Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines
► Aerobic rice fields had 45% more sensible heat flux than flooded fields while flooded rice fields had 19% more latent heat flux than aerobic fields. ► Bowen ratio of aerobic field (0.24 ± 0.01) was higher than flooded field (0.14 ± 0.03). ► Aerobic field had lower average growing season ET rate (3...
Saved in:
Published in | Agricultural water management Vol. 98; no. 9; pp. 1417 - 1430 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.07.2011
Elsevier |
Series | Agricultural Water Management |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Aerobic rice fields had 45% more sensible heat flux than flooded fields while flooded rice fields had 19% more latent heat flux than aerobic fields. ► Bowen ratio of aerobic field (0.24
±
0.01) was higher than flooded field (0.14
±
0.03). ► Aerobic field had lower average growing season ET rate (3.81
±
0.21
mm
d
−1) than flooded field (4.29
±
0.23
mm
d
−1) because of the absence of ponded water and lower LAI. ► Crop coefficient of aerobic fields (0.96
±
0.02) was lower than flooded fields (1.08
±
0.09). ► Crop water productivity of aerobic rice (0.42
±
0.03
g
grain
kg
−1
water) was significantly lower than that of flooded rice (1.26
±
0.26
g
grain
kg
−1
water) because of lower grain yields of aerobic rice.
The seasonal and annual variability of sensible heat flux (
H), latent heat flux (LE), evapotranspiration (ET), crop coefficient (
K
c
) and crop water productivity (WP
ET) were investigated under two different rice environments, flooded and aerobic soil conditions, using the eddy covariance (EC) technique during 2008–2009 cropping periods. Since we had only one EC system for monitoring two rice environments, we had to move the system from one location to the other every week. In total, we had to gap-fill an average of 50–60% of the missing weekly data as well as those values rejected by the quality control tests in each rice field in all four cropping seasons. Although the EC method provides a direct measurement of LE, which is the energy used for ET, we needed to correct the values of
H and LE to close the energy balance using the Bowen ratio closure method before we used LE to estimate ET. On average, the energy balance closure before correction was 0.72
±
0.06 and it increased to 0.99
±
0.01 after correction. The
G in both flooded and aerobic fields was very low. Likewise, the energy involved in miscellaneous processes such as photosynthesis, respiration and heat storage in the rice canopy was not taken into consideration.
Average for four cropping seasons, flooded rice fields had 19% more LE than aerobic fields whereas aerobic rice fields had 45% more
H than flooded fields. This resulted in a lower Bowen ratio in flooded fields (0.14
±
0.03) than in aerobic fields (0.24
±
0.01). For our study sites, evapotranspiration was primarily controlled by net radiation. The aerobic rice fields had lower growing season ET rates (3.81
±
0.21
mm
d
−1) than the flooded rice fields (4.29
±
0.23
mm
d
−1), most probably due to the absence of ponded water and lower leaf area index of aerobic rice. Likewise, the crop coefficient,
K
c
, of aerobic rice was significantly lower than that of flooded rice. For aerobic rice,
K
c
values were 0.95
±
0.01 for the vegetative stage, 1.00
±
0.01 for the reproductive stage, 0.97
±
0.04 for the ripening stage and 0.88
±
0.03 for the fallow period, whereas, for flooded rice,
K
c
values were 1.04
±
0.04 for the vegetative stage, 1.11
±
0.05 for the reproductive stage, 1.04
±
0.05 for the ripening stage and 0.93
±
0.06 for the fallow period. The average annual ET was 1301
mm for aerobic rice and 1440
mm for flooded rice. This corresponds to about 11% lower total evapotranspiration in aerobic fields than in flooded fields. However, the crop water productivity (WP
ET) of aerobic rice (0.42
±
0.03
g
grain
kg
−1
water) was significantly lower than that of flooded rice (1.26
±
0.26
g
grain
kg
−1
water) because the grain yields of aerobic rice were very low since they were subjected to water stress.
The results of this investigation showed significant differences in energy balance and evapotranspiration between flooded and aerobic rice ecosystems. Aerobic rice is one of the promising water-saving technologies being developed to lower the water requirements of the rice crop to address the issues of water scarcity. This information should be taken into consideration in evaluating alternative water-saving technologies for environmentally sustainable rice production systems. |
---|---|
AbstractList | The seasonal and annual variability of sensible heat flux (H), latent heat flux (LE), evapotranspiration (ET), crop coefficient (Kc) and crop water productivity (WPET) were investigated under two different rice environments, flooded and aerobic soil conditions, using the eddy covariance (EC) technique during 2008–2009 cropping periods. Since we had only one EC system for monitoring two rice environments, we had to move the system from one location to the other every week. In total, we had to gap-fill an average of 50–60% of the missing weekly data as well as those values rejected by the quality control tests in each rice field in all four cropping seasons. Although the EC method provides a direct measurement of LE, which is the energy used for ET, we needed to correct the values of H and LE to close the energy balance using the Bowen ratio closure method before we used LE to estimate ET. On average, the energy balance closure before correction was 0.72±0.06 and it increased to 0.99±0.01 after correction. The G in both flooded and aerobic fields was very low. Likewise, the energy involved in miscellaneous processes such as photosynthesis, respiration and heat storage in the rice canopy was not taken into consideration. Average for four cropping seasons, flooded rice fields had 19% more LE than aerobic fields whereas aerobic rice fields had 45% more H than flooded fields. This resulted in a lower Bowen ratio in flooded fields (0.14±0.03) than in aerobic fields (0.24±0.01). For our study sites, evapotranspiration was primarily controlled by net radiation. The aerobic rice fields had lower growing season ET rates (3.81±0.21mmd⁻¹) than the flooded rice fields (4.29±0.23mmd⁻¹), most probably due to the absence of ponded water and lower leaf area index of aerobic rice. Likewise, the crop coefficient, Kc, of aerobic rice was significantly lower than that of flooded rice. For aerobic rice, Kc values were 0.95±0.01 for the vegetative stage, 1.00±0.01 for the reproductive stage, 0.97±0.04 for the ripening stage and 0.88±0.03 for the fallow period, whereas, for flooded rice, Kc values were 1.04±0.04 for the vegetative stage, 1.11±0.05 for the reproductive stage, 1.04±0.05 for the ripening stage and 0.93±0.06 for the fallow period. The average annual ET was 1301mm for aerobic rice and 1440mm for flooded rice. This corresponds to about 11% lower total evapotranspiration in aerobic fields than in flooded fields. However, the crop water productivity (WPET) of aerobic rice (0.42±0.03ggrainkg⁻¹water) was significantly lower than that of flooded rice (1.26±0.26ggrainkg⁻¹water) because the grain yields of aerobic rice were very low since they were subjected to water stress. The results of this investigation showed significant differences in energy balance and evapotranspiration between flooded and aerobic rice ecosystems. Aerobic rice is one of the promising water-saving technologies being developed to lower the water requirements of the rice crop to address the issues of water scarcity. This information should be taken into consideration in evaluating alternative water-saving technologies for environmentally sustainable rice production systems. The seasonal and annual variability of sensible heat flux (H), latent heat flux (LE), evapotranspiration (ET), crop coefficient (K c ) and crop water productivity (WPET) were investigated under two different rice environments, flooded and aerobic soil conditions, using the eddy covariance (EC) technique during 2008-2009 cropping periods. Since we had only one EC system for monitoring two rice environments, we had to move the system from one location to the other every week. In total, we had to gap-fill an average of 50-60% of the missing weekly data as well as those values rejected by the quality control tests in each rice field in all four cropping seasons. Although the EC method provides a direct measurement of LE, which is the energy used for ET, we needed to correct the values of H and LE to close the energy balance using the Bowen ratio closure method before we used LE to estimate ET. On average, the energy balance closure before correction was 0.72+/-0.06 and it increased to 0.99+/-0.01 after correction. The G in both flooded and aerobic fields was very low. Likewise, the energy involved in miscellaneous processes such as photosynthesis, respiration and heat storage in the rice canopy was not taken into consideration. Average for four cropping seasons, flooded rice fields had 19% more LE than aerobic fields whereas aerobic rice fields had 45% more H than flooded fields. This resulted in a lower Bowen ratio in flooded fields (0.14+/-0.03) than in aerobic fields (0.24+/-0.01). For our study sites, evapotranspiration was primarily controlled by net radiation. The aerobic rice fields had lower growing season ET rates (3.81+/-0.21mmd-1) than the flooded rice fields (4.29+/-0.23mmd-1), most probably due to the absence of ponded water and lower leaf area index of aerobic rice. Likewise, the crop coefficient, K c , of aerobic rice was significantly lower than that of flooded rice. For aerobic rice, K c values were 0.95+/-0.01 for the vegetative stage, 1.00+/-0.01 for the reproductive stage, 0.97+/-0.04 for the ripening stage and 0.88+/-0.03 for the fallow period, whereas, for flooded rice, K c values were 1.04+/-0.04 for the vegetative stage, 1.11+/-0.05 for the reproductive stage, 1.04+/-0.05 for the ripening stage and 0.93+/-0.06 for the fallow period. The average annual ET was 1301mm for aerobic rice and 1440mm for flooded rice. This corresponds to about 11% lower total evapotranspiration in aerobic fields than in flooded fields. However, the crop water productivity (WPET) of aerobic rice (0.42+/-0.03ggrainkg-1 water) was significantly lower than that of flooded rice (1.26+/-0.26ggrainkg-1 water) because the grain yields of aerobic rice were very low since they were subjected to water stress. The results of this investigation showed significant differences in energy balance and evapotranspiration between flooded and aerobic rice ecosystems. Aerobic rice is one of the promising water-saving technologies being developed to lower the water requirements of the rice crop to address the issues of water scarcity. This information should be taken into consideration in evaluating alternative water-saving technologies for environmentally sustainable rice production systems. ► Aerobic rice fields had 45% more sensible heat flux than flooded fields while flooded rice fields had 19% more latent heat flux than aerobic fields. ► Bowen ratio of aerobic field (0.24 ± 0.01) was higher than flooded field (0.14 ± 0.03). ► Aerobic field had lower average growing season ET rate (3.81 ± 0.21 mm d −1) than flooded field (4.29 ± 0.23 mm d −1) because of the absence of ponded water and lower LAI. ► Crop coefficient of aerobic fields (0.96 ± 0.02) was lower than flooded fields (1.08 ± 0.09). ► Crop water productivity of aerobic rice (0.42 ± 0.03 g grain kg −1 water) was significantly lower than that of flooded rice (1.26 ± 0.26 g grain kg −1 water) because of lower grain yields of aerobic rice. The seasonal and annual variability of sensible heat flux ( H), latent heat flux (LE), evapotranspiration (ET), crop coefficient ( K c ) and crop water productivity (WP ET) were investigated under two different rice environments, flooded and aerobic soil conditions, using the eddy covariance (EC) technique during 2008–2009 cropping periods. Since we had only one EC system for monitoring two rice environments, we had to move the system from one location to the other every week. In total, we had to gap-fill an average of 50–60% of the missing weekly data as well as those values rejected by the quality control tests in each rice field in all four cropping seasons. Although the EC method provides a direct measurement of LE, which is the energy used for ET, we needed to correct the values of H and LE to close the energy balance using the Bowen ratio closure method before we used LE to estimate ET. On average, the energy balance closure before correction was 0.72 ± 0.06 and it increased to 0.99 ± 0.01 after correction. The G in both flooded and aerobic fields was very low. Likewise, the energy involved in miscellaneous processes such as photosynthesis, respiration and heat storage in the rice canopy was not taken into consideration. Average for four cropping seasons, flooded rice fields had 19% more LE than aerobic fields whereas aerobic rice fields had 45% more H than flooded fields. This resulted in a lower Bowen ratio in flooded fields (0.14 ± 0.03) than in aerobic fields (0.24 ± 0.01). For our study sites, evapotranspiration was primarily controlled by net radiation. The aerobic rice fields had lower growing season ET rates (3.81 ± 0.21 mm d −1) than the flooded rice fields (4.29 ± 0.23 mm d −1), most probably due to the absence of ponded water and lower leaf area index of aerobic rice. Likewise, the crop coefficient, K c , of aerobic rice was significantly lower than that of flooded rice. For aerobic rice, K c values were 0.95 ± 0.01 for the vegetative stage, 1.00 ± 0.01 for the reproductive stage, 0.97 ± 0.04 for the ripening stage and 0.88 ± 0.03 for the fallow period, whereas, for flooded rice, K c values were 1.04 ± 0.04 for the vegetative stage, 1.11 ± 0.05 for the reproductive stage, 1.04 ± 0.05 for the ripening stage and 0.93 ± 0.06 for the fallow period. The average annual ET was 1301 mm for aerobic rice and 1440 mm for flooded rice. This corresponds to about 11% lower total evapotranspiration in aerobic fields than in flooded fields. However, the crop water productivity (WP ET) of aerobic rice (0.42 ± 0.03 g grain kg −1 water) was significantly lower than that of flooded rice (1.26 ± 0.26 g grain kg −1 water) because the grain yields of aerobic rice were very low since they were subjected to water stress. The results of this investigation showed significant differences in energy balance and evapotranspiration between flooded and aerobic rice ecosystems. Aerobic rice is one of the promising water-saving technologies being developed to lower the water requirements of the rice crop to address the issues of water scarcity. This information should be taken into consideration in evaluating alternative water-saving technologies for environmentally sustainable rice production systems. The seasonal and annual variability of sensible heat flux (H), latent heat flux (LE), evapotranspiration (ET), crop coefficient (Kc) and crop water productivity (WPET) were investigated under two different rice environments, flooded and aerobic soil conditions, using the eddy covariance (EC) technique during 2008-2009 cropping periods. Since we had only one EC system for monitoring two rice environments, we had to move the system from one location to the other every week. In total, we had to gap-fill an average of 50-60% of the missing weekly data as well as those values rejected by the quality control tests in each rice field in all four cropping seasons. Although the EC method provides a direct measurement of LE, which is the energy used for ET, we needed to correct the values of H and LE to close the energy balance using the Bowen ratio closure method before we used LE to estimate ET. On average, the energy balance closure before correction was 0.72 ± 0.06 and it increased to 0.99 ± 0.01 after correction. The G in both flooded and aerobic fields was very low. Likewise, the energy involved in miscellaneous processes such as photosynthesis, respiration and heat storage in the rice canopy was not taken into consideration. Average for four cropping seasons, flooded rice fields had 19% more LE than aerobic fields whereas aerobic rice fields had 45% more H than flooded fields. This resulted in a lower Bowen ratio in flooded fields (0.14 ± 0.03) than in aerobic fields (0.24 ± 0.01). For our study sites, evapotranspiration was primarily controlled by net radiation. The aerobic rice fields had lower growing season ET rates (3.81 ± 0.21 mm d-1) than the flooded rice fields (4.29 ± 0.23 mm d-1), most probably due to the absence of ponded water and lower leaf area index of aerobic rice. Likewise, the crop coefficient, Kc, of aerobic rice was significantly lower than that of flooded rice. For aerobic rice, Kc values were 0.95 ± 0.01 for the vegetative stage, 1.00 ± 0.01 for the reproductive stage, 0.97 ± 0.04 for the ripening stage and 0.88 ± 0.03 for the fallow period, whereas, for flooded rice, Kc values were 1.04 ± 0.04 for the vegetative stage, 1.11 ± 0.05 for the reproductive stage, 1.04 ± 0.05 for the ripening stage and 0.93 ± 0.06 for the fallow period. The average annual ET was 1301 mm for aerobic rice and 1440 mm for flooded rice. This corresponds to about 11% lower total evapotranspiration in aerobic fields than in flooded fields. However, the crop water productivity (WPET) of aerobic rice (0.42 ± 0.03 g grain kg-1 water) was significantly lower than that of flooded rice (1.26 ± 0.26 g grain kg-1 water) because the grain yields of aerobic rice were very low since they were subjected to water stress. The results of this investigation showed significant differences in energy balance and evapotranspiration between flooded and aerobic rice ecosystems. Aerobic rice is one of the promising water-saving technologies being developed to lower the water requirements of the rice crop to address the issues of water scarcity. This information should be taken into consideration in evaluating alternative water-saving technologies for environmentally sustainable rice production systems. |
Author | Miyata, Akira Amante, Modesto Padre, Agnes Hirano, Takashi Alberto, Ma. Carmelita R. Kumar, Arvind Wassmann, Reiner Hatano, Ryusuke |
Author_xml | – sequence: 1 givenname: Ma. Carmelita R. surname: Alberto fullname: Alberto, Ma. Carmelita R. email: M.Alberto@CGIAR.ORG organization: International Rice Research Institute, Los Baños, 4031 Laguna, Philippines – sequence: 2 givenname: Reiner surname: Wassmann fullname: Wassmann, Reiner organization: International Rice Research Institute, Los Baños, 4031 Laguna, Philippines – sequence: 3 givenname: Takashi surname: Hirano fullname: Hirano, Takashi organization: Research Faculty of Agriculture, Hokkaido University, Japan – sequence: 4 givenname: Akira surname: Miyata fullname: Miyata, Akira organization: National Institute of Agro-Environmental Sciences, Tsukuba, Japan – sequence: 5 givenname: Ryusuke surname: Hatano fullname: Hatano, Ryusuke organization: Research Faculty of Agriculture, Hokkaido University, Japan – sequence: 6 givenname: Arvind surname: Kumar fullname: Kumar, Arvind organization: International Rice Research Institute, Los Baños, 4031 Laguna, Philippines – sequence: 7 givenname: Agnes surname: Padre fullname: Padre, Agnes organization: International Rice Research Institute, Los Baños, 4031 Laguna, Philippines – sequence: 8 givenname: Modesto surname: Amante fullname: Amante, Modesto organization: International Rice Research Institute, Los Baños, 4031 Laguna, Philippines |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24355141$$DView record in Pascal Francis http://econpapers.repec.org/article/eeeagiwat/v_3a98_3ay_3a2011_3ai_3a9_3ap_3a1417-1430.htm$$DView record in RePEc |
BookMark | eNqFkk2P0zAQhiO0SHQXfgEHckFwaRl_JLYPHNCKL6kSSLBny3Emras0Dna2q_57Ju3CgUM5TEZynvcdJ-9cF1dDHLAoXjJYMWD1u93KbR7ctOLA2ArkitqTYsG0EkvOtbgqFiCUXgql5LPiOucdAEiQalHE27gfXQo5DrmMXYkDps2xbFzvBo-lG9oSD26MU3JDHkNyU4hD2eD0gDiUXR9ji-0Jc5hiE3yZAum6gH2byzCU0xbL79vQh3EMA-bnxdPO9RlfPPab4u7Tx5-3X5brb5-_3n5YL31lYFq2tdAtZw5VXRu6tekAOuyQrq05b2pTtdhAA6ZthORgaqMr4Y32suqgbrW4Kd6cfccUf91jnuw-ZI89fRbG-2wNSKm04TP59iLJVM0ZVwrY_9GKoLoycnZdn9GEI3o7prB36WgR0W0CRWUPVjij6XGkmnOjFuYzqpGKSaYskwLsdtqT3evHyS5713eUhg_5ry2XoqpIQZw5cz7FnBN21ofplBkFGHrLwM4LY3f2tDD2NBikpUZa8Y_2j_1l1auzqnORXtMm2bsfBEgApjSv51_x_kwg5X0ImGz2AWm72pDQT7aN4eKE36Ac5SU |
CODEN | AWMADF |
CitedBy_id | crossref_primary_10_5902_2179460X79096 crossref_primary_10_1016_j_agwat_2017_11_006 crossref_primary_10_1590_1678_4499_0245 crossref_primary_10_3390_rs15194894 crossref_primary_10_1016_j_agwat_2016_07_021 crossref_primary_10_1016_j_agrformet_2016_04_001 crossref_primary_10_1017_S0021859618000655 crossref_primary_10_4081_jae_2022_1354 crossref_primary_10_1016_j_jhydrol_2015_09_013 crossref_primary_10_1016_j_ecoleng_2016_06_053 crossref_primary_10_1590_1807_1929_agriambi_v20n5p441_446 crossref_primary_10_1007_s10333_014_0460_0 crossref_primary_10_1016_j_crope_2022_03_008 crossref_primary_10_5194_acp_16_9875_2016 crossref_primary_10_1016_j_agwat_2020_106466 crossref_primary_10_1016_j_agwat_2021_106864 crossref_primary_10_1016_j_proenv_2013_06_088 crossref_primary_10_1016_j_agrformet_2020_108293 crossref_primary_10_1016_j_agwat_2024_109175 crossref_primary_10_1088_1755_1315_365_1_012019 crossref_primary_10_3390_su132011336 crossref_primary_10_1016_j_agwat_2019_105755 crossref_primary_10_1061__ASCE_IR_1943_4774_0001117 crossref_primary_10_1002_hyp_13748 crossref_primary_10_1016_j_agrformet_2019_107626 crossref_primary_10_1016_j_sajb_2023_06_017 crossref_primary_10_1002_hyp_9970 crossref_primary_10_3390_agronomy13051357 crossref_primary_10_1029_2022GL102706 crossref_primary_10_1371_journal_pone_0195238 crossref_primary_10_3390_agronomy12112850 crossref_primary_10_1016_j_fcr_2018_01_002 crossref_primary_10_1016_j_agee_2016_08_017 crossref_primary_10_1007_s10343_021_00550_w crossref_primary_10_3390_w11091911 crossref_primary_10_1016_j_agwat_2017_03_029 crossref_primary_10_1590_1678_4499_2016453 crossref_primary_10_1007_s00704_017_2164_z crossref_primary_10_4995_raet_2021_13699 crossref_primary_10_1007_s10661_018_6805_1 crossref_primary_10_1111_jac_12719 crossref_primary_10_1007_s12665_014_3547_4 crossref_primary_10_1016_j_jhydrol_2021_126080 crossref_primary_10_1038_s41597_024_03051_3 crossref_primary_10_1016_j_agwat_2023_108340 crossref_primary_10_1016_j_fcr_2013_03_006 crossref_primary_10_1007_s10333_019_00753_y crossref_primary_10_1016_j_agrformet_2020_108214 crossref_primary_10_1007_s12665_023_11142_4 crossref_primary_10_1016_j_jhydrol_2022_128552 crossref_primary_10_1016_j_ejrh_2021_100851 crossref_primary_10_1371_journal_pone_0169706 crossref_primary_10_3390_agronomy9100591 crossref_primary_10_1016_j_agwat_2019_02_037 crossref_primary_10_3390_atmos14060959 crossref_primary_10_1007_s10333_016_0564_9 crossref_primary_10_1007_s12647_018_0260_x crossref_primary_10_1016_j_scitotenv_2022_158541 crossref_primary_10_1007_s10333_018_0660_0 crossref_primary_10_1007_s00271_015_0474_4 crossref_primary_10_1016_j_earscirev_2020_103295 crossref_primary_10_1007_s10343_022_00763_7 crossref_primary_10_3390_w13010048 crossref_primary_10_1007_s00271_011_0319_8 crossref_primary_10_3390_w14020170 crossref_primary_10_1016_j_jhydrol_2022_128204 crossref_primary_10_1016_j_agrformet_2023_109454 crossref_primary_10_1007_s00704_018_2472_y crossref_primary_10_1016_j_agrformet_2024_109972 crossref_primary_10_1007_s11099_018_0817_5 crossref_primary_10_1016_j_rse_2019_111463 crossref_primary_10_1007_s10333_021_00873_4 crossref_primary_10_3390_w12082239 crossref_primary_10_1016_j_agwat_2020_106267 crossref_primary_10_1029_2024RG000858 crossref_primary_10_1088_1748_9326_ac4361 crossref_primary_10_1016_j_agwat_2022_107992 crossref_primary_10_1007_s10661_015_4796_8 crossref_primary_10_3390_plants7030048 crossref_primary_10_1007_s10705_021_10153_6 crossref_primary_10_1007_s43538_021_00048_z crossref_primary_10_1016_j_agrformet_2021_108650 crossref_primary_10_1016_j_agwat_2013_08_017 crossref_primary_10_1016_j_fcr_2014_02_008 crossref_primary_10_3390_agronomy11020345 crossref_primary_10_1016_j_jes_2020_07_002 crossref_primary_10_3390_agronomy10020239 crossref_primary_10_1371_journal_pone_0189280 crossref_primary_10_3390_rs13193992 crossref_primary_10_1029_2023JD039246 crossref_primary_10_3390_agronomy9010039 crossref_primary_10_1590_0103_9016_2014_0056 crossref_primary_10_1016_j_fcr_2015_10_004 crossref_primary_10_1016_j_ecolmodel_2017_07_031 crossref_primary_10_1007_s00704_014_1325_6 crossref_primary_10_1016_j_envres_2024_118693 crossref_primary_10_1007_s40415_021_00744_6 crossref_primary_10_1016_j_envsoft_2019_01_015 crossref_primary_10_1007_s10333_012_0328_0 crossref_primary_10_3390_plants13010021 crossref_primary_10_1007_s40003_024_00755_1 crossref_primary_10_2480_agrmet_D_16_00011 crossref_primary_10_1007_s10705_023_10288_8 crossref_primary_10_1016_j_agrformet_2017_08_038 crossref_primary_10_1016_j_agwat_2023_108141 crossref_primary_10_3390_rs13173470 crossref_primary_10_1007_s00704_021_03710_0 crossref_primary_10_1186_s12284_019_0268_z crossref_primary_10_1016_j_agwat_2014_01_005 crossref_primary_10_2166_ws_2021_068 crossref_primary_10_1007_s00703_017_0507_z crossref_primary_10_1016_j_agwat_2017_06_009 crossref_primary_10_1007_s00271_024_00917_7 crossref_primary_10_1029_2021WR029884 crossref_primary_10_2480_agrmet_D_20_00036 crossref_primary_10_1016_j_fcr_2012_05_002 crossref_primary_10_1016_j_heliyon_2024_e30799 crossref_primary_10_3390_agronomy13051218 crossref_primary_10_1016_j_agrformet_2019_107650 crossref_primary_10_1007_s00376_015_4253_1 |
Cites_doi | 10.1111/j.1529-8817.2003.00773.x 10.1046/j.1365-2486.2003.00567.x 10.1007/s10333-008-0146-6 10.1016/j.fcr.2005.08.015 10.1016/j.fcr.2006.07.009 10.1016/S0378-3774(00)00128-1 10.1016/j.cropro.2007.09.012 10.1016/j.agrformet.2009.06.003 10.1016/j.fcr.2009.12.003 10.1007/s00271-008-0107-2 10.1016/j.agwat.2004.11.008 10.1016/j.fcr.2009.02.005 10.1016/j.agrformet.2004.04.002 10.1016/S1161-0301(00)00070-8 10.2136/sssaj1997.03615995006100030038x 10.1046/j.1365-3040.1998.00328.x 10.1016/j.fcr.2009.07.001 10.1007/s00376-006-0365-y 10.1016/j.agwat.2005.07.027 10.1016/j.fcr.2008.12.007 10.1109/JSTARS.2010.2060473 10.1002/joc.902 10.1111/j.1747-0765.2008.00338.x 10.1626/pps.12.514 10.1016/j.jhydrol.2004.10.023 10.1016/j.fcr.2009.12.007 10.1016/S0168-1923(97)00084-1 10.1016/j.agrformet.2004.01.005 10.1111/j.1747-0765.2010.00482.x 10.1016/j.agrformet.2010.02.011 10.1007/s00484-008-0149-4 10.1007/s11104-010-0423-1 10.2135/cropsci2000.402307x 10.1002/(SICI)1099-1085(19981030)12:13/14<2081::AID-HYP721>3.0.CO;2-M 10.1016/0002-1571(67)90001-5 10.1111/j.1744-7909.2008.00771.x 10.1016/S0378-4290(02)00025-4 10.1016/j.agwat.2004.11.007 10.1029/2002JD002779 10.1016/S0168-1923(00)00123-4 10.1080/00103620600767124 10.1016/j.fcr.2009.06.010 10.1046/j.1365-2486.2003.00629.x 10.1023/A:1009842502608 10.1016/j.fcr.2008.01.006 10.1626/pps.9.435 10.1016/j.fcr.2010.02.006 10.1175/2007JAMC1568.1 10.1016/S0168-1923(96)02335-0 10.2134/agronj2007.0356 10.1007/s11104-007-9402-6 10.1016/j.agrformet.2005.10.007 10.1016/j.agrformet.2006.07.005 10.1002/qj.49710644707 10.1016/0168-1923(94)02178-M 10.1890/06-0922.1 10.1017/S0014479710000359 10.1016/S0168-1923(02)00109-0 10.1023/A:1009874014903 10.1016/j.fcr.2010.04.013 10.1016/j.fcr.2005.07.007 10.2134/agronj2000.924633x 10.1016/j.agwat.2010.08.001 10.1080/01904160802043262 10.5194/hess-11-210-2007 10.1073/pnas.0403720101 10.2480/agrmet.64.4.5 10.1007/s11104-004-7401-4 10.1029/2006WR005136 10.1016/j.agrformet.2007.10.005 10.1300/J144v02n02_10 10.1016/j.jhydrol.2009.07.005 10.1016/S0065-2113(04)92004-4 10.1007/BF00120530 10.1016/j.fcr.2009.07.014 10.2134/agronj2005.0103S 10.2136/sssaj1997.03615995006100030039x 10.1016/j.agwat.2010.02.018 10.1016/j.jhydrol.2008.03.019 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW DKI X2L 7S9 L.6 8FD FR3 KR7 7QH 7SN 7ST 7TG 7U6 7UA C1K F1W H96 KL. L.G SOI |
DOI | 10.1016/j.agwat.2011.04.011 |
DatabaseName | AGRIS CrossRef Pascal-Francis RePEc IDEAS RePEc AGRICOLA AGRICOLA - Academic Technology Research Database Engineering Research Database Civil Engineering Abstracts Aqualine Ecology Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Technology Research Database Civil Engineering Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1873-2283 |
EndPage | 1430 |
ExternalDocumentID | eeeagiwat_v_3a98_3ay_3a2011_3ai_3a9_3ap_3a1417_1430_htm 24355141 10_1016_j_agwat_2011_04_011 US201400178268 S0378377411001004 |
GeographicLocations | Asia South east Asia Philippines |
GeographicLocations_xml | – name: Philippines |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABQEM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HVGLF HZ~ IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEP SES SEW SPCBC SSA SSJ SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS IQODW 02 08R 0R 1 8P AAPBV ABPTK ADALY DKI G- HZ IPNFZ K KM M X2L 7S9 L.6 8FD FR3 KR7 7QH 7SN 7ST 7TG 7U6 7UA C1K F1W H96 KL. L.G SOI |
ID | FETCH-LOGICAL-c590t-d638d21ae76697749f00fefe004822b695deb0b09db3420969853c98c45f06d83 |
IEDL.DBID | .~1 |
ISSN | 0378-3774 |
IngestDate | Tue Aug 05 10:07:07 EDT 2025 Thu Jul 10 18:44:12 EDT 2025 Wed Jul 30 11:15:43 EDT 2025 Thu Dec 16 09:11:35 EST 2021 Mon Jul 21 09:14:49 EDT 2025 Thu Apr 24 23:10:42 EDT 2025 Tue Jul 01 03:46:55 EDT 2025 Thu Apr 03 09:44:19 EDT 2025 Fri Feb 23 02:27:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Aerobic rice Crop coefficient Crop water productivity Flooded rice Evapotranspiration Heat fluxes Monocotyledones Productivity index Tropical zone Heat flow Physical environment Cereal crop Oryza sativa Flood Gramineae Angiospermae Water engineering Paddy field Cultivated plant Lowland C3-Type Water productivity Intertropical zone Vegetals Aerobiosis Cropping system Water use efficiency Rainfed lowland rice cultivation Energy balance Spermatophyta Aerobic rice cultivation |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-d638d21ae76697749f00fefe004822b695deb0b09db3420969853c98c45f06d83 |
Notes | http://dx.doi.org/10.1016/j.agwat.2011.04.011 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1501365948 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_904478928 proquest_miscellaneous_1762127701 proquest_miscellaneous_1501365948 repec_primary_eeeagiwat_v_3a98_3ay_3a2011_3ai_3a9_3ap_3a1417_1430_htm pascalfrancis_primary_24355141 crossref_citationtrail_10_1016_j_agwat_2011_04_011 crossref_primary_10_1016_j_agwat_2011_04_011 fao_agris_US201400178268 elsevier_sciencedirect_doi_10_1016_j_agwat_2011_04_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-01 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationSeriesTitle | Agricultural Water Management |
PublicationTitle | Agricultural water management |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Sahrawat (bib0335) 2005; 88 Patel, Das, Munda, Ghosh, Bordoloi, Kumar (bib0300) 2010; 97 Bouman, Peng, Castañeda, Visperas (bib0050) 2005; 74 Suyker, Verma, Burba (bib0405) 2003; 9 McNaughton, Spriggs (bib0270) 1989; vol. 177 Saito, Asanuma, Miyata (bib0345) 2007; 43 Schuepp, Leclerc, MacPherson, Desjardins (bib0365) 1990; 50 Xue, Yang, Bouman, Deng, Zhang, Yand, Yan, Zhang, Rouzi, Wang, Wang (bib0475) 2008; 50 Bouman, Yang, Wang, Wang, Zhao, Chen (bib0060) 2006; 97 Suyker, Verma (bib0410) 2008; 148 Lafitte, Courtois, Arraudeau (bib0230) 2002; 75 Atlin, G.N., Laza, M., Amante, M., Lafitte, H.R., 2004. Agronomic performance of tropical aerobic, irrigated, and traditional upland rice varieties in three hydrological environments at IRRI. In: Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004. Belder, Bouman, Spiertz, Peng, Castañeda (bib0045) 2005; 273 Gao, Bian, Chen, Sparrow, Zhang (bib0135) 2006; 23 Zhao, Liu, Tanaka, Hiyama (bib0500) 2010; 3 Baldocchi (bib0040) 2003; 9 Ponnamperuma (bib0325) 1984 Ochsner, Sauer, Horton (bib0290) 2007; 99 Bronson, Neue, Singh, Abao (bib0075) 1997; 61 Kreye, Bouman, Reversat, Fernandez, Vera Cruz, Elazequi, Faronilo, Llorca (bib0220) 2009; 112 Kato, Okami (bib0185) 2010; 117 Maruyama, Kuwagata (bib0250) 2010; 150 Steduto, Hsiao (bib0390) 1998; 89 Castellvi, Snyder (bib0095) 2009; 375 Dobermann, Dawe, Roetter, Cassman (bib0115) 2000; 92 Allen (bib0020) 2008; 64 Tsai, Tsuang, Lu, Yao, Shen (bib0425) 2007; 46 Alberto, Wassmann, Hirano, Miyata, Kumar, Padre, Amante (bib0010) 2009; 149 Choudhury, Bouman, Singh (bib0100) 2007; 100 Hsieh, Lai, Hsia, Chang (bib0155) 2008; 52 Ghosh, Singh (bib0145) 2010; 46 Brutsaert (bib0085) 1982 IRRI, 2009. Odd seasons: is it time to re-define our growing seasons? Rice Today 8 (4), 12–13. Tuong, Bouman (bib0435) 2003 Yang, Peng, Laza, Visperas, Dionisio-Sese (bib0485) 2008; 100 Gao, Bian, Zhou (bib0130) 2003; 108 Matsuo, Mochizuki (bib0260) 2009; 12 Nie, Peng, Bouman (bib0280) 2008; 107 Sumner, Jacobs (bib0400) 2005; 308 Sumner, D.M., 2001. Evapotranspiration from a cypress and pine forest subjected to natural fires in Volusia County, Florida, 1998–1999. US Geological Survey Water-Resources Investigations Report. 01-4245, p. 55. Singh, van dam, Feddes (bib0380) 2006; 82 Saito, Miyata, Nagai, Yamada (bib0350) 2005; 135 Sasaki, Hosen, Peng, Nie, Rodriguez, Agbisit, Fernandez, Bouman (bib0360) 2010; 56 Jiao, Hou, Shi, Huang, Wang, Chen (bib0170) 2006; 37 Kelliher, Leuning, Raupach, Schulze (bib0205) 1995; 73 Nie, Peng, Bouman, Huang, Cui, Visperas, Xiang (bib0285) 2009; 55 Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Requirements, Irrigation and Drainage Paper No. 56. Food and Agriculture Organization of the United Nations, Rome, Italy. Kirk (bib0210) 2004 Brandsma, Konnen, Wessels (bib0070) 2003; 23 Scott, Miller, Renaud (bib0370) 2002 Dobermann, Fairhurst (bib0120) 2000 Lampayan, Bouman, de Dios, Espiritu, Soriano, Lactaoen, Faronilo, Thant (bib0235) 2010; 116 Bouman, Tuong (bib0055) 2001; 49 Pal, Datta, Rattan, Singh (bib0295) 2008; 31 Magnani, Leonardi, Tognetti, Grace, Borghetti (bib0245) 1998; 21 McNaughton, Jarvis (bib0265) 1983; vol. V Triggs, Kimball, Pinter, Wall, Conley, Brooks, La Morte, Adam, Ottman, Matthias, Leavitt, Cerveny (bib0420) 2004; 124 Ding, Kang, Li, Zhang, Tong, Sun (bib0105) 2010; 98 Wilson, Goldstein, Falge, Aubinet, Baldocchi, Berbigier, Bernhofer, Ceulemans, Dolman, Field, Grelle, Ibrom, Law, Kowalski, Meyers, Moncrieff, Monson, Oechel, Tenhunen, Valentini, Verma (bib0460) 2002; 113 Kreye, Bouman, Castañeda, Lampayan, Faronilo, Lactaoen, Fernandez (bib0215) 2009; 111 Peng, Laza, Visperas, Sanico, Cassman, Khush (bib0305) 2000; 40 Katsura, Okami, Mizunuma, Kato (bib0200) 2010; 117 Zhao, Huang, Jia, Liu, Song, Wand, Shi, Song, Wang (bib0495) 2008; 355 Kaimal, Finnigan (bib0175) 1994 Wassmann, Lantin, Neue, Buendia, Corton, Lu (bib0450) 2000; 58 Webb, Pearman, Leuning (bib0455) 1980; 106 Abao, Bronson, Wassmann, Singh (bib0005) 2000; 58 Tuong (bib0430) 1999; 2 Kato, Okami, Katsura (bib0190) 2009; 113 Singh, Ladha, Gupta, Bhushan, Rao (bib0385) 2008; 27 Shuttleworth (bib0375) 2007; 11 Luo, Khan, Cui, Peng (bib0240) 2009; 7 Kato, Kamoshita, Yamagishi (bib0180) 2006; 9 Harazano, Kim, Miyata, Choi, Yun, Kim (bib0150) 1998; 12 Twine, Kustas, Norman, Cook, Houser, Meyers, Prueger, Starks, Weseley (bib0440) 2000; 103 Kato, Okami, Tajima, Fujita, Kobayashi (bib0195) 2010; 118 Castellvi, Martinez-Cob, Perez-Coveta (bib0090) 2006; 139 Baldocchi, Vogel, Hall (bib0035) 1997; 83 Jensen, M.E., Burman, R.D., Allen, R.G., 1990. Evapotranspiration and Irrigation Water Requirements. ASCE Manuals and Reports on Engineering Practices No. 70, p. 352. Nie, Peng, Bouman, Huang, Cui, Visperas, Park (bib0275) 2007; 300 Tanner, C.B., Thurtell, G.W., 1969. Anemoclinometer Measurements of Reynolds Stress and Heat Transport in the Atmospheric Surface Layer. University of Wisconsin Tech. Rep., ECOM-66-G22-F, 82. van Bavel (bib0445) 1967; 4 German, E.R., 2000. Regional evaluation of evapotranspiration in the Everglades. US Geological Survey Water-Resources Investigation Report. 00-4217, p. 48. Sakai, Fitzjarrald, Moraes, Staebler, Acevedo, Czikowsky, Da Silva, Brait, Miranda (bib0355) 2004; 10 Bouman, Humphreys, Tuong, Barker (bib0065) 2007; 92 Zhang, Lin, Bouman, Xue, Wei, Tao, Yang, Wang, Zhao, Dittert (bib0490) 2009; 114 AsiaFlux, 2007. Data management and database preparation. In: Practice of Flux Observations in Terrestrial Ecosystems, AsiaFlux Steering Committee, Japan, pp. 7(1–39). Peng, Bouman, Visperas, Castañeda, Nie, Park (bib0315) 2006; 96 Xue, Yang, Bouman, Deng, Zhang, Yan, Zhang, Rouzi, Wang (bib0470) 2008; 26 Pereira (bib0320) 2004; 125 Dingman (bib0110) 1994 Yang, Bouman, Wang, Wang, Zhao, Chen (bib0480) 2005; 74 Matsuo, Ozawa, Mochizuki (bib0255) 2010; 335 Rana, Katerji (bib0330) 2000; 13 Kreye, Bouman, Faronilo, Llorca (bib0225) 2009; 114 Peng, Huang, Sheehy, Laza, Visperas, Zhong, Centeno, Khush, Cassman (bib0310) 2004; 101 Foken (bib0125) 2008; 18 Xiaoguang, Bouman, Huaqi, Zhimin, Junfang, Bin (bib0465) 2005; 74 Bronson, Singh, Neue, Abao (bib0080) 1997; 61 Sahrawat, Bhattacharyya, Wani, Chandran, Ray, Pal, Padmaja (bib0340) 2005; 89 Pereira (10.1016/j.agwat.2011.04.011_bib0320) 2004; 125 Gao (10.1016/j.agwat.2011.04.011_bib0135) 2006; 23 Saito (10.1016/j.agwat.2011.04.011_bib0350) 2005; 135 Pal (10.1016/j.agwat.2011.04.011_bib0295) 2008; 31 Matsuo (10.1016/j.agwat.2011.04.011_bib0260) 2009; 12 McNaughton (10.1016/j.agwat.2011.04.011_bib0270) 1989; vol. 177 Bouman (10.1016/j.agwat.2011.04.011_bib0060) 2006; 97 Rana (10.1016/j.agwat.2011.04.011_bib0330) 2000; 13 Magnani (10.1016/j.agwat.2011.04.011_bib0245) 1998; 21 Triggs (10.1016/j.agwat.2011.04.011_bib0420) 2004; 124 Allen (10.1016/j.agwat.2011.04.011_bib0020) 2008; 64 Schuepp (10.1016/j.agwat.2011.04.011_bib0365) 1990; 50 Zhao (10.1016/j.agwat.2011.04.011_bib0500) 2010; 3 Sahrawat (10.1016/j.agwat.2011.04.011_bib0335) 2005; 88 Matsuo (10.1016/j.agwat.2011.04.011_bib0255) 2010; 335 Suyker (10.1016/j.agwat.2011.04.011_bib0410) 2008; 148 Kreye (10.1016/j.agwat.2011.04.011_bib0220) 2009; 112 Saito (10.1016/j.agwat.2011.04.011_bib0345) 2007; 43 van Bavel (10.1016/j.agwat.2011.04.011_bib0445) 1967; 4 Kato (10.1016/j.agwat.2011.04.011_bib0190) 2009; 113 Webb (10.1016/j.agwat.2011.04.011_bib0455) 1980; 106 Dobermann (10.1016/j.agwat.2011.04.011_bib0115) 2000; 92 10.1016/j.agwat.2011.04.011_bib0015 Jiao (10.1016/j.agwat.2011.04.011_bib0170) 2006; 37 Bouman (10.1016/j.agwat.2011.04.011_bib0055) 2001; 49 Bouman (10.1016/j.agwat.2011.04.011_bib0065) 2007; 92 Kato (10.1016/j.agwat.2011.04.011_bib0180) 2006; 9 Peng (10.1016/j.agwat.2011.04.011_bib0310) 2004; 101 Wassmann (10.1016/j.agwat.2011.04.011_bib0450) 2000; 58 Yang (10.1016/j.agwat.2011.04.011_bib0480) 2005; 74 Brutsaert (10.1016/j.agwat.2011.04.011_bib0085) 1982 10.1016/j.agwat.2011.04.011_bib0415 Sakai (10.1016/j.agwat.2011.04.011_bib0355) 2004; 10 10.1016/j.agwat.2011.04.011_bib0025 McNaughton (10.1016/j.agwat.2011.04.011_bib0265) 1983; vol. V 10.1016/j.agwat.2011.04.011_bib0140 Castellvi (10.1016/j.agwat.2011.04.011_bib0090) 2006; 139 Lafitte (10.1016/j.agwat.2011.04.011_bib0230) 2002; 75 Ponnamperuma (10.1016/j.agwat.2011.04.011_bib0325) 1984 Yang (10.1016/j.agwat.2011.04.011_bib0485) 2008; 100 Foken (10.1016/j.agwat.2011.04.011_bib0125) 2008; 18 Kirk (10.1016/j.agwat.2011.04.011_bib0210) 2004 Tuong (10.1016/j.agwat.2011.04.011_bib0435) 2003 Luo (10.1016/j.agwat.2011.04.011_bib0240) 2009; 7 Sahrawat (10.1016/j.agwat.2011.04.011_bib0340) 2005; 89 Singh (10.1016/j.agwat.2011.04.011_bib0385) 2008; 27 Nie (10.1016/j.agwat.2011.04.011_bib0280) 2008; 107 Suyker (10.1016/j.agwat.2011.04.011_bib0405) 2003; 9 Dingman (10.1016/j.agwat.2011.04.011_bib0110) 1994 Hsieh (10.1016/j.agwat.2011.04.011_bib0155) 2008; 52 10.1016/j.agwat.2011.04.011_bib0030 Baldocchi (10.1016/j.agwat.2011.04.011_bib0035) 1997; 83 Ghosh (10.1016/j.agwat.2011.04.011_bib0145) 2010; 46 10.1016/j.agwat.2011.04.011_bib0395 Kreye (10.1016/j.agwat.2011.04.011_bib0225) 2009; 114 Ding (10.1016/j.agwat.2011.04.011_bib0105) 2010; 98 Peng (10.1016/j.agwat.2011.04.011_bib0305) 2000; 40 Peng (10.1016/j.agwat.2011.04.011_bib0315) 2006; 96 Singh (10.1016/j.agwat.2011.04.011_bib0380) 2006; 82 Shuttleworth (10.1016/j.agwat.2011.04.011_bib0375) 2007; 11 Tsai (10.1016/j.agwat.2011.04.011_bib0425) 2007; 46 10.1016/j.agwat.2011.04.011_bib0165 Kato (10.1016/j.agwat.2011.04.011_bib0185) 2010; 117 Sasaki (10.1016/j.agwat.2011.04.011_bib0360) 2010; 56 Choudhury (10.1016/j.agwat.2011.04.011_bib0100) 2007; 100 Bronson (10.1016/j.agwat.2011.04.011_bib0075) 1997; 61 Wilson (10.1016/j.agwat.2011.04.011_bib0460) 2002; 113 Xiaoguang (10.1016/j.agwat.2011.04.011_bib0465) 2005; 74 Kato (10.1016/j.agwat.2011.04.011_bib0195) 2010; 118 Ochsner (10.1016/j.agwat.2011.04.011_bib0290) 2007; 99 10.1016/j.agwat.2011.04.011_bib0160 Xue (10.1016/j.agwat.2011.04.011_bib0470) 2008; 26 Patel (10.1016/j.agwat.2011.04.011_bib0300) 2010; 97 Castellvi (10.1016/j.agwat.2011.04.011_bib0095) 2009; 375 Baldocchi (10.1016/j.agwat.2011.04.011_bib0040) 2003; 9 Belder (10.1016/j.agwat.2011.04.011_bib0045) 2005; 273 Katsura (10.1016/j.agwat.2011.04.011_bib0200) 2010; 117 Nie (10.1016/j.agwat.2011.04.011_bib0275) 2007; 300 Dobermann (10.1016/j.agwat.2011.04.011_bib0120) 2000 Kelliher (10.1016/j.agwat.2011.04.011_bib0205) 1995; 73 Scott (10.1016/j.agwat.2011.04.011_bib0370) 2002 Steduto (10.1016/j.agwat.2011.04.011_bib0390) 1998; 89 Abao (10.1016/j.agwat.2011.04.011_bib0005) 2000; 58 Alberto (10.1016/j.agwat.2011.04.011_bib0010) 2009; 149 Brandsma (10.1016/j.agwat.2011.04.011_bib0070) 2003; 23 Bronson (10.1016/j.agwat.2011.04.011_bib0080) 1997; 61 Maruyama (10.1016/j.agwat.2011.04.011_bib0250) 2010; 150 Gao (10.1016/j.agwat.2011.04.011_bib0130) 2003; 108 Kaimal (10.1016/j.agwat.2011.04.011_bib0175) 1994 Nie (10.1016/j.agwat.2011.04.011_bib0285) 2009; 55 Twine (10.1016/j.agwat.2011.04.011_bib0440) 2000; 103 Zhao (10.1016/j.agwat.2011.04.011_bib0495) 2008; 355 Xue (10.1016/j.agwat.2011.04.011_bib0475) 2008; 50 Lampayan (10.1016/j.agwat.2011.04.011_bib0235) 2010; 116 Bouman (10.1016/j.agwat.2011.04.011_bib0050) 2005; 74 Zhang (10.1016/j.agwat.2011.04.011_bib0490) 2009; 114 Harazano (10.1016/j.agwat.2011.04.011_bib0150) 1998; 12 Kreye (10.1016/j.agwat.2011.04.011_bib0215) 2009; 111 Sumner (10.1016/j.agwat.2011.04.011_bib0400) 2005; 308 Tuong (10.1016/j.agwat.2011.04.011_bib0430) 1999; 2 |
References_xml | – volume: 92 start-page: 633 year: 2000 end-page: 643 ident: bib0115 article-title: Reversal of rice yield decline in a long-term continuous cropping experiment publication-title: Agronomy Journal – volume: 150 start-page: 919 year: 2010 end-page: 930 ident: bib0250 article-title: Coupling land surface and crop growth models to estimate the effects of changes in the growing season on energy balance and water use of rice paddies publication-title: Agricultural and Forest Meteorology – volume: 58 start-page: 131 year: 2000 end-page: 139 ident: bib0005 article-title: Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rainfed conditions publication-title: Nutrient Cycling Agroecosystems – volume: 98 start-page: 87 year: 2010 end-page: 95 ident: bib0105 article-title: Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China publication-title: Agricultural Water Management – reference: Atlin, G.N., Laza, M., Amante, M., Lafitte, H.R., 2004. Agronomic performance of tropical aerobic, irrigated, and traditional upland rice varieties in three hydrological environments at IRRI. In: Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004. – volume: 108 start-page: 4387 year: 2003 ident: bib0130 article-title: Measurements of turbulent transfer in the near-surface layer over a rice paddy in China publication-title: Journal of Geophysical Research – start-page: 297 year: 2002 end-page: 329 ident: bib0370 article-title: Rice soils: physical and chemical characteristics and behavior publication-title: Rice: Origin, History, Technology and Production – volume: 74 start-page: 107 year: 2005 end-page: 122 ident: bib0465 article-title: Performance of temperate aerobic rice under different water regimes in North China publication-title: Agricultural Water Management – volume: 9 start-page: 1 year: 2003 end-page: 11 ident: bib0405 article-title: Interannual variability in net CO publication-title: Global Change Biology – volume: 50 start-page: 1589 year: 2008 end-page: 1600 ident: bib0475 article-title: Effects of irrigation and nitrogen on the performance of aerobic rice in northern China publication-title: Journal of Integrative Plant Biology – volume: 124 start-page: 63 year: 2004 end-page: 79 ident: bib0420 article-title: Free-air CO publication-title: Agricultural and Forest Meteorology – volume: 118 start-page: 194 year: 2010 end-page: 198 ident: bib0195 article-title: Root response to aerobic conditions in rice, estimated by Comair root length scanner and scanner-based image analysis publication-title: Field Crops Research – volume: 40 start-page: 307 year: 2000 end-page: 314 ident: bib0305 article-title: Grain yield of rice cultivars and lines developed in the Philippines since 1966 publication-title: Crop Science – volume: 13 start-page: 125 year: 2000 end-page: 153 ident: bib0330 article-title: Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review publication-title: European Journal of Agronomy – reference: German, E.R., 2000. Regional evaluation of evapotranspiration in the Everglades. US Geological Survey Water-Resources Investigation Report. 00-4217, p. 48. – volume: 97 start-page: 1269 year: 2010 end-page: 1276 ident: bib0300 article-title: Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem publication-title: Agricultural Water Management – volume: 43 start-page: W05413 year: 2007 ident: bib0345 article-title: Dual-scale transport of sensible heat and water vapor over a short canopy under unstable conditions publication-title: Water Resources Research – volume: 7 start-page: 1 year: 2009 end-page: 9 ident: bib0240 article-title: Application of system dynamics approach for time varying water balance in aerobic paddy fields publication-title: Paddy and Water Environment – volume: 61 start-page: 981 year: 1997 end-page: 987 ident: bib0075 article-title: Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: I. Residue, nitrogen, and water management publication-title: Soil Science Society of America Journal – volume: 49 start-page: 11 year: 2001 end-page: 30 ident: bib0055 article-title: Field water management to save water and increase its productivity in irrigated rice publication-title: Agricultural Water Management – volume: 23 start-page: 829 year: 2003 end-page: 845 ident: bib0070 article-title: Empirical estimation of the effect of urban heat advection on the temperature series of De Bilt (The Netherlands) publication-title: International Journal of Climatology – volume: 55 start-page: 150 year: 2009 end-page: 159 ident: bib0285 article-title: Alleviation of soil sickness caused by aerobic monocropping: response of aerobic rice to various nitrogen sources publication-title: Soil Science and Plant Nutrition – year: 1994 ident: bib0110 article-title: Physical Hydrology – volume: 116 start-page: 165 year: 2010 end-page: 174 ident: bib0235 article-title: Yield of aerobic rice in rainfed lowlands of the Philippines as affected by nitrogen management and row spacing publication-title: Field Crops Research – volume: 100 start-page: 1390 year: 2008 end-page: 1395 ident: bib0485 article-title: Yield gap analysis between dry and wet season rice crop grown under high-yielding management conditions publication-title: Agronomy Journal – start-page: 9 year: 1984 end-page: 45 ident: bib0325 article-title: Effects of flooding on soils publication-title: Flooding and Plant Growth – volume: 83 start-page: 147 year: 1997 end-page: 170 ident: bib0035 article-title: Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest publication-title: Agricultural and Forest Meteorology – volume: 58 start-page: 23 year: 2000 end-page: 36 ident: bib0450 article-title: Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs publication-title: Nutrient Cycling in Agroecosystems – reference: Tanner, C.B., Thurtell, G.W., 1969. Anemoclinometer Measurements of Reynolds Stress and Heat Transport in the Atmospheric Surface Layer. University of Wisconsin Tech. Rep., ECOM-66-G22-F, 82. – volume: 107 start-page: 129 year: 2008 end-page: 136 ident: bib0280 article-title: Alleviating soil sickness caused by aerobic monocropping: responses of aerobic rice to nutrient supply publication-title: Field Crops Research – volume: 101 start-page: 9971 year: 2004 end-page: 9975 ident: bib0310 article-title: Rice yields decline with higher night temperature from global warming publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 56 start-page: 476 year: 2010 end-page: 482 ident: bib0360 article-title: Do abiotic factors cause a gradual yield decline under continuous aerobic rice cultivation? A pot experiment with affected field soils publication-title: Soil Science and Plant Nutrition – year: 2000 ident: bib0120 article-title: Rice: Nutrient Disorders and Nutrient Management – volume: 99 start-page: 311 year: 2007 end-page: 319 ident: bib0290 article-title: Soil heat storage measurements in energy balance studies publication-title: Agronomy Journal – volume: 73 start-page: 1 year: 1995 end-page: 16 ident: bib0205 article-title: Maximum conductances for evaporation from global vegetation types publication-title: Agricultural and Forest Meteorology – volume: 11 start-page: 210 year: 2007 end-page: 244 ident: bib0375 article-title: Putting the “vap” into evaporation publication-title: Hydrology and Earth System Sciences – volume: 355 start-page: 181 year: 2008 end-page: 191 ident: bib0495 article-title: Effects of the conversion of marshland to cropland on water and energy exchanges in northeastern China publication-title: Journal of Hydrology – volume: 375 start-page: 546 year: 2009 end-page: 553 ident: bib0095 article-title: On the performance of surface renewal analysis to estimate sensible heat flux over two growing rice fields under the influence of regional advection publication-title: Journal of Hydrology – volume: 74 start-page: 107 year: 2005 end-page: 122 ident: bib0480 article-title: Performance of temperate aerobic rice under different water regimes in North China publication-title: Field Crops Research – volume: 117 start-page: 81 year: 2010 end-page: 89 ident: bib0200 article-title: Radiation use efficiency, N accumulation and biomass production of high-yielding rice in aerobic culture publication-title: Field Crops Research – volume: 3 start-page: 345 year: 2010 end-page: 350 ident: bib0500 article-title: A comparison of flux variance and surface renewal methods with eddy covariance publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 2 start-page: 241 year: 1999 end-page: 264 ident: bib0430 article-title: Productive water use in rice production: opportunities and limitations publication-title: Journal of Crop Production – volume: 31 start-page: 919 year: 2008 end-page: 940 ident: bib0295 article-title: Diagnosis and amelioration of iron deficiency under aerobic rice publication-title: Journal of Plant Nutrition – reference: IRRI, 2009. Odd seasons: is it time to re-define our growing seasons? Rice Today 8 (4), 12–13. – reference: Sumner, D.M., 2001. Evapotranspiration from a cypress and pine forest subjected to natural fires in Volusia County, Florida, 1998–1999. US Geological Survey Water-Resources Investigations Report. 01-4245, p. 55. – reference: Jensen, M.E., Burman, R.D., Allen, R.G., 1990. Evapotranspiration and Irrigation Water Requirements. ASCE Manuals and Reports on Engineering Practices No. 70, p. 352. – volume: 12 start-page: 514 year: 2009 end-page: 525 ident: bib0260 article-title: Growth and yield of six rice cultivars under three water-saving cultivations publication-title: Plant Production Science – volume: 74 start-page: 87 year: 2005 end-page: 105 ident: bib0050 article-title: Yield and water use of irrigated tropical aerobic rice systems publication-title: Agricultural Water Management – volume: 12 start-page: 2081 year: 1998 end-page: 2092 ident: bib0150 article-title: Measurement of energy budget components during the International Rice Experiment (IREX) in Japan publication-title: Hydrological Processes – volume: 96 start-page: 252 year: 2006 end-page: 259 ident: bib0315 article-title: Comparison between aerobic and flooded rice in the tropics: agronomic performance in an eight-season experiment publication-title: Field Crops Research – volume: 21 start-page: 867 year: 1998 end-page: 879 ident: bib0245 article-title: Modelling the surface conductance of a broad-leaf canopy: effects of partial decoupling from the atmosphere publication-title: Plant, Cell and Environment – volume: vol. V start-page: 1 year: 1983 end-page: 48 ident: bib0265 article-title: Predicting effects of vegetation changes on transpiration and evaporation publication-title: Water Deficits and Plant Growth – volume: 308 start-page: 81 year: 2005 end-page: 104 ident: bib0400 article-title: Utility of Penman-Monteith, Priestly-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration publication-title: Journal of Hydrology – volume: 27 start-page: 660 year: 2008 end-page: 671 ident: bib0385 article-title: Weed management in aerobic rice systems under varying establishment methods publication-title: Crop Protection – volume: 4 start-page: 165 year: 1967 end-page: 176 ident: bib0445 article-title: Changes in canopy resistance to water loss from alfalfa induced by soil water depletion publication-title: Agricultural and Forest Meteorology – volume: 113 start-page: 223 year: 2002 end-page: 243 ident: bib0460 article-title: Energy balance closure at FLUXNET sites publication-title: Agricultural and Forest Meteorology – volume: 106 start-page: 85 year: 1980 end-page: 100 ident: bib0455 article-title: Correction of flux measurements for density effects due to heat and water vapour transfer publication-title: Quarterly Journal of Royal Meteorological Society – volume: 82 start-page: 253 year: 2006 end-page: 278 ident: bib0380 article-title: Water productivity analysis of irrigated crops in Sirsa district, India publication-title: Agricultural Water Management – volume: 92 start-page: 187 year: 2007 end-page: 234 ident: bib0065 article-title: Rice and water publication-title: Advances in Agronomy – volume: 103 start-page: 279 year: 2000 end-page: 300 ident: bib0440 article-title: Correcting eddy-covariance flux underestimates over a grassland publication-title: Agricultural and Forest Meteorology – volume: 273 start-page: 167 year: 2005 end-page: 182 ident: bib0045 article-title: Crop performance, nitrogen and water use in flooded and aerobic rice publication-title: Plant and Soil – volume: vol. 177 start-page: 89 year: 1989 end-page: 104 ident: bib0270 article-title: An evaluation of the Priestly and Taylor equation and the complementary relationship using results from a mixed layer model of the convective boundary layer publication-title: Estimation of Areal Evapotranspiration – volume: 10 start-page: 895 year: 2004 end-page: 907 ident: bib0355 article-title: Land-use change effects on local energy, water, and carbon balances in an Amazonian agricultural field publication-title: Global Change Biology – volume: 114 start-page: 45 year: 2009 end-page: 53 ident: bib0490 article-title: Response of aerobic rice growth and grain yield to N fertilizer at two contrasting sites near Beijing China publication-title: Field Crops Research – volume: 89 start-page: 2159 year: 2005 end-page: 2162 ident: bib0340 article-title: Long-term lowland rice and arable cropping effects on carbon and nitrogen status of some semi-arid tropical soils publication-title: Current Science – volume: 335 start-page: 349 year: 2010 end-page: 361 ident: bib0255 article-title: Physiological and morphological traits related to water use by three rice ( publication-title: Plant and Soil – reference: AsiaFlux, 2007. Data management and database preparation. In: Practice of Flux Observations in Terrestrial Ecosystems, AsiaFlux Steering Committee, Japan, pp. 7(1–39). – start-page: 53 year: 2003 end-page: 67 ident: bib0435 article-title: Rice production in water-scarce environments publication-title: Water Productivity in Agriculture: Limits and Opportunities for Improvement – volume: 117 start-page: 9 year: 2010 end-page: 17 ident: bib0185 article-title: Root growth dynamics and stomatal behaviour of rice ( publication-title: Field Crops Research – volume: 114 start-page: 182 year: 2009 end-page: 187 ident: bib0225 article-title: Causes of soil sickness affecting early growth in aerobic rice publication-title: Field Crops Research – volume: 23 start-page: 365 year: 2006 end-page: 374 ident: bib0135 article-title: Turbulent variance characteristics of temperature and humidity over non-uniform land surface for an agricultural ecosystem in China publication-title: Advances in Atmospheric Sciences – volume: 111 start-page: 197 year: 2009 end-page: 206 ident: bib0215 article-title: Possible causes of yield failure in tropical aerobic rice publication-title: Field Crops Research – volume: 37 start-page: 1889 year: 2006 end-page: 1903 ident: bib0170 article-title: Water management influencing methane and nitrous oxide emissions from rice field in relation to soil redox and microbial community publication-title: Communications in Soil Science and Plant Analysis – volume: 112 start-page: 97 year: 2009 end-page: 106 ident: bib0220 article-title: Biotic and abiotic causes of yield failure in tropical aerobic rice publication-title: Field Crops Research – volume: 18 start-page: 1351 year: 2008 end-page: 1367 ident: bib0125 article-title: The energy balance closure problem: an overview publication-title: Ecological Applications – volume: 125 start-page: 305 year: 2004 end-page: 313 ident: bib0320 article-title: The Priestly-Taylor parameter and the decoupling factor for estimating reference evapotranspiration publication-title: Agricultural and Forest Meteorology – volume: 46 start-page: 489 year: 2010 end-page: 499 ident: bib0145 article-title: Determination of threshold regime of soil moisture tension for scheduling irrigation in tropical aerobic rice for optimum crop and water productivity publication-title: Experimental Agriculture – volume: 75 start-page: 171 year: 2002 end-page: 190 ident: bib0230 article-title: Genetic improvement of rice in aerobic systems: progress from yield to genes publication-title: Field Crops Research – volume: 88 start-page: 735 year: 2005 end-page: 739 ident: bib0335 article-title: Fertility and organic matter in submerged rice soils publication-title: Current Science – volume: 139 start-page: 164 year: 2006 end-page: 169 ident: bib0090 article-title: Estimating sensible and latent heat fluxes over rice using surface renewal publication-title: Agricultural and Forest Meteorology – volume: 26 start-page: 459 year: 2008 end-page: 474 ident: bib0470 article-title: Optimizing yield, water requirements, and water productivity of aerobic rice for the North China Plain publication-title: Irrigation Science – volume: 46 start-page: 1879 year: 2007 end-page: 1900 ident: bib0425 article-title: Surface energy components and land characteristics of a rice paddy publication-title: Journal of Applied Meteorology and Climatology – volume: 149 start-page: 1737 year: 2009 end-page: 1750 ident: bib0010 article-title: CO publication-title: Agricultural and Forest Meteorology – volume: 97 start-page: 53 year: 2006 end-page: 65 ident: bib0060 article-title: Performance of aerobic rice varieties under irrigated conditions in North China publication-title: Field Crops Research – volume: 52 start-page: 521 year: 2008 end-page: 533 ident: bib0155 article-title: Estimation of sensible heat, water vapor, and CO publication-title: International Journal of Biometeorology – volume: 300 start-page: 185 year: 2007 end-page: 195 ident: bib0275 article-title: Alleviation of soil sickness caused by aerobic monocropping: Growth response of aerobic rice to soil oven heating publication-title: Plant and Soil – volume: 64 start-page: 191 year: 2008 end-page: 204 ident: bib0020 article-title: Quality assessment of weather data and micrometeorological flux–impacts on evapotranspiration calculation publication-title: Journal of Agricultural Meteorology – volume: 9 start-page: 435 year: 2006 end-page: 445 ident: bib0180 article-title: Growth of three rice ( publication-title: Plant Production Science – year: 1994 ident: bib0175 article-title: Atmospheric Boundary Layer Flows – volume: 50 start-page: 355 year: 1990 end-page: 373 ident: bib0365 article-title: Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation publication-title: Boundary Layer Meteorology – volume: 100 start-page: 229 year: 2007 end-page: 239 ident: bib0100 article-title: Yield and water productivity of rice-wheat on raised beds at New Delhi, India publication-title: Field Crops Research – volume: 9 start-page: 479 year: 2003 end-page: 492 ident: bib0040 article-title: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future publication-title: Global Change Biology – volume: 89 start-page: 185 year: 1998 end-page: 200 ident: bib0390 article-title: Maize canopies under two soil water regimes. II. Seasonal trends of evaporation, carbon dioxide assimilation and canopy conductance, as related to leaf area index publication-title: Agricultural and Forest Meteorology – volume: 61 start-page: 988 year: 1997 end-page: 993 ident: bib0080 article-title: Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: II. Fallow period emissions publication-title: Soil Science Society of America Journal – reference: Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Requirements, Irrigation and Drainage Paper No. 56. Food and Agriculture Organization of the United Nations, Rome, Italy. – volume: 148 start-page: 417 year: 2008 end-page: 427 ident: bib0410 article-title: Interannual water vapor and energy exchange in irrigated maize-based agroecosystem publication-title: Agricultural and Forest Meteorology – year: 1982 ident: bib0085 article-title: Evaporation into the Atmosphere: Theory, History, and Applications – year: 2004 ident: bib0210 article-title: The Biogeochemistry of Submerged Soils – volume: 135 start-page: 93 year: 2005 end-page: 109 ident: bib0350 article-title: Seasonal variation of carbon dioxide exchange in rice paddy field in Japan publication-title: Agricultural and Forest Meteorology – volume: 113 start-page: 328 year: 2009 end-page: 334 ident: bib0190 article-title: Yield potential and water use efficiency of aerobic rice ( publication-title: Field Crops Research – year: 1982 ident: 10.1016/j.agwat.2011.04.011_bib0085 – ident: 10.1016/j.agwat.2011.04.011_bib0025 – ident: 10.1016/j.agwat.2011.04.011_bib0140 – volume: 10 start-page: 895 issue: 5 year: 2004 ident: 10.1016/j.agwat.2011.04.011_bib0355 article-title: Land-use change effects on local energy, water, and carbon balances in an Amazonian agricultural field publication-title: Global Change Biology doi: 10.1111/j.1529-8817.2003.00773.x – volume: 9 start-page: 1 year: 2003 ident: 10.1016/j.agwat.2011.04.011_bib0405 article-title: Interannual variability in net CO2 exchange of a native tallgrass prairie publication-title: Global Change Biology doi: 10.1046/j.1365-2486.2003.00567.x – volume: 7 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.agwat.2011.04.011_bib0240 article-title: Application of system dynamics approach for time varying water balance in aerobic paddy fields publication-title: Paddy and Water Environment doi: 10.1007/s10333-008-0146-6 – volume: 97 start-page: 53 year: 2006 ident: 10.1016/j.agwat.2011.04.011_bib0060 article-title: Performance of aerobic rice varieties under irrigated conditions in North China publication-title: Field Crops Research doi: 10.1016/j.fcr.2005.08.015 – volume: 100 start-page: 229 year: 2007 ident: 10.1016/j.agwat.2011.04.011_bib0100 article-title: Yield and water productivity of rice-wheat on raised beds at New Delhi, India publication-title: Field Crops Research doi: 10.1016/j.fcr.2006.07.009 – volume: 49 start-page: 11 issue: 1 year: 2001 ident: 10.1016/j.agwat.2011.04.011_bib0055 article-title: Field water management to save water and increase its productivity in irrigated rice publication-title: Agricultural Water Management doi: 10.1016/S0378-3774(00)00128-1 – start-page: 9 year: 1984 ident: 10.1016/j.agwat.2011.04.011_bib0325 article-title: Effects of flooding on soils – volume: 27 start-page: 660 year: 2008 ident: 10.1016/j.agwat.2011.04.011_bib0385 article-title: Weed management in aerobic rice systems under varying establishment methods publication-title: Crop Protection doi: 10.1016/j.cropro.2007.09.012 – volume: 149 start-page: 1737 year: 2009 ident: 10.1016/j.agwat.2011.04.011_bib0010 article-title: CO2/heat fluxes in rice fields: comparative assessment of flooded and non-flooded fields in the Philippines publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2009.06.003 – volume: 117 start-page: 9 year: 2010 ident: 10.1016/j.agwat.2011.04.011_bib0185 article-title: Root growth dynamics and stomatal behaviour of rice (Oryza sativa L.) grown under aerobic and flooded conditions publication-title: Field Crops Research doi: 10.1016/j.fcr.2009.12.003 – volume: 26 start-page: 459 issue: 6 year: 2008 ident: 10.1016/j.agwat.2011.04.011_bib0470 article-title: Optimizing yield, water requirements, and water productivity of aerobic rice for the North China Plain publication-title: Irrigation Science doi: 10.1007/s00271-008-0107-2 – volume: 74 start-page: 107 year: 2005 ident: 10.1016/j.agwat.2011.04.011_bib0465 article-title: Performance of temperate aerobic rice under different water regimes in North China publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2004.11.008 – ident: 10.1016/j.agwat.2011.04.011_bib0395 – volume: 112 start-page: 97 year: 2009 ident: 10.1016/j.agwat.2011.04.011_bib0220 article-title: Biotic and abiotic causes of yield failure in tropical aerobic rice publication-title: Field Crops Research doi: 10.1016/j.fcr.2009.02.005 – volume: 125 start-page: 305 year: 2004 ident: 10.1016/j.agwat.2011.04.011_bib0320 article-title: The Priestly-Taylor parameter and the decoupling factor for estimating reference evapotranspiration publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2004.04.002 – volume: 13 start-page: 125 issue: 2–3 year: 2000 ident: 10.1016/j.agwat.2011.04.011_bib0330 article-title: Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review publication-title: European Journal of Agronomy doi: 10.1016/S1161-0301(00)00070-8 – volume: 61 start-page: 981 year: 1997 ident: 10.1016/j.agwat.2011.04.011_bib0075 article-title: Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: I. Residue, nitrogen, and water management publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1997.03615995006100030038x – volume: 21 start-page: 867 year: 1998 ident: 10.1016/j.agwat.2011.04.011_bib0245 article-title: Modelling the surface conductance of a broad-leaf canopy: effects of partial decoupling from the atmosphere publication-title: Plant, Cell and Environment doi: 10.1046/j.1365-3040.1998.00328.x – volume: 114 start-page: 45 year: 2009 ident: 10.1016/j.agwat.2011.04.011_bib0490 article-title: Response of aerobic rice growth and grain yield to N fertilizer at two contrasting sites near Beijing China publication-title: Field Crops Research doi: 10.1016/j.fcr.2009.07.001 – volume: 23 start-page: 365 issue: 3 year: 2006 ident: 10.1016/j.agwat.2011.04.011_bib0135 article-title: Turbulent variance characteristics of temperature and humidity over non-uniform land surface for an agricultural ecosystem in China publication-title: Advances in Atmospheric Sciences doi: 10.1007/s00376-006-0365-y – volume: 82 start-page: 253 issue: 3 year: 2006 ident: 10.1016/j.agwat.2011.04.011_bib0380 article-title: Water productivity analysis of irrigated crops in Sirsa district, India publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2005.07.027 – volume: 111 start-page: 197 year: 2009 ident: 10.1016/j.agwat.2011.04.011_bib0215 article-title: Possible causes of yield failure in tropical aerobic rice publication-title: Field Crops Research doi: 10.1016/j.fcr.2008.12.007 – volume: 3 start-page: 345 issue: 3 year: 2010 ident: 10.1016/j.agwat.2011.04.011_bib0500 article-title: A comparison of flux variance and surface renewal methods with eddy covariance publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2010.2060473 – volume: 23 start-page: 829 year: 2003 ident: 10.1016/j.agwat.2011.04.011_bib0070 article-title: Empirical estimation of the effect of urban heat advection on the temperature series of De Bilt (The Netherlands) publication-title: International Journal of Climatology doi: 10.1002/joc.902 – volume: 55 start-page: 150 year: 2009 ident: 10.1016/j.agwat.2011.04.011_bib0285 article-title: Alleviation of soil sickness caused by aerobic monocropping: response of aerobic rice to various nitrogen sources publication-title: Soil Science and Plant Nutrition doi: 10.1111/j.1747-0765.2008.00338.x – volume: 12 start-page: 514 issue: 4 year: 2009 ident: 10.1016/j.agwat.2011.04.011_bib0260 article-title: Growth and yield of six rice cultivars under three water-saving cultivations publication-title: Plant Production Science doi: 10.1626/pps.12.514 – volume: 308 start-page: 81 year: 2005 ident: 10.1016/j.agwat.2011.04.011_bib0400 article-title: Utility of Penman-Monteith, Priestly-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2004.10.023 – volume: 116 start-page: 165 year: 2010 ident: 10.1016/j.agwat.2011.04.011_bib0235 article-title: Yield of aerobic rice in rainfed lowlands of the Philippines as affected by nitrogen management and row spacing publication-title: Field Crops Research doi: 10.1016/j.fcr.2009.12.007 – volume: 89 start-page: 185 year: 1998 ident: 10.1016/j.agwat.2011.04.011_bib0390 article-title: Maize canopies under two soil water regimes. II. Seasonal trends of evaporation, carbon dioxide assimilation and canopy conductance, as related to leaf area index publication-title: Agricultural and Forest Meteorology doi: 10.1016/S0168-1923(97)00084-1 – volume: 124 start-page: 63 year: 2004 ident: 10.1016/j.agwat.2011.04.011_bib0420 article-title: Free-air CO2 enrichment effects on the energy balance and evapotranspiration of sorghum publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2004.01.005 – volume: 56 start-page: 476 issue: 3 year: 2010 ident: 10.1016/j.agwat.2011.04.011_bib0360 article-title: Do abiotic factors cause a gradual yield decline under continuous aerobic rice cultivation? A pot experiment with affected field soils publication-title: Soil Science and Plant Nutrition doi: 10.1111/j.1747-0765.2010.00482.x – volume: 150 start-page: 919 year: 2010 ident: 10.1016/j.agwat.2011.04.011_bib0250 article-title: Coupling land surface and crop growth models to estimate the effects of changes in the growing season on energy balance and water use of rice paddies publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2010.02.011 – volume: 74 start-page: 107 year: 2005 ident: 10.1016/j.agwat.2011.04.011_bib0480 article-title: Performance of temperate aerobic rice under different water regimes in North China publication-title: Field Crops Research – volume: 52 start-page: 521 issue: 6 year: 2008 ident: 10.1016/j.agwat.2011.04.011_bib0155 article-title: Estimation of sensible heat, water vapor, and CO2 fluxes using the flux-variance method publication-title: International Journal of Biometeorology doi: 10.1007/s00484-008-0149-4 – volume: 335 start-page: 349 year: 2010 ident: 10.1016/j.agwat.2011.04.011_bib0255 article-title: Physiological and morphological traits related to water use by three rice (Oryza sativa L.) genotypes grown under aerobic rice systems publication-title: Plant and Soil doi: 10.1007/s11104-010-0423-1 – volume: 40 start-page: 307 year: 2000 ident: 10.1016/j.agwat.2011.04.011_bib0305 article-title: Grain yield of rice cultivars and lines developed in the Philippines since 1966 publication-title: Crop Science doi: 10.2135/cropsci2000.402307x – volume: 12 start-page: 2081 year: 1998 ident: 10.1016/j.agwat.2011.04.011_bib0150 article-title: Measurement of energy budget components during the International Rice Experiment (IREX) in Japan publication-title: Hydrological Processes doi: 10.1002/(SICI)1099-1085(19981030)12:13/14<2081::AID-HYP721>3.0.CO;2-M – volume: 4 start-page: 165 year: 1967 ident: 10.1016/j.agwat.2011.04.011_bib0445 article-title: Changes in canopy resistance to water loss from alfalfa induced by soil water depletion publication-title: Agricultural and Forest Meteorology doi: 10.1016/0002-1571(67)90001-5 – volume: 50 start-page: 1589 year: 2008 ident: 10.1016/j.agwat.2011.04.011_bib0475 article-title: Effects of irrigation and nitrogen on the performance of aerobic rice in northern China publication-title: Journal of Integrative Plant Biology doi: 10.1111/j.1744-7909.2008.00771.x – volume: 75 start-page: 171 year: 2002 ident: 10.1016/j.agwat.2011.04.011_bib0230 article-title: Genetic improvement of rice in aerobic systems: progress from yield to genes publication-title: Field Crops Research doi: 10.1016/S0378-4290(02)00025-4 – volume: 74 start-page: 87 year: 2005 ident: 10.1016/j.agwat.2011.04.011_bib0050 article-title: Yield and water use of irrigated tropical aerobic rice systems publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2004.11.007 – volume: 108 start-page: 4387 year: 2003 ident: 10.1016/j.agwat.2011.04.011_bib0130 article-title: Measurements of turbulent transfer in the near-surface layer over a rice paddy in China publication-title: Journal of Geophysical Research doi: 10.1029/2002JD002779 – volume: 103 start-page: 279 year: 2000 ident: 10.1016/j.agwat.2011.04.011_bib0440 article-title: Correcting eddy-covariance flux underestimates over a grassland publication-title: Agricultural and Forest Meteorology doi: 10.1016/S0168-1923(00)00123-4 – year: 2004 ident: 10.1016/j.agwat.2011.04.011_bib0210 – volume: 89 start-page: 2159 issue: 12 year: 2005 ident: 10.1016/j.agwat.2011.04.011_bib0340 article-title: Long-term lowland rice and arable cropping effects on carbon and nitrogen status of some semi-arid tropical soils publication-title: Current Science – volume: 37 start-page: 1889 issue: 13 year: 2006 ident: 10.1016/j.agwat.2011.04.011_bib0170 article-title: Water management influencing methane and nitrous oxide emissions from rice field in relation to soil redox and microbial community publication-title: Communications in Soil Science and Plant Analysis doi: 10.1080/00103620600767124 – volume: 113 start-page: 328 year: 2009 ident: 10.1016/j.agwat.2011.04.011_bib0190 article-title: Yield potential and water use efficiency of aerobic rice (Oryza sativa L.) in Japan publication-title: Field Crops Research doi: 10.1016/j.fcr.2009.06.010 – volume: 9 start-page: 479 issue: 4 year: 2003 ident: 10.1016/j.agwat.2011.04.011_bib0040 article-title: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future publication-title: Global Change Biology doi: 10.1046/j.1365-2486.2003.00629.x – volume: vol. V start-page: 1 year: 1983 ident: 10.1016/j.agwat.2011.04.011_bib0265 article-title: Predicting effects of vegetation changes on transpiration and evaporation – start-page: 53 year: 2003 ident: 10.1016/j.agwat.2011.04.011_bib0435 article-title: Rice production in water-scarce environments – volume: 58 start-page: 131 year: 2000 ident: 10.1016/j.agwat.2011.04.011_bib0005 article-title: Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rainfed conditions publication-title: Nutrient Cycling Agroecosystems doi: 10.1023/A:1009842502608 – volume: 107 start-page: 129 year: 2008 ident: 10.1016/j.agwat.2011.04.011_bib0280 article-title: Alleviating soil sickness caused by aerobic monocropping: responses of aerobic rice to nutrient supply publication-title: Field Crops Research doi: 10.1016/j.fcr.2008.01.006 – volume: 9 start-page: 435 year: 2006 ident: 10.1016/j.agwat.2011.04.011_bib0180 article-title: Growth of three rice (Oryza sativa L.) cultivars under upland conditions with different levels of water supply. 2. Grain yield publication-title: Plant Production Science doi: 10.1626/pps.9.435 – volume: 117 start-page: 81 year: 2010 ident: 10.1016/j.agwat.2011.04.011_bib0200 article-title: Radiation use efficiency, N accumulation and biomass production of high-yielding rice in aerobic culture publication-title: Field Crops Research doi: 10.1016/j.fcr.2010.02.006 – volume: 46 start-page: 1879 issue: 11 year: 2007 ident: 10.1016/j.agwat.2011.04.011_bib0425 article-title: Surface energy components and land characteristics of a rice paddy publication-title: Journal of Applied Meteorology and Climatology doi: 10.1175/2007JAMC1568.1 – volume: 83 start-page: 147 year: 1997 ident: 10.1016/j.agwat.2011.04.011_bib0035 article-title: Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest publication-title: Agricultural and Forest Meteorology doi: 10.1016/S0168-1923(96)02335-0 – volume: 100 start-page: 1390 year: 2008 ident: 10.1016/j.agwat.2011.04.011_bib0485 article-title: Yield gap analysis between dry and wet season rice crop grown under high-yielding management conditions publication-title: Agronomy Journal doi: 10.2134/agronj2007.0356 – volume: 300 start-page: 185 year: 2007 ident: 10.1016/j.agwat.2011.04.011_bib0275 article-title: Alleviation of soil sickness caused by aerobic monocropping: Growth response of aerobic rice to soil oven heating publication-title: Plant and Soil doi: 10.1007/s11104-007-9402-6 – volume: vol. 177 start-page: 89 year: 1989 ident: 10.1016/j.agwat.2011.04.011_bib0270 article-title: An evaluation of the Priestly and Taylor equation and the complementary relationship using results from a mixed layer model of the convective boundary layer – volume: 135 start-page: 93 issue: 1–4 year: 2005 ident: 10.1016/j.agwat.2011.04.011_bib0350 article-title: Seasonal variation of carbon dioxide exchange in rice paddy field in Japan publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2005.10.007 – volume: 139 start-page: 164 issue: 1–2 year: 2006 ident: 10.1016/j.agwat.2011.04.011_bib0090 article-title: Estimating sensible and latent heat fluxes over rice using surface renewal publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2006.07.005 – volume: 106 start-page: 85 year: 1980 ident: 10.1016/j.agwat.2011.04.011_bib0455 article-title: Correction of flux measurements for density effects due to heat and water vapour transfer publication-title: Quarterly Journal of Royal Meteorological Society doi: 10.1002/qj.49710644707 – volume: 73 start-page: 1 year: 1995 ident: 10.1016/j.agwat.2011.04.011_bib0205 article-title: Maximum conductances for evaporation from global vegetation types publication-title: Agricultural and Forest Meteorology doi: 10.1016/0168-1923(94)02178-M – volume: 88 start-page: 735 issue: 5 year: 2005 ident: 10.1016/j.agwat.2011.04.011_bib0335 article-title: Fertility and organic matter in submerged rice soils publication-title: Current Science – volume: 18 start-page: 1351 issue: 6 year: 2008 ident: 10.1016/j.agwat.2011.04.011_bib0125 article-title: The energy balance closure problem: an overview publication-title: Ecological Applications doi: 10.1890/06-0922.1 – volume: 46 start-page: 489 issue: 4 year: 2010 ident: 10.1016/j.agwat.2011.04.011_bib0145 article-title: Determination of threshold regime of soil moisture tension for scheduling irrigation in tropical aerobic rice for optimum crop and water productivity publication-title: Experimental Agriculture doi: 10.1017/S0014479710000359 – ident: 10.1016/j.agwat.2011.04.011_bib0015 – year: 2000 ident: 10.1016/j.agwat.2011.04.011_bib0120 – volume: 113 start-page: 223 year: 2002 ident: 10.1016/j.agwat.2011.04.011_bib0460 article-title: Energy balance closure at FLUXNET sites publication-title: Agricultural and Forest Meteorology doi: 10.1016/S0168-1923(02)00109-0 – volume: 58 start-page: 23 year: 2000 ident: 10.1016/j.agwat.2011.04.011_bib0450 article-title: Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs publication-title: Nutrient Cycling in Agroecosystems doi: 10.1023/A:1009874014903 – volume: 118 start-page: 194 year: 2010 ident: 10.1016/j.agwat.2011.04.011_bib0195 article-title: Root response to aerobic conditions in rice, estimated by Comair root length scanner and scanner-based image analysis publication-title: Field Crops Research doi: 10.1016/j.fcr.2010.04.013 – volume: 96 start-page: 252 year: 2006 ident: 10.1016/j.agwat.2011.04.011_bib0315 article-title: Comparison between aerobic and flooded rice in the tropics: agronomic performance in an eight-season experiment publication-title: Field Crops Research doi: 10.1016/j.fcr.2005.07.007 – volume: 92 start-page: 633 year: 2000 ident: 10.1016/j.agwat.2011.04.011_bib0115 article-title: Reversal of rice yield decline in a long-term continuous cropping experiment publication-title: Agronomy Journal doi: 10.2134/agronj2000.924633x – volume: 98 start-page: 87 year: 2010 ident: 10.1016/j.agwat.2011.04.011_bib0105 article-title: Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2010.08.001 – ident: 10.1016/j.agwat.2011.04.011_bib0415 – year: 1994 ident: 10.1016/j.agwat.2011.04.011_bib0175 – volume: 31 start-page: 919 year: 2008 ident: 10.1016/j.agwat.2011.04.011_bib0295 article-title: Diagnosis and amelioration of iron deficiency under aerobic rice publication-title: Journal of Plant Nutrition doi: 10.1080/01904160802043262 – volume: 11 start-page: 210 issue: 1 year: 2007 ident: 10.1016/j.agwat.2011.04.011_bib0375 article-title: Putting the “vap” into evaporation publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-11-210-2007 – start-page: 297 year: 2002 ident: 10.1016/j.agwat.2011.04.011_bib0370 article-title: Rice soils: physical and chemical characteristics and behavior – volume: 101 start-page: 9971 issue: 27 year: 2004 ident: 10.1016/j.agwat.2011.04.011_bib0310 article-title: Rice yields decline with higher night temperature from global warming publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0403720101 – volume: 64 start-page: 191 issue: 4 year: 2008 ident: 10.1016/j.agwat.2011.04.011_bib0020 article-title: Quality assessment of weather data and micrometeorological flux–impacts on evapotranspiration calculation publication-title: Journal of Agricultural Meteorology doi: 10.2480/agrmet.64.4.5 – volume: 273 start-page: 167 year: 2005 ident: 10.1016/j.agwat.2011.04.011_bib0045 article-title: Crop performance, nitrogen and water use in flooded and aerobic rice publication-title: Plant and Soil doi: 10.1007/s11104-004-7401-4 – volume: 43 start-page: W05413 year: 2007 ident: 10.1016/j.agwat.2011.04.011_bib0345 article-title: Dual-scale transport of sensible heat and water vapor over a short canopy under unstable conditions publication-title: Water Resources Research doi: 10.1029/2006WR005136 – ident: 10.1016/j.agwat.2011.04.011_bib0165 – volume: 148 start-page: 417 year: 2008 ident: 10.1016/j.agwat.2011.04.011_bib0410 article-title: Interannual water vapor and energy exchange in irrigated maize-based agroecosystem publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2007.10.005 – year: 1994 ident: 10.1016/j.agwat.2011.04.011_bib0110 – volume: 2 start-page: 241 issue: 2 year: 1999 ident: 10.1016/j.agwat.2011.04.011_bib0430 article-title: Productive water use in rice production: opportunities and limitations publication-title: Journal of Crop Production doi: 10.1300/J144v02n02_10 – ident: 10.1016/j.agwat.2011.04.011_bib0030 – volume: 375 start-page: 546 issue: 3–4 year: 2009 ident: 10.1016/j.agwat.2011.04.011_bib0095 article-title: On the performance of surface renewal analysis to estimate sensible heat flux over two growing rice fields under the influence of regional advection publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2009.07.005 – ident: 10.1016/j.agwat.2011.04.011_bib0160 – volume: 92 start-page: 187 year: 2007 ident: 10.1016/j.agwat.2011.04.011_bib0065 article-title: Rice and water publication-title: Advances in Agronomy doi: 10.1016/S0065-2113(04)92004-4 – volume: 50 start-page: 355 year: 1990 ident: 10.1016/j.agwat.2011.04.011_bib0365 article-title: Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation publication-title: Boundary Layer Meteorology doi: 10.1007/BF00120530 – volume: 114 start-page: 182 year: 2009 ident: 10.1016/j.agwat.2011.04.011_bib0225 article-title: Causes of soil sickness affecting early growth in aerobic rice publication-title: Field Crops Research doi: 10.1016/j.fcr.2009.07.014 – volume: 99 start-page: 311 year: 2007 ident: 10.1016/j.agwat.2011.04.011_bib0290 article-title: Soil heat storage measurements in energy balance studies publication-title: Agronomy Journal doi: 10.2134/agronj2005.0103S – volume: 61 start-page: 988 year: 1997 ident: 10.1016/j.agwat.2011.04.011_bib0080 article-title: Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: II. Fallow period emissions publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1997.03615995006100030039x – volume: 97 start-page: 1269 year: 2010 ident: 10.1016/j.agwat.2011.04.011_bib0300 article-title: Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2010.02.018 – volume: 355 start-page: 181 issue: 1–4 year: 2008 ident: 10.1016/j.agwat.2011.04.011_bib0495 article-title: Effects of the conversion of marshland to cropland on water and energy exchanges in northeastern China publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2008.03.019 |
SSID | ssj0004047 |
Score | 2.3801076 |
Snippet | ► Aerobic rice fields had 45% more sensible heat flux than flooded fields while flooded rice fields had 19% more latent heat flux than aerobic fields. ► Bowen... The seasonal and annual variability of sensible heat flux (H), latent heat flux (LE), evapotranspiration (ET), crop coefficient (Kc) and crop water... The seasonal and annual variability of sensible heat flux (H), latent heat flux (LE), evapotranspiration (ET), crop coefficient (K c ) and crop water... |
SourceID | proquest repec pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1417 |
SubjectTerms | Aerobic rice Agricultural and forest climatology and meteorology. Irrigation. Drainage Agricultural and forest meteorology Agronomy. Soil science and plant productions Biological and medical sciences canopy Coefficients Crop coefficient Crop water productivity Cropping systems. Cultivation. Soil tillage Crops ecosystems eddy covariance energy balance Energy use Evapotranspiration Evapotranspiration Crop coefficient Crop water productivity Heat fluxes Flooded rice Aerobic rice Flooded rice Flux Fundamental and applied biological sciences. Psychology General agronomy. Plant production Generalities. Cropping systems and patterns grain yield growing season Heat fluxes heat transfer leaf area index Oryza sativa paddies Philippines photosynthesis production technology Productivity quality control Rice Seasons soil vegetative growth Water balance and requirements. Evapotranspiration water requirement water stress |
Title | Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines |
URI | https://dx.doi.org/10.1016/j.agwat.2011.04.011 http://econpapers.repec.org/article/eeeagiwat/v_3a98_3ay_3a2011_3ai_3a9_3ap_3a1417-1430.htm https://www.proquest.com/docview/1501365948 https://www.proquest.com/docview/1762127701 https://www.proquest.com/docview/904478928 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbSZGmHok_EfRgs0LGKKZF6cDTcBE6DZkkNZCMo6ZiqaCXBVlJ06W_vHSW59RAPHWTD9FGgeEfenfTpO8bely4NQdk4iLWzgUqlDnQGRZCnugitTULrq0R8vkyWK_XpOr4-YIvxXRiCVQ57f7-n-916aJkNszlrq2p2JWSK2RV6RKIR6jlBlUrJyk9-_4V5KOGLjJFwQNIj85DHeNmbn7YbeDzViQjD-7zTA2cbgk3aDc6c60te7MSkR2toofjHNZ09YY-HmJLP-2E_ZQdQP2OP5jfrgVcDnrNmsa03uOGN4-Bf-eM5ARsL4LYuOdzZtuk813nVmwUfQFzcEbodSi9mgZibCk5kRNzj3za8qjnGkby_OdMSkP4FW52dflksg6HWQlDEWnRBieuwjEILaZJQSKidEA4c0AqPojzRcQm5yIUuc6kizHs0-vlCZ4WKnUjKTL5kh3VTwzHjoVNUWBcymQD-m1oZK0zydAkRPXeWExaNc2yKgYic6mF8NyPi7JvxijGkGCOUwa8J-7Dt1PY8HPvFk1F5ZsecDHqK_R2PUdXYjhoxq6uIElDctDAJyyZsuqP_7TgiDDkx7sS-70aDMLhI6cmLraG53RiMuglOqFW2RwbdUhilqcDz8HtktEALz3SEpzn1BrcdAwDYm4ou5s5IqzP8-IWHvzJpK2rDo8UDB5piwieF-dr9ePW_8_SaPezvrhNw-Q077Na38BbDsy6f-vU3ZUfz84vlJf76eHH-B6hNN_w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZSe2g7FH0i7iNlgY5VTUnUg6NhJHCaxEtiIBtBScdERSsJtpKi_753lOTWQzx0oA1QR4Hikbw76eN3jH0ubOKDNJEXKWs8mYTKUynkXpao3Dcm9o3LEnGxjBcr-e06uj5g8-EsDMEq-72_29Pdbt3XTPvRnDZlOb0UYYLRFVpEohFynKBjYqeKRmw8Oz1bLP8ejxQuzxjJe9RgIB9yMC9z88u0PZWn_Cp8_yED9ciampCTZoODZ7usFztu6XgNDeT_WKeT5-xZ71byWdfzF-wAqpfs6exm3VNrwCtWz7cpBze8thzcqT-eEbYxB26qgsO9aerW0Z2X3czgPY6LWwK4Q-HEDBB5U86Jj4g7CNyGlxVHV5J372cawtK_ZquT46v5wuvTLXh5pETrFbgUi8A3kMQxeYXKCmHBAi3yIMhiFRWQiUyoIgtlgKGPQlOfqzSXkRVxkYZv2KiqKzhk3LeScutCGsaAVxMTRhLjPFVAQJ-ewwkLhjHWec9FTikxfugBdPZdO8VoUowWUuPfhH3ZNmo6Ko794vGgPL0zozQai_0ND1HVWI8a0avLgGJQ3LcwDksn7GhH_9t-BOh1ouuJbT8NE0LjOqWPL6aC-m6j0fEmRKGS6R4ZtEx-kCQC78MfkFFCyiRVAd7m2E24bR8AwNyU9DD3OjQqxZ_fWNyThaakOiwNFuxogjFfKPRt-_Pt_47TR_Z4cXVxrs9Pl2fv2JPuZTvhmN-zUbu-gw_orbXZUb8a_wDsUzm0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparisons+of+energy+balance+and+evapotranspiration+between+flooded+and+aerobic+rice+fields+in+the+Philippines&rft.jtitle=Agricultural+water+management&rft.au=Alberto%2C+Ma+Carmelita+R&rft.au=Wassmann%2C+Reiner&rft.au=Hirano%2C+Takashi&rft.au=Miyata%2C+Akira&rft.date=2011-07-01&rft.issn=0378-3774&rft.volume=98&rft.issue=9+p.1417-1430&rft.spage=1417&rft.epage=1430&rft_id=info:doi/10.1016%2Fj.agwat.2011.04.011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon |