Direct laser manipulation reveals the mechanics of cell contacts in vivo

Significance The shaping of tissues and organs relies on the ability of cells to adhere together and deform in a coordinated manner. It is, therefore, key to understand how cell-generated forces produce cell shape changes and how such forces transmit through a group of adhesive cells in vivo. In thi...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 5; pp. 1416 - 1421
Main Authors Bambardekar, Kapil, Clément, Raphaël, Blanc, Olivier, Chardè, Claires, Lenne, Pierre-François
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.02.2015
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Significance The shaping of tissues and organs relies on the ability of cells to adhere together and deform in a coordinated manner. It is, therefore, key to understand how cell-generated forces produce cell shape changes and how such forces transmit through a group of adhesive cells in vivo. In this context, we have developed an approach using laser manipulation to impose local forces on cell contacts in the early Drosophila embryo. Quantification of local and global shape changes using our approach can both provide direct measurements of the forces acting at cell contacts and delineate the time-dependent viscoelastic properties of the tissue. The latter provides an explicit relationship, the so-called constitutive law, between forces and deformations. Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell–cell and cell–ECM contacts to apply local forces on adhesive structures. In epithelia, force imbalance at cell contacts induces cell shape changes, such as apical constriction or polarized junction remodeling, driving tissue morphogenesis. The dynamics of these processes are well-characterized; however, the mechanical basis of cell shape changes is largely unknown because of a lack of mechanical measurements in vivo. We have developed an approach combining optical tweezers with light-sheet microscopy to probe the mechanical properties of epithelial cell junctions in the early Drosophila embryo. We show that optical trapping can efficiently deform cell–cell interfaces and measure tension at cell junctions, which is on the order of 100 pN. We show that tension at cell junctions equilibrates over a few seconds, a short timescale compared with the contractile events that drive morphogenetic movements. We also show that tension increases along cell interfaces during early tissue morphogenesis and becomes anisotropic as cells intercalate during germ-band extension. By performing pull-and-release experiments, we identify time-dependent properties of junctional mechanics consistent with a simple viscoelastic model. Integrating this constitutive law into a tissue-scale model, we predict quantitatively how local deformations propagate throughout the tissue.
AbstractList Significance The shaping of tissues and organs relies on the ability of cells to adhere together and deform in a coordinated manner. It is, therefore, key to understand how cell-generated forces produce cell shape changes and how such forces transmit through a group of adhesive cells in vivo. In this context, we have developed an approach using laser manipulation to impose local forces on cell contacts in the early Drosophila embryo. Quantification of local and global shape changes using our approach can both provide direct measurements of the forces acting at cell contacts and delineate the time-dependent viscoelastic properties of the tissue. The latter provides an explicit relationship, the so-called constitutive law, between forces and deformations. Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell–cell and cell–ECM contacts to apply local forces on adhesive structures. In epithelia, force imbalance at cell contacts induces cell shape changes, such as apical constriction or polarized junction remodeling, driving tissue morphogenesis. The dynamics of these processes are well-characterized; however, the mechanical basis of cell shape changes is largely unknown because of a lack of mechanical measurements in vivo. We have developed an approach combining optical tweezers with light-sheet microscopy to probe the mechanical properties of epithelial cell junctions in the early Drosophila embryo. We show that optical trapping can efficiently deform cell–cell interfaces and measure tension at cell junctions, which is on the order of 100 pN. We show that tension at cell junctions equilibrates over a few seconds, a short timescale compared with the contractile events that drive morphogenetic movements. We also show that tension increases along cell interfaces during early tissue morphogenesis and becomes anisotropic as cells intercalate during germ-band extension. By performing pull-and-release experiments, we identify time-dependent properties of junctional mechanics consistent with a simple viscoelastic model. Integrating this constitutive law into a tissue-scale model, we predict quantitatively how local deformations propagate throughout the tissue.
Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell-cell and cell-ECM contacts to apply local forces on adhesive structures. In epithelia, force imbalance at cell contacts induces cell shape changes, such as apical constriction or polarized junction remodeling, driving tissue morphogenesis. The dynamics of these processes are well-characterized; however, the mechanical basis of cell shape changes is largely unknown because of a lack of mechanical measurements in vivo. We have developed an approach combining optical tweezers with light-sheet microscopy to probe the mechanical properties of epithelial cell junctions in the early Drosophila embryo. We show that optical trapping can efficiently deform cell-cell interfaces and measure tension at cell junctions, which is on the order of 100 pN. We show that tension at cell junctions equilibrates over a few seconds, a short timescale compared with the contractile events that drive morphogenetic movements. We also show that tension increases along cell interfaces during early tissue morphogenesis and becomes anisotropic as cells intercalate during germ-band extension. By performing pull-and-release experiments, we identify time-dependent properties of junctional mechanics consistent with a simple viscoelastic model. Integrating this constitutive law into a tissue-scale model, we predict quantitatively how local deformations propagate throughout the tissue.
The shaping of tissues and organs relies on the ability of cells to adhere together and deform in a coordinated manner. It is, therefore, key to understand how cell-generated forces produce cell shape changes and how such forces transmit through a group of adhesive cells in vivo. In this context, we have developed an approach using laser manipulation to impose local forces on cell contacts in the early Drosophila embryo. Quantification of local and global shape changes using our approach can both provide direct measurements of the forces acting at cell contacts and delineate the time-dependent viscoelastic properties of the tissue. The latter provides an explicit relationship, the so-called constitutive law, between forces and deformations. Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell–cell and cell–ECM contacts to apply local forces on adhesive structures. In epithelia, force imbalance at cell contacts induces cell shape changes, such as apical constriction or polarized junction remodeling, driving tissue morphogenesis. The dynamics of these processes are well-characterized; however, the mechanical basis of cell shape changes is largely unknown because of a lack of mechanical measurements in vivo. We have developed an approach combining optical tweezers with light-sheet microscopy to probe the mechanical properties of epithelial cell junctions in the early Drosophila embryo. We show that optical trapping can efficiently deform cell–cell interfaces and measure tension at cell junctions, which is on the order of 100 pN. We show that tension at cell junctions equilibrates over a few seconds, a short timescale compared with the contractile events that drive morphogenetic movements. We also show that tension increases along cell interfaces during early tissue morphogenesis and becomes anisotropic as cells intercalate during germ-band extension. By performing pull-and-release experiments, we identify time-dependent properties of junctional mechanics consistent with a simple viscoelastic model. Integrating this constitutive law into a tissue-scale model, we predict quantitatively how local deformations propagate throughout the tissue.
Significance The shaping of tissues and organs relies on the ability of cells to adhere together and deform in a coordinated manner. It is, therefore, key to understand how cell-generated forces produce cell shape changes and how such forces transmit through a group of adhesive cells in vivo. In this context, we have developed an approach using laser manipulation to impose local forces on cell contacts in the early Drosophila embryo. Quantification of local and global shape changes using our approach can both provide direct measurements of the forces acting at cell contacts and delineate the time-dependent viscoelastic properties of the tissue. The latter provides an explicit relationship, the so-called constitutive law, between forces and deformations. Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell–cell and cell–ECM contacts to apply local forces on adhesive structures. In epithelia, force imbalance at cell contacts induces cell shape changes, such as apical constriction or polarized junction remodeling, driving tissue morphogenesis. The dynamics of these processes are well-characterized; however, the mechanical basis of cell shape changes is largely unknown because of a lack of mechanical measurements in vivo. We have developed an approach combining optical tweezers with light-sheet microscopy to probe the mechanical properties of epithelial cell junctions in the early Drosophila embryo. We show that optical trapping can efficiently deform cell–cell interfaces and measure tension at cell junctions, which is on the order of 100 pN. We show that tension at cell junctions equilibrates over a few seconds, a short timescale compared with the contractile events that drive morphogenetic movements. We also show that tension increases along cell interfaces during early tissue morphogenesis and becomes anisotropic as cells intercalate during germ-band extension. By performing pull-and-release experiments, we identify time-dependent properties of junctional mechanics consistent with a simple viscoelastic model. Integrating this constitutive law into a tissue-scale model, we predict quantitatively how local deformations propagate throughout the tissue.
Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell–cell and cell–ECM contacts to apply local forces on adhesive structures. In epithelia, force imbalance at cell contacts induces cell shape changes, such as apical constriction or polarized junction remodeling, driving tissue morphogenesis. The dynamics of these processes are well-characterized; however, the mechanical basis of cell shape changes is largely unknown because of a lack of mechanical measurements in vivo. We have developed an approach combining optical tweezers with light-sheet microscopy to probe the mechanical properties of epithelial cell junctions in the earlyDrosophilaembryo. We show that optical trapping can efficiently deform cell–cell interfaces and measure tension at cell junctions, which is on the order of 100 pN. We show that tension at cell junctions equilibrates over a few seconds, a short timescale compared with the contractile events that drive morphogenetic movements. We also show that tension increases along cell interfaces during early tissue morphogenesis and becomes anisotropic as cells intercalate during germ-band extension. By performing pull-and-release experiments, we identify time-dependent properties of junctional mechanics consistent with a simple viscoelastic model. Integrating this constitutive law into a tissue-scale model, we predict quantitatively how local deformations propagate throughout the tissue.
Author Lenne, Pierre-François
Blanc, Olivier
Chardè, Claires
Bambardekar, Kapil
Clément, Raphaël
Author_xml – sequence: 1
  givenname: Kapil
  surname: Bambardekar
  fullname: Bambardekar, Kapil
– sequence: 2
  givenname: Raphaël
  surname: Clément
  fullname: Clément, Raphaël
– sequence: 3
  givenname: Olivier
  surname: Blanc
  fullname: Blanc, Olivier
– sequence: 4
  givenname: Claires
  surname: Chardè
  fullname: Chardè, Claires
– sequence: 5
  givenname: Pierre-François
  surname: Lenne
  fullname: Lenne, Pierre-François
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25605934$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01428952$$DView record in HAL
BookMark eNpdkUFv1DAQhS1URLeFMyfAEpdySDt2bMe-VKpKYZFW4gA9W17X7maV2IudrMS_xyFlW3qyNPPN87x5J-goxOAQekvgnEBTX-yCyeeEEdnUlBD6Ai0IKFIJpuAILQBoU0lG2TE6yXkLAIpLeIWOKRfAVc0WaPm5Tc4OuDPZJdyb0O7GzgxtDDi5vTNdxsPG4d7ZTenZjKPH1nUdtjEMxg4ZtwHv2318jV76Qrs3D-8puv1y8_N6Wa2-f_12fbWqLFcwVF4qLwx3BnytPBNgiPCNFDVrJNTrtWig8dyLQpWSAaruhFDgpLAeeLF5ii5n3d247t2ddWFIptO71PYm_dbRtPr_Tmg3-j7uNSsXogKKwKdZYPNsbHm10lMNCKNScbonhT17-CzFX6PLg-7bPNk3wcUxayI4ZVzJui7ox2foNo4plFP8pZpGNWoSvJgpm2LOyfnDBgT0lKieEtWPiZaJ90_9Hvh_ET4BpsmDHKGaTzqiAO9mYJuHmB4FBBPF6bTTh7nvTdTmPrVZ3_6gQASUS0ilVP0HBTC5WQ
CitedBy_id crossref_primary_10_1242_jcs_189001
crossref_primary_10_1103_PhysRevX_11_031028
crossref_primary_10_1016_j_cub_2017_09_005
crossref_primary_10_7554_eLife_85569
crossref_primary_10_1016_j_coisb_2017_09_007
crossref_primary_10_1016_j_bpj_2018_07_027
crossref_primary_10_1016_j_bpj_2015_05_019
crossref_primary_10_3389_fcell_2021_706126
crossref_primary_10_3390_ijms19071880
crossref_primary_10_1242_jcs_186254
crossref_primary_10_1016_j_cub_2017_06_038
crossref_primary_10_1038_s41567_021_01215_1
crossref_primary_10_1364_BOE_6_002778
crossref_primary_10_7554_eLife_27454
crossref_primary_10_7554_eLife_08519
crossref_primary_10_35848_1347_4065_ad3760
crossref_primary_10_1016_j_gde_2020_05_018
crossref_primary_10_1146_annurev_cellbio_020223_031019
crossref_primary_10_1016_j_coisb_2017_07_009
crossref_primary_10_1038_ncb3226
crossref_primary_10_1016_j_bpj_2019_05_023
crossref_primary_10_1038_s41467_019_10720_0
crossref_primary_10_1152_physiol_00018_2019
crossref_primary_10_1007_s10237_017_0905_7
crossref_primary_10_7554_eLife_68490
crossref_primary_10_1016_j_cdev_2022_203777
crossref_primary_10_1088_2515_7647_ab83e3
crossref_primary_10_1364_BOE_7_000045
crossref_primary_10_1002_advs_202105254
crossref_primary_10_1063_5_0166829
crossref_primary_10_3389_fphys_2018_01449
crossref_primary_10_1083_jcb_201412003
crossref_primary_10_1242_dev_192914
crossref_primary_10_1038_s41580_023_00688_7
crossref_primary_10_34133_2020_7914074
crossref_primary_10_7498_aps_65_188103
crossref_primary_10_1091_mbc_E21_09_0452
crossref_primary_10_1140_epje_s10189_022_00206_1
crossref_primary_10_1088_1478_3975_aa976b
crossref_primary_10_1038_s41566_017_0053_8
crossref_primary_10_1063_1_5025216
crossref_primary_10_1002_dvdy_24384
crossref_primary_10_1039_D2CP01384C
crossref_primary_10_1103_PhysRevE_106_034403
crossref_primary_10_1016_j_bpj_2016_02_043
crossref_primary_10_3390_life11070691
crossref_primary_10_1093_jmicro_dfad059
crossref_primary_10_1038_s41598_019_50690_3
crossref_primary_10_1002_wsbm_1407
crossref_primary_10_1088_1478_3975_12_5_056011
crossref_primary_10_1021_acs_jpcb_3c06282
crossref_primary_10_1364_BOE_9_004263
crossref_primary_10_1016_j_bpj_2023_08_003
crossref_primary_10_1038_s41580_020_00318_6
crossref_primary_10_1242_dev_191049
crossref_primary_10_1039_c5ib00070j
crossref_primary_10_1016_j_mod_2016_11_004
crossref_primary_10_21769_BioProtoc_3608
crossref_primary_10_1016_j_bpj_2019_09_027
crossref_primary_10_1016_j_devcel_2018_09_014
crossref_primary_10_1242_jcs_218156
crossref_primary_10_1038_s41567_019_0516_6
crossref_primary_10_1109_TNB_2016_2616160
crossref_primary_10_1103_PhysRevE_96_022418
crossref_primary_10_1016_j_semcdb_2021_06_006
crossref_primary_10_1091_mbc_E22_09_0409
crossref_primary_10_1016_j_actbio_2021_12_033
crossref_primary_10_1016_j_isci_2023_106594
crossref_primary_10_1080_00150193_2020_1761700
crossref_primary_10_1021_acschembio_9b00460
crossref_primary_10_1038_s41578_018_0066_z
crossref_primary_10_1080_00150193_2020_1761708
crossref_primary_10_1140_epje_i2019_11807_x
crossref_primary_10_1242_dev_119776
crossref_primary_10_1371_journal_pbio_3002662
crossref_primary_10_1103_PhysRevE_97_052409
crossref_primary_10_1242_jcs_196139
crossref_primary_10_1016_j_ceb_2021_04_006
crossref_primary_10_1103_PhysRevLett_121_238102
crossref_primary_10_1101_cshperspect_a028761
crossref_primary_10_1126_sciadv_1500633
crossref_primary_10_3389_fbioe_2021_759205
crossref_primary_10_1115_1_4037404
crossref_primary_10_1021_acsbiomaterials_6b00772
crossref_primary_10_1038_s41592_023_02084_7
crossref_primary_10_1242_jcs_259355
crossref_primary_10_1038_ncb3136
crossref_primary_10_1242_dev_151282
crossref_primary_10_1088_2515_7647_ad3d1a
crossref_primary_10_1016_j_semcdb_2022_12_009
crossref_primary_10_1021_acsbiomaterials_8b01359
crossref_primary_10_1073_pnas_2212389120
crossref_primary_10_12688_f1000research_20874_1
crossref_primary_10_1002_smll_202103466
crossref_primary_10_1091_mbc_e17_06_0382
crossref_primary_10_21769_BioProtoc_2068
crossref_primary_10_1016_j_bpj_2021_12_038
crossref_primary_10_1371_journal_pcbi_1006352
crossref_primary_10_1242_dev_202687
crossref_primary_10_1038_s41567_018_0111_2
crossref_primary_10_1091_mbc_e16_04_0226
crossref_primary_10_1016_j_optmat_2018_07_058
crossref_primary_10_1371_journal_pcbi_1010209
crossref_primary_10_1186_s40824_022_00289_z
crossref_primary_10_1038_nmeth_4101
crossref_primary_10_1038_s41467_018_07448_8
crossref_primary_10_1038_s41556_020_0524_x
crossref_primary_10_1016_j_semcdb_2016_07_030
crossref_primary_10_1098_rstb_2015_0520
crossref_primary_10_1103_PhysRevE_105_054407
crossref_primary_10_1098_rsif_2020_0264
crossref_primary_10_1002_bit_28802
crossref_primary_10_1242_dev_175109
crossref_primary_10_3233_BIR_15084
crossref_primary_10_1103_PhysRevX_10_011072
crossref_primary_10_1016_j_bpj_2023_05_015
crossref_primary_10_1038_s41467_022_32102_9
crossref_primary_10_1098_rstb_2015_0516
crossref_primary_10_1038_s42003_022_03349_1
crossref_primary_10_1038_nrm_2017_98
crossref_primary_10_1103_PRXLife_1_013004
crossref_primary_10_1016_j_gde_2018_09_002
crossref_primary_10_1038_s41467_017_01130_1
crossref_primary_10_1098_rstb_2015_0513
crossref_primary_10_1117_1_JBO_22_8_086013
crossref_primary_10_1016_j_cub_2021_03_031
crossref_primary_10_1016_j_gde_2020_01_003
crossref_primary_10_1021_acs_biomac_3c01271
crossref_primary_10_1038_s41467_022_28151_9
crossref_primary_10_1016_j_eml_2017_12_002
crossref_primary_10_1098_rsob_210006
crossref_primary_10_12688_f1000research_6435_1
crossref_primary_10_1016_j_cub_2018_02_003
crossref_primary_10_1016_j_cub_2019_04_010
crossref_primary_10_1016_j_ydbio_2017_09_021
crossref_primary_10_1088_1361_6633_ab7175
crossref_primary_10_1038_s41563_019_0461_x
crossref_primary_10_1242_dev_199765
crossref_primary_10_1038_s41563_022_01433_9
crossref_primary_10_1073_pnas_1705921114
crossref_primary_10_1016_j_gde_2018_07_004
crossref_primary_10_1111_dgd_12356
crossref_primary_10_1186_s12915_015_0200_y
crossref_primary_10_1016_j_gde_2018_07_005
crossref_primary_10_1080_15368378_2017_1389752
crossref_primary_10_1088_1478_3975_aad865
crossref_primary_10_7554_eLife_07090
Cites_doi 10.1038/nature02590
10.1038/nature09376
10.1038/nature07522
10.1146/annurev-cellbio-100109-104027
10.1016/0012-1606(81)90276-1
10.1016/j.bpj.2009.09.034
10.1371/journal.pcbi.1002512
10.1038/nature13070
10.1073/pnas.1213301109
10.1038/nmeth.2761
10.1016/j.cub.2013.09.015
10.1126/science.1221071
10.1126/science.1134833
10.1038/ncb1798
10.1038/nphys1269
10.1126/science.1079552
10.1016/j.tcb.2012.07.001
10.1006/bbrc.2000.3636
10.1073/pnas.1011123108
10.1140/epje/i2013-13045-8
10.1529/biophysj.105.080606
10.1126/science.1225399
10.1016/S0006-3495(93)81253-0
10.1016/j.devcel.2006.09.007
10.1007/s10439-010-9998-1
10.1126/science.1100035
10.1016/j.cub.2007.11.049
10.1098/rsif.2012.0263
10.1038/nature09566
10.1083/jcb.200406024
10.1016/j.bpj.2013.11.4498
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Feb 3, 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Feb 3, 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
5PM
DOI 10.1073/pnas.1418732112
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
MEDLINE
MEDLINE - Academic

CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Probing the mechanics of cell contacts in vivo
EISSN 1091-6490
EndPage 1421
ExternalDocumentID oai_HAL_hal_01428952v1
3585157951
10_1073_pnas_1418732112
25605934
112_5_1416
26461421
US201600148999
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Agence Nationale de la Recherche (L' Agence Nationale de la Recherche)
  grantid: ANR-11-BSV5-0008
– fundername: Fondation pour la Recherche Médicale (Foundation for Medical Research in France)
  grantid: DEQ20130326509
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ADQXQ
1XC
5PM
ID FETCH-LOGICAL-c590t-f89f6a5ea0f39f460a16f786347803bb6707f5f69f6347a029d6690e86cf05873
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:22:40 EDT 2024
Tue Oct 15 15:52:15 EDT 2024
Fri Aug 16 01:43:30 EDT 2024
Thu Oct 10 19:37:43 EDT 2024
Fri Aug 23 01:52:00 EDT 2024
Sat Sep 28 08:06:14 EDT 2024
Wed Nov 11 00:29:51 EST 2020
Fri Feb 02 08:16:19 EST 2024
Wed Dec 27 18:53:41 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords optical tweezers
tissue morphogenesis
Myosin-II
cell mechanics
light-sheet microscopy
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-f89f6a5ea0f39f460a16f786347803bb6707f5f69f6347a029d6690e86cf05873
Notes http://dx.doi.org/10.1073/pnas.1418732112
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC4321260
Author contributions: P.-F.L. designed research; K.B., R.C., O.B., and C.C. performed research; R.C., O.B., and C.C. contributed new reagents/analytic tools; K.B., R.C., O.B., C.C., and P.-F.L. analyzed data; R.C. and P.-F.L. wrote the paper; O.B. and C.C. contributed new instrumentation; O.B. performed the initial experiments; and R.C. developed the model.
1K.B. and R.C. contributed equally to this work.
Edited by Eric F. Wieschaus, Princeton University, Princeton, NJ, and approved December 22, 2014 (received for review October 1, 2014)
ORCID 0000-0002-1270-1934
OpenAccessLink https://www.pnas.org/content/pnas/112/5/1416.full.pdf
PMID 25605934
PQID 1652779791
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1652459833
crossref_primary_10_1073_pnas_1418732112
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4321260
pubmed_primary_25605934
proquest_journals_1652779791
pnas_primary_112_5_1416
jstor_primary_26461421
fao_agris_US201600148999
hal_primary_oai_HAL_hal_01428952v1
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2015-02-03
PublicationDateYYYYMMDD 2015-02-03
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 8298032 - Biophys J. 1993 Nov;65(5):2021-40
21383129 - Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4708-13
20006944 - Biophys J. 2009 Dec 16;97(12):3075-85
21740231 - Annu Rev Cell Dev Biol. 2011;27:157-84
18082406 - Curr Biol. 2007 Dec 18;17(24):2095-104
22615550 - PLoS Comput Biol. 2012;8(5):e1002512
22871642 - Trends Cell Biol. 2012 Oct;22(10):536-45
24896108 - Biophys J. 2014 Jun 3;106(11):2291-304
24317254 - Nat Methods. 2014 Feb;11(2):183-9
15479740 - J Cell Biol. 2004 Oct 11;167(1):135-47
15190355 - Nature. 2004 Jun 10;429(6992):667-71
22923438 - Science. 2012 Oct 12;338(6104):253-6
21068726 - Nature. 2010 Dec 23;468(7327):1110-4
7196351 - Dev Biol. 1981 Jul 30;85(2):446-62
22991459 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16449-54
17011486 - Dev Cell. 2006 Oct;11(4):459-70
19029882 - Nature. 2009 Jan 22;457(7228):495-9
24590071 - Nature. 2014 Apr 17;508(7496):392-6
15310904 - Science. 2004 Aug 13;305(5686):1007-9
20852613 - Nature. 2010 Sep 30;467(7315):617-21
11027646 - Biochem Biophys Res Commun. 2000 Oct 14;277(1):93-9
16581841 - Biophys J. 2006 Jun 15;90(12):4712-9
23615875 - Eur Phys J E Soft Matter. 2013 Apr;36(4):9859
22628216 - J R Soc Interface. 2012 Oct 7;9(75):2614-23
22499807 - Science. 2012 May 11;336(6082):724-7
20614239 - Ann Biomed Eng. 2010 Sep;38(9):2937-47
24184100 - Curr Biol. 2013 Nov 18;23(22):2197-207
12574496 - Science. 2003 Apr 4;300(5616):145-9
18978783 - Nat Cell Biol. 2008 Dec;10(12):1401-10
24836407 - J Vis Exp. 2014;(87). doi: 10.3791/51342
17234948 - Science. 2007 Jan 19;315(5810):384-6
e_1_3_3_17_2
Howard J (e_1_3_3_24_2) 2001
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
Chardès C (e_1_3_3_16_2) 2014; 87
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_22_2
  doi: 10.1038/nature02590
– ident: e_1_3_3_29_2
  doi: 10.1038/nature09376
– ident: e_1_3_3_20_2
  doi: 10.1038/nature07522
– ident: e_1_3_3_1_2
  doi: 10.1146/annurev-cellbio-100109-104027
– ident: e_1_3_3_30_2
  doi: 10.1016/0012-1606(81)90276-1
– ident: e_1_3_3_32_2
  doi: 10.1016/j.bpj.2009.09.034
– ident: e_1_3_3_3_2
  doi: 10.1371/journal.pcbi.1002512
– ident: e_1_3_3_28_2
  doi: 10.1038/nature13070
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.1213301109
– ident: e_1_3_3_13_2
  doi: 10.1038/nmeth.2761
– ident: e_1_3_3_26_2
  doi: 10.1016/j.cub.2013.09.015
– volume: 87
  start-page: e51342
  year: 2014
  ident: e_1_3_3_16_2
  article-title: Setting up a simple light sheet microscope for in toto imaging of C. elegans development
  publication-title: J Vis Exp
  contributor:
    fullname: Chardès C
– ident: e_1_3_3_8_2
  doi: 10.1126/science.1221071
– ident: e_1_3_3_14_2
  doi: 10.1126/science.1134833
– ident: e_1_3_3_6_2
  doi: 10.1038/ncb1798
– ident: e_1_3_3_11_2
  doi: 10.1038/nphys1269
– ident: e_1_3_3_7_2
  doi: 10.1126/science.1079552
– ident: e_1_3_3_18_2
  doi: 10.1016/j.tcb.2012.07.001
– volume-title: Mechanics of Motor Proteins and the Cytoskeleton
  year: 2001
  ident: e_1_3_3_24_2
  contributor:
    fullname: Howard J
– ident: e_1_3_3_27_2
  doi: 10.1006/bbrc.2000.3636
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.1011123108
– ident: e_1_3_3_4_2
  doi: 10.1140/epje/i2013-13045-8
– ident: e_1_3_3_19_2
  doi: 10.1529/biophysj.105.080606
– ident: e_1_3_3_10_2
  doi: 10.1126/science.1225399
– ident: e_1_3_3_17_2
  doi: 10.1016/S0006-3495(93)81253-0
– ident: e_1_3_3_23_2
  doi: 10.1016/j.devcel.2006.09.007
– ident: e_1_3_3_2_2
  doi: 10.1007/s10439-010-9998-1
– ident: e_1_3_3_15_2
  doi: 10.1126/science.1100035
– ident: e_1_3_3_5_2
  doi: 10.1016/j.cub.2007.11.049
– ident: e_1_3_3_33_2
  doi: 10.1098/rsif.2012.0263
– ident: e_1_3_3_21_2
  doi: 10.1038/nature09566
– ident: e_1_3_3_25_2
  doi: 10.1083/jcb.200406024
– ident: e_1_3_3_31_2
  doi: 10.1016/j.bpj.2013.11.4498
SSID ssj0009580
Score 2.5708601
Snippet Significance The shaping of tissues and organs relies on the ability of cells to adhere together and deform in a coordinated manner. It is, therefore, key to...
Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell–cell...
Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell-cell...
Significance The shaping of tissues and organs relies on the ability of cells to adhere together and deform in a coordinated manner. It is, therefore, key to...
The shaping of tissues and organs relies on the ability of cells to adhere together and deform in a coordinated manner. It is, therefore, key to understand how...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1416
SubjectTerms Animals
Biological Sciences
Cell Communication
Cells
Cellular Biology
Cytoskeleton
Drosophila - embryology
Insects
Lasers
Life Sciences
Optical Tweezers
Tissues
Title Direct laser manipulation reveals the mechanics of cell contacts in vivo
URI https://www.jstor.org/stable/26461421
http://www.pnas.org/content/112/5/1416.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25605934
https://www.proquest.com/docview/1652779791
https://search.proquest.com/docview/1652459833
https://hal.science/hal-01428952
https://pubmed.ncbi.nlm.nih.gov/PMC4321260
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa6PXFBtFAaaCuDOJRDuk78PlYV1fIoQoKVeoscx6Yrscmqu93fz0xeZREnLjn4rZnxeOzMfEPIu8oY7k0V0ljJkApvq7QUIUuDz7ywMTMu4tPAzVc1m4tPt_J2j8ghFqZ12vfl4qL-tbyoF3etb-Vq6aeDn9j0282V4KBwFZtOyERzPlzRR6Rd08Wd5KB-RS4GPB_Np6varUE1ZEbDABkmssEDX1oudk6lSXQNfO_QM7JzUkTkU-j7Lyv0b2fKP06n62fkaW9W0stu-QdkL9SH5KDfuGt63qNLv39OZp2So2A1h3uK6BdDBi-KaE4gjRRsQroMGBK88GvaRIqv-xSd2p3frOmiptvFtnlB5tcfflzN0j6dQuqlZZs0GhuVk8GxyG0UirlMRW0UF9owXpZKMx1lVNAKihzLbaXg7hyM8pFJoNkR2a-bOhwTqqoAl2pbihJOd8m1K4PKvMFk7LJiNk_I-UDOYtWhZhTt327NCyRk8ciEhBwDuQv3E3RaMf-eI-IdvnKC4ZqQt8CDcQAEwp5dfimwjCFQnJX5NkvIUcuisRlYeLCoHCpetlON82d5IXFilZCTgY1Fv2NhRUrmWlttoeObsRr2GpLY1aF56NoIaQ3nOHjL9cdpe0lKiN6Rh53l79aAeLd43r04v_rvnq_JE6BbG2nP-AnZ39w_hFOwlTblGdwSPn4-a3fIb-ahDd8
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacoALUKBtoIBBHMohu078PlYVVYDdCoku6i1yHJuuYLOr7uPAr2ecV9mKC1xyiN-e8Xhsz3yD0LtSKWpV6WJfchczq8u4YC6JnU0s0z5RxoergfGFyCbs0xW_2kG884WpjfZtMR1UP2eDanpd21YuZnbY2YkNv4zPGAWBK8hwF92D9Zry7pDeY-2qxvMkBQHMUtYh-kg6XFRmCcIhURKqSEIom7Dlc03Z1r60680cvtfBNrIxUwzYp1D2b3roXXPKP_an80foWzeyxizlx2C9Kgb21x3Qx38e-mP0sNVY8WmTvI92XPUE7bcyYYlPWuDq909R1shPDAq5u8EBWKMLDoYDUBQwOgZ1E89c8Dae2iWeexweDnCwlzd2tcTTCm-mm_kzNDn_cHmWxW2khthyTVaxV9oLw50hnmrPBDGJ8FIJyqQitCiEJNJzLyAX_DIk1aWAY7lTwnrCgRgHaK-aV-4IYVE6OK_rghWgOHAqTeFEYlWI885LotMInXR0yhcNIEdeP6RLmgcK5bfUjdAR0DE330Fc5pOvaQDTCxeooBNH6C0Qt68gYGxnp6M8_CMBg07zdJNE6KCmfZ8NlEfoVAoJh3VTfftJmvPQsIjQcccfeSsMoEeCp1JqqaHgmz4ZlnGYYlO5-brJw7hWlIbKa3a6bbZl0QjJLUbb6v52CrBPDRXessvz_y75Gt3PLsejfPTx4vML9ADmsHboJ_QY7a1u1u4lqGSr4lW9AH8D4xAuzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokRAXoEBpSgGDOJRDdp34fawKqwXaqhKsVHGJHMemK7rJqvs48OsZ59VuxamXHOLH2J7xeGyPv0HoY6EUtapwsS-4i5nVRZwzl8TOJpZpnyjjw9HA6ZkYT9i3C35xK9RX7bRv8-mgvJoNyull7Vs5n9lh5yc2PD89ZhQUriDDeeGHW-ghzNlUdhv1Hm9XNa9PUlDCLGUdqo-kw3lpFqAgEiWhmiSEswnLPteUbaxNW95U8L0M_pGNq2LAP4Wy_7NF77pU3lqjRk_Rr653jWvKn8FqmQ_s3zvAj_fq_jP0pLVc8VGTZQc9cOVztNPqhgU-bAGsP71A40aPYjDM3TUOABtdkDAcAKNA4DGYnXjmwqvjqV3gyuNwgYCD37yxywWelng9XVcv0WT05efxOG4jNsSWa7KMvdJeGO4M8VR7JohJhJdKUCYVoXkuJJGeewG54JchqS4EbM-dEtYTDgzZRdtlVbo9hEXhYN-uc5aDAcGpNLkTiVUh3jsviE4jdNjxKps3wBxZfaEuaRa4lN1wOEJ7wMvM_Aa1mU1-pAFULxykgm0coQ_A4L6CgLU9PjrJwj8SsOg0T9dJhHZr_vfZwIiERqWQ8Kom1dNP0owHwiJCB52MZK1SgBYJnkqppYaC7_tkmM5hiE3pqlWTh3GtKA2V1yJ1Q7YV0wjJDWHbaP5mCohQDRneisz-vUu-Q4_OP4-yk69n31-jxzCE9bt-Qg_Q9vJ65d6AZbbM39Zz8B-LzTFO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+laser+manipulation+reveals+the+mechanics+of+cell+contacts+in+vivo&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bambardekar%2C+K&rft.au=Clement%2C+R.&rft.au=Chardes%2C+C.&rft.au=Lenne%2C+P.F&rft.date=2015-02-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=5&rft.spage=1416&rft.epage=21&rft_id=info:doi/10.1073%2Fpnas.1418732112&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01428952v1
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F5.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F5.cover.gif