Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau

Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitiv...

Full description

Saved in:
Bibliographic Details
Published inGlobal Change Biology Vol. 16; no. 5; pp. 1606 - 1617
Main Authors LUO, CAIYUN, XU, GUANGPING, CHAO, ZENGGUO, WANG, SHIPING, LIN, XINGWU, HU, YIGANG, ZHANG, ZHENHUA, DUAN, JICHUANG, CHANG, XIAOFENG, SU, AILING, LI, YINGNIAN, ZHAO, XINQUAN, DU, MINGYUAN, TANG, YANGHONG, KIMBALL, BRUCE
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.05.2010
Blackwell Publishing Ltd
Wiley
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitivity of litter and dung mass loss. Experiments were conducted for 1-2 years under a controlled warming-grazing system and along an elevation gradient from 3200 to 3800 m. A free-air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures (average 0.5-1.6 °C) from 0 to 40 cm depth, but neither warming nor grazing affected soil moisture except early in the growing seasons at 30 cm soil depth. Heaters caused greater soil warming at night-time compared with daytime, but grazing resulted in greater soil warming during daytime compared with night-time. Annual average values of the soil temperature at 5 cm were 3.2, 2.4 and 0.3 °C at 3200, 3600 and 3800 m, respectively. Neither warming nor grazing caused changes of litter quality for the first year of the controlled warming-grazing experiment. The effects of warming and grazing on litter mass losses were additive, increasing litter mass losses by about 19.3% and 8.3%, respectively, for the 2-year decomposition periods. The temperature sensitivity of litter mass losses was approximately 11% °C⁻¹ based on the controlled warming-grazing experiment. The annual cumulative litter mass loss was approximately 2.5 times that of dung along the elevation gradient. However, the temperature sensitivity (about 18% °C⁻¹) of the dung mass loss was about three times that of the litter mass loss. These results suggest greater warming at night-time compared with daytime may accelerate litter mass loss, and grazing will enhance carbon loss to atmosphere in the region through a decrease of litter biomass and an increase of dung production with an increase of stocking rate in future warmer conditions.
AbstractList Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitivity of litter and dung mass loss. Experiments were conducted for 1–2 years under a controlled warming–grazing system and along an elevation gradient from 3200 to 3800 m. A free‐air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures (average 0.5–1.6 °C) from 0 to 40 cm depth, but neither warming nor grazing affected soil moisture except early in the growing seasons at 30 cm soil depth. Heaters caused greater soil warming at night‐time compared with daytime, but grazing resulted in greater soil warming during daytime compared with night‐time. Annual average values of the soil temperature at 5 cm were 3.2, 2.4 and 0.3 °C at 3200, 3600 and 3800 m, respectively. Neither warming nor grazing caused changes of litter quality for the first year of the controlled warming–grazing experiment. The effects of warming and grazing on litter mass losses were additive, increasing litter mass losses by about 19.3% and 8.3%, respectively, for the 2‐year decomposition periods. The temperature sensitivity of litter mass losses was approximately 11%  °C −1 based on the controlled warming–grazing experiment. The annual cumulative litter mass loss was approximately 2.5 times that of dung along the elevation gradient. However, the temperature sensitivity (about 18%  °C −1 ) of the dung mass loss was about three times that of the litter mass loss. These results suggest greater warming at night‐time compared with daytime may accelerate litter mass loss, and grazing will enhance carbon loss to atmosphere in the region through a decrease of litter biomass and an increase of dung production with an increase of stocking rate in future warmer conditions.
Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitivity of litter and dung mass loss. Experiments were conducted for 1-2 years under a controlled warming-grazing system and along an elevation gradient from 3200 to 3800 m. A free-air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures (average 0.5-1.6 °C) from 0 to 40 cm depth, but neither warming nor grazing affected soil moisture except early in the growing seasons at 30 cm soil depth. Heaters caused greater soil warming at night-time compared with daytime, but grazing resulted in greater soil warming during daytime compared with night-time. Annual average values of the soil temperature at 5 cm were 3.2, 2.4 and 0.3 °C at 3200, 3600 and 3800 m, respectively. Neither warming nor grazing caused changes of litter quality for the first year of the controlled warming-grazing experiment. The effects of warming and grazing on litter mass losses were additive, increasing litter mass losses by about 19.3% and 8.3%, respectively, for the 2-year decomposition periods. The temperature sensitivity of litter mass losses was approximately 11% °C⁻¹ based on the controlled warming-grazing experiment. The annual cumulative litter mass loss was approximately 2.5 times that of dung along the elevation gradient. However, the temperature sensitivity (about 18% °C⁻¹) of the dung mass loss was about three times that of the litter mass loss. These results suggest greater warming at night-time compared with daytime may accelerate litter mass loss, and grazing will enhance carbon loss to atmosphere in the region through a decrease of litter biomass and an increase of dung production with an increase of stocking rate in future warmer conditions.
Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitivity of litter and dung mass loss. Experiments were conducted for 1-2 years under a controlled warming-grazing system and along an elevation gradient from 3200 to 3800 m. A free-air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures (average 0.5-1.6 degrees C) from 0 to 40 cm depth, but neither warming nor grazing affected soil moisture except early in the growing seasons at 30 cm soil depth. Heaters caused greater soil warming at night-time compared with daytime, but grazing resulted in greater soil warming during daytime compared with night-time. Annual average values of the soil temperature at 5 cm were 3.2, 2.4 and 0.3 degrees C at 3200, 3600 and 3800 m, respectively. Neither warming nor grazing caused changes of litter quality for the first year of the controlled warming-grazing experiment. The effects of warming and grazing on litter mass losses were additive, increasing litter mass losses by about 19.3% and 8.3%, respectively, for the 2-year decomposition periods. The temperature sensitivity of litter mass losses was approximately 11% degrees C-1 based on the controlled warming-grazing experiment. The annual cumulative litter mass loss was approximately 2.5 times that of dung along the elevation gradient. However, the temperature sensitivity (about 18% degrees C-1) of the dung mass loss was about three times that of the litter mass loss. These results suggest greater warming at night-time compared with daytime may accelerate litter mass loss, and grazing will enhance carbon loss to atmosphere in the region through a decrease of litter biomass and an increase of dung production with an increase of stocking rate in future warmer conditions. [PUBLICATION ABSTRACT]
Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitivity of litter and dung mass loss. Experiments were conducted for 1–2 years under a controlled warming–grazing system and along an elevation gradient from 3200 to 3800 m. A free‐air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures (average 0.5–1.6 °C) from 0 to 40 cm depth, but neither warming nor grazing affected soil moisture except early in the growing seasons at 30 cm soil depth. Heaters caused greater soil warming at night‐time compared with daytime, but grazing resulted in greater soil warming during daytime compared with night‐time. Annual average values of the soil temperature at 5 cm were 3.2, 2.4 and 0.3 °C at 3200, 3600 and 3800 m, respectively. Neither warming nor grazing caused changes of litter quality for the first year of the controlled warming–grazing experiment. The effects of warming and grazing on litter mass losses were additive, increasing litter mass losses by about 19.3% and 8.3%, respectively, for the 2‐year decomposition periods. The temperature sensitivity of litter mass losses was approximately 11%  °C−1 based on the controlled warming–grazing experiment. The annual cumulative litter mass loss was approximately 2.5 times that of dung along the elevation gradient. However, the temperature sensitivity (about 18%  °C−1) of the dung mass loss was about three times that of the litter mass loss. These results suggest greater warming at night‐time compared with daytime may accelerate litter mass loss, and grazing will enhance carbon loss to atmosphere in the region through a decrease of litter biomass and an increase of dung production with an increase of stocking rate in future warmer conditions.
AbstractKnowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitivity of litter and dung mass loss. Experiments were conducted for 1-2 years under a controlled warming-grazing system and along an elevation gradient from 3200 to 3800 m. A free-air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures (average 0.5-1.6 C) from 0 to 40 cm depth, but neither warming nor grazing affected soil moisture except early in the growing seasons at 30 cm soil depth. Heaters caused greater soil warming at night-time compared with daytime, but grazing resulted in greater soil warming during daytime compared with night-time. Annual average values of the soil temperature at 5 cm were 3.2, 2.4 and 0.3 C at 3200, 3600 and 3800 m, respectively. Neither warming nor grazing caused changes of litter quality for the first year of the controlled warming-grazing experiment. The effects of warming and grazing on litter mass losses were additive, increasing litter mass losses by about 19.3% and 8.3%, respectively, for the 2-year decomposition periods. The temperature sensitivity of litter mass losses was approximately 11% C-1 based on the controlled warming-grazing experiment. The annual cumulative litter mass loss was approximately 2.5 times that of dung along the elevation gradient. However, the temperature sensitivity (about 18% C-1) of the dung mass loss was about three times that of the litter mass loss. These results suggest greater warming at night-time compared with daytime may accelerate litter mass loss, and grazing will enhance carbon loss to atmosphere in the region through a decrease of litter biomass and an increase of dung production with an increase of stocking rate in future warmer conditions.
Author CHANG, XIAOFENG
SU, AILING
KIMBALL, BRUCE
HU, YIGANG
DUAN, JICHUANG
WANG, SHIPING
ZHAO, XINQUAN
LUO, CAIYUN
XU, GUANGPING
LIN, XINGWU
TANG, YANGHONG
LI, YINGNIAN
CHAO, ZENGGUO
DU, MINGYUAN
ZHANG, ZHENHUA
Author_xml – sequence: 1
  fullname: LUO, CAIYUN
– sequence: 2
  fullname: XU, GUANGPING
– sequence: 3
  fullname: CHAO, ZENGGUO
– sequence: 4
  fullname: WANG, SHIPING
– sequence: 5
  fullname: LIN, XINGWU
– sequence: 6
  fullname: HU, YIGANG
– sequence: 7
  fullname: ZHANG, ZHENHUA
– sequence: 8
  fullname: DUAN, JICHUANG
– sequence: 9
  fullname: CHANG, XIAOFENG
– sequence: 10
  fullname: SU, AILING
– sequence: 11
  fullname: LI, YINGNIAN
– sequence: 12
  fullname: ZHAO, XINQUAN
– sequence: 13
  fullname: DU, MINGYUAN
– sequence: 14
  fullname: TANG, YANGHONG
– sequence: 15
  fullname: KIMBALL, BRUCE
BackLink https://cir.nii.ac.jp/crid/1873398393068664064$$DView record in CiNii
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22764914$$DView record in Pascal Francis
BookMark eNqNksFv0zAUxiM0JLbB34CFQJxSnu3YtQ8gQTUK0hgHNnG0nMQpLqlTbIe13PjPsUkZ0k7NwXmSf9_37Pf5rDhxgzNFgTDMcPperWeYclaSSvAZAZAzIED4bPegOL3bOMk1q0oMmD4qzkJYAwAlwE-L3xddZ5qIhg7dar-xboW0a9HK61-5HhzqbYzGo40OAfVDWvJ-NJut8TqO3qBgXLDR_rRxn20OfKbaMVn8Fyaz-M2ga1ubqB3a9joaPT4uHna6D-bJ4X9e3Ly_uF58KC8_Lz8u3l6WDZOYlxzLTotaSwasxUAx1CCB1KQW0hApmJAgJGtZK2TbCAKatbSqoa6bjtOO0vPi5eS79cOP0YSoNjY0pu-1M8MY1LxiklYUqiNIwgXHDCfy2T1yPYzepWsoAoxwLjFL0IsDpEOj-85r19igtt5utN8rQua8kji3fTNxjU_T8qZTjY062sFFr22vMKicuFqrHKzKwaqcuPqbuNolA3HP4F-PI6SvJ-mt7c3-aJ1aLt7lKumfT3pnbTp2XrGYUyoFlRTStHgFPF-xnDAbotndtdH-u-JzOmfq69VSXX1aUgmcK5n4pxPf6UHplU9ju_lC0isGLNLYGKN_AM6J5lw
CitedBy_id crossref_primary_10_1002_joc_4013
crossref_primary_10_1016_j_scitotenv_2024_171288
crossref_primary_10_1002_ece3_3780
crossref_primary_10_1007_s10661_016_5663_y
crossref_primary_10_1016_j_geoderma_2017_12_005
crossref_primary_10_1657_1938_4246_44_2_188
crossref_primary_10_1134_S1067413620030042
crossref_primary_10_1016_j_soilbio_2019_01_009
crossref_primary_10_1007_s11368_014_0867_7
crossref_primary_10_1007_s11368_019_02255_0
crossref_primary_10_1002_ece3_1646
crossref_primary_10_1007_s11284_014_1209_3
crossref_primary_10_1016_j_ecolind_2025_113344
crossref_primary_10_1016_j_scitotenv_2020_138106
crossref_primary_10_3390_agriculture14091581
crossref_primary_10_3390_plants10020294
crossref_primary_10_1111_gcb_12065
crossref_primary_10_1360_TB_2024_0304
crossref_primary_10_1007_s11104_019_04024_x
crossref_primary_10_1002_eap_1770
crossref_primary_10_1016_j_fcr_2020_107903
crossref_primary_10_1093_jpe_rtt010
crossref_primary_10_1111_gcb_12855
crossref_primary_10_1016_j_agrformet_2017_08_034
crossref_primary_10_1016_j_actao_2021_103775
crossref_primary_10_1016_j_ecoleng_2017_11_001
crossref_primary_10_1126_sciadv_abl9526
crossref_primary_10_1016_j_agee_2017_07_041
crossref_primary_10_1016_j_ecolind_2015_10_054
crossref_primary_10_1038_ismej_2013_146
crossref_primary_10_1093_femsec_fiv152
crossref_primary_10_1016_j_agrformet_2015_10_002
crossref_primary_10_1002_ldr_3606
crossref_primary_10_1007_s12665_014_3597_7
crossref_primary_10_1139_cjps_2021_0141
crossref_primary_10_1016_j_scitotenv_2020_141344
crossref_primary_10_1128_AEM_00557_15
crossref_primary_10_1371_journal_pone_0103859
crossref_primary_10_1016_j_agee_2018_11_025
crossref_primary_10_1016_j_atmosenv_2017_03_024
crossref_primary_10_3390_agriculture13051084
crossref_primary_10_1016_j_soilbio_2012_08_009
crossref_primary_10_1007_s11104_020_04431_5
crossref_primary_10_1016_j_scitotenv_2023_164980
crossref_primary_10_1111_gfs_12065
crossref_primary_10_2134_agronj2012_0356
crossref_primary_10_1007_s00704_022_04049_w
crossref_primary_10_1016_j_scitotenv_2022_159858
crossref_primary_10_1016_j_catena_2021_105803
crossref_primary_10_1016_j_agrformet_2015_09_008
crossref_primary_10_1016_j_apsoil_2023_105104
crossref_primary_10_1016_j_scitotenv_2022_155212
crossref_primary_10_1007_s11430_023_1370_1
crossref_primary_10_1093_femsec_fiy019
crossref_primary_10_1016_j_atmosenv_2017_11_053
crossref_primary_10_3389_fenvs_2021_702713
crossref_primary_10_1007_s11629_024_8853_z
crossref_primary_10_1016_j_apsoil_2014_11_012
crossref_primary_10_34133_ehs_0178
crossref_primary_10_1186_s13007_019_0387_y
crossref_primary_10_1371_journal_pone_0075503
crossref_primary_10_1371_journal_pone_0116834
crossref_primary_10_1007_s00704_011_0518_5
crossref_primary_10_1016_j_jhydrol_2012_10_031
crossref_primary_10_3389_fpls_2025_1455170
crossref_primary_10_1016_j_scitotenv_2022_154114
crossref_primary_10_1007_s00253_011_3535_5
crossref_primary_10_1080_15230430_2020_1712875
crossref_primary_10_1360_N072023_0312
crossref_primary_10_1890_11_1408_1
crossref_primary_10_1016_j_apsoil_2016_04_020
crossref_primary_10_3390_rs13040669
crossref_primary_10_1088_1755_1315_146_1_012005
crossref_primary_10_1007_s00374_022_01639_8
crossref_primary_10_1016_j_geoderma_2023_116725
crossref_primary_10_1007_s11769_017_0898_2
crossref_primary_10_1038_srep27781
crossref_primary_10_1890_14_1368_1
crossref_primary_10_5194_bg_11_1743_2014
crossref_primary_10_1007_s11104_021_05006_8
crossref_primary_10_1016_j_ecolind_2022_109561
crossref_primary_10_3389_ffgc_2022_877025
crossref_primary_10_1007_s11104_020_04438_y
crossref_primary_10_1016_j_agrformet_2021_108408
crossref_primary_10_1016_j_apsoil_2023_105203
crossref_primary_10_1016_j_apsoil_2024_105566
crossref_primary_10_1038_s41598_019_43904_1
crossref_primary_10_1016_j_agee_2020_107256
crossref_primary_10_3390_su141912802
crossref_primary_10_1016_j_apsoil_2021_103935
crossref_primary_10_1016_j_soilbio_2022_108616
crossref_primary_10_1016_j_still_2015_12_012
crossref_primary_10_1016_j_scitotenv_2022_156531
crossref_primary_10_1016_j_agee_2014_04_021
crossref_primary_10_1111_jvs_12703
crossref_primary_10_1002_ecm_1632
crossref_primary_10_1111_gcb_13111
crossref_primary_10_3390_agriculture12101521
crossref_primary_10_1111_j_1365_2486_2011_02399_x
crossref_primary_10_3389_fmicb_2016_01032
crossref_primary_10_1016_j_envres_2023_115333
crossref_primary_10_1007_s11104_019_04272_x
crossref_primary_10_1093_jpe_rtac027
crossref_primary_10_1016_j_agrformet_2014_01_003
crossref_primary_10_1016_j_agrformet_2022_109167
crossref_primary_10_1007_s11258_014_0364_5
crossref_primary_10_1016_j_agee_2020_107119
crossref_primary_10_1016_j_soilbio_2019_02_018
crossref_primary_10_1186_s12870_024_04924_w
crossref_primary_10_1007_s11104_020_04551_y
crossref_primary_10_1016_j_agrformet_2019_107792
crossref_primary_10_1007_s12665_013_2547_0
crossref_primary_10_1007_s00374_018_1280_y
crossref_primary_10_1016_j_atmosenv_2016_11_060
crossref_primary_10_3390_agriculture12101538
crossref_primary_10_1007_s11104_016_2791_7
crossref_primary_10_1016_j_ecoleng_2017_07_039
crossref_primary_10_5194_se_6_303_2015
crossref_primary_10_1371_journal_pone_0165212
crossref_primary_10_1371_journal_pone_0076447
crossref_primary_10_1007_s11104_019_04410_5
crossref_primary_10_1016_j_agrformet_2010_11_013
crossref_primary_10_1016_j_soilbio_2019_107690
crossref_primary_10_1016_j_coldregions_2015_03_012
crossref_primary_10_1016_j_ecoleng_2018_02_016
crossref_primary_10_1080_11956860_2019_1710908
crossref_primary_10_1007_s10705_020_10062_0
crossref_primary_10_1007_s11368_011_0388_6
crossref_primary_10_1126_sciadv_abc7358
crossref_primary_10_1007_s11104_020_04681_3
crossref_primary_10_1016_j_agrformet_2011_01_009
crossref_primary_10_1016_j_jclepro_2023_140144
crossref_primary_10_1002_ece3_4215
crossref_primary_10_1007_s11258_017_0746_6
crossref_primary_10_2134_agronj2011_0212
crossref_primary_10_1007_s11104_012_1132_8
crossref_primary_10_1002_ece3_1867
crossref_primary_10_1126_science_aal1319
crossref_primary_10_5194_bg_14_5455_2017
crossref_primary_10_1109_JSTARS_2022_3214224
crossref_primary_10_1016_j_geoderma_2019_07_034
crossref_primary_10_3389_fmicb_2023_1106739
crossref_primary_10_1371_journal_pone_0186980
crossref_primary_10_1007_s11104_020_04613_1
crossref_primary_10_1093_jpe_rtac009
crossref_primary_10_1016_j_catena_2020_104900
crossref_primary_10_1111_gcb_12277
crossref_primary_10_5194_bg_15_4447_2018
crossref_primary_10_1016_j_agee_2013_11_024
crossref_primary_10_1007_s11104_019_04278_5
crossref_primary_10_1038_srep34786
crossref_primary_10_1007_s10533_013_9844_2
crossref_primary_10_15377_2410_3624_2020_07_3
crossref_primary_10_1007_s11284_016_1385_4
crossref_primary_10_1038_s41598_022_25367_z
crossref_primary_10_1007_s11104_019_03991_5
crossref_primary_10_3390_agronomy15010243
crossref_primary_10_1657_1938_4246_46_2_441
crossref_primary_10_1002_ldr_3343
crossref_primary_10_1016_j_soilbio_2019_107611
crossref_primary_10_1016_j_soilbio_2024_109675
crossref_primary_10_1073_pnas_1904990116
crossref_primary_10_1111_gfs_12280
crossref_primary_10_5194_bg_15_4233_2018
crossref_primary_10_1016_j_aoas_2024_07_003
crossref_primary_10_1016_j_agrformet_2018_04_006
Cites_doi 10.1007/s100210000042
10.1007/978-94-010-0965-2
10.1034/j.1600-0706.2002.960312.x
10.1111/j.1365-2745.2006.01142.x
10.1111/j.1461-0248.2007.01051.x
10.2307/1939308
10.1016/S0169-5347(00)88978-8
10.1016/B978-0-12-233440-5.50014-2
10.1038/nature03226
10.2307/1936780
10.1890/05-0685
10.1007/s002480000071
10.1890/1051-0761(1998)008[1061:TEOLQA]2.0.CO;2
10.1890/1051-0761(2001)011[1206:COLDIA]2.0.CO;2
10.2307/3546886
10.1046/j.1469-8137.1998.00221.x
10.1038/nature04038
10.1023/B:PLSO.0000037044.63113.fe
10.1016/j.actao.2005.01.003
10.1007/BF00000785
10.2307/3545996
10.1034/j.1600-0889.1992.t01-1-00001.x
10.1139/x90-023
10.1023/A:1019681606112
10.1111/j.1365-2745.2001.00625.x
10.1016/S0038-0717(98)00069-8
10.1111/j.1461-0248.2008.01219.x
10.1046/j.1365-2486.1998.00196.x
10.1111/j.1744-697X.2005.00028.x
10.1038/35048672
10.1007/BF00378235
10.1038/35009076
10.1126/science.267.5199.876
10.1111/j.1365-2486.2007.01486.x
10.1046/j.1365-2486.2003.00605.x
10.2307/3565559
10.1038/nature02887
10.1046/j.1365-2486.2002.00510.x
10.2307/4002994
10.2136/sssaj1998.03615995006200040031x
10.1139/b96-084
10.1007/s10021-008-9160-1
10.1890/04-1254
10.2307/1936576
10.1038/nature03138
10.1126/science.1074153
10.1890/06-2138.1
10.2307/1938416
10.2307/3802368
10.1007/s003740050493
10.1007/s11434-006-1396-6
10.1007/s00442-004-1689-x
10.1029/2004GB002315
10.1111/j.1365-2486.2005.00994.x
10.1016/S0038-0717(03)00107-X
10.1016/0038-0717(70)90005-2
ContentType Journal Article
Copyright 2009 Blackwell Publishing Ltd
2015 INIST-CNRS
2010 Blackwell Publishing
Copyright_xml – notice: 2009 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: 2010 Blackwell Publishing
DBID FBQ
BSCLL
RYH
AAYXX
CITATION
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7S9
L.6
7ST
7TV
7U6
SOI
DOI 10.1111/j.1365-2486.2009.02026.x
DatabaseName AGRIS
Istex
CiNii Complete
CrossRef
Pascal-Francis
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Pollution Abstracts
Sustainability Science Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Pollution Abstracts
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

Ecology Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 1617
ExternalDocumentID 2013654451
22764914
10_1111_j_1365_2486_2009_02026_x
GCB2026
ark_67375_WNG_NMG39066_9
US201301827655
Genre article
Feature
GeographicLocations Tibetan Plateau
China
China, People's Rep., Xizang, Tibetan Plateau
GeographicLocations_xml – name: Tibetan Plateau
– name: China
– name: China, People's Rep., Xizang, Tibetan Plateau
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEYWJ
AFWVQ
AGQPQ
AGYGG
ALVPJ
RYH
AAYXX
AGHNM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7S9
L.6
7ST
7TV
7U6
SOI
ID FETCH-LOGICAL-c5916-619fa8ba9505d10310b0902b2b89e2985890895d5d89dc820a5d34b0bbcf63f33
IEDL.DBID DR2
ISSN 1354-1013
IngestDate Fri Jul 11 01:06:05 EDT 2025
Fri Jul 11 08:52:55 EDT 2025
Fri Jul 25 10:39:21 EDT 2025
Mon Jul 21 09:14:37 EDT 2025
Thu Apr 24 23:06:20 EDT 2025
Tue Jul 01 03:52:44 EDT 2025
Wed Jan 22 16:34:11 EST 2025
Thu Jun 26 21:58:34 EDT 2025
Wed Oct 30 09:57:17 EDT 2024
Wed Dec 27 19:13:54 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Grassland
Warming
Modification
Temperature
Litter
grazing
dung
Lawn
Mass loss
Environmental factor
Decomposition
infrared
alpine meadow
Dynamical climatology
Climate change
Alpine vegetation
temperature sensitivity
Global change
Qinghai-Xizang Plateau
Planetary scale
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5916-619fa8ba9505d10310b0902b2b89e2985890895d5d89dc820a5d34b0bbcf63f33
Notes http://dx.doi.org/10.1111/j.1365-2486.2009.02026.x
ark:/67375/WNG-NMG39066-9
istex:3D0EC751254AEE0E46226A245D4EA17CF8F3948F
ArticleID:GCB2026
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0373-1661
PQID 205266915
PQPubID 30327
PageCount 12
ParticipantIDs proquest_miscellaneous_745934304
proquest_miscellaneous_742686151
proquest_journals_205266915
pascalfrancis_primary_22764914
crossref_citationtrail_10_1111_j_1365_2486_2009_02026_x
crossref_primary_10_1111_j_1365_2486_2009_02026_x
wiley_primary_10_1111_j_1365_2486_2009_02026_x_GCB2026
nii_cinii_1873398393068664064
istex_primary_ark_67375_WNG_NMG39066_9
fao_agris_US201301827655
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2010
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: May 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Global Change Biology
PublicationYear 2010
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Wiley
Wiley-Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley-Blackwell
References Duan Y-W, He Y-P, Liu J-Q (2005) Reproductive ecology of the Qinghai-Tibet Plateau endemic Gentiana straminea (Gentianaceae), a hermaphrodite perennial characterized by herkogamy and dichogamy. Acta Oecologica, 27, 225-232.
Robinson CH (2002) Controls on decomposition and soil nitrogen availability at high latitudes. Plant and Soil, 242, 65-81.
Wan S, Hui D, Wallace L, Luo Y (2005) Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycle, 19, GB2014, doi: DOI: 10.1029/2004GB002315.
Kimball BA, Conley MM, Wang SP, Lin XW, Luo CY, Morgan J, Smith D (2008) Infrared heater arrays for warming ecosystem field plots. Global Change in Biology, 14, 309-320.
Floate MJS (1970) Decomposition of organic materials from hill soils and pastures. II. Comparative studies on the mineralization of carbon, nitrogen, and phosphorus from plant materials and sheep faeces. Soil Biology and Biochemistry, 2, 173-185.
Giardina PH, Loveland PJ, Bradley RI, Murray LR, Kirk G (2000) Evidence that decomposition rate of organic matter in mineral soil do not vary with temperature. Nature, 404, 858-861.
Liski J, Nissinen A, Erhard M, Taskinen O (2003) Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Global Change in Biology, 9, 575-584.
Melillo J, Steudler PA, Abler JD et al. (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2175.
Rustad LE, Fernandez IJ (1998) Soil warming: consequences for foliar litter decay in a spruce-fir forest in Maine, USA. Soil Science Society of America Journal, 62, 1072-1080.
Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626.
Yao J, Yang BH, Yan P et al. (2006) Analysis on habitat variance and behaviour of Bos gruiens in China. Acta Prataculturae Sinica, 15, 124-128.
Kueppers LM, Southon J, Baer P et al. (2004) Dead wood biomass and turnover time, measured by radiocarbon, along a subalpine elevation gradient. Oecologia, 141, 641-651.
Mack MC, Schnur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature, 431, 440-443.
Cornelissen JHC, Callaghan TV, Alatalo JM et al. (2001) Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? Journal of Ecology, 89, 984-994.
Ruess RW, Hik DS, Jefferies RL (1989) The role of lesser snow geese as nitrogen processors in a sub-arctic marsh. Oecologia, 79, 23-29.
Pastor J, Dewey B, Naiman RJ et al. (1993) Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology, 74, 467-480.
Duan AM, Wu GX, Zhang Q, Liu YM (2006) New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chinese Science Bulletin, 51, 1396-1400.
ACIA (2005) Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK.
Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465-472.
Klein JA, Harte J, Zhao XQ (2007) Experimental warming, not grazing, decreases rangeland quality on the Tibetan plateau. Ecological Applications, 17, 541-557.
Zhou HK, Zhao XQ, Tang YH, Gu S, Zhou L (2005) Alpine grassland degradation and its control in the source region of Yangtze and Yellow rivers, China. Japanese Journal of Grassland Science, 51, 191-203.
Van Soest PJ (1963) Use of detergents in analysis of fibrous feeds: a rapid method for the determination of fiber and lignin. Association of Official Analytical Chemists, 46, 829-835.
AOAC (1984) Official methods of analysis of the Association of Official Analytical Chemists, 14th edn. Association of Official Analytical Chemists, Washington, DC, USA.
Zhao XQ, Zhou XM (1999) Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station. Ambio, 28, 642-647.
Ryan M, Melillo J, Ricca A (1990) A comparison of methods for determining proximate carbon fractions of forest litter. Canadian Journal of Forest Research, 20, 166-171.
Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 30, 1867-1878.
Wan S, Luo Y, Wallace L (2002) Change in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change in Biology, 8, 754-768.
Eiland F, Klamer M, Lind AM, Baath E (2001) Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microbial Ecology, 41, 272-280.
Jones CD, Cox P, Huntingford C (2003) Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus Series B Chemical and Physical Meteorology, 55, 642-648.
Wang SP, Wang YF, Chen ZZ (2003) Grazing Ecosystem and Management. Science Press, Beijing, China.
Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends in Ecology and Evolution, 10, 63-66.
IPCC (2007) Climate Change 2007: Summary for Policymaker. Valencia, Spain.
Post E, Pedersen C, Wilmers CC, Forchhammer MC (2008) Phenological sequences reveal aggregate life history response to climatic warming. Ecology, 89, 363-370.
Hobbie SE (2000) Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems, 3, 484-494.
Berg B, Ekbohm G, Johansson ME, McClaugherty CA, Rutigliano F, Santo AV (1996) Maximum decomposition limits of forest litter types: a synthesis. Canadian Journal of Botany, 74, 659-672.
Robinson CH, Wookey PA, Parsons AN et al. (1995) Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath. Oikos, 74, 503-512.
Murphy KL, Klopatek JM, Klopatek CC (1998) The effects of litter quality and climate on decomposition along an elevational gradient. Ecological Applications, 8, 1061-1071.
Knorr W, Pretice IC, House IJ, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298-301.
Ruess RW, McNaughton SJ (1987) Grazing and the dynamics of nutrient and energy regulated microbial processes in the Serengeti grasslands. Oikos, 49, 101-110.
Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
Fang C, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57-59.
Sjögersten S, Wookey PA (2004) Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions. Plant and Soil, 262, 215-227.
Berg B, Berg MP, Bottner P et al. (1993) Litter mass loss rates in pine forests of Europe and eastern United States: some relationships with climate and litter quality. Biogeochemistry, 20, 127-159.
Hobbs NT (1996) Modification of ecosystems by ungulates. Journal of Wildlife Management, 60, 695-713.
Houghton JT, Ding Y, Griggs DJ et al. (2001) Climate Change 2001: The Scientific Basis. Third IPCC Report. Cambridge University Press, Cambridge.
Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology, 86, 320-326.
Gerald W, Han JL, Long RJ (2003) The Yak-Second Edition. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand.
Klein JA, Harte J, Zhao X-Q (2008) Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan plateau. Ecosystems, 11, 775-789.
Aerts R (1997) Climate, leaf litter chemistry, and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449.
Shaw MR, Harte J (2001) Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change. Ecological Applications, 11, 1206-1223.
Shariff AR, Biondini ME, Grygiel CE (1994) Grazing intensity effects on litter decomposition and soil nitrogen mineralization. Journal of Range Management, 47, 444-449.
Klein J, Harte J, Zhao XQ (2005) Dynamic and complex microclimate responses to warming and grazing manipulation. Global Change in Biology, 11, 1440-1451.
Shaver GR, Canadell J, Chapin FS et al. (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience, 50, 871-882.
Harte J, Shaw R (1995) Shifting dominance within a montane vegetation community, results of a climate-warming experiment. Science, 267, 876-880.
McTiernan KB, Coüteaux MM, Berg B et al. (2003) Changes in chemical composition of Pinus sylvestris needle litter during decomposition along a European coniferous forest climatic transect. Soil Biology and Biochemistry, 35, 801-812.
Olofsson J, Oksanen L (2002) Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer: a litterbag experiment. Oikos, 96, 507-515.
Zheng D, Zhang QS, Wu SH (2000) Mountain Geoecology and Sustainable Development of the Tibetan Plateau. Kluwer Academic, Norwell, MA.
Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99.
Davidson EA, Trumbore SE, Amundson R (2000) Soil warming and organic matter content. Nature, 408, 789-790.
Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70, 97-104.
Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978-2003. Nature, 437, 245-248.
Cornelissen JHC, Van Bodegom PM, Aerts R et al. (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biom
1963; 46
1995; 74
2002; 96
2000; 3
1993; 20
2000; 50
1996; 74
2001; 89
2005; 27
1992; 44B
2001; 41
2003; 55
1970; 2
2000; 408
2001
2000
1982; 63
2000; 404
1989; 70
2003; 9
1993; 74
1996; 60
2006; 440
1984
2001; 11
1989; 79
1987; 49
2007; 17
2006; 94
2006; 51
2005; 433
2004; 141
2004; 262
1999; 28
2002; 298
1995; 10
2002; 8
2006; 15
2005; 437
2008; 14
2003; 35
2005; 86
2007
1994; 47
2005
1994
2008; 11
1978; 59
1993
2003
2007; 10
1998; 62
1999; 5
2004; 431
1990; 20
2005; 19
2002; 242
1997; 79
2005; 51
2008; 89
1995; 267
1998; 30
2005; 11
1998; 8
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
Wang SP (e_1_2_7_64_1) 2003
Jones CD (e_1_2_7_29_1) 2003; 55
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
Van Soest PJ (e_1_2_7_60_1) 1963; 46
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
ACIA (e_1_2_7_2_1) 2005
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
Parton WJ (e_1_2_7_44_1) 1994
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
Yao J (e_1_2_7_65_1) 2006; 15
e_1_2_7_12_1
AOAC (e_1_2_7_5_1) 1984
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
Zhao XQ (e_1_2_7_66_1) 1999; 28
Gerald W (e_1_2_7_21_1) 2003
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Houghton JT (e_1_2_7_27_1) 2001
IPCC (e_1_2_7_28_1) 2007
References_xml – reference: Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99.
– reference: Kueppers LM, Southon J, Baer P et al. (2004) Dead wood biomass and turnover time, measured by radiocarbon, along a subalpine elevation gradient. Oecologia, 141, 641-651.
– reference: Melillo J, Steudler PA, Abler JD et al. (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2175.
– reference: Floate MJS (1970) Decomposition of organic materials from hill soils and pastures. II. Comparative studies on the mineralization of carbon, nitrogen, and phosphorus from plant materials and sheep faeces. Soil Biology and Biochemistry, 2, 173-185.
– reference: Olofsson J, Oksanen L (2002) Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer: a litterbag experiment. Oikos, 96, 507-515.
– reference: Sjögersten S, Wookey PA (2004) Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions. Plant and Soil, 262, 215-227.
– reference: Duan Y-W, He Y-P, Liu J-Q (2005) Reproductive ecology of the Qinghai-Tibet Plateau endemic Gentiana straminea (Gentianaceae), a hermaphrodite perennial characterized by herkogamy and dichogamy. Acta Oecologica, 27, 225-232.
– reference: Kimball BA, Conley MM, Wang SP, Lin XW, Luo CY, Morgan J, Smith D (2008) Infrared heater arrays for warming ecosystem field plots. Global Change in Biology, 14, 309-320.
– reference: Knorr W, Pretice IC, House IJ, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298-301.
– reference: Aerts R (1997) Climate, leaf litter chemistry, and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449.
– reference: Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94, 713-724.
– reference: Liski J, Nissinen A, Erhard M, Taskinen O (2003) Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Global Change in Biology, 9, 575-584.
– reference: Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 30, 1867-1878.
– reference: AOAC (1984) Official methods of analysis of the Association of Official Analytical Chemists, 14th edn. Association of Official Analytical Chemists, Washington, DC, USA.
– reference: Zheng D, Zhang QS, Wu SH (2000) Mountain Geoecology and Sustainable Development of the Tibetan Plateau. Kluwer Academic, Norwell, MA.
– reference: Wang SP, Wang YF, Chen ZZ (2003) Grazing Ecosystem and Management. Science Press, Beijing, China.
– reference: Eiland F, Klamer M, Lind AM, Baath E (2001) Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microbial Ecology, 41, 272-280.
– reference: Giardina PH, Loveland PJ, Bradley RI, Murray LR, Kirk G (2000) Evidence that decomposition rate of organic matter in mineral soil do not vary with temperature. Nature, 404, 858-861.
– reference: IPCC (2007) Climate Change 2007: Summary for Policymaker. Valencia, Spain.
– reference: Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626.
– reference: Murphy KL, Klopatek JM, Klopatek CC (1998) The effects of litter quality and climate on decomposition along an elevational gradient. Ecological Applications, 8, 1061-1071.
– reference: Van Soest PJ (1963) Use of detergents in analysis of fibrous feeds: a rapid method for the determination of fiber and lignin. Association of Official Analytical Chemists, 46, 829-835.
– reference: Houghton JT, Ding Y, Griggs DJ et al. (2001) Climate Change 2001: The Scientific Basis. Third IPCC Report. Cambridge University Press, Cambridge.
– reference: Davidson EA, Trumbore SE, Amundson R (2000) Soil warming and organic matter content. Nature, 408, 789-790.
– reference: Ryan M, Melillo J, Ricca A (1990) A comparison of methods for determining proximate carbon fractions of forest litter. Canadian Journal of Forest Research, 20, 166-171.
– reference: McTiernan KB, Coüteaux MM, Berg B et al. (2003) Changes in chemical composition of Pinus sylvestris needle litter during decomposition along a European coniferous forest climatic transect. Soil Biology and Biochemistry, 35, 801-812.
– reference: Harte J, Shaw R (1995) Shifting dominance within a montane vegetation community, results of a climate-warming experiment. Science, 267, 876-880.
– reference: Yao J, Yang BH, Yan P et al. (2006) Analysis on habitat variance and behaviour of Bos gruiens in China. Acta Prataculturae Sinica, 15, 124-128.
– reference: Robinson CH (2002) Controls on decomposition and soil nitrogen availability at high latitudes. Plant and Soil, 242, 65-81.
– reference: Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology, 86, 320-326.
– reference: Mack MC, Schnur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature, 431, 440-443.
– reference: Ruess RW, Hik DS, Jefferies RL (1989) The role of lesser snow geese as nitrogen processors in a sub-arctic marsh. Oecologia, 79, 23-29.
– reference: Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
– reference: Pastor J, Dewey B, Naiman RJ et al. (1993) Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology, 74, 467-480.
– reference: Zhou HK, Zhao XQ, Tang YH, Gu S, Zhou L (2005) Alpine grassland degradation and its control in the source region of Yangtze and Yellow rivers, China. Japanese Journal of Grassland Science, 51, 191-203.
– reference: Klein JA, Harte J, Zhao XQ (2007) Experimental warming, not grazing, decreases rangeland quality on the Tibetan plateau. Ecological Applications, 17, 541-557.
– reference: Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978-2003. Nature, 437, 245-248.
– reference: Cornelissen JHC, Van Bodegom PM, Aerts R et al. (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters, 10, 619-627.
– reference: Post E, Pedersen C, Wilmers CC, Forchhammer MC (2008) Phenological sequences reveal aggregate life history response to climatic warming. Ecology, 89, 363-370.
– reference: Rustad LE, Fernandez IJ (1998) Soil warming: consequences for foliar litter decay in a spruce-fir forest in Maine, USA. Soil Science Society of America Journal, 62, 1072-1080.
– reference: Zhao XQ, Zhou XM (1999) Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station. Ambio, 28, 642-647.
– reference: Shaw MR, Harte J (2001) Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change. Ecological Applications, 11, 1206-1223.
– reference: Wan S, Luo Y, Wallace L (2002) Change in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change in Biology, 8, 754-768.
– reference: Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465-472.
– reference: Gerald W, Han JL, Long RJ (2003) The Yak-Second Edition. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand.
– reference: ACIA (2005) Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK.
– reference: Hart SC, Perry DA (1999) Transferring soils from high- to low-elevation forests increases nitrogen cycling rates: climate change implications Glob. Change Biology, 5, 23-32.
– reference: Wan S, Hui D, Wallace L, Luo Y (2005) Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycle, 19, GB2014, doi: DOI: 10.1029/2004GB002315.
– reference: Shaver GR, Canadell J, Chapin FS et al. (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience, 50, 871-882.
– reference: Jones CD, Cox P, Huntingford C (2003) Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus Series B Chemical and Physical Meteorology, 55, 642-648.
– reference: Klein J, Harte J, Zhao XQ (2005) Dynamic and complex microclimate responses to warming and grazing manipulation. Global Change in Biology, 11, 1440-1451.
– reference: Duan AM, Wu GX, Zhang Q, Liu YM (2006) New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chinese Science Bulletin, 51, 1396-1400.
– reference: Shariff AR, Biondini ME, Grygiel CE (1994) Grazing intensity effects on litter decomposition and soil nitrogen mineralization. Journal of Range Management, 47, 444-449.
– reference: Hobbs NT (1996) Modification of ecosystems by ungulates. Journal of Wildlife Management, 60, 695-713.
– reference: Hobbie SE (2000) Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems, 3, 484-494.
– reference: Berg B, Ekbohm G, Johansson ME, McClaugherty CA, Rutigliano F, Santo AV (1996) Maximum decomposition limits of forest litter types: a synthesis. Canadian Journal of Botany, 74, 659-672.
– reference: Cornelissen JHC, Callaghan TV, Alatalo JM et al. (2001) Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? Journal of Ecology, 89, 984-994.
– reference: Klein JA, Harte J, Zhao X-Q (2008) Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan plateau. Ecosystems, 11, 775-789.
– reference: Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends in Ecology and Evolution, 10, 63-66.
– reference: Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70, 97-104.
– reference: Berg B, Berg MP, Bottner P et al. (1993) Litter mass loss rates in pine forests of Europe and eastern United States: some relationships with climate and litter quality. Biogeochemistry, 20, 127-159.
– reference: Verburg PSJ, Van Loon WKP, Lükewille A (1999) The CLIMEX soil-heating experiment: soil response after 2 years of treatment. Biology and Fertility of Soils, 28, 271-276.
– reference: Robinson CH, Wookey PA, Parsons AN et al. (1995) Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath. Oikos, 74, 503-512.
– reference: Fang C, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57-59.
– reference: Ruess RW, McNaughton SJ (1987) Grazing and the dynamics of nutrient and energy regulated microbial processes in the Serengeti grasslands. Oikos, 49, 101-110.
– volume: 20
  start-page: 166
  year: 1990
  end-page: 171
  article-title: A comparison of methods for determining proximate carbon fractions of forest litter
  publication-title: Canadian Journal of Forest Research
– volume: 89
  start-page: 363
  year: 2008
  end-page: 370
  article-title: Phenological sequences reveal aggregate life history response to climatic warming
  publication-title: Ecology
– volume: 14
  start-page: 309
  year: 2008
  end-page: 320
  article-title: Infrared heater arrays for warming ecosystem field plots
  publication-title: Global Change in Biology
– year: 2005
– volume: 47
  start-page: 444
  year: 1994
  end-page: 449
  article-title: Grazing intensity effects on litter decomposition and soil nitrogen mineralization
  publication-title: Journal of Range Management
– volume: 440
  start-page: 165
  year: 2006
  end-page: 173
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
– volume: 433
  start-page: 298
  year: 2005
  end-page: 301
  article-title: Long‐term sensitivity of soil carbon turnover to warming
  publication-title: Nature
– volume: 41
  start-page: 272
  year: 2001
  end-page: 280
  article-title: Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw
  publication-title: Microbial Ecology
– year: 2001
– volume: 27
  start-page: 225
  year: 2005
  end-page: 232
  article-title: Reproductive ecology of the Qinghai‐Tibet Plateau endemic (Gentianaceae), a hermaphrodite perennial characterized by herkogamy and dichogamy
  publication-title: Acta Oecologica
– volume: 86
  start-page: 320
  year: 2005
  end-page: 326
  article-title: Litter quality and the temperature sensitivity of decomposition
  publication-title: Ecology
– volume: 30
  start-page: 1867
  year: 1998
  end-page: 1878
  article-title: Linking above‐ground and below‐ground interactions
  publication-title: Soil Biology and Biochemistry
– volume: 10
  start-page: 619
  year: 2007
  end-page: 627
  article-title: Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
  publication-title: Ecology Letters
– volume: 20
  start-page: 127
  year: 1993
  end-page: 159
  article-title: Litter mass loss rates in pine forests of Europe and eastern United States
  publication-title: Biogeochemistry
– volume: 44B
  start-page: 81
  year: 1992
  end-page: 99
  article-title: The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate
  publication-title: Tellus
– volume: 94
  start-page: 713
  year: 2006
  end-page: 724
  article-title: The freezer defrosting
  publication-title: Journal of Ecology
– volume: 431
  start-page: 440
  year: 2004
  end-page: 443
  article-title: Ecosystem carbon storage in arctic tundra reduced by long‐term nutrient fertilization
  publication-title: Nature
– volume: 96
  start-page: 507
  year: 2002
  end-page: 515
  article-title: Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer
  publication-title: Oikos
– volume: 28
  start-page: 271
  year: 1999
  end-page: 276
  article-title: The CLIMEX soil‐heating experiment
  publication-title: Biology and Fertility of Soils
– volume: 9
  start-page: 575
  year: 2003
  end-page: 584
  article-title: Climatic effects on litter decomposition from arctic tundra to tropical rainforest
  publication-title: Global Change in Biology
– volume: 11
  start-page: 1206
  year: 2001
  end-page: 1223
  article-title: Control of litter decomposition in a subalpine meadow‐sagebrush steppe ecotone under climate change
  publication-title: Ecological Applications
– volume: 35
  start-page: 801
  year: 2003
  end-page: 812
  article-title: Changes in chemical composition of needle litter during decomposition along a European coniferous forest climatic transect
  publication-title: Soil Biology and Biochemistry
– volume: 141
  start-page: 641
  year: 2004
  end-page: 651
  article-title: Dead wood biomass and turnover time, measured by radiocarbon, along a subalpine elevation gradient
  publication-title: Oecologia
– volume: 74
  start-page: 503
  year: 1995
  end-page: 512
  article-title: Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi‐desert and a subarctic dwarf shrub heath
  publication-title: Oikos
– volume: 10
  start-page: 63
  year: 1995
  end-page: 66
  article-title: Litter decomposition, climate and litter quality
  publication-title: Trends in Ecology and Evolution
– volume: 3
  start-page: 484
  year: 2000
  end-page: 494
  article-title: Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest
  publication-title: Ecosystems
– volume: 19
  start-page: GB2014
  year: 2005
  article-title: Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie
  publication-title: Global Biogeochemical Cycle
– volume: 50
  start-page: 871
  year: 2000
  end-page: 882
  article-title: Global warming and terrestrial ecosystems
  publication-title: Bioscience
– volume: 437
  start-page: 245
  year: 2005
  end-page: 248
  article-title: Carbon losses from all soils across England and Wales 1978–2003
  publication-title: Nature
– start-page: 141
  year: 1993
  end-page: 158
– volume: 11
  start-page: 1440
  year: 2005
  end-page: 1451
  article-title: Dynamic and complex microclimate responses to warming and grazing manipulation
  publication-title: Global Change in Biology
– volume: 267
  start-page: 876
  year: 1995
  end-page: 880
  article-title: Shifting dominance within a montane vegetation community, results of a climate‐warming experiment
  publication-title: Science
– volume: 28
  start-page: 642
  year: 1999
  end-page: 647
  article-title: Ecological basis of alpine meadow ecosystem management in Tibet
  publication-title: Ambio
– volume: 74
  start-page: 659
  year: 1996
  end-page: 672
  article-title: Maximum decomposition limits of forest litter types
  publication-title: Canadian Journal of Botany
– volume: 404
  start-page: 858
  year: 2000
  end-page: 861
  article-title: Evidence that decomposition rate of organic matter in mineral soil do not vary with temperature
  publication-title: Nature
– volume: 8
  start-page: 1061
  year: 1998
  end-page: 1071
  article-title: The effects of litter quality and climate on decomposition along an elevational gradient
  publication-title: Ecological Applications
– volume: 59
  start-page: 465
  year: 1978
  end-page: 472
  article-title: Macroclimate and lignin control of litter decomposition rates
  publication-title: Ecology
– volume: 46
  start-page: 829
  year: 1963
  end-page: 835
  article-title: Use of detergents in analysis of fibrous feeds
  publication-title: Association of Official Analytical Chemists
– volume: 55
  start-page: 642
  year: 2003
  end-page: 648
  article-title: Uncertainty in climate‐carbon‐cycle projections associated with the sensitivity of soil respiration to temperature
  publication-title: Tellus Series B Chemical and Physical Meteorology
– volume: 74
  start-page: 467
  year: 1993
  end-page: 480
  article-title: Moose browsing and soil fertility in the boreal forests of Isle Royale National Park
  publication-title: Ecology
– year: 2007
– year: 2003
– volume: 60
  start-page: 695
  year: 1996
  end-page: 713
  article-title: Modification of ecosystems by ungulates
  publication-title: Journal of Wildlife Management
– volume: 262
  start-page: 215
  year: 2004
  end-page: 227
  article-title: Decomposition of mountain birch leaf litter at the forest‐tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions
  publication-title: Plant and Soil
– year: 2000
– volume: 242
  start-page: 65
  year: 2002
  end-page: 81
  article-title: Controls on decomposition and soil nitrogen availability at high latitudes
  publication-title: Plant and Soil
– volume: 5
  start-page: 23
  year: 1999
  end-page: 32
  article-title: Transferring soils from high‐ to low‐elevation forests increases nitrogen cycling rates
  publication-title: Change Biology
– volume: 17
  start-page: 541
  year: 2007
  end-page: 557
  article-title: Experimental warming, not grazing, decreases rangeland quality on the Tibetan plateau
  publication-title: Ecological Applications
– start-page: 147
  year: 1994
  end-page: 167
– volume: 8
  start-page: 754
  year: 2002
  end-page: 768
  article-title: Change in microclimate induced by experimental warming and clipping in tallgrass prairie
  publication-title: Global Change in Biology
– volume: 89
  start-page: 984
  year: 2001
  end-page: 994
  article-title: Global change and arctic ecosystems
  publication-title: Journal of Ecology
– volume: 70
  start-page: 97
  year: 1989
  end-page: 104
  article-title: Nitrogen and lignin content as predictors of litter decay rates
  publication-title: Ecology
– volume: 51
  start-page: 191
  year: 2005
  end-page: 203
  article-title: Alpine grassland degradation and its control in the source region of Yangtze and Yellow rivers, China
  publication-title: Japanese Journal of Grassland Science
– year: 1984
– volume: 2
  start-page: 173
  year: 1970
  end-page: 185
  article-title: Decomposition of organic materials from hill soils and pastures. II. Comparative studies on the mineralization of carbon, nitrogen, and phosphorus from plant materials and sheep faeces
  publication-title: Soil Biology and Biochemistry
– volume: 62
  start-page: 1072
  year: 1998
  end-page: 1080
  article-title: Soil warming
  publication-title: Soil Science Society of America Journal
– volume: 433
  start-page: 57
  year: 2005
  end-page: 59
  article-title: Similar response of labile and resistant soil organic matter pools to changes in temperature
  publication-title: Nature
– volume: 408
  start-page: 789
  year: 2000
  end-page: 790
  article-title: Soil warming and organic matter content
  publication-title: Nature
– volume: 51
  start-page: 1396
  year: 2006
  end-page: 1400
  article-title: New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions
  publication-title: Chinese Science Bulletin
– volume: 79
  start-page: 23
  year: 1989
  end-page: 29
  article-title: The role of lesser snow geese as nitrogen processors in a sub‐arctic marsh
  publication-title: Oecologia
– volume: 49
  start-page: 101
  year: 1987
  end-page: 110
  article-title: Grazing and the dynamics of nutrient and energy regulated microbial processes in the Serengeti grasslands
  publication-title: Oikos
– volume: 15
  start-page: 124
  year: 2006
  end-page: 128
  article-title: Analysis on habitat variance and behaviour of in China
  publication-title: Acta Prataculturae Sinica
– volume: 11
  start-page: 775
  year: 2008
  end-page: 789
  article-title: Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan plateau
  publication-title: Ecosystems
– volume: 63
  start-page: 621
  year: 1982
  end-page: 626
  article-title: Nitrogen and lignin control of hardwood leaf litter decomposition dynamics
  publication-title: Ecology
– volume: 79
  start-page: 439
  year: 1997
  end-page: 449
  article-title: Climate, leaf litter chemistry, and leaf litter decomposition in terrestrial ecosystems
  publication-title: Oikos
– volume: 298
  start-page: 2173
  year: 2002
  end-page: 2175
  article-title: Soil warming and carbon‐cycle feedbacks to the climate system
  publication-title: Science
– ident: e_1_2_7_25_1
  doi: 10.1007/s100210000042
– volume-title: The Yak‐Second Edition
  year: 2003
  ident: e_1_2_7_21_1
– ident: e_1_2_7_67_1
  doi: 10.1007/978-94-010-0965-2
– ident: e_1_2_7_43_1
  doi: 10.1034/j.1600-0706.2002.960312.x
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1365-2745.2006.01142.x
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1461-0248.2007.01051.x
– ident: e_1_2_7_45_1
  doi: 10.2307/1939308
– ident: e_1_2_7_12_1
  doi: 10.1016/S0169-5347(00)88978-8
– ident: e_1_2_7_52_1
  doi: 10.1016/B978-0-12-233440-5.50014-2
– volume-title: Arctic Climate Impact Assessment
  year: 2005
  ident: e_1_2_7_2_1
– ident: e_1_2_7_34_1
  doi: 10.1038/nature03226
– ident: e_1_2_7_41_1
  doi: 10.2307/1936780
– ident: e_1_2_7_32_1
  doi: 10.1890/05-0685
– ident: e_1_2_7_17_1
  doi: 10.1007/s002480000071
– volume: 15
  start-page: 124
  year: 2006
  ident: e_1_2_7_65_1
  article-title: Analysis on habitat variance and behaviour of Bos gruiens in China
  publication-title: Acta Prataculturae Sinica
– ident: e_1_2_7_42_1
  doi: 10.1890/1051-0761(1998)008[1061:TEOLQA]2.0.CO;2
– ident: e_1_2_7_57_1
  doi: 10.1890/1051-0761(2001)011[1206:COLDIA]2.0.CO;2
– ident: e_1_2_7_3_1
  doi: 10.2307/3546886
– ident: e_1_2_7_56_1
  doi: 10.1046/j.1469-8137.1998.00221.x
– ident: e_1_2_7_7_1
  doi: 10.1038/nature04038
– volume-title: Official methods of analysis of the Association of Official Analytical Chemists
  year: 1984
  ident: e_1_2_7_5_1
– ident: e_1_2_7_58_1
  doi: 10.1023/B:PLSO.0000037044.63113.fe
– ident: e_1_2_7_16_1
  doi: 10.1016/j.actao.2005.01.003
– ident: e_1_2_7_8_1
  doi: 10.1007/BF00000785
– ident: e_1_2_7_49_1
  doi: 10.2307/3545996
– ident: e_1_2_7_47_1
  doi: 10.1034/j.1600-0889.1992.t01-1-00001.x
– ident: e_1_2_7_54_1
  doi: 10.1139/x90-023
– ident: e_1_2_7_48_1
  doi: 10.1023/A:1019681606112
– volume: 28
  start-page: 642
  year: 1999
  ident: e_1_2_7_66_1
  article-title: Ecological basis of alpine meadow ecosystem management in Tibet
  publication-title: Ambio
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1365-2745.2001.00625.x
– ident: e_1_2_7_6_1
  doi: 10.1016/S0038-0717(98)00069-8
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– ident: e_1_2_7_23_1
  doi: 10.1046/j.1365-2486.1998.00196.x
– ident: e_1_2_7_68_1
  doi: 10.1111/j.1744-697X.2005.00028.x
– ident: e_1_2_7_14_1
  doi: 10.1038/35048672
– ident: e_1_2_7_50_1
  doi: 10.1007/BF00378235
– ident: e_1_2_7_22_1
  doi: 10.1038/35009076
– ident: e_1_2_7_24_1
  doi: 10.1126/science.267.5199.876
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1365-2486.2007.01486.x
– volume: 55
  start-page: 642
  year: 2003
  ident: e_1_2_7_29_1
  article-title: Uncertainty in climate‐carbon‐cycle projections associated with the sensitivity of soil respiration to temperature
  publication-title: Tellus Series B Chemical and Physical Meteorology
– ident: e_1_2_7_36_1
  doi: 10.1046/j.1365-2486.2003.00605.x
– ident: e_1_2_7_51_1
  doi: 10.2307/3565559
– ident: e_1_2_7_37_1
  doi: 10.1038/nature02887
– ident: e_1_2_7_63_1
  doi: 10.1046/j.1365-2486.2002.00510.x
– ident: e_1_2_7_55_1
  doi: 10.2307/4002994
– ident: e_1_2_7_53_1
  doi: 10.2136/sssaj1998.03615995006200040031x
– volume: 46
  start-page: 829
  year: 1963
  ident: e_1_2_7_60_1
  article-title: Use of detergents in analysis of fibrous feeds
  publication-title: Association of Official Analytical Chemists
– ident: e_1_2_7_9_1
  doi: 10.1139/b96-084
– ident: e_1_2_7_33_1
  doi: 10.1007/s10021-008-9160-1
– ident: e_1_2_7_19_1
  doi: 10.1890/04-1254
– ident: e_1_2_7_39_1
  doi: 10.2307/1936576
– ident: e_1_2_7_18_1
  doi: 10.1038/nature03138
– ident: e_1_2_7_40_1
  doi: 10.1126/science.1074153
– ident: e_1_2_7_46_1
  doi: 10.1890/06-2138.1
– ident: e_1_2_7_59_1
  doi: 10.2307/1938416
– volume-title: Grazing Ecosystem and Management
  year: 2003
  ident: e_1_2_7_64_1
– ident: e_1_2_7_26_1
  doi: 10.2307/3802368
– volume-title: Climate Change 2001: The Scientific Basis
  year: 2001
  ident: e_1_2_7_27_1
– volume-title: Climate Change 2007: Summary for Policymaker
  year: 2007
  ident: e_1_2_7_28_1
– ident: e_1_2_7_61_1
  doi: 10.1007/s003740050493
– ident: e_1_2_7_15_1
  doi: 10.1007/s11434-006-1396-6
– start-page: 147
  volume-title: Quantitative Modeling of Soil Forming Processes
  year: 1994
  ident: e_1_2_7_44_1
– ident: e_1_2_7_35_1
  doi: 10.1007/s00442-004-1689-x
– ident: e_1_2_7_62_1
  doi: 10.1029/2004GB002315
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1365-2486.2005.00994.x
– ident: e_1_2_7_38_1
  doi: 10.1016/S0038-0717(03)00107-X
– ident: e_1_2_7_20_1
  doi: 10.1016/0038-0717(70)90005-2
SSID ssj0003206
ssib006547461
ssib006547462
Score 2.4241264
Snippet Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still...
AbstractKnowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still...
SourceID proquest
pascalfrancis
crossref
wiley
nii
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1606
SubjectTerms Air temperature
alpine meadow
Animal and plant ecology
Animal, plant and microbial ecology
Atmosphere
biogeochemical cycles
Biological and medical sciences
biomass
carbon
China
Climate change
Climatology. Bioclimatology. Climate change
Decomposition
degradation
Dung
Earth, ocean, space
ecosystems
Elevation
environmental factors
Exact sciences and technology
External geophysics
feces
Fundamental and applied biological sciences. Psychology
General aspects
global change
Grazing
Growing season
infrared
infrared heaters
infrared radiation
Litter
Manures
Meteorology
Nutrient cycles
Soil depth
soil heating
Soil moisture
Soil sciences
Soil temperature
soil water
stocking rate
Temperature
temperature sensitivity
warming
Title Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau
URI https://api.istex.fr/ark:/67375/WNG-NMG39066-9/fulltext.pdf
https://cir.nii.ac.jp/crid/1873398393068664064
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2009.02026.x
https://www.proquest.com/docview/205266915
https://www.proquest.com/docview/742686151
https://www.proquest.com/docview/745934304
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdrYbCXfWQr9boWPYy-OcSWZVuPW2hTBsnD1rC-CcmSQkhmlzhh7d72n-9OdtxkjFHGXkKCTmfldDr9zjrdEfJexI5jwYFQxzYPkyhzoWJGhyZlkUkRwBboKI4n6dU0-XTDb9r4J7wL0-SH6F644crw9hoXuNL1_iL3EVpJnrZpJ8GPT_uIJ7EB8dHnh0xSLPZlNiPGE7A8EdsP6vkjo72d6sCpCvArih4aDsr5HKMoVQ2CdE0FjD2Iugt0_U51-YIstv-xCVBZ9Ddr3S9-_Jb-8f8I4SV53gJa-qHRwFfkiS175GlT4vK-R44uHm7SAVlrSuoeCcYA16uVJ6PndLicA3b2v16Tn01OZVo5-l1hsM6MqtLQ2QpzYc9oVVJwHkAh6DeA_nQJ0vPtmGarzRFNawzMbypjIJuWHqkMmLedjsAMMDC9nmsLOJneLgF8q80bMr28uB5ehW2tiLDggHDBAxZO5VoJ0DyDpSsGGiNOdaxzYWOR8xwPOLnhJhemANijuGGJHmhduJQ5xo7IYVmV9phQK6xyJgUBW9hGLBc6FtoJB66XVQBnApJt9UIWbSJ1rOexlDsOFcyKxFnBMp9C-lmRdwGJup63TTKRR_Q5BtWTagY2X06_xHjSDD5hlnIekHOvjx0vtVpgnF7G5dfJSE7GIyYAUUoRkFNQWBgsfkZ5xpgAXMzwdlAKgC4JyNmeKncMY3hOIiIgONnqtmxtXA2j5IDuRATjoF0rGCc8cVKlrTa1zAD_5YiZ_0bCBUvYAJ6Rek1_tGTkaPgRv739144n5Nk2FmQQvSOH69XGngLEXOszbzx-AcG8ZkA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfYEIIXPgrTwtjwA9pbqiaOk_gRytYCax-gFXuz7NiuqpVk6of4eOM_585JuxYhNCFeqlY-X9zz-fy7-HxHyCsRO44FB0Id2zxMosyFihkdmpRFJkUAW6CjOBim_XHy_pJfNuWA8C5MnR9i88INV4a317jA8YX07ir3IVpJnjZ5J8GRT9sAKO9igW9MpP_2400uKRb7QpsR4wnYnojthvX8kdPOXrXnVAUIFoUPDXvldIpxlGoBonR1DYwdkLoNdf1edf6IzNb_sg5RuWqvlrpd_PgtAeR_EsNj8rDBtPR1rYRPyB1btsi9usrl9xY5OLu5TAdkjTVZtEgwAMRezT0ZPaXd2RTgs__1lPys0yrTytGvCuN1JlSVhk7mmA57QquSgv8AOkG_APqnMxCfb8dMW02aaLrA2Py6OAayaeiRyoCF2-oIzAAG09FUW4DK9HoG-FutnpHx-dmo2w-bchFhwQHkghMsnMq1EqB8BqtXdDQGnepY58LGIuc5nnFyw00uTAHIR3HDEt3RunApc4wdkP2yKu0hoVZY5UwKArawk1gudCy0Ew68L6sA0QQkWyuGLJpc6ljSYya3fCqYFYmzgpU-hfSzIr8FJNr0vK7zidyizyHonlQTMPty_CnGw2ZwC7OU84CceoXc8FLzKwzVy7j8POzJ4aDHBIBKKQJyDBoLg8XPKM8YEwCNGV4QSgHTJQE52dHlDcMYnpOICAiO1sotGzO3gFFyAHgignHQTSvYJzx0UqWtVguZAQTMETb_jYQLlrAOPCP1qn5ryche9w1-e_6vHV-S-_3R4EJevBt-OCIP1qEhnegF2V_OV_YYEOdSn3hL8gsgNWpc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfYEGgvfBSmhbHhB7S3VE0cJ_EjdGvHRysEq9ibZcd2VbUkVT_Exxv_OXdJ2jUIoQnxUrXy-eKez-ffxec7Ql6K0HEsOODr0KZ-FCTOV8xo38QsMDEC2AwdxcEwvhxFb6_5dR3_hHdhqvwQ2xduuDJKe40LfG5cc5GXEVpRGtdpJ8GPj9uAJ-9GcUdgGYfzjzeppFhY1tkMGI_A9ASsGdXzR06NrWrPqQIALMoeGvbyyQTDKNUSJOmqEhgNjLqLdMutqveQTDd_sopQmbbXK93OfvyW__H_SOEReVAjWvqqUsHH5I7NW-ReVePye4scXtxcpQOy2pYsW8QbAF4vFiUZPaPd2QTAc_nrCflZJVWmhaNfFUbrjKnKDR0vMBn2mBY5Be8BNIJ-AexPZyC9sh3zbNVJoukSI_Or0hjIpqZHKgP2bacjMAMQTK8m2gJQpvMZoG-1fkpGvYur7qVfF4vwMw4QF1xg4VSqlQDVM1i7oqMx5FSHOhU2FClP8YSTG25SYTLAPYobFumO1pmLmWPskOznRW6PCLXCKmdiELCFfcRyoUOhnXDge1kFeMYjyUYvZFZnUseCHjO541HBrEicFazzKWQ5K_KbR4Jtz3mVTeQWfY5A9aQag9GXo08hHjWDU5jEnHvkrNTHLS-1mGKgXsLl52FfDgd9JgBSSuGRE1BYGCx-BmnCmABgzPB6UAyILvLIaUOVtwxDeE4kAiA43ui2rI3cEkbJAd6JAMZBt61gnfDISeW2WC9lAgAwRdD8NxIuWMQ68Iy41PRbS0b2u6_x27N_7fiC3P9w3pPv3wzfHZODTVxIJ3hO9leLtT0BuLnSp6Ud-QVoNGkL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+warming+and+grazing+on+litter+mass+loss+and+temperature+sensitivity+of+litter+and+dung+mass+loss+on+the+Tibetan+plateau&rft.jtitle=Global+change+biology&rft.au=Luo%2C+Caiyun&rft.au=Xu%2C+Guangping&rft.au=CHAO%2C+ZENGGUO&rft.au=Wang%2C+Shiping&rft.date=2010-05-01&rft.issn=1354-1013&rft.volume=16&rft.issue=5&rft.spage=1606&rft.epage=1617&rft_id=info:doi/10.1111%2Fj.1365-2486.2009.02026.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon