基于高斯局部二值模式的纹理特征分类方法
纹理描述在图像分析和模式分类领域具有极为重要的意义。为提高特征描述的鲁棒性,提出了一种基于高斯局部二值模式的纹理特征提取方法。首先,采用加强预处理使高斯滤波获得不同尺度的图像,从而构建多尺度的图像金字塔;其次,为提升旋转不变性和抗噪声能力,提出具有主方向特征的二值模式;最后,在不同尺度上提取3种有效的局部二值模式联合构造纹理描述,并通过直方图降维。试验结果表明,该特征具有较好的可区分性和有效性,可以有效应用到视觉图像的纹理分类中。...
Saved in:
Published in | 电子技术应用 Vol. 44; no. 1; pp. 121 - 124 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
大连交通大学机械工程学院,辽宁大连,116028%大连交通大学机械工程学院,辽宁大连116028
2018
大连交通大学动车运用与维护工程学院,辽宁大连116028%大连交通大学动车运用与维护工程学院,辽宁大连,116028 |
Subjects | |
Online Access | Get full text |
ISSN | 0258-7998 |
DOI | 10.16157/j.issn.0258-7998.171014 |
Cover
Abstract | 纹理描述在图像分析和模式分类领域具有极为重要的意义。为提高特征描述的鲁棒性,提出了一种基于高斯局部二值模式的纹理特征提取方法。首先,采用加强预处理使高斯滤波获得不同尺度的图像,从而构建多尺度的图像金字塔;其次,为提升旋转不变性和抗噪声能力,提出具有主方向特征的二值模式;最后,在不同尺度上提取3种有效的局部二值模式联合构造纹理描述,并通过直方图降维。试验结果表明,该特征具有较好的可区分性和有效性,可以有效应用到视觉图像的纹理分类中。 |
---|---|
AbstractList | 纹理描述在图像分析和模式分类领域具有极为重要的意义。为提高特征描述的鲁棒性,提出了一种基于高斯局部二值模式的纹理特征提取方法。首先,采用加强预处理使高斯滤波获得不同尺度的图像,从而构建多尺度的图像金字塔;其次,为提升旋转不变性和抗噪声能力,提出具有主方向特征的二值模式;最后,在不同尺度上提取3种有效的局部二值模式联合构造纹理描述,并通过直方图降维。试验结果表明,该特征具有较好的可区分性和有效性,可以有效应用到视觉图像的纹理分类中。 TP31; 纹理描述在图像分析和模式分类领域具有极为重要的意义.为提高特征描述的鲁棒性,提出了一种基于高斯局部二值模式的纹理特征提取方法.首先,采用加强预处理使高斯滤波获得不同尺度的图像,从而构建多尺度的图像金字塔;其次,为提升旋转不变性和抗噪声能力,提出具有主方向特征的二值模式;最后,在不同尺度上提取3种有效的局部二值模式联合构造纹理描述,并通过直方图降维.试验结果表明,该特征具有较好的可区分性和有效性,可以有效应用到视觉图像的纹理分类中. |
Abstract_FL | The texture description of machine vision is important for image analysis and pattern recognition. To improve the robustness of feature describing, a texture feature based on Gaussian local binary pattern(LBP) is proposed in this paper. Firstly, the Gaussian filtering is used to construct the multi-scale images as the image pyramid after image enhancement. Secondly, the local binary pattern is improved to enhance the rotation invariance and noise immunity. The pattern is extracted by using the mean value and the principal direction. Finally, for the different scales, the feature vector of three local binary patterns is extracted and reduced by histogram for image classification. The experiment result shows the feature has good distinguishability and efficiency and it is applicable for image classification. |
Author | 黄辰;费继友;刘晓东 |
AuthorAffiliation | 大连交通大学机械工程学院,辽宁大连116028;大连交通大学动车运用与维护工程学院,辽宁大连116028 |
AuthorAffiliation_xml | – name: 大连交通大学机械工程学院,辽宁大连,116028%大连交通大学机械工程学院,辽宁大连116028;大连交通大学动车运用与维护工程学院,辽宁大连116028%大连交通大学动车运用与维护工程学院,辽宁大连,116028 |
Author_FL | Fei Jiyou Huang Chen Liu Xiaodong |
Author_FL_xml | – sequence: 1 fullname: Huang Chen – sequence: 2 fullname: Fei Jiyou – sequence: 3 fullname: Liu Xiaodong |
Author_xml | – sequence: 1 fullname: 黄辰;费继友;刘晓东 |
BookMark | eNo9jj9Lw0Achm-oYK39DuLilHi_3OVyGaX4Dwou3cNdeqkJetEGkTpVlFJB1MUiLuJWcJDi1Fj8NE1Cv4WBitMLLw_P-66hio61QmgDsAkMbGc7MsMk0Sa2bG44rstNcAADraDqf7WK6kkSSowBsMVtUkVu9pbO04fFx0s--swm_cXNeJ7eZ_1ZPn7PZo_F622RTounQXE3zX6us-GgmHzno2n-9byOVgJxkqj6X9ZQa2-31Tgwmkf7h42dpuHbLhjUJyApFsSVvmQqIFJJkAwD5twBwgXn0FbCx9TibYIZcZXNKGPMtsq_SpIa2lpqL4UOhO54UXzR1eWg176Kkl7PwsBLG4GS3FyS_nGsO-dhyZ51w1PR7XnMoVAOWZT8Ap7Oa20 |
ClassificationCodes | TP31 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16157/j.issn.0258-7998.171014 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Texture feature method based on Gaussian local binary pattern |
DocumentTitle_FL | Texture feature method based on Gaussian local binary pattern |
EndPage | 124 |
ExternalDocumentID | dzjsyy201801031 674188124 |
GrantInformation_xml | – fundername: 国家自然科学基金; 国家科技支撑计划项目 funderid: (51376028); (2015-BAF20B02) |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 GROUPED_DOAJ TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c591-4c31b40a39bcb6ef3beb1b6010887138a881deac0428d30639e56466652998eb3 |
ISSN | 0258-7998 |
IngestDate | Thu May 29 04:04:54 EDT 2025 Wed Feb 14 10:04:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Gaussian filtering 图像分类 local binary pattern 纹理特征 texture feature 高斯滤波 局部二值特征 image analysis |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c591-4c31b40a39bcb6ef3beb1b6010887138a881deac0428d30639e56466652998eb3 |
Notes | texture feature ; Gaussian filtering ; local binary pattern ; image analysis The texture description of machine vision is important for image analysis and pattern recognition. To improve the robust-ness of feature describing, a texture feature based on Gaussian local binary pattern( LBP) is proposed in this paper. Firstly, the Gaussian filtering is used to construct the multi-scale images as the image pyramid after image enhancement. Secondly, the local binary pattern is improved to enhance the rotation invariance and noise immunity. The pattern is extracted by using the mean value and the principal direction. Finally, for the different scales, the feature vector of three local binary patterns is extracted and re-duced by histogram for image classification. The experiment result shows the feature has good distinguishability and efficiency and it is applicable for image classification. Huang Chen1, Fei Jiyou1,2, Liu Xiaodong2 ( 1 .School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China |
PageCount | 4 |
ParticipantIDs | wanfang_journals_dzjsyy201801031 chongqing_primary_674188124 |
PublicationCentury | 2000 |
PublicationDate | 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018 |
PublicationDecade | 2010 |
PublicationTitle | 电子技术应用 |
PublicationTitleAlternate | Application of Electronic Technique |
PublicationTitle_FL | Application of Electronic Technique |
PublicationYear | 2018 |
Publisher | 大连交通大学机械工程学院,辽宁大连,116028%大连交通大学机械工程学院,辽宁大连116028 大连交通大学动车运用与维护工程学院,辽宁大连116028%大连交通大学动车运用与维护工程学院,辽宁大连,116028 |
Publisher_xml | – name: 大连交通大学机械工程学院,辽宁大连,116028%大连交通大学机械工程学院,辽宁大连116028 – name: 大连交通大学动车运用与维护工程学院,辽宁大连116028%大连交通大学动车运用与维护工程学院,辽宁大连,116028 |
SSID | ssib001102853 ssib017479494 ssib038074684 ssib051374551 ssj0042189 ssib023646353 |
Score | 2.103876 |
Snippet | ... TP31;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 121 |
SubjectTerms | 图像分类 局部二值特征 纹理特征 高斯滤波 |
Title | 基于高斯局部二值模式的纹理特征分类方法 |
URI | http://lib.cqvip.com/qk/90393X/201801/674188124.html https://d.wanfangdata.com.cn/periodical/dzjsyy201801031 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuMAB8SnGAPWAjyn1bCf2MQmpJiQ4FWm3Kk7TTRw6YN1hPQ2BJpAQcGFCXBC3SRzQxIWWib9mabX_gvecNA3iQ8DFsp5f_F7fc-2fLb9nQm4ABhc9mPac1HjCEcxIR8lk2WHKxD1mMQOeQ965667cE7dX5Wqt9qVya2lrYBrJ8JdxJf_jVaCBXzFK9h88W3YKBKiDf6EED0P5Vz6mkaS6RQOfRgJLFdFIUz-gWtHIpdqlfgt5AoYXGqBJceqrGXOITUAPQmQGus8sc0gVfOVRDTwCK8AcaEtpUuViRWlLAeYIoKjtRxVNICsICunIAyWn-QuXMxBsuwIdJH7o38JugU35Vkn4MJyp7SNbzuyXV27xd4AEVE2h_KBJeWDrolATWn3PKtWiKrCtVsHCKppqbm0AlLB66lGdogGkKcfT-dvVszk8zyH5w1jNJ2SWx18XazvL47V_WjYA1nl23UAJjVJCg3n4lPF8qSwvMLqY9Aex0QlyctnzmKxs5i0QRdw2B0Kw7YN5bz7zYdZ-QHplO2b9F-48Ylgy7gkpy8tKAoCY3cjNNCvupKHeN3-jNSYLWd_orz0ECGQj0vq9uL9WAU_ts-RMseup-_kQPkdqw_Xz5HQlF-YForP346Pxy-OPbyd7n7KDneMn-0fjF9nO4WT_Q3b4avru6XQ8mr7enT4fZd8eZ892pwdfJ3ujyec3F0m7FbXDFad418NJpGaOSDgzohlzbRLjpj1uAC8YPBiABY9xFYNhu4AHcDff5QihUwnmcl0J0Emlhl8iC_2NfnqZ1JWbxr24KWMDO4FusqxjKblMtWIsMVK4i2SptEHnQZ6-pVP6bpHUC6t0ij_1Zqc7vL-5vY0jzj6AcuWPHSyRU8iZn8hdJQuDR1vpNcCoA3PdDofvDS9vog |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%AB%98%E6%96%AF%E5%B1%80%E9%83%A8%E4%BA%8C%E5%80%BC%E6%A8%A1%E5%BC%8F%E7%9A%84%E7%BA%B9%E7%90%86%E7%89%B9%E5%BE%81%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF%E5%BA%94%E7%94%A8&rft.au=%E9%BB%84%E8%BE%B0%3B%E8%B4%B9%E7%BB%A7%E5%8F%8B%3B%E5%88%98%E6%99%93%E4%B8%9C&rft.date=2018&rft.issn=0258-7998&rft.volume=44&rft.issue=1&rft.spage=121&rft.epage=124&rft_id=info:doi/10.16157%2Fj.issn.0258-7998.171014&rft.externalDocID=674188124 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90393X%2F90393X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdzjsyy%2Fdzjsyy.jpg |