Modeling and presentation of vaccination coverage estimates using data from household surveys

•Modeling survey stratification and clustering improves coverage estimation.•High-resolution coverage maps based on survey data often have large uncertainties.•Visualizing posterior distributions of coverage estimates help reveal uncertainties.•A new presentation method is proposed to compare and co...

Full description

Saved in:
Bibliographic Details
Published inVaccine Vol. 39; no. 18; pp. 2584 - 2594
Main Authors Dong, Tracy Qi, Wakefield, Jon
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 28.04.2021
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Modeling survey stratification and clustering improves coverage estimation.•High-resolution coverage maps based on survey data often have large uncertainties.•Visualizing posterior distributions of coverage estimates help reveal uncertainties.•A new presentation method is proposed to compare and control overall map precision. It is becoming increasingly popular to produce high-resolution maps of vaccination coverage by fitting Bayesian geostatistical models to data from household surveys. Usually, the surveys adopt a stratified cluster sampling design. We discuss a number of crucial choices with respect to two key aspects of the map production process: the acknowledgement of the survey design in modeling, and the appropriate presentation of estimates and their uncertainties. Specifically, we consider the importance of accounting for urban/rural stratification and cluster-level non-spatial excess variation in survey outcomes, when fitting geostatistical models. We also discuss the trade-off between the geographical scale and precision of model-based estimates, and demonstrate visualization methods for mapping and ranking that emphasize the probabilistic interpretation of results. A novel approach to coverage map presentation is proposed to allow comparison and control of the overall map uncertainty. We use measles vaccination coverage in Nigeria as a motivating example and illustrate the different issues using data from the 2018 Nigeria Demographic and Health Survey.
AbstractList It is becoming increasingly popular to produce high-resolution maps of vaccination coverage by fitting Bayesian geostatistical models to data from household surveys. Usually, the surveys adopt a stratified cluster sampling design. We discuss a number of crucial choices with respect to two key aspects of the map production process: the acknowledgement of the survey design in modeling, and the appropriate presentation of estimates and their uncertainties. Specifically, we consider the importance of accounting for urban/rural stratification and cluster-level non-spatial excess variation in survey outcomes, when fitting geostatistical models. We also discuss the trade-off between the geographical scale and precision of model-based estimates, and demonstrate visualization methods for mapping and ranking that emphasize the probabilistic interpretation of results. A novel approach to coverage map presentation is proposed to allow comparison and control of the overall map uncertainty. We use measles vaccination coverage in Nigeria as a motivating example and illustrate the different issues using data from the 2018 Nigeria Demographic and Health Survey.
Highlights•Modeling survey stratification and clustering improves coverage estimation. •High-resolution coverage maps based on survey data often have large uncertainties. •Visualizing posterior distributions of coverage estimates help reveal uncertainties. •A new presentation method is proposed to compare and control overall map precision.
It is becoming increasingly popular to produce high-resolution maps of vaccination coverage by fitting Bayesian geostatistical models to data from household surveys. Usually, the surveys adopt a stratified cluster sampling design. We discuss a number of crucial choices with respect to two key aspects of the map production process: the acknowledgement of the survey design in modeling, and the appropriate presentation of estimates and their uncertainties. Specifically, we consider the importance of accounting for urban/rural stratification and cluster-level non-spatial excess variation in survey outcomes, when fitting geostatistical models. We also discuss the trade-off between the geographical scale and precision of model-based estimates, and demonstrate visualization methods for mapping and ranking that emphasize the probabilistic interpretation of results. A novel approach to coverage map presentation is proposed to allow comparison and control of the overall map uncertainty. We use measles vaccination coverage in Nigeria as a motivating example and illustrate the different issues using data from the 2018 Nigeria Demographic and Health Survey.It is becoming increasingly popular to produce high-resolution maps of vaccination coverage by fitting Bayesian geostatistical models to data from household surveys. Usually, the surveys adopt a stratified cluster sampling design. We discuss a number of crucial choices with respect to two key aspects of the map production process: the acknowledgement of the survey design in modeling, and the appropriate presentation of estimates and their uncertainties. Specifically, we consider the importance of accounting for urban/rural stratification and cluster-level non-spatial excess variation in survey outcomes, when fitting geostatistical models. We also discuss the trade-off between the geographical scale and precision of model-based estimates, and demonstrate visualization methods for mapping and ranking that emphasize the probabilistic interpretation of results. A novel approach to coverage map presentation is proposed to allow comparison and control of the overall map uncertainty. We use measles vaccination coverage in Nigeria as a motivating example and illustrate the different issues using data from the 2018 Nigeria Demographic and Health Survey.
•Modeling survey stratification and clustering improves coverage estimation.•High-resolution coverage maps based on survey data often have large uncertainties.•Visualizing posterior distributions of coverage estimates help reveal uncertainties.•A new presentation method is proposed to compare and control overall map precision. It is becoming increasingly popular to produce high-resolution maps of vaccination coverage by fitting Bayesian geostatistical models to data from household surveys. Usually, the surveys adopt a stratified cluster sampling design. We discuss a number of crucial choices with respect to two key aspects of the map production process: the acknowledgement of the survey design in modeling, and the appropriate presentation of estimates and their uncertainties. Specifically, we consider the importance of accounting for urban/rural stratification and cluster-level non-spatial excess variation in survey outcomes, when fitting geostatistical models. We also discuss the trade-off between the geographical scale and precision of model-based estimates, and demonstrate visualization methods for mapping and ranking that emphasize the probabilistic interpretation of results. A novel approach to coverage map presentation is proposed to allow comparison and control of the overall map uncertainty. We use measles vaccination coverage in Nigeria as a motivating example and illustrate the different issues using data from the 2018 Nigeria Demographic and Health Survey.
It is becoming increasingly popular to produce high-resolution maps of vaccination coverage by fitting Bayesian geostatistical models to data from household surveys. Often, the surveys adopt a stratified cluster sampling design. We discuss a number of crucial choices with respect to two key aspects of the map production process: the acknowledgement of the survey design in modeling, and the appropriate presentation of estimates and their uncertainties. Specifically, we consider the importance of accounting for survey stratification and cluster-level non-spatial excess variation in survey outcomes when fitting geostatistical models. We also discuss the trade-off between the geographical scale and precision of model-based estimates, and demonstrate visualization methods for mapping and ranking that emphasize the probabilistic interpretation of results. A novel approach to coverage map presentation is proposed to allow comparison and control of the overall map uncertainty level. We use measles vaccination coverage in Nigeria as a motivating example and illustrate the different issues using data from the 2018 Nigeria Demographic and Health Survey.
Author Dong, Tracy Qi
Wakefield, Jon
AuthorAffiliation a Department of Biostatistics, University of Washington, Health Sciences Building, NE Pacific St, Seattle, WA 98195, USA
b Department of Statistics, University of Washington, Padelford Hall, NE Stevens Way, Seattle, WA 98195, USA
AuthorAffiliation_xml – name: a Department of Biostatistics, University of Washington, Health Sciences Building, NE Pacific St, Seattle, WA 98195, USA
– name: b Department of Statistics, University of Washington, Padelford Hall, NE Stevens Way, Seattle, WA 98195, USA
Author_xml – sequence: 1
  givenname: Tracy Qi
  surname: Dong
  fullname: Dong, Tracy Qi
  email: qd8@uw.edu
  organization: Department of Biostatistics, University of Washington, Health Sciences Building, NE Pacific St, Seattle, WA 98195, USA
– sequence: 2
  givenname: Jon
  surname: Wakefield
  fullname: Wakefield, Jon
  organization: Department of Biostatistics, University of Washington, Health Sciences Building, NE Pacific St, Seattle, WA 98195, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33824039$$D View this record in MEDLINE/PubMed
BookMark eNqNUl2L1DAUDbLizq7-BKXgiy8db9ImnSCuyOIXrPiggi8S0vR2JmMnmU3agfn3pnQcdEB2n0LTc07OufdckDPnHRLylMKcAhUv1_OdNsY6nDNgdA7FHKB6QGZ0URU543RxRmbARJmXFH6ck4sY1wDACyofkfOiWLASCjkjPz_7Bjvrlpl2TbYNGNH1urfeZb7NpiemT-N3GPQSM4y93egeYzbEkdjoXmdt8Jts5YeIK981WRzCDvfxMXnY6i7ik8N5Sb6_f_ft-mN-8-XDp-u3N7nhEvq8lmAopVXV1ih4zdpasAbqdCeQQ8sLYRgWtWSVrmuByDS0RiOXJWeNLqviklxNutuh3mBjUoagO7UNyWjYK6-t-vePsyu19Dsli0UpJE0CLw4Cwd8OKaHa2Giw67TDFEoxzkomF1Cye0BBCpBUiAR9fgJd-yG4NImEolyIUjJIqGd_mz-6_rOkBOATwAQfY8D2CKGgxjKotTqUQY1lUFCoVIbEe3XCM3babZqB7e5kv5nYmBa3sxhUNBadwcYGNL1qvL1T4epEwaSmWaO7X7jHeJwFVZEpUF_Huo5tZRSAVXwM_vr_Avcw8BvRw_7V
CitedBy_id crossref_primary_10_1214_21_AOAS1474
crossref_primary_10_1371_journal_pone_0245596
crossref_primary_10_1371_journal_pone_0288741
crossref_primary_10_1016_j_spasta_2022_100670
crossref_primary_10_1016_j_vaccine_2022_11_026
crossref_primary_10_1098_rsif_2021_0104
crossref_primary_10_1177_0282423X241244670
crossref_primary_10_1007_s12061_025_09646_6
crossref_primary_10_1093_jrsssa_qnae003
crossref_primary_10_1186_s12942_023_00352_5
crossref_primary_10_1002_sim_9586
crossref_primary_10_1016_j_sste_2024_100663
crossref_primary_10_1016_j_vaccine_2023_08_004
crossref_primary_10_1093_jssam_smae032
crossref_primary_10_1111_insr_12572
crossref_primary_10_1002_cjs_11787
Cites_doi 10.1177/0962280218797362
10.1098/rsif.2016.0690
10.1111/j.1467-9868.2008.00700.x
10.1016/j.vaccine.2018.02.020
10.1038/nature25760
10.1111/j.1467-9868.2011.00777.x
10.1038/ncomms15585
10.1016/j.vaccine.2020.02.070
10.1038/s41586-020-03043-4
10.1038/nature25761
10.1016/S0140-6736(19)30226-0
10.1093/biostatistics/kxy041
10.1056/NEJMoa1606701
10.1098/rsif.2016.0825
10.1038/s41467-019-09611-1
10.1016/S0140-6736(17)31758-0
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
2021. Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
– notice: 2021. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7QL
7RV
7T2
7T5
7U9
7X7
7XB
88C
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M0T
M1P
M2O
M7N
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
7S9
L.6
5PM
DOI 10.1016/j.vaccine.2021.03.007
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nursing & Allied Health Database
Health and Safety Science Abstracts (Full archive)
Immunology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Consumer Health Database
Health & Medical Collection (Alumni)
Healthcare Administration Database
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
Health & Safety Science Abstracts
ProQuest Public Health
ProQuest Central Basic
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Research Library Prep
AGRICOLA
PubMed

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Veterinary Medicine
Biology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-2518
EndPage 2594
ExternalDocumentID PMC9384691
33824039
10_1016_j_vaccine_2021_03_007
S0264410X21002759
1_s2_0_S0264410X21002759
Genre Journal Article
GeographicLocations Nigeria
GeographicLocations_xml – name: Nigeria
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7RV
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
AAAJQ
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABKYH
ABMAC
ABMZM
ABRWV
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEUYN
AEVXI
AEXOQ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGGSO
AGUBO
AGYEJ
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AQUVI
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CJTIS
CNWQP
CS3
DWQXO
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K9-
KOM
L7B
LK8
LUGTX
LW9
M0R
M0T
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
O9~
OAUVE
OK0
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SNL
SPCBC
SSH
SSI
SSZ
T5K
UKHRP
UV1
WH7
WOW
Z5R
~G-
.GJ
29Q
3V.
AACTN
AAQXK
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADVLN
AFCTW
AFJKZ
AFKWA
AGHFR
AHHHB
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FGOYB
G-2
HEJ
HLV
HMG
HMK
HMO
HVGLF
HX~
HZ~
R2-
RIG
SAE
SEW
SIN
SVS
WUQ
XPP
ZGI
ZXP
AAIAV
ABLVK
ABYKQ
AESVU
EFLBG
LCYCR
QYZTP
AAYXX
ACMHX
ADSLC
AGQPQ
AGRNS
AGWPP
CITATION
NPM
7QL
7T2
7T5
7U9
7XB
8FK
C1K
H94
K9.
M7N
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c590t-b90c11177fbe65b2fb62d0bc116e50f536c2e3b927abb6ee2a0fcae59452da473
IEDL.DBID 7X7
ISSN 0264-410X
1873-2518
IngestDate Thu Aug 21 13:47:33 EDT 2025
Fri Jul 11 06:15:24 EDT 2025
Thu Jul 10 22:58:55 EDT 2025
Wed Aug 13 08:07:52 EDT 2025
Thu Apr 03 07:06:25 EDT 2025
Thu Apr 24 22:58:28 EDT 2025
Tue Jul 01 01:06:59 EDT 2025
Fri Feb 23 02:45:34 EST 2024
Tue Feb 25 20:03:44 EST 2025
Tue Aug 26 19:09:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Uncertainty
Vaccination coverage
Bayesian model-based geostatistics
Small area estimation
Survey sampling
High-resolution maps
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-b90c11177fbe65b2fb62d0bc116e50f536c2e3b927abb6ee2a0fcae59452da473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 33824039
PQID 2515664920
PQPubID 105530
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9384691
proquest_miscellaneous_2524298042
proquest_miscellaneous_2509609166
proquest_journals_2515664920
pubmed_primary_33824039
crossref_primary_10_1016_j_vaccine_2021_03_007
crossref_citationtrail_10_1016_j_vaccine_2021_03_007
elsevier_sciencedirect_doi_10_1016_j_vaccine_2021_03_007
elsevier_clinicalkeyesjournals_1_s2_0_S0264410X21002759
elsevier_clinicalkey_doi_10_1016_j_vaccine_2021_03_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-28
PublicationDateYYYYMMDD 2021-04-28
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-28
  day: 28
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Kidlington
PublicationTitle Vaccine
PublicationTitleAlternate Vaccine
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Golding, Burstein, Longbottom, Browne, Fullman, Osgood-Zimmerman, Earl, Bhatt, Cameron, Casey (b0015) 2017; 390
Local Burden of Disease Vaccine Coverage Collaborators and others. Mapping routine measles vaccination in low- and middle-income countries. Nature 2021;589 (1):415–19.
ICF. The DHS Program - GPS Data Collection
2015. [Accessed Apr-02-2020].
IHME. Institute for Health Metrics and Evaluation
Watanabe (b0165) 2010; 11
Lindgren, Rue, Lindström (b0140) 2011; 73
2020. [Accessed Apr-02-2020].
Takahashi, Metcalf, Ferrari, Tatem, Lessler (b0040) 2017; 8
UNICEF. The UNICEF Multiple Indicator Cluster Surveys
Wakefield (b0150) 2013
Utazi, Thorley, Alegana, Ferrari, Takahashi, Metcalf, Lessler, Cutts, Tatem (b0055) 2019; 10
Utazi, Wagai, Pannell, Cutts, Rhoda, Ferrari, Dieng, Oteri, Danovaro-Holliday, Adeniran (b0065) 2020; 38
2014. [Accessed Nov-19-2019].
WorldPop. The WorldPop Project - About
Utazi, Thorley, Alegana, Ferrari, Nilsen, Takahashi, Metcalf, Lessler, Tatem (b0050) 2019; 28
2015.
Utazi, Nilsen, Pannell, Dotse-Gborgbortsi, Tatem (b0110) 2021
ICF. The Demographic and Health Surveys, The DHS Program website. Funded by USAID.
2019.
Utazi, Thorley, Alegana, Ferrari, Takahashi, Metcalf, Lessler, Tatem (b0045) 2018; 36
WorldPop. Nigeria 100m Age structures. Alpha version 2014 estimates of number of people in each 5- year age group per grid square, with national totals adjusted to match UN population division estimates
2020 [Accessed Apr-02-2020].
Diggle, Giorgi (b0105) 2019
Osgood-Zimmerman, Millear, Stubbs, Shields, Pickering, Earl, Graetz, Kinyoki, Ray, Bhatt (b0030) 2018; 555
Gething, Casey, Weiss, Bisanzio, Bhatt, Cameron, Battle, Dalrymple, Rozier, Rao (b0010) 2016; 375
Bosco, Alegana, Bird, Pezzulo, Bengtsson, Sorichetta, Steele, Hornby, Ruktanonchai, Ruktanonchai (b0025) 2017; 14
Mosser, Gagne-Maynard, Rao, Osgood-Zimmerman, Fullman, Graetz, Burstein, Updike, Liu, Ray (b0060) 2019; 393
National Population Commission - NPC and ICF, Nigeria Demographic and Health Survey 2018 - Final Report, Abuja, Nigeria: NPC and ICF. Available at
United Nations. Transforming our world: the 2030 Agenda for Sustainable Development
Steele, Sundsøy, Pezzulo, Alegana, Bird, Blumenstock, Bjelland, Engø-Monsen, de Montjoye, Iqbal (b0020) 2017; 14
WorldPop, Nigeria total number of people per 100m grid-cell, https://www.worldpop.org/geodata/summary?id=28029. [Accessed Nov-19-2019] (2019).
Paige, Fuglstad, Riebler, Wakefield (b0125) 2020
Chiles, Delfiner (b0135) 2009; vol. 497
McCullagh, Nelder (b0145) 1989
Wilson, Wakefield (b0115) 2018; 21
WorldPop. The WorldPop Project
IHME. Institute for Health Metrics and Evaluation - Acting on Data
Gething P, Tatem A, Bird T, Burgert-Brucker C. Creating spatial interpolation surfaces with DHS data. DHS Spatial Analysis Reports No. 11, Rockville, Maryland, USA: ICF International. Available at
Graetz, Friedman, Osgood-Zimmerman, Burstein, Biehl, Shields, Mosser, Casey, Deshpande, Earl (b0035) 2018; 555
Rue, Martino, Chopin (b0170) 2009; 71
Osgood-Zimmerman (10.1016/j.vaccine.2021.03.007_b0030) 2018; 555
10.1016/j.vaccine.2021.03.007_b0090
Steele (10.1016/j.vaccine.2021.03.007_b0020) 2017; 14
McCullagh (10.1016/j.vaccine.2021.03.007_b0145) 1989
Wilson (10.1016/j.vaccine.2021.03.007_b0115) 2018; 21
Utazi (10.1016/j.vaccine.2021.03.007_b0045) 2018; 36
Golding (10.1016/j.vaccine.2021.03.007_b0015) 2017; 390
Paige (10.1016/j.vaccine.2021.03.007_b0125) 2020
10.1016/j.vaccine.2021.03.007_b0005
Wakefield (10.1016/j.vaccine.2021.03.007_b0150) 2013
Lindgren (10.1016/j.vaccine.2021.03.007_b0140) 2011; 73
10.1016/j.vaccine.2021.03.007_b0100
10.1016/j.vaccine.2021.03.007_b0120
10.1016/j.vaccine.2021.03.007_b0085
10.1016/j.vaccine.2021.03.007_b0160
10.1016/j.vaccine.2021.03.007_b0080
Bosco (10.1016/j.vaccine.2021.03.007_b0025) 2017; 14
Rue (10.1016/j.vaccine.2021.03.007_b0170) 2009; 71
Chiles (10.1016/j.vaccine.2021.03.007_b0135) 2009; vol. 497
Utazi (10.1016/j.vaccine.2021.03.007_b0065) 2020; 38
Utazi (10.1016/j.vaccine.2021.03.007_b0055) 2019; 10
Mosser (10.1016/j.vaccine.2021.03.007_b0060) 2019; 393
Diggle (10.1016/j.vaccine.2021.03.007_b0105) 2019
Gething (10.1016/j.vaccine.2021.03.007_b0010) 2016; 375
Utazi (10.1016/j.vaccine.2021.03.007_b0050) 2019; 28
Graetz (10.1016/j.vaccine.2021.03.007_b0035) 2018; 555
10.1016/j.vaccine.2021.03.007_b0155
Takahashi (10.1016/j.vaccine.2021.03.007_b0040) 2017; 8
Watanabe (10.1016/j.vaccine.2021.03.007_b0165) 2010; 11
Utazi (10.1016/j.vaccine.2021.03.007_b0110) 2021
10.1016/j.vaccine.2021.03.007_b0175
10.1016/j.vaccine.2021.03.007_b0075
10.1016/j.vaccine.2021.03.007_b0130
10.1016/j.vaccine.2021.03.007_b0095
10.1016/j.vaccine.2021.03.007_b0070
References_xml – reference: , 2019.
– reference: , 2020 [Accessed Apr-02-2020].
– reference: National Population Commission - NPC and ICF, Nigeria Demographic and Health Survey 2018 - Final Report, Abuja, Nigeria: NPC and ICF. Available at
– volume: 555
  start-page: 41
  year: 2018
  ident: b0030
  article-title: Mapping child growth failure in Africa between 2000 and 2015
  publication-title: Nature
– volume: 375
  start-page: 2435
  year: 2016
  end-page: 2445
  ident: b0010
  article-title: Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015
  publication-title: N Engl J Med
– volume: 28
  start-page: 3226
  year: 2019
  end-page: 3241
  ident: b0050
  article-title: A spatial regression model for the disaggregation of areal unit based data to high-resolution grids with application to vaccination coverage mapping
  publication-title: Stat Methods Med Res
– volume: 38
  start-page: 3062
  year: 2020
  end-page: 3071
  ident: b0065
  article-title: Geospatial variation in measles vaccine coverage through routine and campaign strategies in Nigeria: Analysis of recent household surveys
  publication-title: Vaccine
– reference: WorldPop. The WorldPop Project,
– volume: 393
  start-page: 1843
  year: 2019
  end-page: 1855
  ident: b0060
  article-title: Mapping diphtheria-pertussis-tetanus vaccine coverage in Africa, 2000–2016: a spatial and temporal modelling study
  publication-title: The Lancet
– reference: Local Burden of Disease Vaccine Coverage Collaborators and others. Mapping routine measles vaccination in low- and middle-income countries. Nature 2021;589 (1):415–19.
– reference: ICF. The Demographic and Health Surveys, The DHS Program website. Funded by USAID.
– year: 2020
  ident: b0125
  article-title: Design-and model-based approaches to small-area estimation in a low and middle income country context: comparisons and recommendations
  publication-title: J Surv Stat Methodol
– year: 2019
  ident: b0105
  article-title: Model-based geostatistics for global public health: methods and applications
– reference: WorldPop. Nigeria 100m Age structures. Alpha version 2014 estimates of number of people in each 5- year age group per grid square, with national totals adjusted to match UN population division estimates,
– reference: WorldPop. The WorldPop Project - About,
– volume: 21
  start-page: e17
  year: 2018
  end-page: e32
  ident: b0115
  article-title: Pointless spatial modeling
  publication-title: Biostatistics
– volume: 71
  start-page: 319
  year: 2009
  end-page: 392
  ident: b0170
  article-title: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
  publication-title: J Roy Stat Soc B
– reference: ; 2015.
– reference: IHME. Institute for Health Metrics and Evaluation,
– reference: Gething P, Tatem A, Bird T, Burgert-Brucker C. Creating spatial interpolation surfaces with DHS data. DHS Spatial Analysis Reports No. 11, Rockville, Maryland, USA: ICF International. Available at
– reference: , 2020. [Accessed Apr-02-2020].
– reference: ICF. The DHS Program - GPS Data Collection,
– reference: IHME. Institute for Health Metrics and Evaluation - Acting on Data,
– volume: vol. 497
  year: 2009
  ident: b0135
  publication-title: Geostatistics: modeling spatial uncertainty
– volume: 390
  start-page: 2171
  year: 2017
  end-page: 2182
  ident: b0015
  article-title: Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the Sustainable Development Goals
  publication-title: Lancet
– reference: , 2015. [Accessed Apr-02-2020].
– volume: 11
  start-page: 3571
  year: 2010
  end-page: 3594
  ident: b0165
  article-title: Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory
  publication-title: J Machine Learn Res
– volume: 555
  start-page: 48
  year: 2018
  ident: b0035
  article-title: Mapping local variation in educational attainment across Africa
  publication-title: Nature
– volume: 73
  start-page: 423
  year: 2011
  end-page: 498
  ident: b0140
  article-title: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach
  publication-title: J Roy Stat Soc: Series B (Stat Methodol)
– year: 2013
  ident: b0150
  article-title: Bayesian and frequentist regression methods
– volume: 8
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0040
  article-title: The geography of measles vaccination in the African Great Lakes region
  publication-title: Nature Commun
– reference: WorldPop, Nigeria total number of people per 100m grid-cell, https://www.worldpop.org/geodata/summary?id=28029. [Accessed Nov-19-2019] (2019).
– volume: 10
  start-page: 1633
  year: 2019
  ident: b0055
  article-title: Mapping vaccination coverage to explore the effects of delivery mechanisms and inform vaccination strategies
  publication-title: Nature Commun
– volume: 14
  year: 2017
  ident: b0020
  article-title: Mapping poverty using mobile phone and satellite data
  publication-title: J Roy Soc Interf
– reference: , 2014. [Accessed Nov-19-2019].
– reference: UNICEF. The UNICEF Multiple Indicator Cluster Surveys,
– volume: 36
  start-page: 1583
  year: 2018
  end-page: 1591
  ident: b0045
  article-title: High resolution age-structured mapping of childhood vaccination coverage in low and middle income countries
  publication-title: Vaccine
– start-page: 1
  year: 2021
  end-page: 15
  ident: b0110
  article-title: District-level estimation of vaccination coverage: Discrete vs continuous spatial models
  publication-title: Stat Med
– reference: United Nations. Transforming our world: the 2030 Agenda for Sustainable Development,
– volume: 14
  year: 2017
  ident: b0025
  article-title: Exploring the high-resolution mapping of gender-disaggregated development indicators
  publication-title: J Roy Soc Interface
– year: 1989
  ident: b0145
  article-title: Generalized Linear Models, Second Edition, Chapman and Hall/CRC Monographs on Statistics and Applied Probability Series
– volume: 28
  start-page: 3226
  issue: 10–11
  year: 2019
  ident: 10.1016/j.vaccine.2021.03.007_b0050
  article-title: A spatial regression model for the disaggregation of areal unit based data to high-resolution grids with application to vaccination coverage mapping
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280218797362
– start-page: 1
  year: 2021
  ident: 10.1016/j.vaccine.2021.03.007_b0110
  article-title: District-level estimation of vaccination coverage: Discrete vs continuous spatial models
  publication-title: Stat Med
– ident: 10.1016/j.vaccine.2021.03.007_b0005
– ident: 10.1016/j.vaccine.2021.03.007_b0160
– volume: 14
  issue: 127
  year: 2017
  ident: 10.1016/j.vaccine.2021.03.007_b0020
  article-title: Mapping poverty using mobile phone and satellite data
  publication-title: J Roy Soc Interf
  doi: 10.1098/rsif.2016.0690
– ident: 10.1016/j.vaccine.2021.03.007_b0080
– ident: 10.1016/j.vaccine.2021.03.007_b0175
– volume: 71
  start-page: 319
  issue: 2
  year: 2009
  ident: 10.1016/j.vaccine.2021.03.007_b0170
  article-title: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
  publication-title: J Roy Stat Soc B
  doi: 10.1111/j.1467-9868.2008.00700.x
– ident: 10.1016/j.vaccine.2021.03.007_b0100
– volume: 36
  start-page: 1583
  issue: 12
  year: 2018
  ident: 10.1016/j.vaccine.2021.03.007_b0045
  article-title: High resolution age-structured mapping of childhood vaccination coverage in low and middle income countries
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2018.02.020
– year: 2013
  ident: 10.1016/j.vaccine.2021.03.007_b0150
– ident: 10.1016/j.vaccine.2021.03.007_b0120
– volume: 555
  start-page: 41
  issue: 7694
  year: 2018
  ident: 10.1016/j.vaccine.2021.03.007_b0030
  article-title: Mapping child growth failure in Africa between 2000 and 2015
  publication-title: Nature
  doi: 10.1038/nature25760
– year: 2020
  ident: 10.1016/j.vaccine.2021.03.007_b0125
  article-title: Design-and model-based approaches to small-area estimation in a low and middle income country context: comparisons and recommendations
  publication-title: J Surv Stat Methodol
– volume: 73
  start-page: 423
  issue: 4
  year: 2011
  ident: 10.1016/j.vaccine.2021.03.007_b0140
  article-title: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach
  publication-title: J Roy Stat Soc: Series B (Stat Methodol)
  doi: 10.1111/j.1467-9868.2011.00777.x
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.vaccine.2021.03.007_b0040
  article-title: The geography of measles vaccination in the African Great Lakes region
  publication-title: Nature Commun
  doi: 10.1038/ncomms15585
– volume: 38
  start-page: 3062
  issue: 14
  year: 2020
  ident: 10.1016/j.vaccine.2021.03.007_b0065
  article-title: Geospatial variation in measles vaccine coverage through routine and campaign strategies in Nigeria: Analysis of recent household surveys
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2020.02.070
– ident: 10.1016/j.vaccine.2021.03.007_b0095
– ident: 10.1016/j.vaccine.2021.03.007_b0075
– volume: vol. 497
  year: 2009
  ident: 10.1016/j.vaccine.2021.03.007_b0135
– ident: 10.1016/j.vaccine.2021.03.007_b0155
– ident: 10.1016/j.vaccine.2021.03.007_b0070
  doi: 10.1038/s41586-020-03043-4
– volume: 555
  start-page: 48
  issue: 7694
  year: 2018
  ident: 10.1016/j.vaccine.2021.03.007_b0035
  article-title: Mapping local variation in educational attainment across Africa
  publication-title: Nature
  doi: 10.1038/nature25761
– volume: 393
  start-page: 1843
  issue: 10183
  year: 2019
  ident: 10.1016/j.vaccine.2021.03.007_b0060
  article-title: Mapping diphtheria-pertussis-tetanus vaccine coverage in Africa, 2000–2016: a spatial and temporal modelling study
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(19)30226-0
– ident: 10.1016/j.vaccine.2021.03.007_b0085
– volume: 21
  start-page: e17
  issue: 2
  year: 2018
  ident: 10.1016/j.vaccine.2021.03.007_b0115
  article-title: Pointless spatial modeling
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxy041
– volume: 375
  start-page: 2435
  issue: 25
  year: 2016
  ident: 10.1016/j.vaccine.2021.03.007_b0010
  article-title: Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1606701
– volume: 14
  issue: 129
  year: 2017
  ident: 10.1016/j.vaccine.2021.03.007_b0025
  article-title: Exploring the high-resolution mapping of gender-disaggregated development indicators
  publication-title: J Roy Soc Interface
  doi: 10.1098/rsif.2016.0825
– ident: 10.1016/j.vaccine.2021.03.007_b0130
– volume: 10
  start-page: 1633
  issue: 1
  year: 2019
  ident: 10.1016/j.vaccine.2021.03.007_b0055
  article-title: Mapping vaccination coverage to explore the effects of delivery mechanisms and inform vaccination strategies
  publication-title: Nature Commun
  doi: 10.1038/s41467-019-09611-1
– volume: 390
  start-page: 2171
  issue: 10108
  year: 2017
  ident: 10.1016/j.vaccine.2021.03.007_b0015
  article-title: Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the Sustainable Development Goals
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)31758-0
– ident: 10.1016/j.vaccine.2021.03.007_b0090
– year: 1989
  ident: 10.1016/j.vaccine.2021.03.007_b0145
– year: 2019
  ident: 10.1016/j.vaccine.2021.03.007_b0105
– volume: 11
  start-page: 3571
  issue: Dec
  year: 2010
  ident: 10.1016/j.vaccine.2021.03.007_b0165
  article-title: Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory
  publication-title: J Machine Learn Res
SSID ssj0005319
Score 2.4692967
Snippet •Modeling survey stratification and clustering improves coverage estimation.•High-resolution coverage maps based on survey data often have large...
Highlights•Modeling survey stratification and clustering improves coverage estimation. •High-resolution coverage maps based on survey data often have large...
It is becoming increasingly popular to produce high-resolution maps of vaccination coverage by fitting Bayesian geostatistical models to data from household...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2584
SubjectTerms Allergy and Immunology
Bayesian analysis
Bayesian model-based geostatistics
Bayesian theory
Censuses
Clusters
Estimates
Geostatistics
Global positioning systems
GPS
health surveys
High-resolution maps
Households
Immunization
Mathematical models
Measles
Modelling
Nigeria
Partial differential equations
Polls & surveys
Random variables
Rural areas
Sampling designs
Small area estimation
Survey sampling
Uncertainty
Vaccination
Vaccination coverage
vaccines
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KQfFF9PyKVllB-tTcbXY3u9lHKZYiVAq2ci-y7CYbe6Xmjuau0Bf_dmfydT2rVnxMMkM-ZjLzW2bmt4S888EIFjQschzTuEDxsQGcHkvnSshwiUgEDgoffVKHp_LjNJ1ukf1-FgbbKrvY38b0Jlp3Zybd15wsZrPJZ9bkcjblyCKqUxzik1Kjl49_3GjzEM3mHigco_R6imdyPr5yOZavYZnIk5brVP8pP93Gn7-2Ud7ISwePyMMOUNL37TM_JluhGpF77RaT1yNy_6grno_I7nFLU329R0_WU1f1Ht2lx2sCa9AZfcEemWZQl_bqT8hX3DYNh9epqwq6WI8tVXRe0vYd28Mc20IhTlFk8PiOYJZie_03iu2oFAda6Nl8VQesfNF6dXkF3vSUnB58ONk_jLvNGeI8NWwZe8PyBCu-pQ8q9bz0ihfMwzkVUlamQuU8CG-4dt6rELhjZe5CamTKCye1eEa2q3kVXhCaw-o-k4DrVCGlV84l2gdXQhYRXheeR0T2JrF5x1yOG2hc2L5F7dx2lrRoScuEBUtGZDyoLVrqjrsUVG9v28-lQiS1kFzuUtS_Uwx1Fw9qm9iaW2Zv-WxEskFzw-3_5aY7vUva4T6AVgGfS8NZRN4OlyFiYBnIVQGMCzINzWCi1N9kALqZDCJ6RJ63Xj58QyEyJHGEZ9cb_j8IIGP55pVqdtYwlxsBcNckL___rV-RB3iE9Tye7ZDt5eUqvAZYuPRvmv_-J3Z9Y88
  priority: 102
  providerName: Elsevier
Title Modeling and presentation of vaccination coverage estimates using data from household surveys
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0264410X21002759
https://www.clinicalkey.es/playcontent/1-s2.0-S0264410X21002759
https://dx.doi.org/10.1016/j.vaccine.2021.03.007
https://www.ncbi.nlm.nih.gov/pubmed/33824039
https://www.proquest.com/docview/2515664920
https://www.proquest.com/docview/2509609166
https://www.proquest.com/docview/2524298042
https://pubmed.ncbi.nlm.nih.gov/PMC9384691
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJhAvCAqMwpiMhPa0bI7txPETGtOmAlpVwYb6giw7cRgTpGVpJ-2Fv527fDI-Nl6atvEpH-fc_Zy7-x0hL53XgnkFixzLFC5QXKABpwfS2hw8XChCgYXCR-N4dCLfTqNp88KtbNIqW5tYGepsluI78l3ww4A8pObs1fx7gF2jMLratNBYIWtIXYYpXWqq-hQPUTX2gGWGDGTIpn0Fz-7ZzoVNMXQNS0Qe1jyn6l--6U_s-XsK5S8-6fA-udeASbpXa_8BueWLAbldt5e8HJA7R03gfEC2JjVF9eU2Pe4rrsptukUnPXk1yAw-Yn5MVaRLW_GH5BO2TMPCdWqLjM77kqWCznJaX2P9M8WUULBRFNk7viGQpZha_5liKirFYhZ6OluWHqNetFyeX8BMekRODg-O90dB05ghSCPNFoHTLA0x2ps7H0eO5y7mGXPwX-wjlkciTrkXTnNlnYu955blqfWRlhHPrFTiMVktZoV_QmgKK_tEAqaLMyldbG2onLc5eBDhVOb4kMhWJSZtWMuxecZX06annZlGkwY1aZgwoMkh2enE5jVtx00Ccatv09akghU14FhuElR_E_RlYwtKE5qSG2Y-sAp7silH1lsV6SFJOskG7tQw5n8OutFOSdMdp39ChuRFtxusBYaAbOFBuTCmohgM4_i6MQDbdALWfEjW61ne3UMhEiRwhHNXV-Z_NwDZyq_uKb6cVqzlWgDU1eHT60_9GbmL14nxOp5skNXF-dI_B9i3cJtkZedHuFk94fCZ7MP3tb0370Zj2L4-GE_e_wT8EF6e
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVBwvCMIVKLBI0Ke6Xe_6iB8Q4miV0iaKoK3ygpZde02pwAl1UpQ_xW9kxlcoR8tLHxPvxHZmPPOtZ-YbgKfGRpLbEDc5moe0QTFOhDjd8bROMcK50pXUKNwfBL197-3IHy3Bj7oXhsoqa59YOOpkHNM78g2Mw4g8vEjwF5NvDk2NouxqPUKjNIsdO_-OW7b8-fYb1O8zIbY29173nGqqgBP7EZ86JuKxS6nK1NjANyI1gUi4we8C6_PUl0EsrDSRCLUxgbVC8zTW1o88XyTaCyX-7iVY9iRuZVqw_GpzMHy3KCqRxSgR3Nh4jufy0aJnaONo_UTHlCzHTalwS2bV8F_R8E-0-3vR5i9RcOsGXK_gK3tZ2ttNWLJZGy6XAy3nbbjSr1L1bVgdlqTY8zW2t-jxytfYKhsu6LJRpn1AFTlFWzCrxW_BBxrSRq3yTGcJmyyapDI2Tll5j-XHmIpQ0Ssy4gv5StCZUTH_J0bFr4zaZ9jheJZbyrOxfHZ8grZ7G_YvRGl3oJWNM3sPWGwNhmREkUHieSbQ2g2N1SnGLGnCxIgOeLVKVFzxpNO4ji-qLog7UpUmFWlScalQkx1Yb8QmJVHIeQJBrW9Vd8Gi31YYys4TDP8maPPK--TKVblQXL3nBdrlI0E8u6EfdaDbSFYAqwRO_3PSldokVXOexTPZgSfNYfRPlHTSmUXl4pqC1NANgrPWIFCMuhg_OnC3tPLmP5SyS5SReO3hKftvFhA_-ukj2efDgic9kgiuI_f-2Zf-GK729vq7and7sPMArtE9U7ZQdFegNT2e2YcIOqfmUfWkM_h40c7lJyT0mQA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiouCMLLUGCRoKe6We_au_EBIUSJWkqrSLQol2rZtdeUCpxQJ0X5a_w6ZvykPFouPSbeie3MeOZbz8w3hDyzLhbMKdjkGKZwg2L9GHC6HxqTQYQLRCCwUXh3T24dhG_H0XiJ_Gh6YbCssvGJpaNOJwm-I-9DHAbkEcac9bO6LGK0OXw5_ebjBCnMtDbjNCoT2XGL77B9K15sb4Kun3M-fLP_esuvJwz4SRSzmW9jlgSYtsysk5HlmZU8ZRa-ky5iWSRkwp2wMVfGWukcNyxLjIviMOKpCZWA371CrioRBfiMqbHqyktEOVQEtjihHwZs3HUP9Y83Tk2CaXPYnvKg4lhV_4qLf-Le38s3f4mHw5vkRg1k6avK8m6RJZf3yLVqtOWiR1Z266R9j6yNKnrsxTrd77q9inW6RkcdcTbI9D5gbU7ZIEwb8dvkEMe1YdM8NXlKp127VE4nGa3usfqYYDkq-EeKzCFfEURTLOv_RLEMlmIjDT2azAuHGTdazE9OwYrvkINLUdldspxPcnef0MRZCM6AJ2UahlYaEyjrTAbRS1iVWu6RsFGJTmrGdBzc8UU3pXHHutakRk1qJjRo0iMbrdi0ogy5SEA2-tZNPyx4cA1B7SJB9TdBV9R-qNCBLrhm-j0rcS8bc2TcVVHskUErWUOtCkL9z0lXG5PU7Xm6p9MjT9vD4Kkw_WRyB8qFNSW9YSDleWsAMsYDiCQeuVdZefsfCjFA8ki4dnXG_tsFyJR-9kj--ahkTI8FwOw4eHD-pT8hK-BS9LvtvZ2H5DreMqYN-WCVLM9O5u4RoM-ZfVw-5pR8vGy_8hNHZpvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+presentation+of+vaccination+coverage+estimates+using+data+from+household+surveys&rft.jtitle=Vaccine&rft.au=Tracy+Qi+Dong&rft.au=Wakefield%2C+Jon&rft.date=2021-04-28&rft.pub=Elsevier+Limited&rft.issn=0264-410X&rft.eissn=1873-2518&rft.volume=39&rft.issue=18&rft.spage=2584&rft_id=info:doi/10.1016%2Fj.vaccine.2021.03.007&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-410X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-410X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-410X&client=summon