Mitofusin 2 Triggers Vascular Smooth Muscle Cell Apoptosis via Mitochondrial Death Pathway
Previous studies have shown that mitofusin 2 (Mfn-2) (or hyperplasia suppressor gene [HSG]) inhibits vascular smooth muscle cell (VSMC) proliferation. Here, we demonstrate that Mfn-2 is a primary determinant of VSMC apoptosis. First, oxidative stress with H2O2, inhibition of protein kinase C with st...
Saved in:
Published in | Circulation research Vol. 101; no. 11; pp. 1113 - 1122 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
American Heart Association, Inc
26.11.2007
Lippincott |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous studies have shown that mitofusin 2 (Mfn-2) (or hyperplasia suppressor gene [HSG]) inhibits vascular smooth muscle cell (VSMC) proliferation. Here, we demonstrate that Mfn-2 is a primary determinant of VSMC apoptosis. First, oxidative stress with H2O2, inhibition of protein kinase C with staurosporine, activation of protein kinase A with forskolin, and serum deprivation concurrently elevate Mfn-2 expression and induce VSMC apoptosis. Second, overexpression of Mfn-2 also triggers apoptosis of VSMCs in culture and in balloon-injured rat carotid arteries, thus contributing to Mfn-2–mediated prevention of neointima formation after angioplasty. Third, Mfn-2 silencing protects VSMCs against H2O2 or Mfn-2 overexpression–induced apoptosis, indicating that upregulation of Mfn-2 is necessary and sufficient for oxidative stress–mediated VSMC apoptosis. The Mfn-2 proapoptotic effect is independent of its role in mitochondrial fusion but mainly mediated by inhibition of Akt signaling and the resultant activation of the mitochondrial apoptotic pathway, as manifested by decreased Akt phosphorylation, increased mitochondrial Bax/Bcl-2 ratio, cytochrome c release, and activation of caspases-9 and caspase-3. Furthermore, Mfn-2–induced apoptosis was blocked by overexpression of an active phosphoinositide 3-kinase mutant or Bcl-xL or inhibition of caspase-9 but not caspases-8. Thus, in addition to its antiproliferative effects, Mfn-2 constitutes a primary determinant of VSMC apoptosis. |
---|---|
AbstractList | Previous studies have shown that mitofusin 2 (
Mfn-2
) (or hyperplasia suppressor gene [
HSG
]) inhibits vascular smooth muscle cell (VSMC) proliferation. Here, we demonstrate that Mfn-2 is a primary determinant of VSMC apoptosis. First, oxidative stress with H
2
O
2
, inhibition of protein kinase C with staurosporine, activation of protein kinase A with forskolin, and serum deprivation concurrently elevate Mfn-2 expression and induce VSMC apoptosis. Second, overexpression of Mfn-2 also triggers apoptosis of VSMCs in culture and in balloon-injured rat carotid arteries, thus contributing to Mfn-2–mediated prevention of neointima formation after angioplasty. Third, Mfn-2 silencing protects VSMCs against H
2
O
2
or Mfn-2 overexpression–induced apoptosis, indicating that upregulation of Mfn-2 is necessary and sufficient for oxidative stress–mediated VSMC apoptosis. The Mfn-2 proapoptotic effect is independent of its role in mitochondrial fusion but mainly mediated by inhibition of Akt signaling and the resultant activation of the mitochondrial apoptotic pathway, as manifested by decreased Akt phosphorylation, increased mitochondrial Bax/Bcl-2 ratio, cytochrome
c
release, and activation of caspases-9 and caspase-3. Furthermore, Mfn-2–induced apoptosis was blocked by overexpression of an active phosphoinositide 3-kinase mutant or Bcl-xL or inhibition of caspase-9 but not caspases-8. Thus, in addition to its antiproliferative effects, Mfn-2 constitutes a primary determinant of VSMC apoptosis. Previous studies have shown that mitofusin 2 (Mfn-2) (or hyperplasia suppressor gene [HSG]) inhibits vascular smooth muscle cell (VSMC) proliferation. Here, we demonstrate that Mfn-2 is a primary determinant of VSMC apoptosis. First, oxidative stress with H2O2, inhibition of protein kinase C with staurosporine, activation of protein kinase A with forskolin, and serum deprivation concurrently elevate Mfn-2 expression and induce VSMC apoptosis. Second, overexpression of Mfn-2 also triggers apoptosis of VSMCs in culture and in balloon-injured rat carotid arteries, thus contributing to Mfn-2–mediated prevention of neointima formation after angioplasty. Third, Mfn-2 silencing protects VSMCs against H2O2 or Mfn-2 overexpression–induced apoptosis, indicating that upregulation of Mfn-2 is necessary and sufficient for oxidative stress–mediated VSMC apoptosis. The Mfn-2 proapoptotic effect is independent of its role in mitochondrial fusion but mainly mediated by inhibition of Akt signaling and the resultant activation of the mitochondrial apoptotic pathway, as manifested by decreased Akt phosphorylation, increased mitochondrial Bax/Bcl-2 ratio, cytochrome c release, and activation of caspases-9 and caspase-3. Furthermore, Mfn-2–induced apoptosis was blocked by overexpression of an active phosphoinositide 3-kinase mutant or Bcl-xL or inhibition of caspase-9 but not caspases-8. Thus, in addition to its antiproliferative effects, Mfn-2 constitutes a primary determinant of VSMC apoptosis. |
Author | Chen, Kuang-Hueih Guo, Xiaomei Guo, Yanhong Tang, Jian Liao, Hua Xiao, Rui-Ping |
AuthorAffiliation | From the Laboratory of Cardiovascular Science (X.G., K.-H.C., R.-P.X.), National Institute on Aging, NIH, Baltimore, Md; Institute of Cardiovascular Science (K.-H.C., Y.G., J.T.), Peking University, Beijing, Peopleʼs Republic of China; and Center for Molecular Cardiology (X.G., H.L.), Department of Cardiology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, Peopleʼs Republic of China |
AuthorAffiliation_xml | – name: From the Laboratory of Cardiovascular Science (X.G., K.-H.C., R.-P.X.), National Institute on Aging, NIH, Baltimore, Md; Institute of Cardiovascular Science (K.-H.C., Y.G., J.T.), Peking University, Beijing, Peopleʼs Republic of China; and Center for Molecular Cardiology (X.G., H.L.), Department of Cardiology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, Peopleʼs Republic of China |
Author_xml | – sequence: 1 givenname: Xiaomei surname: Guo fullname: Guo, Xiaomei organization: From the Laboratory of Cardiovascular Science (X.G., K.-H.C., R.-P.X.), National Institute on Aging, NIH, Baltimore, Md; Institute of Cardiovascular Science (K.-H.C., Y.G., J.T.), Peking University, Beijing, Peopleʼs Republic of China; and Center for Molecular Cardiology (X.G., H.L.), Department of Cardiology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, Peopleʼs Republic of China – sequence: 2 givenname: Kuang-Hueih surname: Chen fullname: Chen, Kuang-Hueih – sequence: 3 givenname: Yanhong surname: Guo fullname: Guo, Yanhong – sequence: 4 givenname: Hua surname: Liao fullname: Liao, Hua – sequence: 5 givenname: Jian surname: Tang fullname: Tang, Jian – sequence: 6 givenname: Rui-Ping surname: Xiao fullname: Xiao, Rui-Ping |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19874359$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17901359$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1PAyEQhonRaP34CRouetsKXVjg2KxVm9Ro_Dp42VAWLEqXCrs2_nsx26RHLzPJ5HlnJs8h2G18owE4xWiIcYEvy-lj-Th5Gt-OhxixIaasIGQHDDAdkYxQhnfBACEkMpbn6AAcxviBECb5SOyDA8wEwjkVA_B2Z1tvumgbOILPwb6_6xDhq4yqczLAp6X37QLedVE5DUvtHByv_Kr10Ub4bSX8i6uFb-pgpYNXWib6IZW1_DkGe0a6qE82_Qi8XE-ey9tsdn8zLcezTFGBScbrueFyzmokuOIYqVyZmmhTICI5NcYUSqhCc5XPGaOFMcLUQtRMEzZiNdf5Ebjo966C_-p0bKuljSq9Khvtu1gVnBKWlieQ9qAKPsagTbUKdinDT4VR9Se12kpNI1b1UlPubHOgmy91vU1tLCbgfAMkb9KZIBtl45YTnJGeEz239q5Nnj9dt9ahWmjp2sU_T_wCUhSVtw |
CODEN | CIRUAL |
CitedBy_id | crossref_primary_10_4103_0366_6999_223855 crossref_primary_10_1016_j_bbrc_2014_03_004 crossref_primary_10_1007_s11596_012_0005_y crossref_primary_10_1016_j_rvsc_2021_10_017 crossref_primary_10_1016_j_bbrc_2010_08_108 crossref_primary_10_1096_fj_202100361R crossref_primary_10_1152_ajpcell_00074_2022 crossref_primary_10_1016_j_bbagen_2016_06_027 crossref_primary_10_1038_onc_2009_192 crossref_primary_10_1186_s13062_017_0174_5 crossref_primary_10_1002_jcp_25508 crossref_primary_10_1007_s11596_020_2305_y crossref_primary_10_1093_jb_mvp070 crossref_primary_10_1038_s41598_018_19849_2 crossref_primary_10_3390_cells12141897 crossref_primary_10_1096_fj_13_230037 crossref_primary_10_1155_2014_156020 crossref_primary_10_1161_CIRCRESAHA_112_270801 crossref_primary_10_1038_nrcardio_2017_23 crossref_primary_10_1016_j_yjmcc_2016_08_016 crossref_primary_10_1155_2022_5477024 crossref_primary_10_3389_fcvm_2023_1166324 crossref_primary_10_1186_s12957_016_0922_5 crossref_primary_10_1016_j_canlet_2014_12_025 crossref_primary_10_1093_ndt_gfv015 crossref_primary_10_1007_s00109_010_0662_x crossref_primary_10_1016_j_bbamcr_2012_02_012 crossref_primary_10_1016_j_tem_2009_03_007 crossref_primary_10_1016_j_ejogrb_2013_11_024 crossref_primary_10_1152_ajpcell_00274_2021 crossref_primary_10_1186_s11658_024_00566_w crossref_primary_10_1042_CS20160030 crossref_primary_10_1242_jcs_176792 crossref_primary_10_1038_s41569_018_0074_0 crossref_primary_10_1089_ars_2012_4777 crossref_primary_10_1002_jcp_24948 crossref_primary_10_3389_fcell_2021_611922 crossref_primary_10_1002_jcb_21805 crossref_primary_10_1038_nature07534 crossref_primary_10_1016_j_freeradbiomed_2020_12_452 crossref_primary_10_3389_fcvm_2022_972836 crossref_primary_10_1155_2013_703705 crossref_primary_10_1038_s41440_018_0057_x crossref_primary_10_1152_ajplung_00155_2013 crossref_primary_10_1016_j_mito_2021_03_008 crossref_primary_10_3389_fcell_2014_00072 crossref_primary_10_3892_ijmm_2016_2725 crossref_primary_10_1080_15548627_2019_1637199 crossref_primary_10_1097_FJC_0000000000000333 crossref_primary_10_1016_j_joca_2019_12_009 crossref_primary_10_5551_jat_5611 crossref_primary_10_1002_jcb_27995 crossref_primary_10_4049_jimmunol_1501023 crossref_primary_10_3390_diagnostics11081500 crossref_primary_10_1016_j_bbrc_2023_01_044 crossref_primary_10_3389_fphys_2022_1039913 crossref_primary_10_3389_fnmol_2017_00049 crossref_primary_10_1586_17476348_2013_834252 crossref_primary_10_1016_j_atherosclerosis_2010_02_012 crossref_primary_10_1152_ajpheart_00049_2016 crossref_primary_10_3389_fmolb_2021_681237 crossref_primary_10_1038_srep41718 crossref_primary_10_1016_j_bbamcr_2018_08_003 crossref_primary_10_1186_s12935_019_0916_9 crossref_primary_10_1016_j_cyto_2012_03_026 crossref_primary_10_1038_s41374_018_0032_9 crossref_primary_10_1016_j_biocel_2015_09_011 crossref_primary_10_1186_s12967_021_03064_1 crossref_primary_10_1074_jbc_M111_227611 crossref_primary_10_1002_jat_4418 crossref_primary_10_1016_j_ejphar_2017_05_003 crossref_primary_10_1016_j_bbrc_2017_07_047 crossref_primary_10_4061_2011_920178 crossref_primary_10_3389_fcvm_2023_1067732 crossref_primary_10_1016_j_bbamcr_2010_11_023 crossref_primary_10_1152_physrev_00022_2019 crossref_primary_10_1161_HYPERTENSIONAHA_108_121954 crossref_primary_10_1007_s10534_012_9540_z crossref_primary_10_1007_s00109_010_0675_5 crossref_primary_10_3389_fmolb_2021_717328 crossref_primary_10_3736_jcim20110611 crossref_primary_10_3892_mmr_2013_1299 crossref_primary_10_1016_j_bbamcr_2014_03_022 crossref_primary_10_3892_ijo_2016_3733 crossref_primary_10_1101_gad_1658508 crossref_primary_10_1242_jcs_259634 crossref_primary_10_1007_s11033_014_3663_y crossref_primary_10_1074_jbc_RA119_012023 crossref_primary_10_1016_j_ejcb_2018_07_003 crossref_primary_10_1111_bph_12516 crossref_primary_10_3892_ol_2019_10570 crossref_primary_10_1093_cvr_cvq237 crossref_primary_10_3389_fcell_2021_673839 crossref_primary_10_3390_antiox6020033 crossref_primary_10_3892_ol_2015_3748 crossref_primary_10_1016_j_molcel_2016_02_022 crossref_primary_10_1007_s12032_010_9662_5 crossref_primary_10_1038_aps_2010_96 crossref_primary_10_1155_2020_6627144 crossref_primary_10_1016_j_bbrc_2014_06_005 crossref_primary_10_1016_j_bbrc_2012_04_015 crossref_primary_10_1038_emboj_2013_168 crossref_primary_10_1089_ars_2021_0031 crossref_primary_10_1016_j_brainres_2016_09_047 crossref_primary_10_3390_ijms232315288 crossref_primary_10_1016_j_neulet_2020_134969 crossref_primary_10_3389_fcell_2023_1105565 crossref_primary_10_1097_CAD_0000000000000415 crossref_primary_10_1016_j_drup_2019_100643 crossref_primary_10_3892_etm_2014_1835 crossref_primary_10_1016_j_chemphyslip_2014_04_001 crossref_primary_10_3389_fcvm_2022_917135 crossref_primary_10_3109_10408363_2015_1033610 crossref_primary_10_1016_j_ceca_2012_02_008 crossref_primary_10_3390_cells8060638 crossref_primary_10_3390_ijms25052905 crossref_primary_10_1177_2045894020924994 crossref_primary_10_3892_etm_2018_6513 crossref_primary_10_3389_fonc_2017_00105 crossref_primary_10_1016_j_bbrc_2015_08_090 crossref_primary_10_1161_ATVBAHA_118_312196 crossref_primary_10_3390_ijms24043414 crossref_primary_10_1164_rccm_201209_1687OC crossref_primary_10_1007_s12032_010_9779_6 crossref_primary_10_1042_BSR20180391 crossref_primary_10_1089_dna_2018_4552 crossref_primary_10_1177_1074248410385683 crossref_primary_10_3724_SP_J_1206_2009_00537 crossref_primary_10_3892_etm_2016_3222 crossref_primary_10_3892_etm_2017_5453 crossref_primary_10_1016_j_ejphar_2023_175725 crossref_primary_10_3892_ijmm_2015_2139 crossref_primary_10_1016_j_ijcard_2018_05_046 crossref_primary_10_1007_s10741_012_9330_2 crossref_primary_10_1152_ajpheart_00936_2012 crossref_primary_10_1016_j_ejcb_2014_04_001 crossref_primary_10_3389_fcell_2020_604240 crossref_primary_10_4068_cmj_2013_49_3_101 crossref_primary_10_1139_bcb_2021_0322 crossref_primary_10_1093_cvr_cvt137 crossref_primary_10_1073_pnas_2106080118 crossref_primary_10_3349_ymj_2013_54_3_603 crossref_primary_10_1007_s11596_013_1099_6 crossref_primary_10_1016_j_intimp_2022_109169 crossref_primary_10_1038_s41418_022_01099_5 crossref_primary_10_1074_jbc_M112_379164 crossref_primary_10_1038_emm_2017_98 |
Cites_doi | 10.1093/emboj/cdg533 10.1056/NEJMoa032845 10.1038/ncb0904-807 10.1006/jsre.2001.6159 10.1038/nm0695-541 10.1073/pnas.0400918101 10.1161/01.cir.0000142865.04816.89 10.1161/01.atv.0000174588.50971.1a 10.1093/jb/mvg150 10.1161/hyp.33.3.906 10.1161/01.cir.0000018126.87045.e0 10.1038/nature00766 10.1161/circ.104.13.1538 10.1038/nri1087 10.1161/circ.98.16.1657 10.1016/S0140-6736(03)12275-1 10.1016/S0092-8674(00)00196-3 10.1242/jcs.114.5.867 10.1126/science.1102974 10.1161/circ.96.10.3602 10.1016/j.cardiores.2004.02.003 10.1161/01.CIR.0000135467.43430.16 10.1161/01.res.0000121568.40692.97 10.1146/annurev.immunol.23.021704.115811 10.1038/ncb1161 10.1038/nrm1365 10.1016/S0092-8674(00)80405-5 10.1038/nm1102-1249 10.1126/science.296.5573.1655 10.1038/418934a 10.1101/gad.13.22.2905 10.1016/S0735-1097(02)01831-4 10.1126/science.1071553 10.1016/S0008-6363(98)00212-0 10.1007/BF02254990 10.1016/j.bcp.2004.08.030 10.1146/annurev.biochem.73.011303.073706 10.1056/NEJMoa013404 10.1126/science.1110551 |
ContentType | Journal Article |
Copyright | 2007 American Heart Association, Inc. 2008 INIST-CNRS |
Copyright_xml | – notice: 2007 American Heart Association, Inc. – notice: 2008 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1161/CIRCRESAHA.107.157644 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4571 |
EndPage | 1122 |
ExternalDocumentID | 10_1161_CIRCRESAHA_107_157644 17901359 19874359 10.1161/CIRCRESAHA.107.157644 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural NIH HHS |
GroupedDBID | - .Z2 01R 0R 1J1 29B 2WC 40H 4Q1 4Q2 4Q3 53G 55 5GY 5RE 5VS 71W 77Y 7O 7O~ AAAXR AAMOA AAMTA AAPBV AARTV AAXQO ABBUW ABFLS ABOCM ABXVJ ABZAD ACDDN ACEWG ACGFS ACPRK ACWDW ACWRI ACXNZ ADACO ADBBV ADNKB AE3 AENEX AFFNX AFUWQ AHMBA AHULI AHVBC AIJEX AJIOK AJNYG AJYGW ALMA_UNASSIGNED_HOLDINGS AMJPA ASCII AWKKM BAWUL BOYCO BQLVK C1A C45 CS3 DIK DU5 DUNZO E.X E3Z EBS EJD EX3 F2K F2L F2M F2N F5P FL- FRP FW0 GX1 H0 H0~ H13 HZ H~9 IKYAY IN IN~ J5H JK3 JK8 K8S KD2 KMI KQ8 L-C L7B LI0 N9A N~7 N~B O0- O9- OAG OAH OB2 OCUKA ODA OHASI OK1 OL1 OLG OLH OLU OLV OLW OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P2P PQEST PQQKQ RAH RHF RLZ RSW S4R S4S UPT V2I WH7 WOQ WOW X X3V X3W X7M Z2 ZA5 --- -~X .-D .3C .55 .GJ 08R 0R~ 18M 1CY 41~ AAGIX AAHPQ AAQKA AASOK AAUGY ABASU ABDIG ABQRW ACCJW ACGFO ACILI ACNWC ADFPA ADGGA AE6 AEETU AFDTB AGINI AHOMT AHRYX AJNWD AKALU AKULP ALMTX AMKUR AMNEI AOHHW BS7 DIWNM EEVPB FCALG GNXGY GQDEL HZ~ IKREB IPNFZ IQODW JF9 JG8 MVM N~M OJAPA OWU OWV OWX OWZ P-K R58 RIG T8P TEORI TR2 TSPGW VVN W3M W8F XXN XYM YFH YOC ZFV ZGI ZZMQN AAAAV AAIQE ABJNI ADHPY AHQNM AINUH AJZMW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c5914-8dbf8ab7d098c810c3cfd4ef604a85fff6c9c6e8c3b7756ff9fd99d7e4727d8e3 |
ISSN | 0009-7330 |
IngestDate | Fri Oct 25 08:10:20 EDT 2024 Fri Aug 23 00:59:38 EDT 2024 Sat Sep 28 08:35:04 EDT 2024 Sun Oct 22 16:06:56 EDT 2023 Thu Aug 13 19:50:25 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Vertebrata Mitochondria Mammalia Cell death Mfn-2 Smooth muscle Circulatory system PI3K-Akt HSG vascular smooth muscle cells Apoptosis |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5914-8dbf8ab7d098c810c3cfd4ef604a85fff6c9c6e8c3b7756ff9fd99d7e4727d8e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.107.157644 |
PMID | 17901359 |
PQID | 68547098 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_68547098 crossref_primary_10_1161_CIRCRESAHA_107_157644 pubmed_primary_17901359 pascalfrancis_primary_19874359 wolterskluwer_health_10_1161_CIRCRESAHA_107_157644 |
ProviderPackageCode | L-C C45 7O~ AARTV OLH ASCII OLG AAMOA ODA ABZAD ABBUW JK3 ADNKB JK8 H0~ 1J1 OLV OLU OLW OLZ OLY F2K F2M F2L F2N OHASI AHVBC AJNYG FL- KMI K8S OVLEI AJIOK OPUJH V2I S4R S4S 4Q1 DUNZO OAG 4Q2 OVDNE 4Q3 AMJPA OAH OVD 71W AHULI OB2 ACEWG .Z2 N~7 IKYAY OVIDH AWKKM 40H N~B OUVQU ORVUJ X3V X3W ACDDN ACWRI BOYCO AIJEX AAXQO AAMTA AAAXR E.X OWW OCUKA OWY 01R ACXNZ OL1 ABXVJ IN~ KD2 OXXIT 77Y ACWDW FW0 |
PublicationCentury | 2000 |
PublicationDate | 2007-November-26 |
PublicationDateYYYYMMDD | 2007-11-26 |
PublicationDate_xml | – month: 11 year: 2007 text: 2007-November-26 day: 26 |
PublicationDecade | 2000 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Circulation research |
PublicationTitleAlternate | Circ Res |
PublicationYear | 2007 |
Publisher | American Heart Association, Inc Lippincott |
Publisher_xml | – name: American Heart Association, Inc – name: Lippincott |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 (e_1_3_3_35_2) 1995; 146 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_24_2 doi: 10.1093/emboj/cdg533 – ident: e_1_3_3_26_2 doi: 10.1056/NEJMoa032845 – ident: e_1_3_3_14_2 doi: 10.1038/ncb0904-807 – ident: e_1_3_3_30_2 doi: 10.1006/jsre.2001.6159 – ident: e_1_3_3_29_2 doi: 10.1038/nm0695-541 – ident: e_1_3_3_32_2 doi: 10.1073/pnas.0400918101 – ident: e_1_3_3_5_2 doi: 10.1161/01.cir.0000142865.04816.89 – ident: e_1_3_3_21_2 doi: 10.1161/01.atv.0000174588.50971.1a – ident: e_1_3_3_19_2 doi: 10.1093/jb/mvg150 – ident: e_1_3_3_23_2 doi: 10.1161/hyp.33.3.906 – ident: e_1_3_3_28_2 doi: 10.1161/01.cir.0000018126.87045.e0 – ident: e_1_3_3_40_2 doi: 10.1038/nature00766 – ident: e_1_3_3_15_2 doi: 10.1161/circ.104.13.1538 – ident: e_1_3_3_7_2 doi: 10.1038/nri1087 – ident: e_1_3_3_38_2 doi: 10.1161/circ.98.16.1657 – ident: e_1_3_3_33_2 doi: 10.1016/S0140-6736(03)12275-1 – ident: e_1_3_3_10_2 doi: 10.1016/S0092-8674(00)00196-3 – ident: e_1_3_3_18_2 doi: 10.1242/jcs.114.5.867 – ident: e_1_3_3_6_2 doi: 10.1126/science.1102974 – ident: e_1_3_3_20_2 doi: 10.1161/circ.96.10.3602 – ident: e_1_3_3_16_2 doi: 10.1016/j.cardiores.2004.02.003 – ident: e_1_3_3_36_2 doi: 10.1161/01.CIR.0000135467.43430.16 – ident: e_1_3_3_22_2 doi: 10.1161/01.res.0000121568.40692.97 – ident: e_1_3_3_1_2 doi: 10.1146/annurev.immunol.23.021704.115811 – ident: e_1_3_3_17_2 doi: 10.1038/ncb1161 – ident: e_1_3_3_9_2 doi: 10.1038/nrm1365 – ident: e_1_3_3_12_2 doi: 10.1016/S0092-8674(00)80405-5 – ident: e_1_3_3_4_2 doi: 10.1038/nm1102-1249 – ident: e_1_3_3_13_2 doi: 10.1126/science.296.5573.1655 – ident: e_1_3_3_39_2 doi: 10.1038/418934a – ident: e_1_3_3_11_2 doi: 10.1101/gad.13.22.2905 – ident: e_1_3_3_34_2 doi: 10.1016/S0735-1097(02)01831-4 – ident: e_1_3_3_2_2 doi: 10.1126/science.1071553 – ident: e_1_3_3_37_2 doi: 10.1016/S0008-6363(98)00212-0 – ident: e_1_3_3_31_2 doi: 10.1007/BF02254990 – volume: 146 start-page: 1059 year: 1995 ident: e_1_3_3_35_2 publication-title: Am J Pathol – ident: e_1_3_3_25_2 doi: 10.1016/j.bcp.2004.08.030 – ident: e_1_3_3_3_2 doi: 10.1146/annurev.biochem.73.011303.073706 – ident: e_1_3_3_27_2 doi: 10.1056/NEJMoa013404 – ident: e_1_3_3_8_2 doi: 10.1126/science.1110551 |
SSID | ssj0014329 |
Score | 2.3788033 |
Snippet | Previous studies have shown that mitofusin 2 (Mfn-2) (or hyperplasia suppressor gene [HSG]) inhibits vascular smooth muscle cell (VSMC) proliferation. Here, we... Previous studies have shown that mitofusin 2 ( Mfn-2 ) (or hyperplasia suppressor gene [ HSG ]) inhibits vascular smooth muscle cell (VSMC) proliferation.... |
SourceID | proquest crossref pubmed pascalfrancis wolterskluwer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1113 |
SubjectTerms | Animals Apoptosis Biological and medical sciences Cell Proliferation Cells, Cultured Cyclic AMP-Dependent Protein Kinases - metabolism Fundamental and applied biological sciences. Psychology Membrane Proteins - genetics Membrane Proteins - physiology Mitochondria - metabolism Mitochondrial Proteins - genetics Mitochondrial Proteins - physiology Muscle, Smooth, Vascular - cytology Oxidative Stress Rats Up-Regulation Vertebrates: cardiovascular system |
Title | Mitofusin 2 Triggers Vascular Smooth Muscle Cell Apoptosis via Mitochondrial Death Pathway |
URI | https://www.ncbi.nlm.nih.gov/pubmed/17901359 https://search.proquest.com/docview/68547098 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEkhHguXWDxgVuU0iSOEx-r8uiylAN0UeESOY5dKnaTatuwEr-HH8o4dtJkqXjsJaqsjtt4Po9nxvNA6DnoxBlNGXNJmMbaQCEu6M3SJVQSNuRUO_51tMV7Ojkhb-fhvNf72YpaKjfpQPzYmVdyFa7CGPBVZ8n-B2ebSWEAPgN_4Qkchuc_8XgK21HpyHXHd2ZgZi90Nu6nOrb041kBbHCm5RrInLF20o1WxWpT6Bok35fc0eQg_fKs6tzxUiuDumT_1wveuesdL8-FbfLl2NpAjQ_5TVm5WudLXpzJ5TZWwAiz45LnC3dSyuVlgs88hx9e1KPvgL46BEvecUNEOh_P5Lq3Iv-5Ls8Fy9HG1m8xnVqtc6PAXsdIK3cBJCQ03VgawWzdHBaBXkvOgoQOWmc2KI3-7vOA6vNgfPRhDHgeTUYDTzvUwMYyRScvldr-C8U1dN0HcVYFAxwdN3dVJPBZ3a9Pv5bNE4OJXuycpqMB3VoBKPipMl1Udpk58J2LQkdOrL9ViRMt9Wd2B922dgseGRDeRT2Z30M3pjYy4z760mAR-7jGIq6xiA0WscEi1ljEDRYxYBF3sIgrLGKLxQfo5PWr2Xji2r4drgiZB5s9S1XM0ygbsljE3lAEQmVEKjokPA6VUlQwQWUsgjSKQqoUUxljWSQJKNNZLIOHaC8vcvkIYSXDFEwCQfyMEc59DuezpyIuAqXAkJd9NKjXMlmZ8ixJZdZSL9kuPgxFiVn8PjrsrPiWisWgTIesj57VLEhA0urrM57LolwnNA5JBK_UR_uGM1vaCLTqitbvsCoxucx__kcHVyF6jG5uN-ETtLc5L-VT0I436WEFzl-E3LUv |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitofusin+2+Triggers+Vascular+Smooth+Muscle+Cell+Apoptosis+via+Mitochondrial+Death+Pathway&rft.jtitle=Circulation+research&rft.au=Guo%2C+Xiaomei&rft.au=Chen%2C+Kuang-Hueih&rft.au=Guo%2C+Yanhong&rft.au=Liao%2C+Hua&rft.date=2007-11-26&rft.pub=American+Heart+Association%2C+Inc&rft.issn=0009-7330&rft.eissn=1524-4571&rft.volume=101&rft.issue=11&rft.spage=1113&rft.epage=1122&rft_id=info:doi/10.1161%2FCIRCRESAHA.107.157644&rft.externalDocID=10.1161%2FCIRCRESAHA.107.157644 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon |