Mitofusin 2 Triggers Vascular Smooth Muscle Cell Apoptosis via Mitochondrial Death Pathway

Previous studies have shown that mitofusin 2 (Mfn-2) (or hyperplasia suppressor gene [HSG]) inhibits vascular smooth muscle cell (VSMC) proliferation. Here, we demonstrate that Mfn-2 is a primary determinant of VSMC apoptosis. First, oxidative stress with H2O2, inhibition of protein kinase C with st...

Full description

Saved in:
Bibliographic Details
Published inCirculation research Vol. 101; no. 11; pp. 1113 - 1122
Main Authors Guo, Xiaomei, Chen, Kuang-Hueih, Guo, Yanhong, Liao, Hua, Tang, Jian, Xiao, Rui-Ping
Format Journal Article
LanguageEnglish
Published Hagerstown, MD American Heart Association, Inc 26.11.2007
Lippincott
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous studies have shown that mitofusin 2 (Mfn-2) (or hyperplasia suppressor gene [HSG]) inhibits vascular smooth muscle cell (VSMC) proliferation. Here, we demonstrate that Mfn-2 is a primary determinant of VSMC apoptosis. First, oxidative stress with H2O2, inhibition of protein kinase C with staurosporine, activation of protein kinase A with forskolin, and serum deprivation concurrently elevate Mfn-2 expression and induce VSMC apoptosis. Second, overexpression of Mfn-2 also triggers apoptosis of VSMCs in culture and in balloon-injured rat carotid arteries, thus contributing to Mfn-2–mediated prevention of neointima formation after angioplasty. Third, Mfn-2 silencing protects VSMCs against H2O2 or Mfn-2 overexpression–induced apoptosis, indicating that upregulation of Mfn-2 is necessary and sufficient for oxidative stress–mediated VSMC apoptosis. The Mfn-2 proapoptotic effect is independent of its role in mitochondrial fusion but mainly mediated by inhibition of Akt signaling and the resultant activation of the mitochondrial apoptotic pathway, as manifested by decreased Akt phosphorylation, increased mitochondrial Bax/Bcl-2 ratio, cytochrome c release, and activation of caspases-9 and caspase-3. Furthermore, Mfn-2–induced apoptosis was blocked by overexpression of an active phosphoinositide 3-kinase mutant or Bcl-xL or inhibition of caspase-9 but not caspases-8. Thus, in addition to its antiproliferative effects, Mfn-2 constitutes a primary determinant of VSMC apoptosis.
AbstractList Previous studies have shown that mitofusin 2 ( Mfn-2 ) (or hyperplasia suppressor gene [ HSG ]) inhibits vascular smooth muscle cell (VSMC) proliferation. Here, we demonstrate that Mfn-2 is a primary determinant of VSMC apoptosis. First, oxidative stress with H 2 O 2 , inhibition of protein kinase C with staurosporine, activation of protein kinase A with forskolin, and serum deprivation concurrently elevate Mfn-2 expression and induce VSMC apoptosis. Second, overexpression of Mfn-2 also triggers apoptosis of VSMCs in culture and in balloon-injured rat carotid arteries, thus contributing to Mfn-2–mediated prevention of neointima formation after angioplasty. Third, Mfn-2 silencing protects VSMCs against H 2 O 2 or Mfn-2 overexpression–induced apoptosis, indicating that upregulation of Mfn-2 is necessary and sufficient for oxidative stress–mediated VSMC apoptosis. The Mfn-2 proapoptotic effect is independent of its role in mitochondrial fusion but mainly mediated by inhibition of Akt signaling and the resultant activation of the mitochondrial apoptotic pathway, as manifested by decreased Akt phosphorylation, increased mitochondrial Bax/Bcl-2 ratio, cytochrome c release, and activation of caspases-9 and caspase-3. Furthermore, Mfn-2–induced apoptosis was blocked by overexpression of an active phosphoinositide 3-kinase mutant or Bcl-xL or inhibition of caspase-9 but not caspases-8. Thus, in addition to its antiproliferative effects, Mfn-2 constitutes a primary determinant of VSMC apoptosis.
Previous studies have shown that mitofusin 2 (Mfn-2) (or hyperplasia suppressor gene [HSG]) inhibits vascular smooth muscle cell (VSMC) proliferation. Here, we demonstrate that Mfn-2 is a primary determinant of VSMC apoptosis. First, oxidative stress with H2O2, inhibition of protein kinase C with staurosporine, activation of protein kinase A with forskolin, and serum deprivation concurrently elevate Mfn-2 expression and induce VSMC apoptosis. Second, overexpression of Mfn-2 also triggers apoptosis of VSMCs in culture and in balloon-injured rat carotid arteries, thus contributing to Mfn-2–mediated prevention of neointima formation after angioplasty. Third, Mfn-2 silencing protects VSMCs against H2O2 or Mfn-2 overexpression–induced apoptosis, indicating that upregulation of Mfn-2 is necessary and sufficient for oxidative stress–mediated VSMC apoptosis. The Mfn-2 proapoptotic effect is independent of its role in mitochondrial fusion but mainly mediated by inhibition of Akt signaling and the resultant activation of the mitochondrial apoptotic pathway, as manifested by decreased Akt phosphorylation, increased mitochondrial Bax/Bcl-2 ratio, cytochrome c release, and activation of caspases-9 and caspase-3. Furthermore, Mfn-2–induced apoptosis was blocked by overexpression of an active phosphoinositide 3-kinase mutant or Bcl-xL or inhibition of caspase-9 but not caspases-8. Thus, in addition to its antiproliferative effects, Mfn-2 constitutes a primary determinant of VSMC apoptosis.
Author Chen, Kuang-Hueih
Guo, Xiaomei
Guo, Yanhong
Tang, Jian
Liao, Hua
Xiao, Rui-Ping
AuthorAffiliation From the Laboratory of Cardiovascular Science (X.G., K.-H.C., R.-P.X.), National Institute on Aging, NIH, Baltimore, Md; Institute of Cardiovascular Science (K.-H.C., Y.G., J.T.), Peking University, Beijing, Peopleʼs Republic of China; and Center for Molecular Cardiology (X.G., H.L.), Department of Cardiology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, Peopleʼs Republic of China
AuthorAffiliation_xml – name: From the Laboratory of Cardiovascular Science (X.G., K.-H.C., R.-P.X.), National Institute on Aging, NIH, Baltimore, Md; Institute of Cardiovascular Science (K.-H.C., Y.G., J.T.), Peking University, Beijing, Peopleʼs Republic of China; and Center for Molecular Cardiology (X.G., H.L.), Department of Cardiology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, Peopleʼs Republic of China
Author_xml – sequence: 1
  givenname: Xiaomei
  surname: Guo
  fullname: Guo, Xiaomei
  organization: From the Laboratory of Cardiovascular Science (X.G., K.-H.C., R.-P.X.), National Institute on Aging, NIH, Baltimore, Md; Institute of Cardiovascular Science (K.-H.C., Y.G., J.T.), Peking University, Beijing, Peopleʼs Republic of China; and Center for Molecular Cardiology (X.G., H.L.), Department of Cardiology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, Peopleʼs Republic of China
– sequence: 2
  givenname: Kuang-Hueih
  surname: Chen
  fullname: Chen, Kuang-Hueih
– sequence: 3
  givenname: Yanhong
  surname: Guo
  fullname: Guo, Yanhong
– sequence: 4
  givenname: Hua
  surname: Liao
  fullname: Liao, Hua
– sequence: 5
  givenname: Jian
  surname: Tang
  fullname: Tang, Jian
– sequence: 6
  givenname: Rui-Ping
  surname: Xiao
  fullname: Xiao, Rui-Ping
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19874359$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17901359$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1PAyEQhonRaP34CRouetsKXVjg2KxVm9Ro_Dp42VAWLEqXCrs2_nsx26RHLzPJ5HlnJs8h2G18owE4xWiIcYEvy-lj-Th5Gt-OhxixIaasIGQHDDAdkYxQhnfBACEkMpbn6AAcxviBECb5SOyDA8wEwjkVA_B2Z1tvumgbOILPwb6_6xDhq4yqczLAp6X37QLedVE5DUvtHByv_Kr10Ub4bSX8i6uFb-pgpYNXWib6IZW1_DkGe0a6qE82_Qi8XE-ey9tsdn8zLcezTFGBScbrueFyzmokuOIYqVyZmmhTICI5NcYUSqhCc5XPGaOFMcLUQtRMEzZiNdf5Ebjo966C_-p0bKuljSq9Khvtu1gVnBKWlieQ9qAKPsagTbUKdinDT4VR9Se12kpNI1b1UlPubHOgmy91vU1tLCbgfAMkb9KZIBtl45YTnJGeEz239q5Nnj9dt9ahWmjp2sU_T_wCUhSVtw
CODEN CIRUAL
CitedBy_id crossref_primary_10_4103_0366_6999_223855
crossref_primary_10_1016_j_bbrc_2014_03_004
crossref_primary_10_1007_s11596_012_0005_y
crossref_primary_10_1016_j_rvsc_2021_10_017
crossref_primary_10_1016_j_bbrc_2010_08_108
crossref_primary_10_1096_fj_202100361R
crossref_primary_10_1152_ajpcell_00074_2022
crossref_primary_10_1016_j_bbagen_2016_06_027
crossref_primary_10_1038_onc_2009_192
crossref_primary_10_1186_s13062_017_0174_5
crossref_primary_10_1002_jcp_25508
crossref_primary_10_1007_s11596_020_2305_y
crossref_primary_10_1093_jb_mvp070
crossref_primary_10_1038_s41598_018_19849_2
crossref_primary_10_3390_cells12141897
crossref_primary_10_1096_fj_13_230037
crossref_primary_10_1155_2014_156020
crossref_primary_10_1161_CIRCRESAHA_112_270801
crossref_primary_10_1038_nrcardio_2017_23
crossref_primary_10_1016_j_yjmcc_2016_08_016
crossref_primary_10_1155_2022_5477024
crossref_primary_10_3389_fcvm_2023_1166324
crossref_primary_10_1186_s12957_016_0922_5
crossref_primary_10_1016_j_canlet_2014_12_025
crossref_primary_10_1093_ndt_gfv015
crossref_primary_10_1007_s00109_010_0662_x
crossref_primary_10_1016_j_bbamcr_2012_02_012
crossref_primary_10_1016_j_tem_2009_03_007
crossref_primary_10_1016_j_ejogrb_2013_11_024
crossref_primary_10_1152_ajpcell_00274_2021
crossref_primary_10_1186_s11658_024_00566_w
crossref_primary_10_1042_CS20160030
crossref_primary_10_1242_jcs_176792
crossref_primary_10_1038_s41569_018_0074_0
crossref_primary_10_1089_ars_2012_4777
crossref_primary_10_1002_jcp_24948
crossref_primary_10_3389_fcell_2021_611922
crossref_primary_10_1002_jcb_21805
crossref_primary_10_1038_nature07534
crossref_primary_10_1016_j_freeradbiomed_2020_12_452
crossref_primary_10_3389_fcvm_2022_972836
crossref_primary_10_1155_2013_703705
crossref_primary_10_1038_s41440_018_0057_x
crossref_primary_10_1152_ajplung_00155_2013
crossref_primary_10_1016_j_mito_2021_03_008
crossref_primary_10_3389_fcell_2014_00072
crossref_primary_10_3892_ijmm_2016_2725
crossref_primary_10_1080_15548627_2019_1637199
crossref_primary_10_1097_FJC_0000000000000333
crossref_primary_10_1016_j_joca_2019_12_009
crossref_primary_10_5551_jat_5611
crossref_primary_10_1002_jcb_27995
crossref_primary_10_4049_jimmunol_1501023
crossref_primary_10_3390_diagnostics11081500
crossref_primary_10_1016_j_bbrc_2023_01_044
crossref_primary_10_3389_fphys_2022_1039913
crossref_primary_10_3389_fnmol_2017_00049
crossref_primary_10_1586_17476348_2013_834252
crossref_primary_10_1016_j_atherosclerosis_2010_02_012
crossref_primary_10_1152_ajpheart_00049_2016
crossref_primary_10_3389_fmolb_2021_681237
crossref_primary_10_1038_srep41718
crossref_primary_10_1016_j_bbamcr_2018_08_003
crossref_primary_10_1186_s12935_019_0916_9
crossref_primary_10_1016_j_cyto_2012_03_026
crossref_primary_10_1038_s41374_018_0032_9
crossref_primary_10_1016_j_biocel_2015_09_011
crossref_primary_10_1186_s12967_021_03064_1
crossref_primary_10_1074_jbc_M111_227611
crossref_primary_10_1002_jat_4418
crossref_primary_10_1016_j_ejphar_2017_05_003
crossref_primary_10_1016_j_bbrc_2017_07_047
crossref_primary_10_4061_2011_920178
crossref_primary_10_3389_fcvm_2023_1067732
crossref_primary_10_1016_j_bbamcr_2010_11_023
crossref_primary_10_1152_physrev_00022_2019
crossref_primary_10_1161_HYPERTENSIONAHA_108_121954
crossref_primary_10_1007_s10534_012_9540_z
crossref_primary_10_1007_s00109_010_0675_5
crossref_primary_10_3389_fmolb_2021_717328
crossref_primary_10_3736_jcim20110611
crossref_primary_10_3892_mmr_2013_1299
crossref_primary_10_1016_j_bbamcr_2014_03_022
crossref_primary_10_3892_ijo_2016_3733
crossref_primary_10_1101_gad_1658508
crossref_primary_10_1242_jcs_259634
crossref_primary_10_1007_s11033_014_3663_y
crossref_primary_10_1074_jbc_RA119_012023
crossref_primary_10_1016_j_ejcb_2018_07_003
crossref_primary_10_1111_bph_12516
crossref_primary_10_3892_ol_2019_10570
crossref_primary_10_1093_cvr_cvq237
crossref_primary_10_3389_fcell_2021_673839
crossref_primary_10_3390_antiox6020033
crossref_primary_10_3892_ol_2015_3748
crossref_primary_10_1016_j_molcel_2016_02_022
crossref_primary_10_1007_s12032_010_9662_5
crossref_primary_10_1038_aps_2010_96
crossref_primary_10_1155_2020_6627144
crossref_primary_10_1016_j_bbrc_2014_06_005
crossref_primary_10_1016_j_bbrc_2012_04_015
crossref_primary_10_1038_emboj_2013_168
crossref_primary_10_1089_ars_2021_0031
crossref_primary_10_1016_j_brainres_2016_09_047
crossref_primary_10_3390_ijms232315288
crossref_primary_10_1016_j_neulet_2020_134969
crossref_primary_10_3389_fcell_2023_1105565
crossref_primary_10_1097_CAD_0000000000000415
crossref_primary_10_1016_j_drup_2019_100643
crossref_primary_10_3892_etm_2014_1835
crossref_primary_10_1016_j_chemphyslip_2014_04_001
crossref_primary_10_3389_fcvm_2022_917135
crossref_primary_10_3109_10408363_2015_1033610
crossref_primary_10_1016_j_ceca_2012_02_008
crossref_primary_10_3390_cells8060638
crossref_primary_10_3390_ijms25052905
crossref_primary_10_1177_2045894020924994
crossref_primary_10_3892_etm_2018_6513
crossref_primary_10_3389_fonc_2017_00105
crossref_primary_10_1016_j_bbrc_2015_08_090
crossref_primary_10_1161_ATVBAHA_118_312196
crossref_primary_10_3390_ijms24043414
crossref_primary_10_1164_rccm_201209_1687OC
crossref_primary_10_1007_s12032_010_9779_6
crossref_primary_10_1042_BSR20180391
crossref_primary_10_1089_dna_2018_4552
crossref_primary_10_1177_1074248410385683
crossref_primary_10_3724_SP_J_1206_2009_00537
crossref_primary_10_3892_etm_2016_3222
crossref_primary_10_3892_etm_2017_5453
crossref_primary_10_1016_j_ejphar_2023_175725
crossref_primary_10_3892_ijmm_2015_2139
crossref_primary_10_1016_j_ijcard_2018_05_046
crossref_primary_10_1007_s10741_012_9330_2
crossref_primary_10_1152_ajpheart_00936_2012
crossref_primary_10_1016_j_ejcb_2014_04_001
crossref_primary_10_3389_fcell_2020_604240
crossref_primary_10_4068_cmj_2013_49_3_101
crossref_primary_10_1139_bcb_2021_0322
crossref_primary_10_1093_cvr_cvt137
crossref_primary_10_1073_pnas_2106080118
crossref_primary_10_3349_ymj_2013_54_3_603
crossref_primary_10_1007_s11596_013_1099_6
crossref_primary_10_1016_j_intimp_2022_109169
crossref_primary_10_1038_s41418_022_01099_5
crossref_primary_10_1074_jbc_M112_379164
crossref_primary_10_1038_emm_2017_98
Cites_doi 10.1093/emboj/cdg533
10.1056/NEJMoa032845
10.1038/ncb0904-807
10.1006/jsre.2001.6159
10.1038/nm0695-541
10.1073/pnas.0400918101
10.1161/01.cir.0000142865.04816.89
10.1161/01.atv.0000174588.50971.1a
10.1093/jb/mvg150
10.1161/hyp.33.3.906
10.1161/01.cir.0000018126.87045.e0
10.1038/nature00766
10.1161/circ.104.13.1538
10.1038/nri1087
10.1161/circ.98.16.1657
10.1016/S0140-6736(03)12275-1
10.1016/S0092-8674(00)00196-3
10.1242/jcs.114.5.867
10.1126/science.1102974
10.1161/circ.96.10.3602
10.1016/j.cardiores.2004.02.003
10.1161/01.CIR.0000135467.43430.16
10.1161/01.res.0000121568.40692.97
10.1146/annurev.immunol.23.021704.115811
10.1038/ncb1161
10.1038/nrm1365
10.1016/S0092-8674(00)80405-5
10.1038/nm1102-1249
10.1126/science.296.5573.1655
10.1038/418934a
10.1101/gad.13.22.2905
10.1016/S0735-1097(02)01831-4
10.1126/science.1071553
10.1016/S0008-6363(98)00212-0
10.1007/BF02254990
10.1016/j.bcp.2004.08.030
10.1146/annurev.biochem.73.011303.073706
10.1056/NEJMoa013404
10.1126/science.1110551
ContentType Journal Article
Copyright 2007 American Heart Association, Inc.
2008 INIST-CNRS
Copyright_xml – notice: 2007 American Heart Association, Inc.
– notice: 2008 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1161/CIRCRESAHA.107.157644
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4571
EndPage 1122
ExternalDocumentID 10_1161_CIRCRESAHA_107_157644
17901359
19874359
10.1161/CIRCRESAHA.107.157644
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID -
.Z2
01R
0R
1J1
29B
2WC
40H
4Q1
4Q2
4Q3
53G
55
5GY
5RE
5VS
71W
77Y
7O
7O~
AAAXR
AAMOA
AAMTA
AAPBV
AARTV
AAXQO
ABBUW
ABFLS
ABOCM
ABXVJ
ABZAD
ACDDN
ACEWG
ACGFS
ACPRK
ACWDW
ACWRI
ACXNZ
ADACO
ADBBV
ADNKB
AE3
AENEX
AFFNX
AFUWQ
AHMBA
AHULI
AHVBC
AIJEX
AJIOK
AJNYG
AJYGW
ALMA_UNASSIGNED_HOLDINGS
AMJPA
ASCII
AWKKM
BAWUL
BOYCO
BQLVK
C1A
C45
CS3
DIK
DU5
DUNZO
E.X
E3Z
EBS
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FL-
FRP
FW0
GX1
H0
H0~
H13
HZ
H~9
IKYAY
IN
IN~
J5H
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
LI0
N9A
N~7
N~B
O0-
O9-
OAG
OAH
OB2
OCUKA
ODA
OHASI
OK1
OL1
OLG
OLH
OLU
OLV
OLW
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
PQEST
PQQKQ
RAH
RHF
RLZ
RSW
S4R
S4S
UPT
V2I
WH7
WOQ
WOW
X
X3V
X3W
X7M
Z2
ZA5
---
-~X
.-D
.3C
.55
.GJ
08R
0R~
18M
1CY
41~
AAGIX
AAHPQ
AAQKA
AASOK
AAUGY
ABASU
ABDIG
ABQRW
ACCJW
ACGFO
ACILI
ACNWC
ADFPA
ADGGA
AE6
AEETU
AFDTB
AGINI
AHOMT
AHRYX
AJNWD
AKALU
AKULP
ALMTX
AMKUR
AMNEI
AOHHW
BS7
DIWNM
EEVPB
FCALG
GNXGY
GQDEL
HZ~
IKREB
IPNFZ
IQODW
JF9
JG8
MVM
N~M
OJAPA
OWU
OWV
OWX
OWZ
P-K
R58
RIG
T8P
TEORI
TR2
TSPGW
VVN
W3M
W8F
XXN
XYM
YFH
YOC
ZFV
ZGI
ZZMQN
AAAAV
AAIQE
ABJNI
ADHPY
AHQNM
AINUH
AJZMW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c5914-8dbf8ab7d098c810c3cfd4ef604a85fff6c9c6e8c3b7756ff9fd99d7e4727d8e3
ISSN 0009-7330
IngestDate Fri Oct 25 08:10:20 EDT 2024
Fri Aug 23 00:59:38 EDT 2024
Sat Sep 28 08:35:04 EDT 2024
Sun Oct 22 16:06:56 EDT 2023
Thu Aug 13 19:50:25 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Vertebrata
Mitochondria
Mammalia
Cell death
Mfn-2
Smooth muscle
Circulatory system
PI3K-Akt
HSG
vascular smooth muscle cells
Apoptosis
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5914-8dbf8ab7d098c810c3cfd4ef604a85fff6c9c6e8c3b7756ff9fd99d7e4727d8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.107.157644
PMID 17901359
PQID 68547098
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_68547098
crossref_primary_10_1161_CIRCRESAHA_107_157644
pubmed_primary_17901359
pascalfrancis_primary_19874359
wolterskluwer_health_10_1161_CIRCRESAHA_107_157644
ProviderPackageCode L-C
C45
7O~
AARTV
OLH
ASCII
OLG
AAMOA
ODA
ABZAD
ABBUW
JK3
ADNKB
JK8
H0~
1J1
OLV
OLU
OLW
OLZ
OLY
F2K
F2M
F2L
F2N
OHASI
AHVBC
AJNYG
FL-
KMI
K8S
OVLEI
AJIOK
OPUJH
V2I
S4R
S4S
4Q1
DUNZO
OAG
4Q2
OVDNE
4Q3
AMJPA
OAH
OVD
71W
AHULI
OB2
ACEWG
.Z2
N~7
IKYAY
OVIDH
AWKKM
40H
N~B
OUVQU
ORVUJ
X3V
X3W
ACDDN
ACWRI
BOYCO
AIJEX
AAXQO
AAMTA
AAAXR
E.X
OWW
OCUKA
OWY
01R
ACXNZ
OL1
ABXVJ
IN~
KD2
OXXIT
77Y
ACWDW
FW0
PublicationCentury 2000
PublicationDate 2007-November-26
PublicationDateYYYYMMDD 2007-11-26
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-November-26
  day: 26
PublicationDecade 2000
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Circulation research
PublicationTitleAlternate Circ Res
PublicationYear 2007
Publisher American Heart Association, Inc
Lippincott
Publisher_xml – name: American Heart Association, Inc
– name: Lippincott
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
(e_1_3_3_35_2) 1995; 146
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_24_2
  doi: 10.1093/emboj/cdg533
– ident: e_1_3_3_26_2
  doi: 10.1056/NEJMoa032845
– ident: e_1_3_3_14_2
  doi: 10.1038/ncb0904-807
– ident: e_1_3_3_30_2
  doi: 10.1006/jsre.2001.6159
– ident: e_1_3_3_29_2
  doi: 10.1038/nm0695-541
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.0400918101
– ident: e_1_3_3_5_2
  doi: 10.1161/01.cir.0000142865.04816.89
– ident: e_1_3_3_21_2
  doi: 10.1161/01.atv.0000174588.50971.1a
– ident: e_1_3_3_19_2
  doi: 10.1093/jb/mvg150
– ident: e_1_3_3_23_2
  doi: 10.1161/hyp.33.3.906
– ident: e_1_3_3_28_2
  doi: 10.1161/01.cir.0000018126.87045.e0
– ident: e_1_3_3_40_2
  doi: 10.1038/nature00766
– ident: e_1_3_3_15_2
  doi: 10.1161/circ.104.13.1538
– ident: e_1_3_3_7_2
  doi: 10.1038/nri1087
– ident: e_1_3_3_38_2
  doi: 10.1161/circ.98.16.1657
– ident: e_1_3_3_33_2
  doi: 10.1016/S0140-6736(03)12275-1
– ident: e_1_3_3_10_2
  doi: 10.1016/S0092-8674(00)00196-3
– ident: e_1_3_3_18_2
  doi: 10.1242/jcs.114.5.867
– ident: e_1_3_3_6_2
  doi: 10.1126/science.1102974
– ident: e_1_3_3_20_2
  doi: 10.1161/circ.96.10.3602
– ident: e_1_3_3_16_2
  doi: 10.1016/j.cardiores.2004.02.003
– ident: e_1_3_3_36_2
  doi: 10.1161/01.CIR.0000135467.43430.16
– ident: e_1_3_3_22_2
  doi: 10.1161/01.res.0000121568.40692.97
– ident: e_1_3_3_1_2
  doi: 10.1146/annurev.immunol.23.021704.115811
– ident: e_1_3_3_17_2
  doi: 10.1038/ncb1161
– ident: e_1_3_3_9_2
  doi: 10.1038/nrm1365
– ident: e_1_3_3_12_2
  doi: 10.1016/S0092-8674(00)80405-5
– ident: e_1_3_3_4_2
  doi: 10.1038/nm1102-1249
– ident: e_1_3_3_13_2
  doi: 10.1126/science.296.5573.1655
– ident: e_1_3_3_39_2
  doi: 10.1038/418934a
– ident: e_1_3_3_11_2
  doi: 10.1101/gad.13.22.2905
– ident: e_1_3_3_34_2
  doi: 10.1016/S0735-1097(02)01831-4
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1071553
– ident: e_1_3_3_37_2
  doi: 10.1016/S0008-6363(98)00212-0
– ident: e_1_3_3_31_2
  doi: 10.1007/BF02254990
– volume: 146
  start-page: 1059
  year: 1995
  ident: e_1_3_3_35_2
  publication-title: Am J Pathol
– ident: e_1_3_3_25_2
  doi: 10.1016/j.bcp.2004.08.030
– ident: e_1_3_3_3_2
  doi: 10.1146/annurev.biochem.73.011303.073706
– ident: e_1_3_3_27_2
  doi: 10.1056/NEJMoa013404
– ident: e_1_3_3_8_2
  doi: 10.1126/science.1110551
SSID ssj0014329
Score 2.3788033
Snippet Previous studies have shown that mitofusin 2 (Mfn-2) (or hyperplasia suppressor gene [HSG]) inhibits vascular smooth muscle cell (VSMC) proliferation. Here, we...
Previous studies have shown that mitofusin 2 ( Mfn-2 ) (or hyperplasia suppressor gene [ HSG ]) inhibits vascular smooth muscle cell (VSMC) proliferation....
SourceID proquest
crossref
pubmed
pascalfrancis
wolterskluwer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1113
SubjectTerms Animals
Apoptosis
Biological and medical sciences
Cell Proliferation
Cells, Cultured
Cyclic AMP-Dependent Protein Kinases - metabolism
Fundamental and applied biological sciences. Psychology
Membrane Proteins - genetics
Membrane Proteins - physiology
Mitochondria - metabolism
Mitochondrial Proteins - genetics
Mitochondrial Proteins - physiology
Muscle, Smooth, Vascular - cytology
Oxidative Stress
Rats
Up-Regulation
Vertebrates: cardiovascular system
Title Mitofusin 2 Triggers Vascular Smooth Muscle Cell Apoptosis via Mitochondrial Death Pathway
URI https://www.ncbi.nlm.nih.gov/pubmed/17901359
https://search.proquest.com/docview/68547098
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEkhHguXWDxgVuU0iSOEx-r8uiylAN0UeESOY5dKnaTatuwEr-HH8o4dtJkqXjsJaqsjtt4Po9nxvNA6DnoxBlNGXNJmMbaQCEu6M3SJVQSNuRUO_51tMV7Ojkhb-fhvNf72YpaKjfpQPzYmVdyFa7CGPBVZ8n-B2ebSWEAPgN_4Qkchuc_8XgK21HpyHXHd2ZgZi90Nu6nOrb041kBbHCm5RrInLF20o1WxWpT6Bok35fc0eQg_fKs6tzxUiuDumT_1wveuesdL8-FbfLl2NpAjQ_5TVm5WudLXpzJ5TZWwAiz45LnC3dSyuVlgs88hx9e1KPvgL46BEvecUNEOh_P5Lq3Iv-5Ls8Fy9HG1m8xnVqtc6PAXsdIK3cBJCQ03VgawWzdHBaBXkvOgoQOWmc2KI3-7vOA6vNgfPRhDHgeTUYDTzvUwMYyRScvldr-C8U1dN0HcVYFAxwdN3dVJPBZ3a9Pv5bNE4OJXuycpqMB3VoBKPipMl1Udpk58J2LQkdOrL9ViRMt9Wd2B922dgseGRDeRT2Z30M3pjYy4z760mAR-7jGIq6xiA0WscEi1ljEDRYxYBF3sIgrLGKLxQfo5PWr2Xji2r4drgiZB5s9S1XM0ygbsljE3lAEQmVEKjokPA6VUlQwQWUsgjSKQqoUUxljWSQJKNNZLIOHaC8vcvkIYSXDFEwCQfyMEc59DuezpyIuAqXAkJd9NKjXMlmZ8ixJZdZSL9kuPgxFiVn8PjrsrPiWisWgTIesj57VLEhA0urrM57LolwnNA5JBK_UR_uGM1vaCLTqitbvsCoxucx__kcHVyF6jG5uN-ETtLc5L-VT0I436WEFzl-E3LUv
link.rule.ids 315,783,787,27936,27937
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitofusin+2+Triggers+Vascular+Smooth+Muscle+Cell+Apoptosis+via+Mitochondrial+Death+Pathway&rft.jtitle=Circulation+research&rft.au=Guo%2C+Xiaomei&rft.au=Chen%2C+Kuang-Hueih&rft.au=Guo%2C+Yanhong&rft.au=Liao%2C+Hua&rft.date=2007-11-26&rft.pub=American+Heart+Association%2C+Inc&rft.issn=0009-7330&rft.eissn=1524-4571&rft.volume=101&rft.issue=11&rft.spage=1113&rft.epage=1122&rft_id=info:doi/10.1161%2FCIRCRESAHA.107.157644&rft.externalDocID=10.1161%2FCIRCRESAHA.107.157644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon