基于经验模态分解和形态学的风电并网电压故障检测

针对风电场并网点电压故障引起的风机大规模脱网问题,提出了基于柔性形态算子和经验模态分解(empirical mode decomposition,EMD)去噪技术的电网电压故障检测方法。首先,利用EMD对采样信号进行时频自适应预处理,从而确定噪声主导模态;然后,通过柔性形态学变换加阈值输出,有效放大信号奇异点,避免了因电网电压信号周期性变化和噪声引起的背景梯度对检测结果的影响,实现故障定位检测。通过对不同噪声强度的电压暂降故障信号进行检测对比分析发现,随着信号信噪比下降,标准形态学方法的检测误差进一步增大,当信噪比达到25db时,甚至出现了误检现象,而柔性形态EMD检测方法仍然可以有效检测故障...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 11; pp. 219 - 225
Main Author 包广清 宋泽 吴国栋 徐海龙
Format Journal Article
LanguageChinese
Published 甘肃省电力科学研究院,兰州 730050 2016
兰州理工大学电气工程与信息工程学院,兰州,730050%国核电力规划设计研究院,北京,100095%兰州理工大学电气工程与信息工程学院,兰州 730050
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.11.031

Cover

Loading…
Abstract 针对风电场并网点电压故障引起的风机大规模脱网问题,提出了基于柔性形态算子和经验模态分解(empirical mode decomposition,EMD)去噪技术的电网电压故障检测方法。首先,利用EMD对采样信号进行时频自适应预处理,从而确定噪声主导模态;然后,通过柔性形态学变换加阈值输出,有效放大信号奇异点,避免了因电网电压信号周期性变化和噪声引起的背景梯度对检测结果的影响,实现故障定位检测。通过对不同噪声强度的电压暂降故障信号进行检测对比分析发现,随着信号信噪比下降,标准形态学方法的检测误差进一步增大,当信噪比达到25db时,甚至出现了误检现象,而柔性形态EMD检测方法仍然可以有效检测故障扰动的起止时间,表明该方法与标准形态学和小波阈值方法相比,在简化运算过程的同时可以获得更高的检测精度。最后,对某风电场并网点故障电压的分析结果与实测数据的一致性,验证了该方法可以有效检测电网电压的瞬态故障信息,从而为风电场无功补偿装置的投切控制提供了依据。
AbstractList TM769; 针对风电场并网点电压故障引起的风机大规模脱网问题,提出了基于柔性形态算子和经验模态分解(empirical mode decomposition,EMD)去噪技术的电网电压故障检测方法。首先,利用EMD对采样信号进行时频自适应预处理,从而确定噪声主导模态;然后,通过柔性形态学变换加阈值输出,有效放大信号奇异点,避免了因电网电压信号周期性变化和噪声引起的背景梯度对检测结果的影响,实现故障定位检测。通过对不同噪声强度的电压暂降故障信号进行检测对比分析发现,随着信号信噪比下降,标准形态学方法的检测误差进一步增大,当信噪比达到25db时,甚至出现了误检现象,而柔性形态EMD检测方法仍然可以有效检测故障扰动的起止时间,表明该方法与标准形态学和小波阈值方法相比,在简化运算过程的同时可以获得更高的检测精度。最后,对某风电场并网点故障电压的分析结果与实测数据的一致性,验证了该方法可以有效检测电网电压的瞬态故障信息,从而为风电场无功补偿装置的投切控制提供了依据。
针对风电场并网点电压故障引起的风机大规模脱网问题,提出了基于柔性形态算子和经验模态分解(empirical mode decomposition,EMD)去噪技术的电网电压故障检测方法。首先,利用EMD对采样信号进行时频自适应预处理,从而确定噪声主导模态;然后,通过柔性形态学变换加阈值输出,有效放大信号奇异点,避免了因电网电压信号周期性变化和噪声引起的背景梯度对检测结果的影响,实现故障定位检测。通过对不同噪声强度的电压暂降故障信号进行检测对比分析发现,随着信号信噪比下降,标准形态学方法的检测误差进一步增大,当信噪比达到25db时,甚至出现了误检现象,而柔性形态EMD检测方法仍然可以有效检测故障扰动的起止时间,表明该方法与标准形态学和小波阈值方法相比,在简化运算过程的同时可以获得更高的检测精度。最后,对某风电场并网点故障电压的分析结果与实测数据的一致性,验证了该方法可以有效检测电网电压的瞬态故障信息,从而为风电场无功补偿装置的投切控制提供了依据。
Abstract_FL As the penetration of wind power has become significant, one of the important challenges of power distribution network with wind power integration is the risk of large-scale wind turbine tripping accidents caused by over/under voltage faults in farms and systems, which also leads to unexpected variations in frequency parameters and thereby power quality issues. Aiming at the difficulty to extract early weak fault feature for the voltage influenced by white noise and transient disturbance noise, a method combining empirical mode decomposition (EMD) with soft mathematical morphology (MM) was put forward in this paper. It was crucial for the requirements of fault ride-through devices, fault component extraction and reclose scheme on voltage detection accuracy and real-time performance. Firstly, the dominant mode of noise was identified by EMD preprocessing. For the fault transients producing non-stationary signals with large frequency spectrum, the present mainstream techniques such as windowed Fourier transform (WFT) and discrete wavelet transform (DWT) were unsatisfactory. The heavy calculation burden of DWT made this methodology prohibitive in real-time detection. Moreover, DWT had oscillations around singularities. EMD had a high extent of adaptation to process various non-stationary signals without imposing any serious restriction on the harmonic nature of basis functions. After decomposing the voltage signals into a series of intrinsic mode functions (IMFs), the spectrum available was used for discovering the hidden amplitude and frequency modulations in voltage signals and finding out the domains of energy concentration. The fault characteristic signal was restructured by accumulating the selected IMF components which characterized the fault characteristic frequencies. Then the voltage signal singularities were amplified by MM transform and threshold detection, avoiding the negative effects of background gradient on the results caused by cyclic variation of grid voltage and noise effects. The soft opening operation of dominant noise mode was performed to filtrate the spike noise, and the dilation of flat structuring element, whose length was one half of the period of power frequency, was operated to extract the magnitude characteristic of the signal; meanwhile, the gradient operation of short flat structuring element to differential signal was performed to detect and locate the singular point, and thus the defect of possibly omitting singular point by traditional methods was remedied. It was expected to offer better sensitivity and selectivity for voltage faults. A soft morphological edge detection based scheme was proposed to locate transient disturbance of voltage. To solve the problem of voltage detection inaccuracy caused by background gradient due to periodic variation of power signals and existing interferences during sampling process, a quantitative assessment method based on soft threshold was induced to improve detection accuracy. A standard to assess the filtering effect was put forward to choose the size of structuring elements adaptively to perform morphological filtering of original signals. And also the dilation-erosion transform was applied to morphological gradient by flat structuring elements to suppress background gradient to achieve location result preliminarily. Finally combining with the processing of soft threshold, the location of transient disturbance of power quality was implemented. Based on the noise ratio, correlation coefficient and mean-variance analysis, the MM-EMD could get better accuracy accompanied with simplified calculation process, compared with the standard morphology and wavelet threshold method. It was concluded according to the simulation analysis under different voltage fault scenarios, the detection error from standard morphology method increased as the signal to noise ratio (SNR) was degraded; particularly when SNR arrived to 25 db, standard morphology method was failed to locate voltage faults, while MM-EMD was still operative. The experimental results from the on-site survey in the northwest wind farm verified that the MM-EMD was effective in noise suppression and transient voltage detection, which was essential to the development of wind farm reactive power compensation devices.
Author 包广清 宋泽 吴国栋 徐海龙
AuthorAffiliation 兰州理工大学电气工程与信息工程学院,兰州730050 国核电力规划设计研究院,北京100095 甘肃省电力科学研究院,兰州730050
AuthorAffiliation_xml – name: 兰州理工大学电气工程与信息工程学院,兰州,730050%国核电力规划设计研究院,北京,100095%兰州理工大学电气工程与信息工程学院,兰州 730050; 甘肃省电力科学研究院,兰州 730050
Author_FL Bao Guangqing
Song Ze
Xu Hailong
Wu Guodong
Author_FL_xml – sequence: 1
  fullname: Bao Guangqing
– sequence: 2
  fullname: Song Ze
– sequence: 3
  fullname: Wu Guodong
– sequence: 4
  fullname: Xu Hailong
Author_xml – sequence: 1
  fullname: 包广清 宋泽 吴国栋 徐海龙
BookMark eNo9j81Kw0AUhWdRwVr7EoK4SpybySSdpZT6AwU33ZfJZBJTdKoNot1VUCm0VBTdFEE0oCK4rGClb2MS-xamVLybc38-zuUsoZxqKonQKmAdgNl0vaEHYah0wNjQrBIw3cBgZTcdE8ih_P9-ERXDMHAwBWJjbEIeVeKH8fd4kH5dTd_6yetj0jmLu5c_L1F8048nT7Px_Tkdnk-jQXo7ij8_0sn1rBn0kruL6fA-iTrJqLeMFjy-H8rinxZQbbNSK29r1d2tnfJGVROUgeZaxADKBXM8RqjjAuGSUuaaQriceQybkpZsahqCmFRKS2LiMpcw7NlOVoIU0Nrc9oQrjyu_3mget1T2sK7avjh1ZqkBsswZuTInxV5T-UdBxh62ggPeatcti2GDlahJfgF8wHVM
ClassificationCodes TM769
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.11.031
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate EMD and morphology based voltage disturbance detection method for power system connected with wind turbine generation
DocumentTitle_FL EMD and morphology based voltage disturbance detection method for power system connected with wind turbine generation
EndPage 225
ExternalDocumentID nygcxb201611031
669029854
GrantInformation_xml – fundername: 国家自然科学基金项目; 国家国际科技合作专项项目
  funderid: (51267011); (2014DFR60990)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c591-d63215ac9bf935bd13ae559d4ccda9f904e587542c345ee6e03d9d390f7bbbbc3
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:18:44 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords empirical mode decomposition
wind power integration
electric field
电场
噪声
信号去噪
wind power
voltage fault detection
柔性形态学
经验模态分解
mathematical morphology
电压故障检测
风电并网
signal de-noising
风力
acoustic noise
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c591-d63215ac9bf935bd13ae559d4ccda9f904e587542c345ee6e03d9d390f7bbbbc3
Notes As the penetration of wind power has become significant, one of the important challenges of power distribution network with wind power integration is the risk of large-scale wind turbine tripping accidents caused by over/under voltage faults in farms and systems, which also leads to unexpected variations in frequency parameters and thereby power quality issues. Aiming at the difficulty to extract early weak fault feature for the voltage influenced by white noise and transient disturbance noise, a method combining empirical mode decomposition(EMD) with soft mathematical morphology(MM) was put forward in this paper. It was crucial for the requirements of fault ride-through devices, fault component extraction and reclose scheme on voltage detection accuracy and real-time performance. Firstly, the dominant mode of noise was identified by EMD preprocessing. For the fault transients producing non-stationary signals with large frequency spectrum, the present mainstream techniques such as windowed Fourier transform(W
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201611031
chongqing_primary_669029854
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 甘肃省电力科学研究院,兰州 730050
兰州理工大学电气工程与信息工程学院,兰州,730050%国核电力规划设计研究院,北京,100095%兰州理工大学电气工程与信息工程学院,兰州 730050
Publisher_xml – name: 甘肃省电力科学研究院,兰州 730050
– name: 兰州理工大学电气工程与信息工程学院,兰州,730050%国核电力规划设计研究院,北京,100095%兰州理工大学电气工程与信息工程学院,兰州 730050
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1107795
Snippet 针对风电场并网点电压故障引起的风机大规模脱网问题,提出了基于柔性形态算子和经验模态分解(empirical mode...
TM769; 针对风电场并网点电压故障引起的风机大规模脱网问题,提出了基于柔性形态算子和经验模态分解(empirical mode...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 219
SubjectTerms 信号去噪
噪声
柔性形态学
电压故障检测
电场
经验模态分解
风力
风电并网
Title 基于经验模态分解和形态学的风电并网电压故障检测
URI http://lib.cqvip.com/qk/90712X/201611/669029854.html
https://d.wanfangdata.com.cn/periodical/nygcxb201611031
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsMkDRA_iE2NUcrBPMnFm-zHdx5nNLEHQU4TclnluTpsYE9CcIqgICRFFL0EQDagIHiMYyd-4u-YvrOrp3cxG8bWHoaanXl3Vs1XTdHUTcpXHfuHpgjkFd3OHF0o6WirmQGrvy8KNPZ5hNfLNW3L2Nr8xL-ZHRrcrq5ZWV5LpdO2XdSX_41VoA79ilew_eHbAFBoABv_CFTwM17_yMY0E1Q0aBjTieFURjXwahlQ1aKRpAC11GkkaKBp4CCgXMkekUooqSSNo92nADJ-aQRY0nKFBbQg5gBaJnDUw5IYzs7I0yBWGStPQ4AC59oYeAaYKkaEGWCA58NGlYgylAACYKqwmyoZQGjTgo5AEpYC2AplDj5DnQDfQNoBH_eFjqOtGWqlawwgBoiGUoK9ZyEDv6hPt0pAbIMQeoapuX0OLEkaIVeoOekG3sEVXp1HK-k4z5K1FtEKjK7A1My11Y-KqsQIUiT30jR0r1gcNAA2B0tZgR21cBSOgbp0HPQ5daykdXTPHBLiVwIORSSobPmxkOpz5Xe1X5xyJM2XKUitrx3-OhtoXJhyiiOmBCFzQKKdx71obgIc3HG_fb6X3EsTx8AyQUTJe831PjJHxIJwJG4fJtofzCYNoUMM9FeThx6vwGB6dMFhwhcsNhFl7YNU4Rmhfyeu_UxF3PVlYbLfuQC5nSuvaRdxuVbLAuVPkpP18mwrKd_E0GVlbOENOBK1lu4VNfpZEndd73_a2el-fHnzc7H54011_0Hny-Pv7nc7zzc7-W7z99K63_fBgZ6v3Yrfz5XNv_xkCWxvdl48Otl91d9a7uxvnyFwjmqvPOvawEicV2nMyySB5jlOdFJqJJPNYnMPHesbTNIt1oV2eC4WnTaeMizyXucsynTHtFn4Cv5SdJ2PtxXZ-gUxJV2P9dwypNePMVZpncOsnnqu4l6dsgkwO7NFcKvekaUqp8TAFwSfIlLVQ0_5T3W0e8ejFP6NMkuMIl3ONl8jYyvJqfhmy75Xkih0GPwDvmKgE
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%BB%8F%E9%AA%8C%E6%A8%A1%E6%80%81%E5%88%86%E8%A7%A3%E5%92%8C%E5%BD%A2%E6%80%81%E5%AD%A6%E7%9A%84%E9%A3%8E%E7%94%B5%E5%B9%B6%E7%BD%91%E7%94%B5%E5%8E%8B%E6%95%85%E9%9A%9C%E6%A3%80%E6%B5%8B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%8C%85%E5%B9%BF%E6%B8%85&rft.au=%E5%AE%8B%E6%B3%BD&rft.au=%E5%90%B4%E5%9B%BD%E6%A0%8B&rft.au=%E5%BE%90%E6%B5%B7%E9%BE%99&rft.date=2016&rft.pub=%E7%94%98%E8%82%83%E7%9C%81%E7%94%B5%E5%8A%9B%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%EF%BC%8C%E5%85%B0%E5%B7%9E+730050&rft.issn=1002-6819&rft.volume=32&rft.issue=11&rft.spage=219&rft.epage=225&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.11.031&rft.externalDocID=nygcxb201611031
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg