soest PJ (1963) Use of detergents in analysis of fibrous feeds: a rapid method for the determination of fiber and lignin. Association of Official Analytical Chemists, 46, 829-835. – reference: Houghton JT, Ding Y, Griggs DJ et al. (2001) Climate Change 2001: The Scientific Basis. Third IPCC Report. Cambridge University Press, Cambridge. – reference: Davidson EA, Trumbore SE, Amundson R (2000) Soil warming and organic matter content. Nature, 408, 789-790. – reference: Ryan M, Melillo J, Ricca A (1990) A comparison of methods for determining proximate carbon fractions of forest litter. Canadian Journal of Forest Research, 20, 166-171. – reference: McTiernan KB, Coüteaux MM, Berg B et al. (2003) Changes in chemical composition of Pinus sylvestris needle litter during decomposition along a European coniferous forest climatic transect. Soil Biology and Biochemistry, 35, 801-812. – reference: Harte J, Shaw R (1995) Shifting dominance within a montane vegetation community, results of a climate-warming experiment. Science, 267, 876-880. – reference: Yao J, Yang BH, Yan P et al. (2006) Analysis on habitat variance and behaviour of Bos gruiens in China. Acta Prataculturae Sinica, 15, 124-128. – reference: Robinson CH (2002) Controls on decomposition and soil nitrogen availability at high latitudes. Plant and Soil, 242, 65-81. – reference: Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology, 86, 320-326. – reference: Mack MC, Schnur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature, 431, 440-443. – reference: Ruess RW, Hik DS, Jefferies RL (1989) The role of lesser snow geese as nitrogen processors in a sub-arctic marsh. Oecologia, 79, 23-29. – reference: Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173. – reference: Pastor J, Dewey B, Naiman RJ et al. (1993) Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology, 74, 467-480. – reference: Zhou HK, Zhao XQ, Tang YH, Gu S, Zhou L (2005) Alpine grassland degradation and its control in the source region of Yangtze and Yellow rivers, China. Japanese Journal of Grassland Science, 51, 191-203. – reference: Klein JA, Harte J, Zhao XQ (2007) Experimental warming, not grazing, decreases rangeland quality on the Tibetan plateau. Ecological Applications, 17, 541-557. – reference: Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978-2003. Nature, 437, 245-248. – reference: Cornelissen JHC, Van Bodegom PM, Aerts R et al. (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters, 10, 619-627. – reference: Post E, Pedersen C, Wilmers CC, Forchhammer MC (2008) Phenological sequences reveal aggregate life history response to climatic warming. Ecology, 89, 363-370. – reference: Rustad LE, Fernandez IJ (1998) Soil warming: consequences for foliar litter decay in a spruce-fir forest in Maine, USA. Soil Science Society of America Journal, 62, 1072-1080. – reference: Zhao XQ, Zhou XM (1999) Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station. Ambio, 28, 642-647. – reference: Shaw MR, Harte J (2001) Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change. Ecological Applications, 11, 1206-1223. – reference: Wan S, Luo Y, Wallace L (2002) Change in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change in Biology, 8, 754-768. – reference: Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465-472. – reference: Gerald W, Han JL, Long RJ (2003) The Yak-Second Edition. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand. – reference: ACIA (2005) Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK. – reference: Hart SC, Perry DA (1999) Transferring soils from high- to low-elevation forests increases nitrogen cycling rates: climate change implications Glob. Change Biology, 5, 23-32. – reference: Wan S, Hui D, Wallace L, Luo Y (2005) Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycle, 19, GB2014, doi: DOI: 10.1029/2004GB002315. – reference: Shaver GR, Canadell J, Chapin FS et al. (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience, 50, 871-882. – reference: Jones CD, Cox P, Huntingford C (2003) Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus Series B Chemical and Physical Meteorology, 55, 642-648. – reference: Klein J, Harte J, Zhao XQ (2005) Dynamic and complex microclimate responses to warming and grazing manipulation. Global Change in Biology, 11, 1440-1451. – reference: Duan AM, Wu GX, Zhang Q, Liu YM (2006) New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chinese Science Bulletin, 51, 1396-1400. – reference: Shariff AR, Biondini ME, Grygiel CE (1994) Grazing intensity effects on litter decomposition and soil nitrogen mineralization. Journal of Range Management, 47, 444-449. – reference: Hobbs NT (1996) Modification of ecosystems by ungulates. Journal of Wildlife Management, 60, 695-713. – reference: Hobbie SE (2000) Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems, 3, 484-494. – reference: Berg B, Ekbohm G, Johansson ME, McClaugherty CA, Rutigliano F, Santo AV (1996) Maximum decomposition limits of forest litter types: a synthesis. Canadian Journal of Botany, 74, 659-672. – reference: Cornelissen JHC, Callaghan TV, Alatalo JM et al. (2001) Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? Journal of Ecology, 89, 984-994. – reference: Klein JA, Harte J, Zhao X-Q (2008) Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan plateau. Ecosystems, 11, 775-789. – reference: Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends in Ecology and Evolution, 10, 63-66. – reference: Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70, 97-104. – reference: Berg B, Berg MP, Bottner P et al. (1993) Litter mass loss rates in pine forests of Europe and eastern United States: some relationships with climate and litter quality. Biogeochemistry, 20, 127-159. – reference: Verburg PSJ, Van Loon WKP, Lükewille A (1999) The CLIMEX soil-heating experiment: soil response after 2 years of treatment. Biology and Fertility of Soils, 28, 271-276. – reference: Robinson CH, Wookey PA, Parsons AN et al. (1995) Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath. Oikos, 74, 503-512. – reference: Fang C, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57-59. – reference: Ruess RW, McNaughton SJ (1987) Grazing and the dynamics of nutrient and energy regulated microbial processes in the Serengeti grasslands. Oikos, 49, 101-110. – volume: 20 start-page: 166 year: 1990 end-page: 171 article-title: A comparison of methods for determining proximate carbon fractions of forest litter publication-title: Canadian Journal of Forest Research – volume: 89 start-page: 363 year: 2008 end-page: 370 article-title: Phenological sequences reveal aggregate life history response to climatic warming publication-title: Ecology – volume: 14 start-page: 309 year: 2008 end-page: 320 article-title: Infrared heater arrays for warming ecosystem field plots publication-title: Global Change in Biology – year: 2005 – volume: 47 start-page: 444 year: 1994 end-page: 449 article-title: Grazing intensity effects on litter decomposition and soil nitrogen mineralization publication-title: Journal of Range Management – volume: 440 start-page: 165 year: 2006 end-page: 173 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 433 start-page: 298 year: 2005 end-page: 301 article-title: Long‐term sensitivity of soil carbon turnover to warming publication-title: Nature – volume: 41 start-page: 272 year: 2001 end-page: 280 article-title: Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw publication-title: Microbial Ecology – year: 2001 – volume: 27 start-page: 225 year: 2005 end-page: 232 article-title: Reproductive ecology of the Qinghai‐Tibet Plateau endemic (Gentianaceae), a hermaphrodite perennial characterized by herkogamy and dichogamy publication-title: Acta Oecologica – volume: 86 start-page: 320 year: 2005 end-page: 326 article-title: Litter quality and the temperature sensitivity of decomposition publication-title: Ecology – volume: 30 start-page: 1867 year: 1998 end-page: 1878 article-title: Linking above‐ground and below‐ground interactions publication-title: Soil Biology and Biochemistry – volume: 10 start-page: 619 year: 2007 end-page: 627 article-title: Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes publication-title: Ecology Letters – volume: 20 start-page: 127 year: 1993 end-page: 159 article-title: Litter mass loss rates in pine forests of Europe and eastern United States publication-title: Biogeochemistry – volume: 44B start-page: 81 year: 1992 end-page: 99 article-title: The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate publication-title: Tellus – volume: 94 start-page: 713 year: 2006 end-page: 724 article-title: The freezer defrosting publication-title: Journal of Ecology – volume: 431 start-page: 440 year: 2004 end-page: 443 article-title: Ecosystem carbon storage in arctic tundra reduced by long‐term nutrient fertilization publication-title: Nature – volume: 96 start-page: 507 year: 2002 end-page: 515 article-title: Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer publication-title: Oikos – volume: 28 start-page: 271 year: 1999 end-page: 276 article-title: The CLIMEX soil‐heating experiment publication-title: Biology and Fertility of Soils – volume: 9 start-page: 575 year: 2003 end-page: 584 article-title: Climatic effects on litter decomposition from arctic tundra to tropical rainforest publication-title: Global Change in Biology – volume: 11 start-page: 1206 year: 2001 end-page: 1223 article-title: Control of litter decomposition in a subalpine meadow‐sagebrush steppe ecotone under climate change publication-title: Ecological Applications – volume: 35 start-page: 801 year: 2003 end-page: 812 article-title: Changes in chemical composition of needle litter during decomposition along a European coniferous forest climatic transect publication-title: Soil Biology and Biochemistry – volume: 141 start-page: 641 year: 2004 end-page: 651 article-title: Dead wood biomass and turnover time, measured by radiocarbon, along a subalpine elevation gradient publication-title: Oecologia – volume: 74 start-page: 503 year: 1995 end-page: 512 article-title: Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi‐desert and a subarctic dwarf shrub heath publication-title: Oikos – volume: 10 start-page: 63 year: 1995 end-page: 66 article-title: Litter decomposition, climate and litter quality publication-title: Trends in Ecology and Evolution – volume: 3 start-page: 484 year: 2000 end-page: 494 article-title: Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest publication-title: Ecosystems – volume: 19 start-page: GB2014 year: 2005 article-title: Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie publication-title: Global Biogeochemical Cycle – volume: 50 start-page: 871 year: 2000 end-page: 882 article-title: Global warming and terrestrial ecosystems publication-title: Bioscience – volume: 437 start-page: 245 year: 2005 end-page: 248 article-title: Carbon losses from all soils across England and Wales 1978–2003 publication-title: Nature – start-page: 141 year: 1993 end-page: 158 – volume: 11 start-page: 1440 year: 2005 end-page: 1451 article-title: Dynamic and complex microclimate responses to warming and grazing manipulation publication-title: Global Change in Biology – volume: 267 start-page: 876 year: 1995 end-page: 880 article-title: Shifting dominance within a montane vegetation community, results of a climate‐warming experiment publication-title: Science – volume: 28 start-page: 642 year: 1999 end-page: 647 article-title: Ecological basis of alpine meadow ecosystem management in Tibet publication-title: Ambio – volume: 74 start-page: 659 year: 1996 end-page: 672 article-title: Maximum decomposition limits of forest litter types publication-title: Canadian Journal of Botany – volume: 404 start-page: 858 year: 2000 end-page: 861 article-title: Evidence that decomposition rate of organic matter in mineral soil do not vary with temperature publication-title: Nature – volume: 8 start-page: 1061 year: 1998 end-page: 1071 article-title: The effects of litter quality and climate on decomposition along an elevational gradient publication-title: Ecological Applications – volume: 59 start-page: 465 year: 1978 end-page: 472 article-title: Macroclimate and lignin control of litter decomposition rates publication-title: Ecology – volume: 46 start-page: 829 year: 1963 end-page: 835 article-title: Use of detergents in analysis of fibrous feeds publication-title: Association of Official Analytical Chemists – volume: 55 start-page: 642 year: 2003 end-page: 648 article-title: Uncertainty in climate‐carbon‐cycle projections associated with the sensitivity of soil respiration to temperature publication-title: Tellus Series B Chemical and Physical Meteorology – volume: 74 start-page: 467 year: 1993 end-page: 480 article-title: Moose browsing and soil fertility in the boreal forests of Isle Royale National Park publication-title: Ecology – year: 2007 – year: 2003 – volume: 60 start-page: 695 year: 1996 end-page: 713 article-title: Modification of ecosystems by ungulates publication-title: Journal of Wildlife Management – volume: 262 start-page: 215 year: 2004 end-page: 227 article-title: Decomposition of mountain birch leaf litter at the forest‐tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions publication-title: Plant and Soil – year: 2000 – volume: 242 start-page: 65 year: 2002 end-page: 81 article-title: Controls on decomposition and soil nitrogen availability at high latitudes publication-title: Plant and Soil – volume: 5 start-page: 23 year: 1999 end-page: 32 article-title: Transferring soils from high‐ to low‐elevation forests increases nitrogen cycling rates publication-title: Change Biology – volume: 17 start-page: 541 year: 2007 end-page: 557 article-title: Experimental warming, not grazing, decreases rangeland quality on the Tibetan plateau publication-title: Ecological Applications – start-page: 147 year: 1994 end-page: 167 – volume: 8 start-page: 754 year: 2002 end-page: 768 article-title: Change in microclimate induced by experimental warming and clipping in tallgrass prairie publication-title: Global Change in Biology – volume: 89 start-page: 984 year: 2001 end-page: 994 article-title: Global change and arctic ecosystems publication-title: Journal of Ecology – volume: 70 start-page: 97 year: 1989 end-page: 104 article-title: Nitrogen and lignin content as predictors of litter decay rates publication-title: Ecology – volume: 51 start-page: 191 year: 2005 end-page: 203 article-title: Alpine grassland degradation and its control in the source region of Yangtze and Yellow rivers, China publication-title: Japanese Journal of Grassland Science – year: 1984 – volume: 2 start-page: 173 year: 1970 end-page: 185 article-title: Decomposition of organic materials from hill soils and pastures. II. Comparative studies on the mineralization of carbon, nitrogen, and phosphorus from plant materials and sheep faeces publication-title: Soil Biology and Biochemistry – volume: 62 start-page: 1072 year: 1998 end-page: 1080 article-title: Soil warming publication-title: Soil Science Society of America Journal – volume: 433 start-page: 57 year: 2005 end-page: 59 article-title: Similar response of labile and resistant soil organic matter pools to changes in temperature publication-title: Nature – volume: 408 start-page: 789 year: 2000 end-page: 790 article-title: Soil warming and organic matter content publication-title: Nature – volume: 51 start-page: 1396 year: 2006 end-page: 1400 article-title: New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions publication-title: Chinese Science Bulletin – volume: 79 start-page: 23 year: 1989 end-page: 29 article-title: The role of lesser snow geese as nitrogen processors in a sub‐arctic marsh publication-title: Oecologia – volume: 49 start-page: 101 year: 1987 end-page: 110 article-title: Grazing and the dynamics of nutrient and energy regulated microbial processes in the Serengeti grasslands publication-title: Oikos – volume: 15 start-page: 124 year: 2006 end-page: 128 article-title: Analysis on habitat variance and behaviour of in China publication-title: Acta Prataculturae Sinica – volume: 11 start-page: 775 year: 2008 end-page: 789 article-title: Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan plateau publication-title: Ecosystems – volume: 63 start-page: 621 year: 1982 end-page: 626 article-title: Nitrogen and lignin control of hardwood leaf litter decomposition dynamics publication-title: Ecology – volume: 79 start-page: 439 year: 1997 end-page: 449 article-title: Climate, leaf litter chemistry, and leaf litter decomposition in terrestrial ecosystems publication-title: Oikos – volume: 298 start-page: 2173 year: 2002 end-page: 2175 article-title: Soil warming and carbon‐cycle feedbacks to the climate system publication-title: Science – ident: e_1_2_7_25_1 doi: 10.1007/s100210000042 – volume-title: The Yak‐Second Edition year: 2003 ident: e_1_2_7_21_1 – ident: e_1_2_7_67_1 doi: 10.1007/978-94-010-0965-2 – ident: e_1_2_7_43_1 doi: 10.1034/j.1600-0706.2002.960312.x – ident: e_1_2_7_4_1 doi: 10.1111/j.1365-2745.2006.01142.x – ident: e_1_2_7_11_1 doi: 10.1111/j.1461-0248.2007.01051.x – ident: e_1_2_7_45_1 doi: 10.2307/1939308 – ident: e_1_2_7_12_1 doi: 10.1016/S0169-5347(00)88978-8 – ident: e_1_2_7_52_1 doi: 10.1016/B978-0-12-233440-5.50014-2 – volume-title: Arctic Climate Impact Assessment year: 2005 ident: e_1_2_7_2_1 – ident: e_1_2_7_34_1 doi: 10.1038/nature03226 – ident: e_1_2_7_41_1 doi: 10.2307/1936780 – ident: e_1_2_7_32_1 doi: 10.1890/05-0685 – ident: e_1_2_7_17_1 doi: 10.1007/s002480000071 – volume: 15 start-page: 124 year: 2006 ident: e_1_2_7_65_1 article-title: Analysis on habitat variance and behaviour of Bos gruiens in China publication-title: Acta Prataculturae Sinica – ident: e_1_2_7_42_1 doi: 10.1890/1051-0761(1998)008[1061:TEOLQA]2.0.CO;2 – ident: e_1_2_7_57_1 doi: 10.1890/1051-0761(2001)011[1206:COLDIA]2.0.CO;2 – ident: e_1_2_7_3_1 doi: 10.2307/3546886 – ident: e_1_2_7_56_1 doi: 10.1046/j.1469-8137.1998.00221.x – ident: e_1_2_7_7_1 doi: 10.1038/nature04038 – volume-title: Official methods of analysis of the Association of Official Analytical Chemists year: 1984 ident: e_1_2_7_5_1 – ident: e_1_2_7_58_1 doi: 10.1023/B:PLSO.0000037044.63113.fe – ident: e_1_2_7_16_1 doi: 10.1016/j.actao.2005.01.003 – ident: e_1_2_7_8_1 doi: 10.1007/BF00000785 – ident: e_1_2_7_49_1 doi: 10.2307/3545996 – ident: e_1_2_7_47_1 doi: 10.1034/j.1600-0889.1992.t01-1-00001.x – ident: e_1_2_7_54_1 doi: 10.1139/x90-023 – ident: e_1_2_7_48_1 doi: 10.1023/A:1019681606112 – volume: 28 start-page: 642 year: 1999 ident: e_1_2_7_66_1 article-title: Ecological basis of alpine meadow ecosystem management in Tibet publication-title: Ambio – ident: e_1_2_7_10_1 doi: 10.1111/j.1365-2745.2001.00625.x – ident: e_1_2_7_6_1 doi: 10.1016/S0038-0717(98)00069-8 – ident: e_1_2_7_13_1 doi: 10.1111/j.1461-0248.2008.01219.x – ident: e_1_2_7_23_1 doi: 10.1046/j.1365-2486.1998.00196.x – ident: e_1_2_7_68_1 doi: 10.1111/j.1744-697X.2005.00028.x – ident: e_1_2_7_14_1 doi: 10.1038/35048672 – ident: e_1_2_7_50_1 doi: 10.1007/BF00378235 – ident: e_1_2_7_22_1 doi: 10.1038/35009076 – ident: e_1_2_7_24_1 doi: 10.1126/science.267.5199.876 – ident: e_1_2_7_30_1 doi: 10.1111/j.1365-2486.2007.01486.x – volume: 55 start-page: 642 year: 2003 ident: e_1_2_7_29_1 article-title: Uncertainty in climate‐carbon‐cycle projections associated with the sensitivity of soil respiration to temperature publication-title: Tellus Series B Chemical and Physical Meteorology – ident: e_1_2_7_36_1 doi: 10.1046/j.1365-2486.2003.00605.x – ident: e_1_2_7_51_1 doi: 10.2307/3565559 – ident: e_1_2_7_37_1 doi: 10.1038/nature02887 – ident: e_1_2_7_63_1 doi: 10.1046/j.1365-2486.2002.00510.x – ident: e_1_2_7_55_1 doi: 10.2307/4002994 – ident: e_1_2_7_53_1 doi: 10.2136/sssaj1998.03615995006200040031x – volume: 46 start-page: 829 year: 1963 ident: e_1_2_7_60_1 article-title: Use of detergents in analysis of fibrous feeds publication-title: Association of Official Analytical Chemists – ident: e_1_2_7_9_1 doi: 10.1139/b96-084 – ident: e_1_2_7_33_1 doi: 10.1007/s10021-008-9160-1 – ident: e_1_2_7_19_1 doi: 10.1890/04-1254 – ident: e_1_2_7_39_1 doi: 10.2307/1936576 – ident: e_1_2_7_18_1 doi: 10.1038/nature03138 – ident: e_1_2_7_40_1 doi: 10.1126/science.1074153 – ident: e_1_2_7_46_1 doi: 10.1890/06-2138.1 – ident: e_1_2_7_59_1 doi: 10.2307/1938416 – volume-title: Grazing Ecosystem and Management year: 2003 ident: e_1_2_7_64_1 – ident: e_1_2_7_26_1 doi: 10.2307/3802368 – volume-title: Climate Change 2001: The Scientific Basis year: 2001 ident: e_1_2_7_27_1 – volume-title: Climate Change 2007: Summary for Policymaker year: 2007 ident: e_1_2_7_28_1 – ident: e_1_2_7_61_1 doi: 10.1007/s003740050493 – ident: e_1_2_7_15_1 doi: 10.1007/s11434-006-1396-6 – start-page: 147 volume-title: Quantitative Modeling of Soil Forming Processes year: 1994 ident: e_1_2_7_44_1 – ident: e_1_2_7_35_1 doi: 10.1007/s00442-004-1689-x – ident: e_1_2_7_62_1 doi: 10.1029/2004GB002315 – ident: e_1_2_7_31_1 doi: 10.1111/j.1365-2486.2005.00994.x – ident: e_1_2_7_38_1 doi: 10.1016/S0038-0717(03)00107-X – ident: e_1_2_7_20_1 doi: 10.1016/0038-0717(70)90005-2 |
SSID | ssj0003206 ssib006547461 ssib006547462 |
Score | 2.4241264 |
Snippet | Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still... AbstractKnowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still... |
SourceID | proquest pascalfrancis crossref wiley nii istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1606 |
SubjectTerms | Air temperature alpine meadow Animal and plant ecology Animal, plant and microbial ecology Atmosphere biogeochemical cycles Biological and medical sciences biomass carbon China Climate change Climatology. Bioclimatology. Climate change Decomposition degradation Dung Earth, ocean, space ecosystems Elevation environmental factors Exact sciences and technology External geophysics feces Fundamental and applied biological sciences. Psychology General aspects global change Grazing Growing season infrared infrared heaters infrared radiation Litter Manures Meteorology Nutrient cycles Soil depth soil heating Soil moisture Soil sciences Soil temperature soil water stocking rate Temperature temperature sensitivity warming |
Title | Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau |
URI | https://api.istex.fr/ark:/67375/WNG-NMG39066-9/fulltext.pdf https://cir.nii.ac.jp/crid/1873398393068664064 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2009.02026.x https://www.proquest.com/docview/205266915 https://www.proquest.com/docview/742686151 https://www.proquest.com/docview/745934304 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdrYbCXfWQr9boWPYy-OcSWZVuPW2hTBsnD1rC-CcmSQkhmlzhh7d72n-9OdtxkjFHGXkKCTmfldDr9zjrdEfJexI5jwYFQxzYPkyhzoWJGhyZlkUkRwBboKI4n6dU0-XTDb9r4J7wL0-SH6F644crw9hoXuNL1_iL3EVpJnrZpJ8GPT_uIJ7EB8dHnh0xSLPZlNiPGE7A8EdsP6vkjo72d6sCpCvArih4aDsr5HKMoVQ2CdE0FjD2Iugt0_U51-YIstv-xCVBZ9Ddr3S9-_Jb-8f8I4SV53gJa-qHRwFfkiS175GlT4vK-R44uHm7SAVlrSuoeCcYA16uVJ6PndLicA3b2v16Tn01OZVo5-l1hsM6MqtLQ2QpzYc9oVVJwHkAh6DeA_nQJ0vPtmGarzRFNawzMbypjIJuWHqkMmLedjsAMMDC9nmsLOJneLgF8q80bMr28uB5ehW2tiLDggHDBAxZO5VoJ0DyDpSsGGiNOdaxzYWOR8xwPOLnhJhemANijuGGJHmhduJQ5xo7IYVmV9phQK6xyJgUBW9hGLBc6FtoJB66XVQBnApJt9UIWbSJ1rOexlDsOFcyKxFnBMp9C-lmRdwGJup63TTKRR_Q5BtWTagY2X06_xHjSDD5hlnIekHOvjx0vtVpgnF7G5dfJSE7GIyYAUUoRkFNQWBgsfkZ5xpgAXMzwdlAKgC4JyNmeKncMY3hOIiIgONnqtmxtXA2j5IDuRATjoF0rGCc8cVKlrTa1zAD_5YiZ_0bCBUvYAJ6Rek1_tGTkaPgRv739144n5Nk2FmQQvSOH69XGngLEXOszbzx-AcG8ZkA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfYEIIXPgrTwtjwA9pbqiaOk_gRytYCax-gFXuz7NiuqpVk6of4eOM_585JuxYhNCFeqlY-X9zz-fy7-HxHyCsRO44FB0Id2zxMosyFihkdmpRFJkUAW6CjOBim_XHy_pJfNuWA8C5MnR9i88INV4a317jA8YX07ir3IVpJnjZ5J8GRT9sAKO9igW9MpP_2400uKRb7QpsR4wnYnojthvX8kdPOXrXnVAUIFoUPDXvldIpxlGoBonR1DYwdkLoNdf1edf6IzNb_sg5RuWqvlrpd_PgtAeR_EsNj8rDBtPR1rYRPyB1btsi9usrl9xY5OLu5TAdkjTVZtEgwAMRezT0ZPaXd2RTgs__1lPys0yrTytGvCuN1JlSVhk7mmA57QquSgv8AOkG_APqnMxCfb8dMW02aaLrA2Py6OAayaeiRyoCF2-oIzAAG09FUW4DK9HoG-FutnpHx-dmo2w-bchFhwQHkghMsnMq1EqB8BqtXdDQGnepY58LGIuc5nnFyw00uTAHIR3HDEt3RunApc4wdkP2yKu0hoVZY5UwKArawk1gudCy0Ew68L6sA0QQkWyuGLJpc6ljSYya3fCqYFYmzgpU-hfSzIr8FJNr0vK7zidyizyHonlQTMPty_CnGw2ZwC7OU84CceoXc8FLzKwzVy7j8POzJ4aDHBIBKKQJyDBoLg8XPKM8YEwCNGV4QSgHTJQE52dHlDcMYnpOICAiO1sotGzO3gFFyAHgignHQTSvYJzx0UqWtVguZAQTMETb_jYQLlrAOPCP1qn5ryche9w1-e_6vHV-S-_3R4EJevBt-OCIP1qEhnegF2V_OV_YYEOdSn3hL8gsgNWpc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfYEGgvfBSmhbHhB7S3VE0cJ_EjdGvHRysEq9ibZcd2VbUkVT_Exxv_OXdJ2jUIoQnxUrXy-eKez-ffxec7Ql6K0HEsOODr0KZ-FCTOV8xo38QsMDEC2AwdxcEwvhxFb6_5dR3_hHdhqvwQ2xduuDJKe40LfG5cc5GXEVpRGtdpJ8GPj9uAJ-9GcUdgGYfzjzeppFhY1tkMGI_A9ASsGdXzR06NrWrPqQIALMoeGvbyyQTDKNUSJOmqEhgNjLqLdMutqveQTDd_sopQmbbXK93OfvyW__H_SOEReVAjWvqqUsHH5I7NW-ReVePye4scXtxcpQOy2pYsW8QbAF4vFiUZPaPd2QTAc_nrCflZJVWmhaNfFUbrjKnKDR0vMBn2mBY5Be8BNIJ-AexPZyC9sh3zbNVJoukSI_Or0hjIpqZHKgP2bacjMAMQTK8m2gJQpvMZoG-1fkpGvYur7qVfF4vwMw4QF1xg4VSqlQDVM1i7oqMx5FSHOhU2FClP8YSTG25SYTLAPYobFumO1pmLmWPskOznRW6PCLXCKmdiELCFfcRyoUOhnXDge1kFeMYjyUYvZFZnUseCHjO541HBrEicFazzKWQ5K_KbR4Jtz3mVTeQWfY5A9aQag9GXo08hHjWDU5jEnHvkrNTHLS-1mGKgXsLl52FfDgd9JgBSSuGRE1BYGCx-BmnCmABgzPB6UAyILvLIaUOVtwxDeE4kAiA43ui2rI3cEkbJAd6JAMZBt61gnfDISeW2WC9lAgAwRdD8NxIuWMQ68Iy41PRbS0b2u6_x27N_7fiC3P9w3pPv3wzfHZODTVxIJ3hO9leLtT0BuLnSp6Ud-QVoNGkL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+warming+and+grazing+on+litter+mass+loss+and+temperature+sensitivity+of+litter+and+dung+mass+loss+on+the+Tibetan+plateau&rft.jtitle=Global+change+biology&rft.au=Luo%2C+Caiyun&rft.au=Xu%2C+Guangping&rft.au=CHAO%2C+ZENGGUO&rft.au=Wang%2C+Shiping&rft.date=2010-05-01&rft.issn=1354-1013&rft.volume=16&rft.issue=5&rft.spage=1606&rft.epage=1617&rft_id=info:doi/10.1111%2Fj.1365-2486.2009.02026.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |