Greater focus needed on methane leakage from natural gas infrastructure
Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. W...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 17; pp. 6435 - 6440 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
24.04.2012
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. |
---|---|
AbstractList | Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels ... leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing ... losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. (ProQuest: ... denotes formulae/symbols omitted.) Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH 4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH 4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH 4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH 4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH₄ leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH₄ losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. |
Author | Winebrake, James J Hamburg, Steven P Pacala, Stephen W Alvarez, Ramón A Chameides, William L |
Author_xml | – sequence: 1 fullname: Alvarez, Ramón A – sequence: 2 fullname: Pacala, Stephen W – sequence: 3 fullname: Winebrake, James J – sequence: 4 fullname: Chameides, William L – sequence: 5 fullname: Hamburg, Steven P |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22493226$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1vEzEQxS1URNPCmROwUi9cth1_7K59QUIVDUiVOEDPlmOP0w27drB3kfjvcZSQACcutjz-zdPMexfkLMSAhLykcE2h4zfbYPI1ZcAEdBTUE7IoJ61boeCMLABYV0vBxDm5yHkDAKqR8IycMyYUZ6xdkOUyoZkwVT7aOVcB0aGrYqhGnB5NwGpA882ssfIpjlUw05zMUK1Nrvrgk8lTmm2p4XPy1Jsh44vDfUke7j58vf1Y339efrp9f1_bRsFUK-54Ky0qcFQItkLvaBkEZeO88spg55rydMzzlbBUMLROWWyxlSCppPySvNvrbufViM5imMpAepv60aSfOppe__0T-ke9jj8056Ksz4vA24NAit9nzJMe-2xxGMqycc6aAu1UWwyi_4GCksXibode_YNu4pxCcWJPSRBNW6ibPWVTzDmhP85NQe_y1Ls89SnP0vH6z3WP_O8AC_DmAOw6T3JK0063gjeFeLUnNnmK6YgI2kjZiO6k4E3UZp36rB--MKDFrmJ5A5z_ApEouoI |
CitedBy_id | crossref_primary_10_1016_j_rser_2023_114045 crossref_primary_10_1126_science_1247045 crossref_primary_10_1080_23744731_2024_2351309 crossref_primary_10_1109_JSTARS_2022_3150089 crossref_primary_10_1021_acssuschemeng_5b00122 crossref_primary_10_2174_18748341016090100137 crossref_primary_10_5194_amt_11_1273_2018 crossref_primary_10_1126_sciadv_aaz5120 crossref_primary_10_1016_j_egypro_2018_07_111 crossref_primary_10_1021_acs_est_7b03254 crossref_primary_10_1021_acs_est_9b04657 crossref_primary_10_1007_s11356_019_07255_8 crossref_primary_10_1088_1748_9326_10_10_104006 crossref_primary_10_1021_acs_est_0c00516 crossref_primary_10_1038_nclimate2998 crossref_primary_10_1021_acs_est_3c09030 crossref_primary_10_3389_fenrg_2019_00020 crossref_primary_10_1021_acs_est_1c00294 crossref_primary_10_1021_acs_est_1c03685 crossref_primary_10_1073_pnas_1809276115 crossref_primary_10_1144_petgeo2016_060 crossref_primary_10_1016_j_energy_2017_05_194 crossref_primary_10_1016_j_ijhydene_2019_01_134 crossref_primary_10_1002_aic_15958 crossref_primary_10_2105_AJPH_2016_303398 crossref_primary_10_5194_acp_17_12405_2017 crossref_primary_10_1016_j_apenergy_2019_113998 crossref_primary_10_1002_wat2_1152 crossref_primary_10_1016_j_susmat_2014_11_001 crossref_primary_10_3389_fenrg_2021_638105 crossref_primary_10_1039_C7FD00063D crossref_primary_10_1016_j_envpol_2016_01_094 crossref_primary_10_1021_es304414q crossref_primary_10_1016_j_atmosenv_2019_116981 crossref_primary_10_1007_s00340_017_6735_6 crossref_primary_10_1021_acs_est_6b06095 crossref_primary_10_1007_s13203_020_00247_7 crossref_primary_10_5194_amt_16_5051_2023 crossref_primary_10_1016_j_spc_2020_02_008 crossref_primary_10_1002_cphc_202100580 crossref_primary_10_5194_amt_13_341_2020 crossref_primary_10_1016_j_enconman_2021_114271 crossref_primary_10_1016_j_energy_2022_124503 crossref_primary_10_1080_14693062_2023_2181750 crossref_primary_10_1016_j_ijhydene_2022_11_095 crossref_primary_10_1016_j_trd_2017_03_015 crossref_primary_10_1364_OL_44_004375 crossref_primary_10_1080_01490451_2020_1750740 crossref_primary_10_1038_s43247_022_00626_z crossref_primary_10_3389_fpubh_2021_613517 crossref_primary_10_1029_2019GL085866 crossref_primary_10_1088_2515_7620_ab716d crossref_primary_10_3390_en15103684 crossref_primary_10_1021_acs_est_5b05059 crossref_primary_10_1016_j_pecs_2017_10_002 crossref_primary_10_1021_es505116p crossref_primary_10_1080_08120099_2018_1471004 crossref_primary_10_1016_j_coche_2014_05_004 crossref_primary_10_1021_es4052582 crossref_primary_10_1038_nclimate2204 crossref_primary_10_3390_foods10122941 crossref_primary_10_1016_j_enpol_2018_11_024 crossref_primary_10_1038_s41598_018_34926_2 crossref_primary_10_1016_j_atmosenv_2017_02_030 crossref_primary_10_1002_2018EF000809 crossref_primary_10_1021_acssuschemeng_1c08253 crossref_primary_10_1016_j_scs_2017_08_027 crossref_primary_10_3390_s21175683 crossref_primary_10_1080_08927022_2019_1648809 crossref_primary_10_1088_1748_9326_ac71ba crossref_primary_10_1016_j_rser_2016_11_186 crossref_primary_10_1039_C6TA02809H crossref_primary_10_1088_1757_899X_1109_1_012018 crossref_primary_10_1002_ente_201402086 crossref_primary_10_1021_es5040156 crossref_primary_10_1039_C7RA05692C crossref_primary_10_1525_elementa_266 crossref_primary_10_1525_elementa_387 crossref_primary_10_1021_jp507152j crossref_primary_10_1021_sc500236g crossref_primary_10_1186_s43170_021_00041_y crossref_primary_10_1002_2016EF000381 crossref_primary_10_1016_j_isci_2022_105661 crossref_primary_10_1007_s10661_017_5904_8 crossref_primary_10_1038_ncomms12273 crossref_primary_10_1016_j_enpol_2013_02_036 crossref_primary_10_1021_acs_est_8b01767 crossref_primary_10_1071_AJ19071 crossref_primary_10_1016_j_jclepro_2018_09_111 crossref_primary_10_1007_s10640_018_0274_4 crossref_primary_10_3390_atmos13010011 crossref_primary_10_1021_acssuschemeng_2c00791 crossref_primary_10_1525_elementa_257 crossref_primary_10_1038_nclimate2218 crossref_primary_10_5194_acp_18_16863_2018 crossref_primary_10_1039_D1EE02093E crossref_primary_10_1016_j_enpol_2017_08_012 crossref_primary_10_1021_acssuschemeng_1c01517 crossref_primary_10_1016_j_rser_2023_113265 crossref_primary_10_1016_j_atmosenv_2017_08_066 crossref_primary_10_1038_s41598_021_90839_7 crossref_primary_10_1080_17583004_2014_986849 crossref_primary_10_1021_acs_jpcc_4c00066 crossref_primary_10_1073_pnas_1206927109 crossref_primary_10_1016_j_poly_2023_116760 crossref_primary_10_1021_acs_est_8b01665 crossref_primary_10_1038_s41558_022_01503_5 crossref_primary_10_1016_j_esd_2017_12_004 crossref_primary_10_1080_01496395_2024_2366914 crossref_primary_10_1021_acs_iecr_7b00354 crossref_primary_10_2139_ssrn_2479751 crossref_primary_10_3389_fenrg_2023_1207208 crossref_primary_10_1021_acs_energyfuels_5b01063 crossref_primary_10_1021_es506359c crossref_primary_10_5547_01956574_38_5_jpet crossref_primary_10_1016_j_egyr_2020_03_016 crossref_primary_10_1088_2634_4505_accf33 crossref_primary_10_1021_acs_est_4c02333 crossref_primary_10_1021_es4053472 crossref_primary_10_1088_2752_5309_acc886 crossref_primary_10_1016_j_rser_2014_01_030 crossref_primary_10_1016_j_envsci_2016_08_013 crossref_primary_10_1021_acs_est_5b06068 crossref_primary_10_1016_j_apgeochem_2017_12_022 crossref_primary_10_1039_C8CP01648H crossref_primary_10_1111_jiec_12084 crossref_primary_10_1021_acs_est_5b06059 crossref_primary_10_1021_es404474x crossref_primary_10_1073_pnas_1206019109 crossref_primary_10_1021_acs_est_7b00814 crossref_primary_10_1111_cobi_12562 crossref_primary_10_1088_1748_9326_aa8f7e crossref_primary_10_3390_resources8020084 crossref_primary_10_1016_j_rser_2023_113367 crossref_primary_10_1086_725004 crossref_primary_10_1021_acs_est_0c03175 crossref_primary_10_1007_s10584_012_0658_3 crossref_primary_10_1016_j_rse_2014_08_011 crossref_primary_10_1073_pnas_1309334111 crossref_primary_10_1073_pnas_1908712116 crossref_primary_10_1029_2021JG006555 crossref_primary_10_1002_jgrd_50722 crossref_primary_10_1073_pnas_2217900120 crossref_primary_10_1021_acs_cgd_6b00385 crossref_primary_10_1021_acs_jced_0c00159 crossref_primary_10_1080_2329194X_2023_2262531 crossref_primary_10_1007_s10584_021_03001_7 crossref_primary_10_1080_17415977_2015_1130039 crossref_primary_10_30897_ijegeo_1029369 crossref_primary_10_1007_s11027_018_9821_0 crossref_primary_10_1016_j_scitotenv_2023_166629 crossref_primary_10_1016_j_apenergy_2015_10_082 crossref_primary_10_3390_su132413895 crossref_primary_10_1016_j_rser_2017_08_082 crossref_primary_10_1007_s11367_017_1306_y crossref_primary_10_1016_j_energy_2017_11_098 crossref_primary_10_1109_JSEN_2022_3214176 crossref_primary_10_20517_cf_2023_53 crossref_primary_10_1002_elan_201800409 crossref_primary_10_1021_acs_est_6b04072 crossref_primary_10_1016_j_compositesb_2020_108277 crossref_primary_10_1016_j_scitotenv_2024_171036 crossref_primary_10_1021_acs_est_1c05246 crossref_primary_10_5194_acp_23_5945_2023 crossref_primary_10_1021_acs_iecr_7b03899 crossref_primary_10_1021_acs_jcim_0c01479 crossref_primary_10_1016_j_enpol_2012_10_068 crossref_primary_10_1080_02692171_2020_1755239 crossref_primary_10_1021_acsapm_1c00551 crossref_primary_10_1021_acscatal_3c04150 crossref_primary_10_1021_acssuschemeng_1c01324 crossref_primary_10_3390_methane2040027 crossref_primary_10_1109_ACCESS_2023_3345801 crossref_primary_10_1016_j_resconrec_2018_11_021 crossref_primary_10_1080_10962247_2017_1368737 crossref_primary_10_1016_j_enpol_2018_05_063 crossref_primary_10_1016_j_enpol_2013_03_052 crossref_primary_10_1111_iere_12098 crossref_primary_10_1016_j_atmosenv_2020_117452 crossref_primary_10_2139_ssrn_2537833 crossref_primary_10_1007_s00267_014_0250_x crossref_primary_10_1016_j_jclepro_2013_04_008 crossref_primary_10_1088_1748_9326_aa7397 crossref_primary_10_1364_AO_54_001647 crossref_primary_10_1021_es504315f crossref_primary_10_1021_acs_est_6b05052 crossref_primary_10_1073_pnas_1316546111 crossref_primary_10_1016_j_jlp_2022_104878 crossref_primary_10_3390_su16135789 crossref_primary_10_1038_s41598_021_87610_3 crossref_primary_10_3390_su16114602 crossref_primary_10_1016_j_jclepro_2019_03_107 crossref_primary_10_1002_ese3_380 crossref_primary_10_3390_su5052210 crossref_primary_10_1146_annurev_environ_031113_144051 crossref_primary_10_1016_j_gee_2017_09_004 crossref_primary_10_1038_s41467_019_09424_2 crossref_primary_10_5194_acp_18_15555_2018 crossref_primary_10_1080_10962247_2015_1040526 crossref_primary_10_1021_es5063055 crossref_primary_10_1016_j_atmosenv_2016_08_065 crossref_primary_10_1016_j_pacs_2022_100428 crossref_primary_10_1021_acs_chemrev_8b00091 crossref_primary_10_1109_JSTQE_2018_2885496 crossref_primary_10_5194_amt_12_6771_2019 crossref_primary_10_1016_j_envpol_2012_11_003 crossref_primary_10_1016_j_cattod_2020_02_010 crossref_primary_10_1021_acscatal_2c01706 crossref_primary_10_1080_14693062_2017_1389686 crossref_primary_10_3390_s19122707 crossref_primary_10_1021_acs_jced_1c00446 crossref_primary_10_1111_jiec_12394 crossref_primary_10_1364_PRJ_522253 crossref_primary_10_1016_j_isci_2023_107389 crossref_primary_10_1016_j_enpol_2015_07_012 crossref_primary_10_1021_acs_est_0c03049 crossref_primary_10_1007_s12517_021_07998_0 crossref_primary_10_1016_j_exis_2017_10_009 crossref_primary_10_1088_1748_9326_abef33 crossref_primary_10_1016_j_ijhydene_2023_12_010 crossref_primary_10_1039_D1VA00049G crossref_primary_10_1016_j_eneco_2019_104499 crossref_primary_10_1038_nature19797 crossref_primary_10_1016_j_erss_2022_102538 crossref_primary_10_1016_j_scitotenv_2022_159702 crossref_primary_10_1016_j_enpol_2018_02_006 crossref_primary_10_1021_acs_est_9b06499 crossref_primary_10_1021_acs_iecr_7b03731 crossref_primary_10_1371_journal_pone_0081648 crossref_primary_10_1021_acs_est_6b02827 crossref_primary_10_1016_j_apsusc_2020_145900 crossref_primary_10_1039_C8TA09592B crossref_primary_10_1016_j_aap_2014_11_003 crossref_primary_10_1021_acs_est_5b00412 crossref_primary_10_1016_j_eneco_2018_03_034 crossref_primary_10_1038_s41598_021_01721_5 crossref_primary_10_1039_C6CP04604E crossref_primary_10_1002_ese3_35 crossref_primary_10_1021_acsomega_8b03246 crossref_primary_10_1039_C8EM00414E crossref_primary_10_1021_es501204c crossref_primary_10_1016_j_apenergy_2019_03_196 crossref_primary_10_1021_es5060258 crossref_primary_10_3390_en13112739 crossref_primary_10_1016_j_foodpol_2015_12_001 crossref_primary_10_3390_s23031207 crossref_primary_10_1002_grl_50811 crossref_primary_10_1016_j_jhazmat_2019_04_046 crossref_primary_10_5194_acp_22_9349_2022 crossref_primary_10_1038_s41467_020_18226_w crossref_primary_10_1364_OPTICA_5_000320 crossref_primary_10_1016_j_exis_2020_02_003 crossref_primary_10_1016_j_ijggc_2014_11_015 crossref_primary_10_3390_en13133320 crossref_primary_10_5194_acp_15_411_2015 crossref_primary_10_1021_acs_nanolett_6b00919 crossref_primary_10_5194_adgeo_45_125_2018 crossref_primary_10_1021_acs_chemmater_8b01425 crossref_primary_10_1021_acssuschemeng_9b04661 crossref_primary_10_3390_su10020302 crossref_primary_10_26599_JAC_2023_9220773 crossref_primary_10_1088_1361_6595_aba488 crossref_primary_10_1002_ese3_112 crossref_primary_10_1002_2016JD026157 crossref_primary_10_5194_esd_9_1013_2018 crossref_primary_10_1016_j_apenergy_2019_02_022 crossref_primary_10_1016_j_jngse_2022_104643 crossref_primary_10_1021_jacs_2c03875 crossref_primary_10_1021_sc500730x crossref_primary_10_1126_science_aaj2350 crossref_primary_10_1051_matecconf_20165801011 crossref_primary_10_1021_acs_est_9b05083 crossref_primary_10_1111_jiec_12475 crossref_primary_10_1007_s10584_015_1471_6 crossref_primary_10_1073_pnas_1213871110 crossref_primary_10_5194_acp_21_6605_2021 crossref_primary_10_1038_493012a crossref_primary_10_1051_e3sconf_202339101046 crossref_primary_10_1016_j_rser_2014_04_068 crossref_primary_10_1016_j_energy_2021_121516 crossref_primary_10_1016_j_ese_2022_100210 crossref_primary_10_1016_j_jclepro_2024_142833 crossref_primary_10_2139_ssrn_4666204 crossref_primary_10_1021_acs_est_7b02732 crossref_primary_10_1002_env_2519 crossref_primary_10_1515_reveh_2015_0055 crossref_primary_10_5694_mja13_11023 crossref_primary_10_1021_acs_jpcc_0c11117 crossref_primary_10_1111_jiec_12225 crossref_primary_10_1038_ncomms4961 crossref_primary_10_1021_acs_est_3c08972 crossref_primary_10_1021_acs_est_8b05546 crossref_primary_10_1016_j_enpol_2015_08_027 crossref_primary_10_1021_acs_est_5b00217 crossref_primary_10_1021_acs_est_5b01669 crossref_primary_10_1088_1755_1315_93_1_012050 crossref_primary_10_1088_2752_5309_acdcb2 crossref_primary_10_1021_es4046692 crossref_primary_10_1021_ef5009874 crossref_primary_10_1016_j_energy_2017_09_062 crossref_primary_10_3390_atmos11070716 crossref_primary_10_1016_j_scitotenv_2021_151076 crossref_primary_10_1038_s41467_021_25017_4 crossref_primary_10_5194_acp_20_7069_2020 crossref_primary_10_5572_KOSAE_2022_38_6_933 crossref_primary_10_3390_su11082235 crossref_primary_10_3390_math10214116 crossref_primary_10_1016_j_eneco_2018_04_012 crossref_primary_10_5194_amt_11_1565_2018 crossref_primary_10_1080_14693062_2018_1427538 crossref_primary_10_1016_j_apsusc_2018_06_127 crossref_primary_10_1007_s00340_019_7184_1 crossref_primary_10_1016_j_rser_2013_08_065 crossref_primary_10_1016_j_jngse_2015_03_009 crossref_primary_10_1021_acs_est_7b00571 crossref_primary_10_1088_2040_8986_abb1cf crossref_primary_10_1021_es404621d crossref_primary_10_5194_acp_22_10809_2022 crossref_primary_10_1021_acs_est_6b00705 crossref_primary_10_1364_OPTICA_4_001322 crossref_primary_10_1016_j_enpol_2013_12_056 crossref_primary_10_1038_s41558_019_0457_1 crossref_primary_10_1021_acs_est_9b01875 crossref_primary_10_1016_j_seta_2014_02_006 crossref_primary_10_1016_j_rser_2018_01_007 crossref_primary_10_1029_2018JD029690 crossref_primary_10_1016_j_eneco_2016_06_009 crossref_primary_10_1073_pnas_1522126112 crossref_primary_10_1016_j_renene_2017_06_023 crossref_primary_10_1007_s41825_017_0005_4 crossref_primary_10_1016_j_erss_2016_05_003 crossref_primary_10_1016_j_eneco_2020_105004 crossref_primary_10_1177_0096340212451432 crossref_primary_10_1021_es5052809 crossref_primary_10_1039_C8LC01053F crossref_primary_10_1016_j_juogr_2014_01_003 crossref_primary_10_1088_1748_9326_ab5e6f crossref_primary_10_1073_pnas_1805687115 crossref_primary_10_1088_1748_9326_9_9_094008 crossref_primary_10_1021_acs_est_5b01118 crossref_primary_10_1088_2752_5309_acfb2e crossref_primary_10_1088_1748_9326_aa6791 crossref_primary_10_1016_j_jece_2021_106435 crossref_primary_10_1021_acssuschemeng_8b06270 crossref_primary_10_1016_j_erss_2021_102059 crossref_primary_10_1039_c3cp55039g crossref_primary_10_1557_mre_2015_5 crossref_primary_10_1002_2014JD022697 crossref_primary_10_1016_j_measurement_2019_05_055 crossref_primary_10_1002_2015JD023242 crossref_primary_10_1364_AO_419942 crossref_primary_10_1016_j_ijhydene_2021_09_257 crossref_primary_10_1016_j_tej_2014_07_007 crossref_primary_10_1111_ropr_12463 crossref_primary_10_1039_C9DT01911A crossref_primary_10_1016_j_saa_2021_120418 crossref_primary_10_1021_acs_est_5b00133 crossref_primary_10_1007_s10584_022_03442_8 crossref_primary_10_1016_j_apenergy_2020_115327 crossref_primary_10_1016_j_atmosenv_2016_01_021 crossref_primary_10_1088_1748_9326_ac6227 crossref_primary_10_1525_elementa_358 crossref_primary_10_1002_advs_201700379 crossref_primary_10_1039_C4EE03515A crossref_primary_10_1016_j_adapen_2021_100008 crossref_primary_10_5194_acp_20_9169_2020 crossref_primary_10_1016_j_trd_2019_01_021 crossref_primary_10_2139_ssrn_2205144 crossref_primary_10_1029_2018JD029489 crossref_primary_10_1525_elementa_2022_00045 crossref_primary_10_1038_s41598_022_23334_2 crossref_primary_10_1021_acs_est_7b03525 crossref_primary_10_1080_14693062_2014_912981 crossref_primary_10_1177_0278364920954907 crossref_primary_10_1002_2014JD023002 crossref_primary_10_1016_j_jngse_2016_10_062 crossref_primary_10_1039_D2CY00779G crossref_primary_10_1080_10962247_2018_1505675 crossref_primary_10_3389_frsus_2022_1007060 crossref_primary_10_5194_amt_8_4539_2015 crossref_primary_10_1007_s11356_019_04957_x crossref_primary_10_1002_2014EF000265 crossref_primary_10_1021_es4046154 crossref_primary_10_1002_er_4631 crossref_primary_10_1016_j_paerosci_2023_100919 crossref_primary_10_1093_pnasnexus_pgad260 crossref_primary_10_1071_AJ20148 crossref_primary_10_3390_environments3040031 crossref_primary_10_17122_ntj_oil_2022_5_171_178 crossref_primary_10_1007_s13412_020_00602_z crossref_primary_10_1016_j_esr_2016_05_001 crossref_primary_10_1016_j_envpol_2022_120027 crossref_primary_10_1016_j_atmosenv_2015_03_056 crossref_primary_10_3934_environsci_2020007 crossref_primary_10_1016_j_scitotenv_2018_04_422 crossref_primary_10_1080_10406026_2017_1372392 crossref_primary_10_1080_10962247_2021_1942316 crossref_primary_10_1088_1361_6463_ac5770 crossref_primary_10_1016_j_energy_2023_129956 crossref_primary_10_1146_annurev_chembioeng_060713_035938 crossref_primary_10_1088_1748_9326_9_11_114022 crossref_primary_10_1016_j_enpol_2017_10_003 crossref_primary_10_1038_s41560_022_01060_3 crossref_primary_10_1021_acs_est_5b05503 crossref_primary_10_1126_science_aar7204 crossref_primary_10_1016_j_pecs_2016_05_001 crossref_primary_10_1073_pnas_1304880110 crossref_primary_10_2139_ssrn_3936305 crossref_primary_10_1007_s00340_018_6916_y crossref_primary_10_1525_elementa_443 crossref_primary_10_1175_JTECH_D_16_0024_1 crossref_primary_10_1016_j_jclepro_2019_03_096 crossref_primary_10_1088_2634_4505_ac8071 crossref_primary_10_1016_j_jngse_2018_04_013 crossref_primary_10_1016_j_mcat_2017_12_001 crossref_primary_10_1140_epjb_e2015_60452_3 crossref_primary_10_1021_acs_est_8b05828 crossref_primary_10_1016_j_jclepro_2017_11_223 crossref_primary_10_1016_j_chempr_2016_09_009 crossref_primary_10_1021_es5029537 crossref_primary_10_2139_ssrn_2539383 crossref_primary_10_1007_s11356_022_21482_6 crossref_primary_10_1016_j_atmosenv_2018_05_004 crossref_primary_10_1016_j_ijpvp_2021_104553 crossref_primary_10_1021_acs_est_0c00437 crossref_primary_10_3390_su12187747 crossref_primary_10_1525_elementa_308 crossref_primary_10_1016_j_enggeo_2021_106434 crossref_primary_10_1142_S2010007818400031 crossref_primary_10_1080_10962247_2018_1476274 crossref_primary_10_1021_acssuschemeng_6b00144 crossref_primary_10_1088_1748_9326_ace3db crossref_primary_10_1021_acs_est_6b01198 crossref_primary_10_1016_j_trd_2016_08_037 crossref_primary_10_3390_atmos14020208 crossref_primary_10_3390_en10020158 crossref_primary_10_5194_essd_14_2401_2022 crossref_primary_10_1016_j_gloenvcha_2015_08_001 crossref_primary_10_1016_j_jece_2021_105734 crossref_primary_10_1016_j_apenergy_2017_08_234 crossref_primary_10_5194_acp_17_13941_2017 crossref_primary_10_1016_j_jclepro_2023_139870 crossref_primary_10_1016_j_enpol_2017_06_053 crossref_primary_10_1111_1758_5899_12101 crossref_primary_10_2139_ssrn_3775725 crossref_primary_10_1029_2021GL095685 crossref_primary_10_1016_j_applthermaleng_2019_114313 crossref_primary_10_1002_2016JD026070 crossref_primary_10_3390_en16041582 crossref_primary_10_1071_AJ19234 crossref_primary_10_1021_acssuschemeng_2c01808 crossref_primary_10_1021_acssuschemeng_2c01803 crossref_primary_10_1080_14693062_2016_1202808 crossref_primary_10_1021_acs_est_5b02275 crossref_primary_10_1021_acs_est_6b05531 crossref_primary_10_1021_es5052759 crossref_primary_10_1016_j_scitotenv_2020_142490 crossref_primary_10_1071_AJ16098 crossref_primary_10_1021_acs_est_5b00099 crossref_primary_10_1016_j_ecolind_2023_111459 |
Cites_doi | 10.5194/acp-11-9839-2011 10.1007/BF00154171 10.1007/s10584-011-0217-3 10.1021/es1025678 10.1073/pnas.0702958104 10.1007/s10584-011-0333-0 10.1007/s10584-011-0061-5 10.1021/es200930h 10.1021/es063031o 10.1023/A:1015235211266 10.1016/j.atmosenv.2009.03.021 10.1023/A:1015737505552 10.1016/j.atmosenv.2009.05.025 10.1016/S0045-6535(97)00236-1 10.1021/es201942m |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Apr 24, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Apr 24, 2012 |
DBID | FBQ NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7ST 7U6 5PM |
DOI | 10.1073/pnas.1202407109 |
DatabaseName | AGRIS PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts |
DatabaseTitleList | Virology and AIDS Abstracts Environment Abstracts CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Methane leakage from natural gas infrastructure |
EISSN | 1091-6490 |
EndPage | 6440 |
ExternalDocumentID | 2645381541 10_1073_pnas_1202407109 22493226 109_17_6435 41588547 US201400081503 |
Genre | Journal Article Feature |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ H13 KM PQEST X XHC ADACV IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7ST 7U6 5PM |
ID | FETCH-LOGICAL-c590t-93d368ce90d1442befd1322e85df9f9ae7d522ed2f3b4c142ecd9ce6e68081813 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:23:47 EDT 2024 Fri Oct 25 02:39:17 EDT 2024 Sat Aug 17 00:17:33 EDT 2024 Thu Oct 10 15:51:12 EDT 2024 Fri Aug 23 01:10:34 EDT 2024 Sat Nov 02 12:13:50 EDT 2024 Wed Nov 11 00:30:36 EST 2020 Fri Feb 02 07:04:30 EST 2024 Wed Dec 27 19:20:26 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-93d368ce90d1442befd1322e85df9f9ae7d522ed2f3b4c142ecd9ce6e68081813 |
Notes | http://dx.doi.org/10.1073/pnas.1202407109 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Author contributions: R.A.A., S.W.P., and S.P.H. designed research; R.A.A. performed research; R.A.A., S.W.P., and S.P.H. analyzed data; and R.A.A., S.W.P., J.J.W., W.L.C., and S.P.H. wrote the paper. Contributed by Stephen W. Pacala, February 13, 2012 (sent for review December 21, 2011) |
OpenAccessLink | https://www.pnas.org/content/pnas/109/17/6435.full.pdf |
PMID | 22493226 |
PQID | 1009880456 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_1202407109 proquest_journals_1009880456 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3340093 proquest_miscellaneous_1017962241 pnas_primary_109_17_6435 proquest_miscellaneous_1009802771 jstor_primary_41588547 fao_agris_US201400081503 pubmed_primary_22493226 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2012-04-24 |
PublicationDateYYYYMMDD | 2012-04-24 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 22711843 - Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1813; author reply E1814 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_17_2 e_1_3_3_9_2 e_1_3_3_16_2 e_1_3_3_18_2 Forster P (e_1_3_3_10_2) 2007 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_2_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_11_2 e_1_3_3_3_2 |
References_xml | – ident: e_1_3_3_6_2 – ident: e_1_3_3_15_2 doi: 10.5194/acp-11-9839-2011 – ident: e_1_3_3_12_2 doi: 10.1007/BF00154171 – start-page: 210 volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: e_1_3_3_10_2 contributor: fullname: Forster P – ident: e_1_3_3_5_2 doi: 10.1007/s10584-011-0217-3 – ident: e_1_3_3_14_2 doi: 10.1021/es1025678 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.0702958104 – ident: e_1_3_3_3_2 doi: 10.1007/s10584-011-0333-0 – ident: e_1_3_3_7_2 – ident: e_1_3_3_1_2 doi: 10.1007/s10584-011-0061-5 – ident: e_1_3_3_2_2 doi: 10.1021/es200930h – ident: e_1_3_3_8_2 doi: 10.1021/es063031o – ident: e_1_3_3_11_2 doi: 10.1023/A:1015235211266 – ident: e_1_3_3_18_2 doi: 10.1016/j.atmosenv.2009.03.021 – ident: e_1_3_3_13_2 doi: 10.1023/A:1015737505552 – ident: e_1_3_3_17_2 doi: 10.1016/j.atmosenv.2009.05.025 – ident: e_1_3_3_9_2 doi: 10.1016/S0045-6535(97)00236-1 – ident: e_1_3_3_4_2 doi: 10.1021/es201942m |
SSID | ssj0009580 |
Score | 2.6058342 |
Snippet | Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process.... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 6435 |
SubjectTerms | climate Climate change Coal Diesel vehicles Electric power Emissions Emissions policy energy Fuels gasoline Global warming Greenhouse gas emissions Leakage Methane Natural gas Natural gas industry Natural gas production Physical Sciences Pollutant emissions power plants Radiative forcing Technology Transportation |
Title | Greater focus needed on methane leakage from natural gas infrastructure |
URI | https://www.jstor.org/stable/41588547 http://www.pnas.org/content/109/17/6435.abstract https://www.ncbi.nlm.nih.gov/pubmed/22493226 https://www.proquest.com/docview/1009880456 https://search.proquest.com/docview/1009802771 https://search.proquest.com/docview/1017962241 https://pubmed.ncbi.nlm.nih.gov/PMC3340093 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51e-KCKKU0UCpX4lAO2U1sJ3GOqKK0oCIkWKk3K7HHpaJNVpvu_2fsPNoixKG3SH7IGs_jm3j8GeC9IxCuTIax14dYYoqx4nUa54TmUuepIcMPt4tv-dlSfrnMLrcgG-_ChKJ9U1_Pm5vbeXP9K9RWrm7NYqwTW3y_OBFC-kx8MYMZKeiYok9Mu6q_d8LJ_UouRz6fQixWTdXNU56ELCbxhKEUwAjAeGaFB1Fp5qp2LE_0nKc06l_48-8yygdx6fQFPB8AJfvYL3wHtrB5CTuDyXbseOCV_rALn8PvAFwz15pNxxqKW2hZ2zD_inTVILvB6je5F-avnLDA-EkTX1UdIy1cVz3T7GaNr2B5-unnyVk8vKMQm6xM7uJSWJErg2ViKX3iNTrrc1BUmXWlKyssLKEwtNyJWppUcjS2NJhjeJZDpWIPtpu2wX1gSSUMYTLFLaVxgj6sEYlztcqVtEaWERyPctSrni5Dh2PuQmgvR30v_Qj2Sc66uiJnppc_uE_1PEDJEhHBXhD-NAWhDKUyWdCYMMv91KVOC02oKovgYNwhPZhh5wmZS3JQBBIjOJqayYD8qQgJtt0MffxJdvq_PuS3co92Injdb_q0hlGFIigeqcPUwRN4P24hvQ5E3oMev3nyyLfwjOTG_ekWlwewTYqA7wgk3dWHlB6cfz0MpvEHRt8MIg |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QAXoEBpoICROJRDsontJM4RVZQFuhUSXdSblfhRqrbJarN74dczdh59CCHBLZIfij3j8Tee8WeAdxZBuFCpCZ0-hNwkJhS0SsIM0VxiHTWkP3CbHWfTOf9ymp5uQDrchfFJ-6o6j-rLq6g-_-lzKxdXajLkiU2-zQ4Y484Tn2zCPVyvMR-c9JFrV3Q3TygaYE75wOiTs8miLtsoobH3Y2JHGYpbGEIYx61wY1_atGUzJCg61lNs9ScEejeR8sbOdPgIfgxj6hJSLqL1qorUrzt0j_886MfwsMeq5ENXvA0bpn4C2701aMl-T1n9_il88icNZklso9YtqXFLNJo0NXEPVJe1IZemvEDLRdxtFuLJRLHjs7IlqODLsiOxXS_NM5gffjw5mIb9Ew2hSot4FRZMs0woU8QaPTNaGaude2tEqm1hi9LkGgGe0dSyiquEU6N0oUxm_IsfImE7sFU3tdkFEpdMIdwTVKOHyPBDKxZbW4lMcK14EcD-ICC56Jg4pI-g50w6AclrsQawiwKU5RnaSTn_Tp0X6bBPGrMAdrxUxy4QwAiR8hzb-F6uuy5kkksEbGkAe4PoZb_CW8f1XKDtQ_wZwNuxGNemC7jgxDbrvo4Lkid_q4MmMXNAKoDnnTaN_zDoZgD5LT0bKzhu8NslqD2eI7zXlhf_3fIN3J-ezI7k0efjry_hAc4hdUE0yvdgC5XCvEIstqpe-5X3GwVCLRU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIiEuQIG2gQJG4lAOySa2kzhHVFjKo1UlWKniYiV-lKptstrsXvj1jJ1HtxXi0FskPxR7xuNvPOPPAO8sgnChUhM6fQi5SUwoaJWEGaK5xDpqSH_gdnScHc7419P0dO2pL5-0r6rzqL68iurz3z63cn6lJkOe2OTk6IAx7jzxyVzbyQbcxzUbZ4OjPvLtiu72CUUjzCkfWH1ybFWXbZTQ2PsysaMNxW0MYYzjV1jbmzZs2QxJio75FFv9C4XeTqZc252mj-HXMK4uKeUiWi2rSP25Rfl4p4E_gUc9ZiUfuipbcM_UT2Grtwot2e-pq98_g8_-xMEsiG3UqiU1bo1Gk6Ym7qHqsjbk0pQXaMGIu9VCPKkodnxWtgQVfVF2ZLarhXkOs-mnnweHYf9UQ6jSIl6GBdMsE8oUsUYPjVbGaufmGpFqW9iiNLlGoGc0taziKuHUKF0okxn_8odI2DZs1k1tdoHEJVMI-wTV6Cky_NCKxdZWIhNcK14EsD8ISc47Rg7pI-k5k05I8lq0AeyiEGV5hvZSzn5Q5006DJTGLIBtL9mxCwQyQqQ8xza-l-uuC5nkEoFbGsDeIH7Zr_TWcT4XaAMRhwbwdizGNeoCLzixzaqv44Llyf_qoGnMHKAKYKfTqPEfBv0MIL-ha2MFxxF-swQ1yHOF9xrz4s4t38CDk49T-f3L8beX8BCnkLpYGuV7sIk6YV4hJFtWr_3i-wuQRS-V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greater+focus+needed+on+methane+leakage+from+natural+gas+infrastructure&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ram%C3%B3n+A.+Alvarez&rft.au=Stephen+W.+Pacala&rft.au=James+J.+Winebrake&rft.au=William+L.+Chameides&rft.date=2012-04-24&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=17&rft.spage=6435&rft_id=info:doi/10.1073%2Fpnas.1202407109&rft_id=info%3Apmid%2F22493226&rft.externalDBID=n%2Fa&rft.externalDocID=109_17_6435 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F17.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F17.cover.gif |