Greater focus needed on methane leakage from natural gas infrastructure

Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. W...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 17; pp. 6435 - 6440
Main Authors Alvarez, Ramón A, Pacala, Stephen W, Winebrake, James J, Chameides, William L, Hamburg, Steven P
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 24.04.2012
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas.
AbstractList Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels ... leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing ... losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. (ProQuest: ... denotes formulae/symbols omitted.)
Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH 4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH 4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas.
Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas.
Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas.
Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH 4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH 4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas.
Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH₄ leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH₄ losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas.
Author Winebrake, James J
Hamburg, Steven P
Pacala, Stephen W
Alvarez, Ramón A
Chameides, William L
Author_xml – sequence: 1
  fullname: Alvarez, Ramón A
– sequence: 2
  fullname: Pacala, Stephen W
– sequence: 3
  fullname: Winebrake, James J
– sequence: 4
  fullname: Chameides, William L
– sequence: 5
  fullname: Hamburg, Steven P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22493226$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1vEzEQxS1URNPCmROwUi9cth1_7K59QUIVDUiVOEDPlmOP0w27drB3kfjvcZSQACcutjz-zdPMexfkLMSAhLykcE2h4zfbYPI1ZcAEdBTUE7IoJ61boeCMLABYV0vBxDm5yHkDAKqR8IycMyYUZ6xdkOUyoZkwVT7aOVcB0aGrYqhGnB5NwGpA882ssfIpjlUw05zMUK1Nrvrgk8lTmm2p4XPy1Jsh44vDfUke7j58vf1Y339efrp9f1_bRsFUK-54Ky0qcFQItkLvaBkEZeO88spg55rydMzzlbBUMLROWWyxlSCppPySvNvrbufViM5imMpAepv60aSfOppe__0T-ke9jj8056Ksz4vA24NAit9nzJMe-2xxGMqycc6aAu1UWwyi_4GCksXibode_YNu4pxCcWJPSRBNW6ibPWVTzDmhP85NQe_y1Ls89SnP0vH6z3WP_O8AC_DmAOw6T3JK0063gjeFeLUnNnmK6YgI2kjZiO6k4E3UZp36rB--MKDFrmJ5A5z_ApEouoI
CitedBy_id crossref_primary_10_1016_j_rser_2023_114045
crossref_primary_10_1126_science_1247045
crossref_primary_10_1080_23744731_2024_2351309
crossref_primary_10_1109_JSTARS_2022_3150089
crossref_primary_10_1021_acssuschemeng_5b00122
crossref_primary_10_2174_18748341016090100137
crossref_primary_10_5194_amt_11_1273_2018
crossref_primary_10_1126_sciadv_aaz5120
crossref_primary_10_1016_j_egypro_2018_07_111
crossref_primary_10_1021_acs_est_7b03254
crossref_primary_10_1021_acs_est_9b04657
crossref_primary_10_1007_s11356_019_07255_8
crossref_primary_10_1088_1748_9326_10_10_104006
crossref_primary_10_1021_acs_est_0c00516
crossref_primary_10_1038_nclimate2998
crossref_primary_10_1021_acs_est_3c09030
crossref_primary_10_3389_fenrg_2019_00020
crossref_primary_10_1021_acs_est_1c00294
crossref_primary_10_1021_acs_est_1c03685
crossref_primary_10_1073_pnas_1809276115
crossref_primary_10_1144_petgeo2016_060
crossref_primary_10_1016_j_energy_2017_05_194
crossref_primary_10_1016_j_ijhydene_2019_01_134
crossref_primary_10_1002_aic_15958
crossref_primary_10_2105_AJPH_2016_303398
crossref_primary_10_5194_acp_17_12405_2017
crossref_primary_10_1016_j_apenergy_2019_113998
crossref_primary_10_1002_wat2_1152
crossref_primary_10_1016_j_susmat_2014_11_001
crossref_primary_10_3389_fenrg_2021_638105
crossref_primary_10_1039_C7FD00063D
crossref_primary_10_1016_j_envpol_2016_01_094
crossref_primary_10_1021_es304414q
crossref_primary_10_1016_j_atmosenv_2019_116981
crossref_primary_10_1007_s00340_017_6735_6
crossref_primary_10_1021_acs_est_6b06095
crossref_primary_10_1007_s13203_020_00247_7
crossref_primary_10_5194_amt_16_5051_2023
crossref_primary_10_1016_j_spc_2020_02_008
crossref_primary_10_1002_cphc_202100580
crossref_primary_10_5194_amt_13_341_2020
crossref_primary_10_1016_j_enconman_2021_114271
crossref_primary_10_1016_j_energy_2022_124503
crossref_primary_10_1080_14693062_2023_2181750
crossref_primary_10_1016_j_ijhydene_2022_11_095
crossref_primary_10_1016_j_trd_2017_03_015
crossref_primary_10_1364_OL_44_004375
crossref_primary_10_1080_01490451_2020_1750740
crossref_primary_10_1038_s43247_022_00626_z
crossref_primary_10_3389_fpubh_2021_613517
crossref_primary_10_1029_2019GL085866
crossref_primary_10_1088_2515_7620_ab716d
crossref_primary_10_3390_en15103684
crossref_primary_10_1021_acs_est_5b05059
crossref_primary_10_1016_j_pecs_2017_10_002
crossref_primary_10_1021_es505116p
crossref_primary_10_1080_08120099_2018_1471004
crossref_primary_10_1016_j_coche_2014_05_004
crossref_primary_10_1021_es4052582
crossref_primary_10_1038_nclimate2204
crossref_primary_10_3390_foods10122941
crossref_primary_10_1016_j_enpol_2018_11_024
crossref_primary_10_1038_s41598_018_34926_2
crossref_primary_10_1016_j_atmosenv_2017_02_030
crossref_primary_10_1002_2018EF000809
crossref_primary_10_1021_acssuschemeng_1c08253
crossref_primary_10_1016_j_scs_2017_08_027
crossref_primary_10_3390_s21175683
crossref_primary_10_1080_08927022_2019_1648809
crossref_primary_10_1088_1748_9326_ac71ba
crossref_primary_10_1016_j_rser_2016_11_186
crossref_primary_10_1039_C6TA02809H
crossref_primary_10_1088_1757_899X_1109_1_012018
crossref_primary_10_1002_ente_201402086
crossref_primary_10_1021_es5040156
crossref_primary_10_1039_C7RA05692C
crossref_primary_10_1525_elementa_266
crossref_primary_10_1525_elementa_387
crossref_primary_10_1021_jp507152j
crossref_primary_10_1021_sc500236g
crossref_primary_10_1186_s43170_021_00041_y
crossref_primary_10_1002_2016EF000381
crossref_primary_10_1016_j_isci_2022_105661
crossref_primary_10_1007_s10661_017_5904_8
crossref_primary_10_1038_ncomms12273
crossref_primary_10_1016_j_enpol_2013_02_036
crossref_primary_10_1021_acs_est_8b01767
crossref_primary_10_1071_AJ19071
crossref_primary_10_1016_j_jclepro_2018_09_111
crossref_primary_10_1007_s10640_018_0274_4
crossref_primary_10_3390_atmos13010011
crossref_primary_10_1021_acssuschemeng_2c00791
crossref_primary_10_1525_elementa_257
crossref_primary_10_1038_nclimate2218
crossref_primary_10_5194_acp_18_16863_2018
crossref_primary_10_1039_D1EE02093E
crossref_primary_10_1016_j_enpol_2017_08_012
crossref_primary_10_1021_acssuschemeng_1c01517
crossref_primary_10_1016_j_rser_2023_113265
crossref_primary_10_1016_j_atmosenv_2017_08_066
crossref_primary_10_1038_s41598_021_90839_7
crossref_primary_10_1080_17583004_2014_986849
crossref_primary_10_1021_acs_jpcc_4c00066
crossref_primary_10_1073_pnas_1206927109
crossref_primary_10_1016_j_poly_2023_116760
crossref_primary_10_1021_acs_est_8b01665
crossref_primary_10_1038_s41558_022_01503_5
crossref_primary_10_1016_j_esd_2017_12_004
crossref_primary_10_1080_01496395_2024_2366914
crossref_primary_10_1021_acs_iecr_7b00354
crossref_primary_10_2139_ssrn_2479751
crossref_primary_10_3389_fenrg_2023_1207208
crossref_primary_10_1021_acs_energyfuels_5b01063
crossref_primary_10_1021_es506359c
crossref_primary_10_5547_01956574_38_5_jpet
crossref_primary_10_1016_j_egyr_2020_03_016
crossref_primary_10_1088_2634_4505_accf33
crossref_primary_10_1021_acs_est_4c02333
crossref_primary_10_1021_es4053472
crossref_primary_10_1088_2752_5309_acc886
crossref_primary_10_1016_j_rser_2014_01_030
crossref_primary_10_1016_j_envsci_2016_08_013
crossref_primary_10_1021_acs_est_5b06068
crossref_primary_10_1016_j_apgeochem_2017_12_022
crossref_primary_10_1039_C8CP01648H
crossref_primary_10_1111_jiec_12084
crossref_primary_10_1021_acs_est_5b06059
crossref_primary_10_1021_es404474x
crossref_primary_10_1073_pnas_1206019109
crossref_primary_10_1021_acs_est_7b00814
crossref_primary_10_1111_cobi_12562
crossref_primary_10_1088_1748_9326_aa8f7e
crossref_primary_10_3390_resources8020084
crossref_primary_10_1016_j_rser_2023_113367
crossref_primary_10_1086_725004
crossref_primary_10_1021_acs_est_0c03175
crossref_primary_10_1007_s10584_012_0658_3
crossref_primary_10_1016_j_rse_2014_08_011
crossref_primary_10_1073_pnas_1309334111
crossref_primary_10_1073_pnas_1908712116
crossref_primary_10_1029_2021JG006555
crossref_primary_10_1002_jgrd_50722
crossref_primary_10_1073_pnas_2217900120
crossref_primary_10_1021_acs_cgd_6b00385
crossref_primary_10_1021_acs_jced_0c00159
crossref_primary_10_1080_2329194X_2023_2262531
crossref_primary_10_1007_s10584_021_03001_7
crossref_primary_10_1080_17415977_2015_1130039
crossref_primary_10_30897_ijegeo_1029369
crossref_primary_10_1007_s11027_018_9821_0
crossref_primary_10_1016_j_scitotenv_2023_166629
crossref_primary_10_1016_j_apenergy_2015_10_082
crossref_primary_10_3390_su132413895
crossref_primary_10_1016_j_rser_2017_08_082
crossref_primary_10_1007_s11367_017_1306_y
crossref_primary_10_1016_j_energy_2017_11_098
crossref_primary_10_1109_JSEN_2022_3214176
crossref_primary_10_20517_cf_2023_53
crossref_primary_10_1002_elan_201800409
crossref_primary_10_1021_acs_est_6b04072
crossref_primary_10_1016_j_compositesb_2020_108277
crossref_primary_10_1016_j_scitotenv_2024_171036
crossref_primary_10_1021_acs_est_1c05246
crossref_primary_10_5194_acp_23_5945_2023
crossref_primary_10_1021_acs_iecr_7b03899
crossref_primary_10_1021_acs_jcim_0c01479
crossref_primary_10_1016_j_enpol_2012_10_068
crossref_primary_10_1080_02692171_2020_1755239
crossref_primary_10_1021_acsapm_1c00551
crossref_primary_10_1021_acscatal_3c04150
crossref_primary_10_1021_acssuschemeng_1c01324
crossref_primary_10_3390_methane2040027
crossref_primary_10_1109_ACCESS_2023_3345801
crossref_primary_10_1016_j_resconrec_2018_11_021
crossref_primary_10_1080_10962247_2017_1368737
crossref_primary_10_1016_j_enpol_2018_05_063
crossref_primary_10_1016_j_enpol_2013_03_052
crossref_primary_10_1111_iere_12098
crossref_primary_10_1016_j_atmosenv_2020_117452
crossref_primary_10_2139_ssrn_2537833
crossref_primary_10_1007_s00267_014_0250_x
crossref_primary_10_1016_j_jclepro_2013_04_008
crossref_primary_10_1088_1748_9326_aa7397
crossref_primary_10_1364_AO_54_001647
crossref_primary_10_1021_es504315f
crossref_primary_10_1021_acs_est_6b05052
crossref_primary_10_1073_pnas_1316546111
crossref_primary_10_1016_j_jlp_2022_104878
crossref_primary_10_3390_su16135789
crossref_primary_10_1038_s41598_021_87610_3
crossref_primary_10_3390_su16114602
crossref_primary_10_1016_j_jclepro_2019_03_107
crossref_primary_10_1002_ese3_380
crossref_primary_10_3390_su5052210
crossref_primary_10_1146_annurev_environ_031113_144051
crossref_primary_10_1016_j_gee_2017_09_004
crossref_primary_10_1038_s41467_019_09424_2
crossref_primary_10_5194_acp_18_15555_2018
crossref_primary_10_1080_10962247_2015_1040526
crossref_primary_10_1021_es5063055
crossref_primary_10_1016_j_atmosenv_2016_08_065
crossref_primary_10_1016_j_pacs_2022_100428
crossref_primary_10_1021_acs_chemrev_8b00091
crossref_primary_10_1109_JSTQE_2018_2885496
crossref_primary_10_5194_amt_12_6771_2019
crossref_primary_10_1016_j_envpol_2012_11_003
crossref_primary_10_1016_j_cattod_2020_02_010
crossref_primary_10_1021_acscatal_2c01706
crossref_primary_10_1080_14693062_2017_1389686
crossref_primary_10_3390_s19122707
crossref_primary_10_1021_acs_jced_1c00446
crossref_primary_10_1111_jiec_12394
crossref_primary_10_1364_PRJ_522253
crossref_primary_10_1016_j_isci_2023_107389
crossref_primary_10_1016_j_enpol_2015_07_012
crossref_primary_10_1021_acs_est_0c03049
crossref_primary_10_1007_s12517_021_07998_0
crossref_primary_10_1016_j_exis_2017_10_009
crossref_primary_10_1088_1748_9326_abef33
crossref_primary_10_1016_j_ijhydene_2023_12_010
crossref_primary_10_1039_D1VA00049G
crossref_primary_10_1016_j_eneco_2019_104499
crossref_primary_10_1038_nature19797
crossref_primary_10_1016_j_erss_2022_102538
crossref_primary_10_1016_j_scitotenv_2022_159702
crossref_primary_10_1016_j_enpol_2018_02_006
crossref_primary_10_1021_acs_est_9b06499
crossref_primary_10_1021_acs_iecr_7b03731
crossref_primary_10_1371_journal_pone_0081648
crossref_primary_10_1021_acs_est_6b02827
crossref_primary_10_1016_j_apsusc_2020_145900
crossref_primary_10_1039_C8TA09592B
crossref_primary_10_1016_j_aap_2014_11_003
crossref_primary_10_1021_acs_est_5b00412
crossref_primary_10_1016_j_eneco_2018_03_034
crossref_primary_10_1038_s41598_021_01721_5
crossref_primary_10_1039_C6CP04604E
crossref_primary_10_1002_ese3_35
crossref_primary_10_1021_acsomega_8b03246
crossref_primary_10_1039_C8EM00414E
crossref_primary_10_1021_es501204c
crossref_primary_10_1016_j_apenergy_2019_03_196
crossref_primary_10_1021_es5060258
crossref_primary_10_3390_en13112739
crossref_primary_10_1016_j_foodpol_2015_12_001
crossref_primary_10_3390_s23031207
crossref_primary_10_1002_grl_50811
crossref_primary_10_1016_j_jhazmat_2019_04_046
crossref_primary_10_5194_acp_22_9349_2022
crossref_primary_10_1038_s41467_020_18226_w
crossref_primary_10_1364_OPTICA_5_000320
crossref_primary_10_1016_j_exis_2020_02_003
crossref_primary_10_1016_j_ijggc_2014_11_015
crossref_primary_10_3390_en13133320
crossref_primary_10_5194_acp_15_411_2015
crossref_primary_10_1021_acs_nanolett_6b00919
crossref_primary_10_5194_adgeo_45_125_2018
crossref_primary_10_1021_acs_chemmater_8b01425
crossref_primary_10_1021_acssuschemeng_9b04661
crossref_primary_10_3390_su10020302
crossref_primary_10_26599_JAC_2023_9220773
crossref_primary_10_1088_1361_6595_aba488
crossref_primary_10_1002_ese3_112
crossref_primary_10_1002_2016JD026157
crossref_primary_10_5194_esd_9_1013_2018
crossref_primary_10_1016_j_apenergy_2019_02_022
crossref_primary_10_1016_j_jngse_2022_104643
crossref_primary_10_1021_jacs_2c03875
crossref_primary_10_1021_sc500730x
crossref_primary_10_1126_science_aaj2350
crossref_primary_10_1051_matecconf_20165801011
crossref_primary_10_1021_acs_est_9b05083
crossref_primary_10_1111_jiec_12475
crossref_primary_10_1007_s10584_015_1471_6
crossref_primary_10_1073_pnas_1213871110
crossref_primary_10_5194_acp_21_6605_2021
crossref_primary_10_1038_493012a
crossref_primary_10_1051_e3sconf_202339101046
crossref_primary_10_1016_j_rser_2014_04_068
crossref_primary_10_1016_j_energy_2021_121516
crossref_primary_10_1016_j_ese_2022_100210
crossref_primary_10_1016_j_jclepro_2024_142833
crossref_primary_10_2139_ssrn_4666204
crossref_primary_10_1021_acs_est_7b02732
crossref_primary_10_1002_env_2519
crossref_primary_10_1515_reveh_2015_0055
crossref_primary_10_5694_mja13_11023
crossref_primary_10_1021_acs_jpcc_0c11117
crossref_primary_10_1111_jiec_12225
crossref_primary_10_1038_ncomms4961
crossref_primary_10_1021_acs_est_3c08972
crossref_primary_10_1021_acs_est_8b05546
crossref_primary_10_1016_j_enpol_2015_08_027
crossref_primary_10_1021_acs_est_5b00217
crossref_primary_10_1021_acs_est_5b01669
crossref_primary_10_1088_1755_1315_93_1_012050
crossref_primary_10_1088_2752_5309_acdcb2
crossref_primary_10_1021_es4046692
crossref_primary_10_1021_ef5009874
crossref_primary_10_1016_j_energy_2017_09_062
crossref_primary_10_3390_atmos11070716
crossref_primary_10_1016_j_scitotenv_2021_151076
crossref_primary_10_1038_s41467_021_25017_4
crossref_primary_10_5194_acp_20_7069_2020
crossref_primary_10_5572_KOSAE_2022_38_6_933
crossref_primary_10_3390_su11082235
crossref_primary_10_3390_math10214116
crossref_primary_10_1016_j_eneco_2018_04_012
crossref_primary_10_5194_amt_11_1565_2018
crossref_primary_10_1080_14693062_2018_1427538
crossref_primary_10_1016_j_apsusc_2018_06_127
crossref_primary_10_1007_s00340_019_7184_1
crossref_primary_10_1016_j_rser_2013_08_065
crossref_primary_10_1016_j_jngse_2015_03_009
crossref_primary_10_1021_acs_est_7b00571
crossref_primary_10_1088_2040_8986_abb1cf
crossref_primary_10_1021_es404621d
crossref_primary_10_5194_acp_22_10809_2022
crossref_primary_10_1021_acs_est_6b00705
crossref_primary_10_1364_OPTICA_4_001322
crossref_primary_10_1016_j_enpol_2013_12_056
crossref_primary_10_1038_s41558_019_0457_1
crossref_primary_10_1021_acs_est_9b01875
crossref_primary_10_1016_j_seta_2014_02_006
crossref_primary_10_1016_j_rser_2018_01_007
crossref_primary_10_1029_2018JD029690
crossref_primary_10_1016_j_eneco_2016_06_009
crossref_primary_10_1073_pnas_1522126112
crossref_primary_10_1016_j_renene_2017_06_023
crossref_primary_10_1007_s41825_017_0005_4
crossref_primary_10_1016_j_erss_2016_05_003
crossref_primary_10_1016_j_eneco_2020_105004
crossref_primary_10_1177_0096340212451432
crossref_primary_10_1021_es5052809
crossref_primary_10_1039_C8LC01053F
crossref_primary_10_1016_j_juogr_2014_01_003
crossref_primary_10_1088_1748_9326_ab5e6f
crossref_primary_10_1073_pnas_1805687115
crossref_primary_10_1088_1748_9326_9_9_094008
crossref_primary_10_1021_acs_est_5b01118
crossref_primary_10_1088_2752_5309_acfb2e
crossref_primary_10_1088_1748_9326_aa6791
crossref_primary_10_1016_j_jece_2021_106435
crossref_primary_10_1021_acssuschemeng_8b06270
crossref_primary_10_1016_j_erss_2021_102059
crossref_primary_10_1039_c3cp55039g
crossref_primary_10_1557_mre_2015_5
crossref_primary_10_1002_2014JD022697
crossref_primary_10_1016_j_measurement_2019_05_055
crossref_primary_10_1002_2015JD023242
crossref_primary_10_1364_AO_419942
crossref_primary_10_1016_j_ijhydene_2021_09_257
crossref_primary_10_1016_j_tej_2014_07_007
crossref_primary_10_1111_ropr_12463
crossref_primary_10_1039_C9DT01911A
crossref_primary_10_1016_j_saa_2021_120418
crossref_primary_10_1021_acs_est_5b00133
crossref_primary_10_1007_s10584_022_03442_8
crossref_primary_10_1016_j_apenergy_2020_115327
crossref_primary_10_1016_j_atmosenv_2016_01_021
crossref_primary_10_1088_1748_9326_ac6227
crossref_primary_10_1525_elementa_358
crossref_primary_10_1002_advs_201700379
crossref_primary_10_1039_C4EE03515A
crossref_primary_10_1016_j_adapen_2021_100008
crossref_primary_10_5194_acp_20_9169_2020
crossref_primary_10_1016_j_trd_2019_01_021
crossref_primary_10_2139_ssrn_2205144
crossref_primary_10_1029_2018JD029489
crossref_primary_10_1525_elementa_2022_00045
crossref_primary_10_1038_s41598_022_23334_2
crossref_primary_10_1021_acs_est_7b03525
crossref_primary_10_1080_14693062_2014_912981
crossref_primary_10_1177_0278364920954907
crossref_primary_10_1002_2014JD023002
crossref_primary_10_1016_j_jngse_2016_10_062
crossref_primary_10_1039_D2CY00779G
crossref_primary_10_1080_10962247_2018_1505675
crossref_primary_10_3389_frsus_2022_1007060
crossref_primary_10_5194_amt_8_4539_2015
crossref_primary_10_1007_s11356_019_04957_x
crossref_primary_10_1002_2014EF000265
crossref_primary_10_1021_es4046154
crossref_primary_10_1002_er_4631
crossref_primary_10_1016_j_paerosci_2023_100919
crossref_primary_10_1093_pnasnexus_pgad260
crossref_primary_10_1071_AJ20148
crossref_primary_10_3390_environments3040031
crossref_primary_10_17122_ntj_oil_2022_5_171_178
crossref_primary_10_1007_s13412_020_00602_z
crossref_primary_10_1016_j_esr_2016_05_001
crossref_primary_10_1016_j_envpol_2022_120027
crossref_primary_10_1016_j_atmosenv_2015_03_056
crossref_primary_10_3934_environsci_2020007
crossref_primary_10_1016_j_scitotenv_2018_04_422
crossref_primary_10_1080_10406026_2017_1372392
crossref_primary_10_1080_10962247_2021_1942316
crossref_primary_10_1088_1361_6463_ac5770
crossref_primary_10_1016_j_energy_2023_129956
crossref_primary_10_1146_annurev_chembioeng_060713_035938
crossref_primary_10_1088_1748_9326_9_11_114022
crossref_primary_10_1016_j_enpol_2017_10_003
crossref_primary_10_1038_s41560_022_01060_3
crossref_primary_10_1021_acs_est_5b05503
crossref_primary_10_1126_science_aar7204
crossref_primary_10_1016_j_pecs_2016_05_001
crossref_primary_10_1073_pnas_1304880110
crossref_primary_10_2139_ssrn_3936305
crossref_primary_10_1007_s00340_018_6916_y
crossref_primary_10_1525_elementa_443
crossref_primary_10_1175_JTECH_D_16_0024_1
crossref_primary_10_1016_j_jclepro_2019_03_096
crossref_primary_10_1088_2634_4505_ac8071
crossref_primary_10_1016_j_jngse_2018_04_013
crossref_primary_10_1016_j_mcat_2017_12_001
crossref_primary_10_1140_epjb_e2015_60452_3
crossref_primary_10_1021_acs_est_8b05828
crossref_primary_10_1016_j_jclepro_2017_11_223
crossref_primary_10_1016_j_chempr_2016_09_009
crossref_primary_10_1021_es5029537
crossref_primary_10_2139_ssrn_2539383
crossref_primary_10_1007_s11356_022_21482_6
crossref_primary_10_1016_j_atmosenv_2018_05_004
crossref_primary_10_1016_j_ijpvp_2021_104553
crossref_primary_10_1021_acs_est_0c00437
crossref_primary_10_3390_su12187747
crossref_primary_10_1525_elementa_308
crossref_primary_10_1016_j_enggeo_2021_106434
crossref_primary_10_1142_S2010007818400031
crossref_primary_10_1080_10962247_2018_1476274
crossref_primary_10_1021_acssuschemeng_6b00144
crossref_primary_10_1088_1748_9326_ace3db
crossref_primary_10_1021_acs_est_6b01198
crossref_primary_10_1016_j_trd_2016_08_037
crossref_primary_10_3390_atmos14020208
crossref_primary_10_3390_en10020158
crossref_primary_10_5194_essd_14_2401_2022
crossref_primary_10_1016_j_gloenvcha_2015_08_001
crossref_primary_10_1016_j_jece_2021_105734
crossref_primary_10_1016_j_apenergy_2017_08_234
crossref_primary_10_5194_acp_17_13941_2017
crossref_primary_10_1016_j_jclepro_2023_139870
crossref_primary_10_1016_j_enpol_2017_06_053
crossref_primary_10_1111_1758_5899_12101
crossref_primary_10_2139_ssrn_3775725
crossref_primary_10_1029_2021GL095685
crossref_primary_10_1016_j_applthermaleng_2019_114313
crossref_primary_10_1002_2016JD026070
crossref_primary_10_3390_en16041582
crossref_primary_10_1071_AJ19234
crossref_primary_10_1021_acssuschemeng_2c01808
crossref_primary_10_1021_acssuschemeng_2c01803
crossref_primary_10_1080_14693062_2016_1202808
crossref_primary_10_1021_acs_est_5b02275
crossref_primary_10_1021_acs_est_6b05531
crossref_primary_10_1021_es5052759
crossref_primary_10_1016_j_scitotenv_2020_142490
crossref_primary_10_1071_AJ16098
crossref_primary_10_1021_acs_est_5b00099
crossref_primary_10_1016_j_ecolind_2023_111459
Cites_doi 10.5194/acp-11-9839-2011
10.1007/BF00154171
10.1007/s10584-011-0217-3
10.1021/es1025678
10.1073/pnas.0702958104
10.1007/s10584-011-0333-0
10.1007/s10584-011-0061-5
10.1021/es200930h
10.1021/es063031o
10.1023/A:1015235211266
10.1016/j.atmosenv.2009.03.021
10.1023/A:1015737505552
10.1016/j.atmosenv.2009.05.025
10.1016/S0045-6535(97)00236-1
10.1021/es201942m
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Apr 24, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Apr 24, 2012
DBID FBQ
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7ST
7U6
5PM
DOI 10.1073/pnas.1202407109
DatabaseName AGRIS
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList Virology and AIDS Abstracts


Environment Abstracts

CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Methane leakage from natural gas infrastructure
EISSN 1091-6490
EndPage 6440
ExternalDocumentID 2645381541
10_1073_pnas_1202407109
22493226
109_17_6435
41588547
US201400081503
Genre Journal Article
Feature
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
H13
KM
PQEST
X
XHC
ADACV
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7ST
7U6
5PM
ID FETCH-LOGICAL-c590t-93d368ce90d1442befd1322e85df9f9ae7d522ed2f3b4c142ecd9ce6e68081813
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:23:47 EDT 2024
Fri Oct 25 02:39:17 EDT 2024
Sat Aug 17 00:17:33 EDT 2024
Thu Oct 10 15:51:12 EDT 2024
Fri Aug 23 01:10:34 EDT 2024
Sat Nov 02 12:13:50 EDT 2024
Wed Nov 11 00:30:36 EST 2020
Fri Feb 02 07:04:30 EST 2024
Wed Dec 27 19:20:26 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-93d368ce90d1442befd1322e85df9f9ae7d522ed2f3b4c142ecd9ce6e68081813
Notes http://dx.doi.org/10.1073/pnas.1202407109
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Author contributions: R.A.A., S.W.P., and S.P.H. designed research; R.A.A. performed research; R.A.A., S.W.P., and S.P.H. analyzed data; and R.A.A., S.W.P., J.J.W., W.L.C., and S.P.H. wrote the paper.
Contributed by Stephen W. Pacala, February 13, 2012 (sent for review December 21, 2011)
OpenAccessLink https://www.pnas.org/content/pnas/109/17/6435.full.pdf
PMID 22493226
PQID 1009880456
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1202407109
proquest_journals_1009880456
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3340093
proquest_miscellaneous_1017962241
pnas_primary_109_17_6435
proquest_miscellaneous_1009802771
jstor_primary_41588547
fao_agris_US201400081503
pubmed_primary_22493226
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2012-04-24
PublicationDateYYYYMMDD 2012-04-24
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 22711843 - Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1813; author reply E1814
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_17_2
e_1_3_3_9_2
e_1_3_3_16_2
e_1_3_3_18_2
Forster P (e_1_3_3_10_2) 2007
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_2_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_11_2
e_1_3_3_3_2
References_xml – ident: e_1_3_3_6_2
– ident: e_1_3_3_15_2
  doi: 10.5194/acp-11-9839-2011
– ident: e_1_3_3_12_2
  doi: 10.1007/BF00154171
– start-page: 210
  volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_3_3_10_2
  contributor:
    fullname: Forster P
– ident: e_1_3_3_5_2
  doi: 10.1007/s10584-011-0217-3
– ident: e_1_3_3_14_2
  doi: 10.1021/es1025678
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.0702958104
– ident: e_1_3_3_3_2
  doi: 10.1007/s10584-011-0333-0
– ident: e_1_3_3_7_2
– ident: e_1_3_3_1_2
  doi: 10.1007/s10584-011-0061-5
– ident: e_1_3_3_2_2
  doi: 10.1021/es200930h
– ident: e_1_3_3_8_2
  doi: 10.1021/es063031o
– ident: e_1_3_3_11_2
  doi: 10.1023/A:1015235211266
– ident: e_1_3_3_18_2
  doi: 10.1016/j.atmosenv.2009.03.021
– ident: e_1_3_3_13_2
  doi: 10.1023/A:1015737505552
– ident: e_1_3_3_17_2
  doi: 10.1016/j.atmosenv.2009.05.025
– ident: e_1_3_3_9_2
  doi: 10.1016/S0045-6535(97)00236-1
– ident: e_1_3_3_4_2
  doi: 10.1021/es201942m
SSID ssj0009580
Score 2.6058342
Snippet Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process....
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6435
SubjectTerms climate
Climate change
Coal
Diesel vehicles
Electric power
Emissions
Emissions policy
energy
Fuels
gasoline
Global warming
Greenhouse gas emissions
Leakage
Methane
Natural gas
Natural gas industry
Natural gas production
Physical Sciences
Pollutant emissions
power plants
Radiative forcing
Technology
Transportation
Title Greater focus needed on methane leakage from natural gas infrastructure
URI https://www.jstor.org/stable/41588547
http://www.pnas.org/content/109/17/6435.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22493226
https://www.proquest.com/docview/1009880456
https://search.proquest.com/docview/1009802771
https://search.proquest.com/docview/1017962241
https://pubmed.ncbi.nlm.nih.gov/PMC3340093
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51e-KCKKU0UCpX4lAO2U1sJ3GOqKK0oCIkWKk3K7HHpaJNVpvu_2fsPNoixKG3SH7IGs_jm3j8GeC9IxCuTIax14dYYoqx4nUa54TmUuepIcMPt4tv-dlSfrnMLrcgG-_ChKJ9U1_Pm5vbeXP9K9RWrm7NYqwTW3y_OBFC-kx8MYMZKeiYok9Mu6q_d8LJ_UouRz6fQixWTdXNU56ELCbxhKEUwAjAeGaFB1Fp5qp2LE_0nKc06l_48-8yygdx6fQFPB8AJfvYL3wHtrB5CTuDyXbseOCV_rALn8PvAFwz15pNxxqKW2hZ2zD_inTVILvB6je5F-avnLDA-EkTX1UdIy1cVz3T7GaNr2B5-unnyVk8vKMQm6xM7uJSWJErg2ViKX3iNTrrc1BUmXWlKyssLKEwtNyJWppUcjS2NJhjeJZDpWIPtpu2wX1gSSUMYTLFLaVxgj6sEYlztcqVtEaWERyPctSrni5Dh2PuQmgvR30v_Qj2Sc66uiJnppc_uE_1PEDJEhHBXhD-NAWhDKUyWdCYMMv91KVOC02oKovgYNwhPZhh5wmZS3JQBBIjOJqayYD8qQgJtt0MffxJdvq_PuS3co92Injdb_q0hlGFIigeqcPUwRN4P24hvQ5E3oMev3nyyLfwjOTG_ekWlwewTYqA7wgk3dWHlB6cfz0MpvEHRt8MIg
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QAXoEBpoICROJRDsontJM4RVZQFuhUSXdSblfhRqrbJarN74dczdh59CCHBLZIfij3j8Tee8WeAdxZBuFCpCZ0-hNwkJhS0SsIM0VxiHTWkP3CbHWfTOf9ymp5uQDrchfFJ-6o6j-rLq6g-_-lzKxdXajLkiU2-zQ4Y484Tn2zCPVyvMR-c9JFrV3Q3TygaYE75wOiTs8miLtsoobH3Y2JHGYpbGEIYx61wY1_atGUzJCg61lNs9ScEejeR8sbOdPgIfgxj6hJSLqL1qorUrzt0j_886MfwsMeq5ENXvA0bpn4C2701aMl-T1n9_il88icNZklso9YtqXFLNJo0NXEPVJe1IZemvEDLRdxtFuLJRLHjs7IlqODLsiOxXS_NM5gffjw5mIb9Ew2hSot4FRZMs0woU8QaPTNaGaude2tEqm1hi9LkGgGe0dSyiquEU6N0oUxm_IsfImE7sFU3tdkFEpdMIdwTVKOHyPBDKxZbW4lMcK14EcD-ICC56Jg4pI-g50w6AclrsQawiwKU5RnaSTn_Tp0X6bBPGrMAdrxUxy4QwAiR8hzb-F6uuy5kkksEbGkAe4PoZb_CW8f1XKDtQ_wZwNuxGNemC7jgxDbrvo4Lkid_q4MmMXNAKoDnnTaN_zDoZgD5LT0bKzhu8NslqD2eI7zXlhf_3fIN3J-ezI7k0efjry_hAc4hdUE0yvdgC5XCvEIstqpe-5X3GwVCLRU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIiEuQIG2gQJG4lAOySa2kzhHVFjKo1UlWKniYiV-lKptstrsXvj1jJ1HtxXi0FskPxR7xuNvPOPPAO8sgnChUhM6fQi5SUwoaJWEGaK5xDpqSH_gdnScHc7419P0dO2pL5-0r6rzqL68iurz3z63cn6lJkOe2OTk6IAx7jzxyVzbyQbcxzUbZ4OjPvLtiu72CUUjzCkfWH1ybFWXbZTQ2PsysaMNxW0MYYzjV1jbmzZs2QxJio75FFv9C4XeTqZc252mj-HXMK4uKeUiWi2rSP25Rfl4p4E_gUc9ZiUfuipbcM_UT2Grtwot2e-pq98_g8_-xMEsiG3UqiU1bo1Gk6Ym7qHqsjbk0pQXaMGIu9VCPKkodnxWtgQVfVF2ZLarhXkOs-mnnweHYf9UQ6jSIl6GBdMsE8oUsUYPjVbGaufmGpFqW9iiNLlGoGc0taziKuHUKF0okxn_8odI2DZs1k1tdoHEJVMI-wTV6Cky_NCKxdZWIhNcK14EsD8ISc47Rg7pI-k5k05I8lq0AeyiEGV5hvZSzn5Q5006DJTGLIBtL9mxCwQyQqQ8xza-l-uuC5nkEoFbGsDeIH7Zr_TWcT4XaAMRhwbwdizGNeoCLzixzaqv44Llyf_qoGnMHKAKYKfTqPEfBv0MIL-ha2MFxxF-swQ1yHOF9xrz4s4t38CDk49T-f3L8beX8BCnkLpYGuV7sIk6YV4hJFtWr_3i-wuQRS-V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greater+focus+needed+on+methane+leakage+from+natural+gas+infrastructure&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ram%C3%B3n+A.+Alvarez&rft.au=Stephen+W.+Pacala&rft.au=James+J.+Winebrake&rft.au=William+L.+Chameides&rft.date=2012-04-24&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=17&rft.spage=6435&rft_id=info:doi/10.1073%2Fpnas.1202407109&rft_id=info%3Apmid%2F22493226&rft.externalDBID=n%2Fa&rft.externalDocID=109_17_6435
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F17.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F17.cover.gif