Modeling and presentation of vaccination coverage estimates using data from household surveys
•Modeling survey stratification and clustering improves coverage estimation.•High-resolution coverage maps based on survey data often have large uncertainties.•Visualizing posterior distributions of coverage estimates help reveal uncertainties.•A new presentation method is proposed to compare and co...
Saved in:
Published in | Vaccine Vol. 39; no. 18; pp. 2584 - 2594 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
28.04.2021
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Modeling survey stratification and clustering improves coverage estimation.•High-resolution coverage maps based on survey data often have large uncertainties.•Visualizing posterior distributions of coverage estimates help reveal uncertainties.•A new presentation method is proposed to compare and control overall map precision.
It is becoming increasingly popular to produce high-resolution maps of vaccination coverage by fitting Bayesian geostatistical models to data from household surveys. Usually, the surveys adopt a stratified cluster sampling design. We discuss a number of crucial choices with respect to two key aspects of the map production process: the acknowledgement of the survey design in modeling, and the appropriate presentation of estimates and their uncertainties. Specifically, we consider the importance of accounting for urban/rural stratification and cluster-level non-spatial excess variation in survey outcomes, when fitting geostatistical models. We also discuss the trade-off between the geographical scale and precision of model-based estimates, and demonstrate visualization methods for mapping and ranking that emphasize the probabilistic interpretation of results. A novel approach to coverage map presentation is proposed to allow comparison and control of the overall map uncertainty. We use measles vaccination coverage in Nigeria as a motivating example and illustrate the different issues using data from the 2018 Nigeria Demographic and Health Survey. |
---|---|
AbstractList | It is becoming increasingly popular to produce high-resolution maps of vaccination coverage by fitting Bayesian geostatistical models to data from household surveys. Usually, the surveys adopt a stratified cluster sampling design. We discuss a number of crucial choices with respect to two key aspects of the map production process: the acknowledgement of the survey design in modeling, and the appropriate presentation of estimates and their uncertainties. Specifically, we consider the importance of accounting for urban/rural stratification and cluster-level non-spatial excess variation in survey outcomes, when fitting geostatistical models. We also discuss the trade-off between the geographical scale and precision of model-based estimates, and demonstrate visualization methods for mapping and ranking that emphasize the probabilistic interpretation of results. A novel approach to coverage map presentation is proposed to allow comparison and control of the overall map uncertainty. We use measles vaccination coverage in Nigeria as a motivating example and illustrate the different issues using data from the 2018 Nigeria Demographic and Health Survey. Highlights•Modeling survey stratification and clustering improves coverage estimation. •High-resolution coverage maps based on survey data often have large uncertainties. •Visualizing posterior distributions of coverage estimates help reveal uncertainties. •A new presentation method is proposed to compare and control overall map precision. It is becoming increasingly popular to produce high-resolution maps of vaccination coverage by fitting Bayesian geostatistical models to data from household surveys. Usually, the surveys adopt a stratified cluster sampling design. We discuss a number of crucial choices with respect to two key aspects of the map production process: the acknowledgement of the survey design in modeling, and the appropriate presentation of estimates and their uncertainties. Specifically, we consider the importance of accounting for urban/rural stratification and cluster-level non-spatial excess variation in survey outcomes, when fitting geostatistical models. We also discuss the trade-off between the geographical scale and precision of model-based estimates, and demonstrate visualization methods for mapping and ranking that emphasize the probabilistic interpretation of results. A novel approach to coverage map presentation is proposed to allow comparison and control of the overall map uncertainty. We use measles vaccination coverage in Nigeria as a motivating example and illustrate the different issues using data from the 2018 Nigeria Demographic and Health Survey.It is becoming increasingly popular to produce high-resolution maps of vaccination coverage by fitting Bayesian geostatistical models to data from household surveys. Usually, the surveys adopt a stratified cluster sampling design. We discuss a number of crucial choices with respect to two key aspects of the map production process: the acknowledgement of the survey design in modeling, and the appropriate presentation of estimates and their uncertainties. Specifically, we consider the importance of accounting for urban/rural stratification and cluster-level non-spatial excess variation in survey outcomes, when fitting geostatistical models. We also discuss the trade-off between the geographical scale and precision of model-based estimates, and demonstrate visualization methods for mapping and ranking that emphasize the probabilistic interpretation of results. A novel approach to coverage map presentation is proposed to allow comparison and control of the overall map uncertainty. We use measles vaccination coverage in Nigeria as a motivating example and illustrate the different issues using data from the 2018 Nigeria Demographic and Health Survey. •Modeling survey stratification and clustering improves coverage estimation.•High-resolution coverage maps based on survey data often have large uncertainties.•Visualizing posterior distributions of coverage estimates help reveal uncertainties.•A new presentation method is proposed to compare and control overall map precision. It is becoming increasingly popular to produce high-resolution maps of vaccination coverage by fitting Bayesian geostatistical models to data from household surveys. Usually, the surveys adopt a stratified cluster sampling design. We discuss a number of crucial choices with respect to two key aspects of the map production process: the acknowledgement of the survey design in modeling, and the appropriate presentation of estimates and their uncertainties. Specifically, we consider the importance of accounting for urban/rural stratification and cluster-level non-spatial excess variation in survey outcomes, when fitting geostatistical models. We also discuss the trade-off between the geographical scale and precision of model-based estimates, and demonstrate visualization methods for mapping and ranking that emphasize the probabilistic interpretation of results. A novel approach to coverage map presentation is proposed to allow comparison and control of the overall map uncertainty. We use measles vaccination coverage in Nigeria as a motivating example and illustrate the different issues using data from the 2018 Nigeria Demographic and Health Survey. It is becoming increasingly popular to produce high-resolution maps of vaccination coverage by fitting Bayesian geostatistical models to data from household surveys. Often, the surveys adopt a stratified cluster sampling design. We discuss a number of crucial choices with respect to two key aspects of the map production process: the acknowledgement of the survey design in modeling, and the appropriate presentation of estimates and their uncertainties. Specifically, we consider the importance of accounting for survey stratification and cluster-level non-spatial excess variation in survey outcomes when fitting geostatistical models. We also discuss the trade-off between the geographical scale and precision of model-based estimates, and demonstrate visualization methods for mapping and ranking that emphasize the probabilistic interpretation of results. A novel approach to coverage map presentation is proposed to allow comparison and control of the overall map uncertainty level. We use measles vaccination coverage in Nigeria as a motivating example and illustrate the different issues using data from the 2018 Nigeria Demographic and Health Survey. |
Author | Dong, Tracy Qi Wakefield, Jon |
AuthorAffiliation | a Department of Biostatistics, University of Washington, Health Sciences Building, NE Pacific St, Seattle, WA 98195, USA b Department of Statistics, University of Washington, Padelford Hall, NE Stevens Way, Seattle, WA 98195, USA |
AuthorAffiliation_xml | – name: a Department of Biostatistics, University of Washington, Health Sciences Building, NE Pacific St, Seattle, WA 98195, USA – name: b Department of Statistics, University of Washington, Padelford Hall, NE Stevens Way, Seattle, WA 98195, USA |
Author_xml | – sequence: 1 givenname: Tracy Qi surname: Dong fullname: Dong, Tracy Qi email: qd8@uw.edu organization: Department of Biostatistics, University of Washington, Health Sciences Building, NE Pacific St, Seattle, WA 98195, USA – sequence: 2 givenname: Jon surname: Wakefield fullname: Wakefield, Jon organization: Department of Biostatistics, University of Washington, Health Sciences Building, NE Pacific St, Seattle, WA 98195, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33824039$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUl2L1DAUDbLizq7-BKXgiy8db9ImnSCuyOIXrPiggi8S0vR2JmMnmU3agfn3pnQcdEB2n0LTc07OufdckDPnHRLylMKcAhUv1_OdNsY6nDNgdA7FHKB6QGZ0URU543RxRmbARJmXFH6ck4sY1wDACyofkfOiWLASCjkjPz_7Bjvrlpl2TbYNGNH1urfeZb7NpiemT-N3GPQSM4y93egeYzbEkdjoXmdt8Jts5YeIK981WRzCDvfxMXnY6i7ik8N5Sb6_f_ft-mN-8-XDp-u3N7nhEvq8lmAopVXV1ih4zdpasAbqdCeQQ8sLYRgWtWSVrmuByDS0RiOXJWeNLqviklxNutuh3mBjUoagO7UNyWjYK6-t-vePsyu19Dsli0UpJE0CLw4Cwd8OKaHa2Giw67TDFEoxzkomF1Cye0BBCpBUiAR9fgJd-yG4NImEolyIUjJIqGd_mz-6_rOkBOATwAQfY8D2CKGgxjKotTqUQY1lUFCoVIbEe3XCM3babZqB7e5kv5nYmBa3sxhUNBadwcYGNL1qvL1T4epEwaSmWaO7X7jHeJwFVZEpUF_Huo5tZRSAVXwM_vr_Avcw8BvRw_7V |
CitedBy_id | crossref_primary_10_1214_21_AOAS1474 crossref_primary_10_1371_journal_pone_0245596 crossref_primary_10_1371_journal_pone_0288741 crossref_primary_10_1016_j_spasta_2022_100670 crossref_primary_10_1016_j_vaccine_2022_11_026 crossref_primary_10_1098_rsif_2021_0104 crossref_primary_10_1177_0282423X241244670 crossref_primary_10_1007_s12061_025_09646_6 crossref_primary_10_1093_jrsssa_qnae003 crossref_primary_10_1186_s12942_023_00352_5 crossref_primary_10_1002_sim_9586 crossref_primary_10_1016_j_sste_2024_100663 crossref_primary_10_1016_j_vaccine_2023_08_004 crossref_primary_10_1093_jssam_smae032 crossref_primary_10_1111_insr_12572 crossref_primary_10_1002_cjs_11787 |
Cites_doi | 10.1177/0962280218797362 10.1098/rsif.2016.0690 10.1111/j.1467-9868.2008.00700.x 10.1016/j.vaccine.2018.02.020 10.1038/nature25760 10.1111/j.1467-9868.2011.00777.x 10.1038/ncomms15585 10.1016/j.vaccine.2020.02.070 10.1038/s41586-020-03043-4 10.1038/nature25761 10.1016/S0140-6736(19)30226-0 10.1093/biostatistics/kxy041 10.1056/NEJMoa1606701 10.1098/rsif.2016.0825 10.1038/s41467-019-09611-1 10.1016/S0140-6736(17)31758-0 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. 2021. Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. – notice: 2021. Elsevier Ltd |
DBID | AAYXX CITATION NPM 3V. 7QL 7RV 7T2 7T5 7U9 7X7 7XB 88C 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9- K9. KB0 LK8 M0R M0S M0T M1P M2O M7N M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.vaccine.2021.03.007 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nursing & Allied Health Database Health and Safety Science Abstracts (Full archive) Immunology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection Consumer Health Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Consumer Health Database Health & Medical Collection (Alumni) Healthcare Administration Database Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library Health & Safety Science Abstracts ProQuest Public Health ProQuest Central Basic ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Research Library Prep AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Veterinary Medicine Biology Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-2518 |
EndPage | 2594 |
ExternalDocumentID | PMC9384691 33824039 10_1016_j_vaccine_2021_03_007 S0264410X21002759 1_s2_0_S0264410X21002759 |
Genre | Journal Article |
GeographicLocations | Nigeria |
GeographicLocations_xml | – name: Nigeria |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7RV 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM AAAJQ AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABKYH ABMAC ABMZM ABRWV ABUWG ACDAQ ACGFO ACGFS ACIEU ACIUM ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEUYN AEVXI AEXOQ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGEKW AGGSO AGUBO AGYEJ AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AQUVI AXJTR AZQEC BBNVY BENPR BHPHI BKEYQ BKNYI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CJTIS CNWQP CS3 DWQXO EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W K9- KOM L7B LK8 LUGTX LW9 M0R M0T M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- O9~ OAUVE OK0 OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL RPZ SAB SCC SDF SDG SDP SES SNL SPCBC SSH SSI SSZ T5K UKHRP UV1 WH7 WOW Z5R ~G- .GJ 29Q 3V. AACTN AAQXK ABWVN ABXDB ACRPL ADMUD ADNMO ADVLN AFCTW AFJKZ AFKWA AGHFR AHHHB AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EJD FEDTE FGOYB G-2 HEJ HLV HMG HMK HMO HVGLF HX~ HZ~ R2- RIG SAE SEW SIN SVS WUQ XPP ZGI ZXP AAIAV ABLVK ABYKQ AESVU EFLBG LCYCR QYZTP AAYXX ACMHX ADSLC AGQPQ AGRNS AGWPP CITATION NPM 7QL 7T2 7T5 7U9 7XB 8FK C1K H94 K9. M7N MBDVC PKEHL PQEST PQUKI Q9U 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c590t-b90c11177fbe65b2fb62d0bc116e50f536c2e3b927abb6ee2a0fcae59452da473 |
IEDL.DBID | 7X7 |
ISSN | 0264-410X 1873-2518 |
IngestDate | Thu Aug 21 13:47:33 EDT 2025 Fri Jul 11 06:15:24 EDT 2025 Thu Jul 10 22:58:55 EDT 2025 Wed Aug 13 08:07:52 EDT 2025 Thu Apr 03 07:06:25 EDT 2025 Thu Apr 24 22:58:28 EDT 2025 Tue Jul 01 01:06:59 EDT 2025 Fri Feb 23 02:45:34 EST 2024 Tue Feb 25 20:03:44 EST 2025 Tue Aug 26 19:09:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Uncertainty Vaccination coverage Bayesian model-based geostatistics Small area estimation Survey sampling High-resolution maps |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-b90c11177fbe65b2fb62d0bc116e50f536c2e3b927abb6ee2a0fcae59452da473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 33824039 |
PQID | 2515664920 |
PQPubID | 105530 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9384691 proquest_miscellaneous_2524298042 proquest_miscellaneous_2509609166 proquest_journals_2515664920 pubmed_primary_33824039 crossref_primary_10_1016_j_vaccine_2021_03_007 crossref_citationtrail_10_1016_j_vaccine_2021_03_007 elsevier_sciencedirect_doi_10_1016_j_vaccine_2021_03_007 elsevier_clinicalkeyesjournals_1_s2_0_S0264410X21002759 elsevier_clinicalkey_doi_10_1016_j_vaccine_2021_03_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-28 |
PublicationDateYYYYMMDD | 2021-04-28 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Kidlington |
PublicationTitle | Vaccine |
PublicationTitleAlternate | Vaccine |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Golding, Burstein, Longbottom, Browne, Fullman, Osgood-Zimmerman, Earl, Bhatt, Cameron, Casey (b0015) 2017; 390 Local Burden of Disease Vaccine Coverage Collaborators and others. Mapping routine measles vaccination in low- and middle-income countries. Nature 2021;589 (1):415–19. ICF. The DHS Program - GPS Data Collection 2015. [Accessed Apr-02-2020]. IHME. Institute for Health Metrics and Evaluation Watanabe (b0165) 2010; 11 Lindgren, Rue, Lindström (b0140) 2011; 73 2020. [Accessed Apr-02-2020]. Takahashi, Metcalf, Ferrari, Tatem, Lessler (b0040) 2017; 8 UNICEF. The UNICEF Multiple Indicator Cluster Surveys Wakefield (b0150) 2013 Utazi, Thorley, Alegana, Ferrari, Takahashi, Metcalf, Lessler, Cutts, Tatem (b0055) 2019; 10 Utazi, Wagai, Pannell, Cutts, Rhoda, Ferrari, Dieng, Oteri, Danovaro-Holliday, Adeniran (b0065) 2020; 38 2014. [Accessed Nov-19-2019]. WorldPop. The WorldPop Project - About Utazi, Thorley, Alegana, Ferrari, Nilsen, Takahashi, Metcalf, Lessler, Tatem (b0050) 2019; 28 2015. Utazi, Nilsen, Pannell, Dotse-Gborgbortsi, Tatem (b0110) 2021 ICF. The Demographic and Health Surveys, The DHS Program website. Funded by USAID. 2019. Utazi, Thorley, Alegana, Ferrari, Takahashi, Metcalf, Lessler, Tatem (b0045) 2018; 36 WorldPop. Nigeria 100m Age structures. Alpha version 2014 estimates of number of people in each 5- year age group per grid square, with national totals adjusted to match UN population division estimates 2020 [Accessed Apr-02-2020]. Diggle, Giorgi (b0105) 2019 Osgood-Zimmerman, Millear, Stubbs, Shields, Pickering, Earl, Graetz, Kinyoki, Ray, Bhatt (b0030) 2018; 555 Gething, Casey, Weiss, Bisanzio, Bhatt, Cameron, Battle, Dalrymple, Rozier, Rao (b0010) 2016; 375 Bosco, Alegana, Bird, Pezzulo, Bengtsson, Sorichetta, Steele, Hornby, Ruktanonchai, Ruktanonchai (b0025) 2017; 14 Mosser, Gagne-Maynard, Rao, Osgood-Zimmerman, Fullman, Graetz, Burstein, Updike, Liu, Ray (b0060) 2019; 393 National Population Commission - NPC and ICF, Nigeria Demographic and Health Survey 2018 - Final Report, Abuja, Nigeria: NPC and ICF. Available at United Nations. Transforming our world: the 2030 Agenda for Sustainable Development Steele, Sundsøy, Pezzulo, Alegana, Bird, Blumenstock, Bjelland, Engø-Monsen, de Montjoye, Iqbal (b0020) 2017; 14 WorldPop, Nigeria total number of people per 100m grid-cell, https://www.worldpop.org/geodata/summary?id=28029. [Accessed Nov-19-2019] (2019). Paige, Fuglstad, Riebler, Wakefield (b0125) 2020 Chiles, Delfiner (b0135) 2009; vol. 497 McCullagh, Nelder (b0145) 1989 Wilson, Wakefield (b0115) 2018; 21 WorldPop. The WorldPop Project IHME. Institute for Health Metrics and Evaluation - Acting on Data Gething P, Tatem A, Bird T, Burgert-Brucker C. Creating spatial interpolation surfaces with DHS data. DHS Spatial Analysis Reports No. 11, Rockville, Maryland, USA: ICF International. Available at Graetz, Friedman, Osgood-Zimmerman, Burstein, Biehl, Shields, Mosser, Casey, Deshpande, Earl (b0035) 2018; 555 Rue, Martino, Chopin (b0170) 2009; 71 Osgood-Zimmerman (10.1016/j.vaccine.2021.03.007_b0030) 2018; 555 10.1016/j.vaccine.2021.03.007_b0090 Steele (10.1016/j.vaccine.2021.03.007_b0020) 2017; 14 McCullagh (10.1016/j.vaccine.2021.03.007_b0145) 1989 Wilson (10.1016/j.vaccine.2021.03.007_b0115) 2018; 21 Utazi (10.1016/j.vaccine.2021.03.007_b0045) 2018; 36 Golding (10.1016/j.vaccine.2021.03.007_b0015) 2017; 390 Paige (10.1016/j.vaccine.2021.03.007_b0125) 2020 10.1016/j.vaccine.2021.03.007_b0005 Wakefield (10.1016/j.vaccine.2021.03.007_b0150) 2013 Lindgren (10.1016/j.vaccine.2021.03.007_b0140) 2011; 73 10.1016/j.vaccine.2021.03.007_b0100 10.1016/j.vaccine.2021.03.007_b0120 10.1016/j.vaccine.2021.03.007_b0085 10.1016/j.vaccine.2021.03.007_b0160 10.1016/j.vaccine.2021.03.007_b0080 Bosco (10.1016/j.vaccine.2021.03.007_b0025) 2017; 14 Rue (10.1016/j.vaccine.2021.03.007_b0170) 2009; 71 Chiles (10.1016/j.vaccine.2021.03.007_b0135) 2009; vol. 497 Utazi (10.1016/j.vaccine.2021.03.007_b0065) 2020; 38 Utazi (10.1016/j.vaccine.2021.03.007_b0055) 2019; 10 Mosser (10.1016/j.vaccine.2021.03.007_b0060) 2019; 393 Diggle (10.1016/j.vaccine.2021.03.007_b0105) 2019 Gething (10.1016/j.vaccine.2021.03.007_b0010) 2016; 375 Utazi (10.1016/j.vaccine.2021.03.007_b0050) 2019; 28 Graetz (10.1016/j.vaccine.2021.03.007_b0035) 2018; 555 10.1016/j.vaccine.2021.03.007_b0155 Takahashi (10.1016/j.vaccine.2021.03.007_b0040) 2017; 8 Watanabe (10.1016/j.vaccine.2021.03.007_b0165) 2010; 11 Utazi (10.1016/j.vaccine.2021.03.007_b0110) 2021 10.1016/j.vaccine.2021.03.007_b0175 10.1016/j.vaccine.2021.03.007_b0075 10.1016/j.vaccine.2021.03.007_b0130 10.1016/j.vaccine.2021.03.007_b0095 10.1016/j.vaccine.2021.03.007_b0070 |
References_xml | – reference: , 2019. – reference: , 2020 [Accessed Apr-02-2020]. – reference: National Population Commission - NPC and ICF, Nigeria Demographic and Health Survey 2018 - Final Report, Abuja, Nigeria: NPC and ICF. Available at – volume: 555 start-page: 41 year: 2018 ident: b0030 article-title: Mapping child growth failure in Africa between 2000 and 2015 publication-title: Nature – volume: 375 start-page: 2435 year: 2016 end-page: 2445 ident: b0010 article-title: Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015 publication-title: N Engl J Med – volume: 28 start-page: 3226 year: 2019 end-page: 3241 ident: b0050 article-title: A spatial regression model for the disaggregation of areal unit based data to high-resolution grids with application to vaccination coverage mapping publication-title: Stat Methods Med Res – volume: 38 start-page: 3062 year: 2020 end-page: 3071 ident: b0065 article-title: Geospatial variation in measles vaccine coverage through routine and campaign strategies in Nigeria: Analysis of recent household surveys publication-title: Vaccine – reference: WorldPop. The WorldPop Project, – volume: 393 start-page: 1843 year: 2019 end-page: 1855 ident: b0060 article-title: Mapping diphtheria-pertussis-tetanus vaccine coverage in Africa, 2000–2016: a spatial and temporal modelling study publication-title: The Lancet – reference: Local Burden of Disease Vaccine Coverage Collaborators and others. Mapping routine measles vaccination in low- and middle-income countries. Nature 2021;589 (1):415–19. – reference: ICF. The Demographic and Health Surveys, The DHS Program website. Funded by USAID. – year: 2020 ident: b0125 article-title: Design-and model-based approaches to small-area estimation in a low and middle income country context: comparisons and recommendations publication-title: J Surv Stat Methodol – year: 2019 ident: b0105 article-title: Model-based geostatistics for global public health: methods and applications – reference: WorldPop. Nigeria 100m Age structures. Alpha version 2014 estimates of number of people in each 5- year age group per grid square, with national totals adjusted to match UN population division estimates, – reference: WorldPop. The WorldPop Project - About, – volume: 21 start-page: e17 year: 2018 end-page: e32 ident: b0115 article-title: Pointless spatial modeling publication-title: Biostatistics – volume: 71 start-page: 319 year: 2009 end-page: 392 ident: b0170 article-title: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations publication-title: J Roy Stat Soc B – reference: ; 2015. – reference: IHME. Institute for Health Metrics and Evaluation, – reference: Gething P, Tatem A, Bird T, Burgert-Brucker C. Creating spatial interpolation surfaces with DHS data. DHS Spatial Analysis Reports No. 11, Rockville, Maryland, USA: ICF International. Available at – reference: , 2020. [Accessed Apr-02-2020]. – reference: ICF. The DHS Program - GPS Data Collection, – reference: IHME. Institute for Health Metrics and Evaluation - Acting on Data, – volume: vol. 497 year: 2009 ident: b0135 publication-title: Geostatistics: modeling spatial uncertainty – volume: 390 start-page: 2171 year: 2017 end-page: 2182 ident: b0015 article-title: Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the Sustainable Development Goals publication-title: Lancet – reference: , 2015. [Accessed Apr-02-2020]. – volume: 11 start-page: 3571 year: 2010 end-page: 3594 ident: b0165 article-title: Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory publication-title: J Machine Learn Res – volume: 555 start-page: 48 year: 2018 ident: b0035 article-title: Mapping local variation in educational attainment across Africa publication-title: Nature – volume: 73 start-page: 423 year: 2011 end-page: 498 ident: b0140 article-title: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach publication-title: J Roy Stat Soc: Series B (Stat Methodol) – year: 2013 ident: b0150 article-title: Bayesian and frequentist regression methods – volume: 8 start-page: 1 year: 2017 end-page: 9 ident: b0040 article-title: The geography of measles vaccination in the African Great Lakes region publication-title: Nature Commun – reference: WorldPop, Nigeria total number of people per 100m grid-cell, https://www.worldpop.org/geodata/summary?id=28029. [Accessed Nov-19-2019] (2019). – volume: 10 start-page: 1633 year: 2019 ident: b0055 article-title: Mapping vaccination coverage to explore the effects of delivery mechanisms and inform vaccination strategies publication-title: Nature Commun – volume: 14 year: 2017 ident: b0020 article-title: Mapping poverty using mobile phone and satellite data publication-title: J Roy Soc Interf – reference: , 2014. [Accessed Nov-19-2019]. – reference: UNICEF. The UNICEF Multiple Indicator Cluster Surveys, – volume: 36 start-page: 1583 year: 2018 end-page: 1591 ident: b0045 article-title: High resolution age-structured mapping of childhood vaccination coverage in low and middle income countries publication-title: Vaccine – start-page: 1 year: 2021 end-page: 15 ident: b0110 article-title: District-level estimation of vaccination coverage: Discrete vs continuous spatial models publication-title: Stat Med – reference: United Nations. Transforming our world: the 2030 Agenda for Sustainable Development, – volume: 14 year: 2017 ident: b0025 article-title: Exploring the high-resolution mapping of gender-disaggregated development indicators publication-title: J Roy Soc Interface – year: 1989 ident: b0145 article-title: Generalized Linear Models, Second Edition, Chapman and Hall/CRC Monographs on Statistics and Applied Probability Series – volume: 28 start-page: 3226 issue: 10–11 year: 2019 ident: 10.1016/j.vaccine.2021.03.007_b0050 article-title: A spatial regression model for the disaggregation of areal unit based data to high-resolution grids with application to vaccination coverage mapping publication-title: Stat Methods Med Res doi: 10.1177/0962280218797362 – start-page: 1 year: 2021 ident: 10.1016/j.vaccine.2021.03.007_b0110 article-title: District-level estimation of vaccination coverage: Discrete vs continuous spatial models publication-title: Stat Med – ident: 10.1016/j.vaccine.2021.03.007_b0005 – ident: 10.1016/j.vaccine.2021.03.007_b0160 – volume: 14 issue: 127 year: 2017 ident: 10.1016/j.vaccine.2021.03.007_b0020 article-title: Mapping poverty using mobile phone and satellite data publication-title: J Roy Soc Interf doi: 10.1098/rsif.2016.0690 – ident: 10.1016/j.vaccine.2021.03.007_b0080 – ident: 10.1016/j.vaccine.2021.03.007_b0175 – volume: 71 start-page: 319 issue: 2 year: 2009 ident: 10.1016/j.vaccine.2021.03.007_b0170 article-title: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations publication-title: J Roy Stat Soc B doi: 10.1111/j.1467-9868.2008.00700.x – ident: 10.1016/j.vaccine.2021.03.007_b0100 – volume: 36 start-page: 1583 issue: 12 year: 2018 ident: 10.1016/j.vaccine.2021.03.007_b0045 article-title: High resolution age-structured mapping of childhood vaccination coverage in low and middle income countries publication-title: Vaccine doi: 10.1016/j.vaccine.2018.02.020 – year: 2013 ident: 10.1016/j.vaccine.2021.03.007_b0150 – ident: 10.1016/j.vaccine.2021.03.007_b0120 – volume: 555 start-page: 41 issue: 7694 year: 2018 ident: 10.1016/j.vaccine.2021.03.007_b0030 article-title: Mapping child growth failure in Africa between 2000 and 2015 publication-title: Nature doi: 10.1038/nature25760 – year: 2020 ident: 10.1016/j.vaccine.2021.03.007_b0125 article-title: Design-and model-based approaches to small-area estimation in a low and middle income country context: comparisons and recommendations publication-title: J Surv Stat Methodol – volume: 73 start-page: 423 issue: 4 year: 2011 ident: 10.1016/j.vaccine.2021.03.007_b0140 article-title: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach publication-title: J Roy Stat Soc: Series B (Stat Methodol) doi: 10.1111/j.1467-9868.2011.00777.x – volume: 8 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.vaccine.2021.03.007_b0040 article-title: The geography of measles vaccination in the African Great Lakes region publication-title: Nature Commun doi: 10.1038/ncomms15585 – volume: 38 start-page: 3062 issue: 14 year: 2020 ident: 10.1016/j.vaccine.2021.03.007_b0065 article-title: Geospatial variation in measles vaccine coverage through routine and campaign strategies in Nigeria: Analysis of recent household surveys publication-title: Vaccine doi: 10.1016/j.vaccine.2020.02.070 – ident: 10.1016/j.vaccine.2021.03.007_b0095 – ident: 10.1016/j.vaccine.2021.03.007_b0075 – volume: vol. 497 year: 2009 ident: 10.1016/j.vaccine.2021.03.007_b0135 – ident: 10.1016/j.vaccine.2021.03.007_b0155 – ident: 10.1016/j.vaccine.2021.03.007_b0070 doi: 10.1038/s41586-020-03043-4 – volume: 555 start-page: 48 issue: 7694 year: 2018 ident: 10.1016/j.vaccine.2021.03.007_b0035 article-title: Mapping local variation in educational attainment across Africa publication-title: Nature doi: 10.1038/nature25761 – volume: 393 start-page: 1843 issue: 10183 year: 2019 ident: 10.1016/j.vaccine.2021.03.007_b0060 article-title: Mapping diphtheria-pertussis-tetanus vaccine coverage in Africa, 2000–2016: a spatial and temporal modelling study publication-title: The Lancet doi: 10.1016/S0140-6736(19)30226-0 – ident: 10.1016/j.vaccine.2021.03.007_b0085 – volume: 21 start-page: e17 issue: 2 year: 2018 ident: 10.1016/j.vaccine.2021.03.007_b0115 article-title: Pointless spatial modeling publication-title: Biostatistics doi: 10.1093/biostatistics/kxy041 – volume: 375 start-page: 2435 issue: 25 year: 2016 ident: 10.1016/j.vaccine.2021.03.007_b0010 article-title: Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015 publication-title: N Engl J Med doi: 10.1056/NEJMoa1606701 – volume: 14 issue: 129 year: 2017 ident: 10.1016/j.vaccine.2021.03.007_b0025 article-title: Exploring the high-resolution mapping of gender-disaggregated development indicators publication-title: J Roy Soc Interface doi: 10.1098/rsif.2016.0825 – ident: 10.1016/j.vaccine.2021.03.007_b0130 – volume: 10 start-page: 1633 issue: 1 year: 2019 ident: 10.1016/j.vaccine.2021.03.007_b0055 article-title: Mapping vaccination coverage to explore the effects of delivery mechanisms and inform vaccination strategies publication-title: Nature Commun doi: 10.1038/s41467-019-09611-1 – volume: 390 start-page: 2171 issue: 10108 year: 2017 ident: 10.1016/j.vaccine.2021.03.007_b0015 article-title: Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the Sustainable Development Goals publication-title: Lancet doi: 10.1016/S0140-6736(17)31758-0 – ident: 10.1016/j.vaccine.2021.03.007_b0090 – year: 1989 ident: 10.1016/j.vaccine.2021.03.007_b0145 – year: 2019 ident: 10.1016/j.vaccine.2021.03.007_b0105 – volume: 11 start-page: 3571 issue: Dec year: 2010 ident: 10.1016/j.vaccine.2021.03.007_b0165 article-title: Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory publication-title: J Machine Learn Res |
SSID | ssj0005319 |
Score | 2.4692967 |
Snippet | •Modeling survey stratification and clustering improves coverage estimation.•High-resolution coverage maps based on survey data often have large... Highlights•Modeling survey stratification and clustering improves coverage estimation. •High-resolution coverage maps based on survey data often have large... It is becoming increasingly popular to produce high-resolution maps of vaccination coverage by fitting Bayesian geostatistical models to data from household... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2584 |
SubjectTerms | Allergy and Immunology Bayesian analysis Bayesian model-based geostatistics Bayesian theory Censuses Clusters Estimates Geostatistics Global positioning systems GPS health surveys High-resolution maps Households Immunization Mathematical models Measles Modelling Nigeria Partial differential equations Polls & surveys Random variables Rural areas Sampling designs Small area estimation Survey sampling Uncertainty Vaccination Vaccination coverage vaccines |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KQfFF9PyKVllB-tTcbXY3u9lHKZYiVAq2ci-y7CYbe6Xmjuau0Bf_dmfydT2rVnxMMkM-ZjLzW2bmt4S888EIFjQschzTuEDxsQGcHkvnSshwiUgEDgoffVKHp_LjNJ1ukf1-FgbbKrvY38b0Jlp3Zybd15wsZrPJZ9bkcjblyCKqUxzik1Kjl49_3GjzEM3mHigco_R6imdyPr5yOZavYZnIk5brVP8pP93Gn7-2Ud7ISwePyMMOUNL37TM_JluhGpF77RaT1yNy_6grno_I7nFLU329R0_WU1f1Ht2lx2sCa9AZfcEemWZQl_bqT8hX3DYNh9epqwq6WI8tVXRe0vYd28Mc20IhTlFk8PiOYJZie_03iu2oFAda6Nl8VQesfNF6dXkF3vSUnB58ONk_jLvNGeI8NWwZe8PyBCu-pQ8q9bz0ihfMwzkVUlamQuU8CG-4dt6rELhjZe5CamTKCye1eEa2q3kVXhCaw-o-k4DrVCGlV84l2gdXQhYRXheeR0T2JrF5x1yOG2hc2L5F7dx2lrRoScuEBUtGZDyoLVrqjrsUVG9v28-lQiS1kFzuUtS_Uwx1Fw9qm9iaW2Zv-WxEskFzw-3_5aY7vUva4T6AVgGfS8NZRN4OlyFiYBnIVQGMCzINzWCi1N9kALqZDCJ6RJ63Xj58QyEyJHGEZ9cb_j8IIGP55pVqdtYwlxsBcNckL___rV-RB3iE9Tye7ZDt5eUqvAZYuPRvmv_-J3Z9Y88 priority: 102 providerName: Elsevier |
Title | Modeling and presentation of vaccination coverage estimates using data from household surveys |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0264410X21002759 https://www.clinicalkey.es/playcontent/1-s2.0-S0264410X21002759 https://dx.doi.org/10.1016/j.vaccine.2021.03.007 https://www.ncbi.nlm.nih.gov/pubmed/33824039 https://www.proquest.com/docview/2515664920 https://www.proquest.com/docview/2509609166 https://www.proquest.com/docview/2524298042 https://pubmed.ncbi.nlm.nih.gov/PMC9384691 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJhAvCAqMwpiMhPa0bI7txPETGtOmAlpVwYb6giw7cRgTpGVpJ-2Fv527fDI-Nl6atvEpH-fc_Zy7-x0hL53XgnkFixzLFC5QXKABpwfS2hw8XChCgYXCR-N4dCLfTqNp88KtbNIqW5tYGepsluI78l3ww4A8pObs1fx7gF2jMLratNBYIWtIXYYpXWqq-hQPUTX2gGWGDGTIpn0Fz-7ZzoVNMXQNS0Qe1jyn6l--6U_s-XsK5S8-6fA-udeASbpXa_8BueWLAbldt5e8HJA7R03gfEC2JjVF9eU2Pe4rrsptukUnPXk1yAw-Yn5MVaRLW_GH5BO2TMPCdWqLjM77kqWCznJaX2P9M8WUULBRFNk7viGQpZha_5liKirFYhZ6OluWHqNetFyeX8BMekRODg-O90dB05ghSCPNFoHTLA0x2ps7H0eO5y7mGXPwX-wjlkciTrkXTnNlnYu955blqfWRlhHPrFTiMVktZoV_QmgKK_tEAqaLMyldbG2onLc5eBDhVOb4kMhWJSZtWMuxecZX06annZlGkwY1aZgwoMkh2enE5jVtx00Ccatv09akghU14FhuElR_E_RlYwtKE5qSG2Y-sAp7silH1lsV6SFJOskG7tQw5n8OutFOSdMdp39ChuRFtxusBYaAbOFBuTCmohgM4_i6MQDbdALWfEjW61ne3UMhEiRwhHNXV-Z_NwDZyq_uKb6cVqzlWgDU1eHT60_9GbmL14nxOp5skNXF-dI_B9i3cJtkZedHuFk94fCZ7MP3tb0370Zj2L4-GE_e_wT8EF6e |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVBwvCMIVKLBI0Ke6Xe_6iB8Q4miV0iaKoK3ygpZde02pwAl1UpQ_xW9kxlcoR8tLHxPvxHZmPPOtZ-YbgKfGRpLbEDc5moe0QTFOhDjd8bROMcK50pXUKNwfBL197-3IHy3Bj7oXhsoqa59YOOpkHNM78g2Mw4g8vEjwF5NvDk2NouxqPUKjNIsdO_-OW7b8-fYb1O8zIbY29173nGqqgBP7EZ86JuKxS6nK1NjANyI1gUi4we8C6_PUl0EsrDSRCLUxgbVC8zTW1o88XyTaCyX-7iVY9iRuZVqw_GpzMHy3KCqRxSgR3Nh4jufy0aJnaONo_UTHlCzHTalwS2bV8F_R8E-0-3vR5i9RcOsGXK_gK3tZ2ttNWLJZGy6XAy3nbbjSr1L1bVgdlqTY8zW2t-jxytfYKhsu6LJRpn1AFTlFWzCrxW_BBxrSRq3yTGcJmyyapDI2Tll5j-XHmIpQ0Ssy4gv5StCZUTH_J0bFr4zaZ9jheJZbyrOxfHZ8grZ7G_YvRGl3oJWNM3sPWGwNhmREkUHieSbQ2g2N1SnGLGnCxIgOeLVKVFzxpNO4ji-qLog7UpUmFWlScalQkx1Yb8QmJVHIeQJBrW9Vd8Gi31YYys4TDP8maPPK--TKVblQXL3nBdrlI0E8u6EfdaDbSFYAqwRO_3PSldokVXOexTPZgSfNYfRPlHTSmUXl4pqC1NANgrPWIFCMuhg_OnC3tPLmP5SyS5SReO3hKftvFhA_-ukj2efDgic9kgiuI_f-2Zf-GK729vq7and7sPMArtE9U7ZQdFegNT2e2YcIOqfmUfWkM_h40c7lJyT0mQA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiouCMLLUGCRoKe6We_au_EBIUSJWkqrSLQol2rZtdeUCpxQJ0X5a_w6ZvykPFouPSbeie3MeOZbz8w3hDyzLhbMKdjkGKZwg2L9GHC6HxqTQYQLRCCwUXh3T24dhG_H0XiJ_Gh6YbCssvGJpaNOJwm-I-9DHAbkEcac9bO6LGK0OXw5_ebjBCnMtDbjNCoT2XGL77B9K15sb4Kun3M-fLP_esuvJwz4SRSzmW9jlgSYtsysk5HlmZU8ZRa-ky5iWSRkwp2wMVfGWukcNyxLjIviMOKpCZWA371CrioRBfiMqbHqyktEOVQEtjihHwZs3HUP9Y83Tk2CaXPYnvKg4lhV_4qLf-Le38s3f4mHw5vkRg1k6avK8m6RJZf3yLVqtOWiR1Z266R9j6yNKnrsxTrd77q9inW6RkcdcTbI9D5gbU7ZIEwb8dvkEMe1YdM8NXlKp127VE4nGa3usfqYYDkq-EeKzCFfEURTLOv_RLEMlmIjDT2azAuHGTdazE9OwYrvkINLUdldspxPcnef0MRZCM6AJ2UahlYaEyjrTAbRS1iVWu6RsFGJTmrGdBzc8UU3pXHHutakRk1qJjRo0iMbrdi0ogy5SEA2-tZNPyx4cA1B7SJB9TdBV9R-qNCBLrhm-j0rcS8bc2TcVVHskUErWUOtCkL9z0lXG5PU7Xm6p9MjT9vD4Kkw_WRyB8qFNSW9YSDleWsAMsYDiCQeuVdZefsfCjFA8ki4dnXG_tsFyJR-9kj--ahkTI8FwOw4eHD-pT8hK-BS9LvtvZ2H5DreMqYN-WCVLM9O5u4RoM-ZfVw-5pR8vGy_8hNHZpvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+presentation+of+vaccination+coverage+estimates+using+data+from+household+surveys&rft.jtitle=Vaccine&rft.au=Tracy+Qi+Dong&rft.au=Wakefield%2C+Jon&rft.date=2021-04-28&rft.pub=Elsevier+Limited&rft.issn=0264-410X&rft.eissn=1873-2518&rft.volume=39&rft.issue=18&rft.spage=2584&rft_id=info:doi/10.1016%2Fj.vaccine.2021.03.007&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-410X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-410X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-410X&client=summon |