Between-subject variability of muscle synergies during a complex motor skill
The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it req...
Saved in:
Published in | Frontiers in computational neuroscience Vol. 6; p. 99 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
2012
Frontiers Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-5188 1662-5188 |
DOI | 10.3389/fncom.2012.00099 |
Cover
Abstract | The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it requires learning, as untrained subjects are unable to perform this task. Nine gymnasts were tested. Both kinematics and electromyographic (EMG) patterns of 12 upper-limb and trunk muscles were recorded. Muscle synergies were extracted by non-negative matrix factorization (NMF), providing two components: muscle synergy vectors and synergy activation coefficients. First, the coefficient of correlation (r) and circular cross-correlation (r(max)) were calculated to assess similarities in the mechanical patterns, EMG patterns, and muscle synergies between gymnasts. We performed a further analysis to verify that the muscle synergies (in terms of muscle synergy vectors or synergy activation coefficients) extracted for one gymnast accounted for the EMG patterns of the other gymnasts. Three muscle synergies explained 89.9 ± 2.0% of the variance accounted for (VAF). The coefficients of correlation of the muscle synergy vectors among the participants were 0.83 ± 0.08, 0.86 ± 0.09, and 0.66 ± 0.28 for synergy #1, #2, and #3, respectively. By keeping the muscle synergy vectors constant, we obtained an averaged VAF across all pairwise comparisons of 79 ± 4%. For the synergy activation coefficients, r(max)-values were 0.96 ± 0.03, 0.92 ± 0.03, and 0.95 ± 0.03, for synergy #1, #2, and #3, respectively. By keeping the synergy activation coefficients constant, we obtained an averaged VAF across all pairwise comparisons of 72 ± 5%. Although variability was found (especially for synergy #3), the gymnasts exhibited gross similar neuromuscular strategies when performing backward giant swings. This confirms that the muscle synergies are consistent across participants, even during a skilled motor task that requires learning. |
---|---|
AbstractList | The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it requires learning, as untrained subjects are unable to perform this task. Nine gymnasts were tested. Both kinematics and electromyographic (EMG) patterns of 12 upper-limb and trunk muscles were recorded. Muscle synergies were extracted by non-negative matrix factorization (NMF), providing two components: muscle synergy vectors and synergy activation coefficients. First, the coefficient of correlation (r) and circular cross-correlation (r(max)) were calculated to assess similarities in the mechanical patterns, EMG patterns, and muscle synergies between gymnasts. We performed a further analysis to verify that the muscle synergies (in terms of muscle synergy vectors or synergy activation coefficients) extracted for one gymnast accounted for the EMG patterns of the other gymnasts. Three muscle synergies explained 89.9 ± 2.0% of the variance accounted for (VAF). The coefficients of correlation of the muscle synergy vectors among the participants were 0.83 ± 0.08, 0.86 ± 0.09, and 0.66 ± 0.28 for synergy #1, #2, and #3, respectively. By keeping the muscle synergy vectors constant, we obtained an averaged VAF across all pairwise comparisons of 79 ± 4%. For the synergy activation coefficients, r(max)-values were 0.96 ± 0.03, 0.92 ± 0.03, and 0.95 ± 0.03, for synergy #1, #2, and #3, respectively. By keeping the synergy activation coefficients constant, we obtained an averaged VAF across all pairwise comparisons of 72 ± 5%. Although variability was found (especially for synergy #3), the gymnasts exhibited gross similar neuromuscular strategies when performing backward giant swings. This confirms that the muscle synergies are consistent across participants, even during a skilled motor task that requires learning.The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it requires learning, as untrained subjects are unable to perform this task. Nine gymnasts were tested. Both kinematics and electromyographic (EMG) patterns of 12 upper-limb and trunk muscles were recorded. Muscle synergies were extracted by non-negative matrix factorization (NMF), providing two components: muscle synergy vectors and synergy activation coefficients. First, the coefficient of correlation (r) and circular cross-correlation (r(max)) were calculated to assess similarities in the mechanical patterns, EMG patterns, and muscle synergies between gymnasts. We performed a further analysis to verify that the muscle synergies (in terms of muscle synergy vectors or synergy activation coefficients) extracted for one gymnast accounted for the EMG patterns of the other gymnasts. Three muscle synergies explained 89.9 ± 2.0% of the variance accounted for (VAF). The coefficients of correlation of the muscle synergy vectors among the participants were 0.83 ± 0.08, 0.86 ± 0.09, and 0.66 ± 0.28 for synergy #1, #2, and #3, respectively. By keeping the muscle synergy vectors constant, we obtained an averaged VAF across all pairwise comparisons of 79 ± 4%. For the synergy activation coefficients, r(max)-values were 0.96 ± 0.03, 0.92 ± 0.03, and 0.95 ± 0.03, for synergy #1, #2, and #3, respectively. By keeping the synergy activation coefficients constant, we obtained an averaged VAF across all pairwise comparisons of 72 ± 5%. Although variability was found (especially for synergy #3), the gymnasts exhibited gross similar neuromuscular strategies when performing backward giant swings. This confirms that the muscle synergies are consistent across participants, even during a skilled motor task that requires learning. The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it requires learning, as untrained subjects are unable to perform this task. Nine gymnasts were tested. Both kinematics and electromyographic (EMG) patterns of 12 upper-limb and trunk muscles were recorded. Muscle synergies were extracted by non-negative matrix factorization (NMF), providing two components: muscle synergy vectors and synergy activation coefficients. First, the coefficient of correlation (r) and circular cross-correlation (r(max)) were calculated to assess similarities in the mechanical patterns, EMG patterns, and muscle synergies between gymnasts. We performed a further analysis to verify that the muscle synergies (in terms of muscle synergy vectors or synergy activation coefficients) extracted for one gymnast accounted for the EMG patterns of the other gymnasts. Three muscle synergies explained 89.9 ± 2.0% of the variance accounted for (VAF). The coefficients of correlation of the muscle synergy vectors among the participants were 0.83 ± 0.08, 0.86 ± 0.09, and 0.66 ± 0.28 for synergy #1, #2, and #3, respectively. By keeping the muscle synergy vectors constant, we obtained an averaged VAF across all pairwise comparisons of 79 ± 4%. For the synergy activation coefficients, r(max)-values were 0.96 ± 0.03, 0.92 ± 0.03, and 0.95 ± 0.03, for synergy #1, #2, and #3, respectively. By keeping the synergy activation coefficients constant, we obtained an averaged VAF across all pairwise comparisons of 72 ± 5%. Although variability was found (especially for synergy #3), the gymnasts exhibited gross similar neuromuscular strategies when performing backward giant swings. This confirms that the muscle synergies are consistent across participants, even during a skilled motor task that requires learning. The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it requires learning, as untrained subjects are unable to perform this task. 9 gymnasts were tested. Both kinematics and electromyographic (EMG) patterns of 12 upper-limb and trunk muscles were recorded. Muscle synergies were extracted by non-negative matrix factorization, providing two components: muscle synergy vectors and synergy activation coefficients. First, the coefficient of correlation (r) and circular cross-correlation (rmax) were calculated to assess similarities in the mechanical patterns, EMG patterns and muscle synergies between gymnasts. We performed a further analysis to verify that the muscle synergies (in terms of muscle synergy vectors or synergy activation coefficients) extracted for one gymnast accounted for the EMG patterns of the other gymnasts. 3 muscle synergies explained 89.9±2.0% of the variance accounted for (VAF). The coefficients of correlation of the muscle synergy vectors among the participants were 0.83±0.08, 0.86±0.09, and 0.66±0.28 for synergy #1, #2, and #3, respectively. By keeping the muscle synergy vectors constant, we obtained an averaged VAF across all pairwise comparisons of 79±4%. For the synergy activation coefficients, rmax-values were 0.96±0.03, 0.92±0.03, and 0.95±0.03, for synergy #1, #2, and #3, respectively. By keeping the synergy activation coefficients constant, we obtained an averaged VAF across all pairwise comparisons of 72±5%. Although variability was found (especially for synergy #3), the gymnasts exhibited gross similar neuromuscular strategies when performing backward giant swings. This confirms that the muscle synergies are consistent across participants, even during a skilled motor task that requires learning. The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it requires learning, as untrained subjects are unable to perform this task. Nine gymnasts were tested. Both kinematics and electromyographic (EMG) patterns of 12 upper-limb and trunk muscles were recorded. Muscle synergies were extracted by non-negative matrix factorization (NMF), providing two components: muscle synergy vectors and synergy activation coefficients. First, the coefficient of correlation ( r ) and circular cross-correlation ( r max ) were calculated to assess similarities in the mechanical patterns, EMG patterns, and muscle synergies between gymnasts. We performed a further analysis to verify that the muscle synergies (in terms of muscle synergy vectors or synergy activation coefficients) extracted for one gymnast accounted for the EMG patterns of the other gymnasts. Three muscle synergies explained 89.9 ± 2.0% of the variance accounted for (VAF). The coefficients of correlation of the muscle synergy vectors among the participants were 0.83 ± 0.08, 0.86 ± 0.09, and 0.66 ± 0.28 for synergy #1, #2, and #3, respectively. By keeping the muscle synergy vectors constant, we obtained an averaged VAF across all pairwise comparisons of 79 ± 4%. For the synergy activation coefficients, r max -values were 0.96 ± 0.03, 0.92 ± 0.03, and 0.95 ± 0.03, for synergy #1, #2, and #3, respectively. By keeping the synergy activation coefficients constant, we obtained an averaged VAF across all pairwise comparisons of 72 ± 5%. Although variability was found (especially for synergy #3), the gymnasts exhibited gross similar neuromuscular strategies when performing backward giant swings. This confirms that the muscle synergies are consistent across participants, even during a skilled motor task that requires learning. |
Author | Hug, François Frère, Julien |
AuthorAffiliation | 2 Laboratory « Motricité, Interactions, Performance », University of Nantes Nantes, France 1 Laboratory « Motricité, Interactions, Performance », University of Maine Le Mans, France |
AuthorAffiliation_xml | – name: 1 Laboratory « Motricité, Interactions, Performance », University of Maine Le Mans, France – name: 2 Laboratory « Motricité, Interactions, Performance », University of Nantes Nantes, France |
Author_xml | – sequence: 1 givenname: Julien surname: Frère fullname: Frère, Julien – sequence: 2 givenname: François surname: Hug fullname: Hug, François |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23293599$$D View this record in MEDLINE/PubMed https://hal.science/hal-03228034$$DView record in HAL |
BookMark | eNp1kktvEzEUhUeoiD5gzwqNxAYWCX6M7fEGqVSFVorEBtaWx3MndfDYwfYE8u_rJC1qI7GydX3Od67te16d-OChqt5iNKe0lZ8Gb8I4JwiTOUJIyhfVGeaczBhu25Mn-9PqPKUVQpxwhl5Vp4QSSZmUZ9XiC-Q_AH6Wpm4FJtcbHa3urLN5W4ehHqdkHNRp6yEuLaS6n6L1y1rXJXnt4G89hhxinX5Z515XLwftErx5WC-qn1-vf1zdzBbfv91eXS5mhkmUZxJhCQJAIECm0RwjoyWnhmvGgLdEagasaWTDaAesEwyM6DUdBNVAWG_oRXV74PZBr9Q62lHHrQraqn0hxKXSMdvSuOokN3TogLTaNAJD1_YUE0SNwZ3oxVBYnw-s9dSN0BvwOWr3DPr8xNs7tQwbRRnFArMC-HgA3B3Zbi4XaldDlJAW0WaDi_bDQ1gMvydIWY02GXBOewhTUpgISgoX8SJ9fyRdhSn68qyKEFmCGSOkqN497f5f_uMHFwE_CEwMKUUYlLFZZxt2l7FOYaR2k6T2k6R2k6T2k1SM6Mj4yP6v5R5nVcx8 |
CitedBy_id | crossref_primary_10_1016_j_gaitpost_2016_01_011 crossref_primary_10_1038_s41598_024_52332_9 crossref_primary_10_2478_hukin_2021_0002 crossref_primary_10_1152_japplphysiol_01101_2018 crossref_primary_10_1038_s41598_021_98022_8 crossref_primary_10_1080_02640414_2017_1306090 crossref_primary_10_1038_s41598_025_87802_1 crossref_primary_10_1038_s41598_024_63640_5 crossref_primary_10_1016_j_neuroscience_2019_04_016 crossref_primary_10_1038_s41598_019_47091_x crossref_primary_10_1371_journal_pone_0153307 crossref_primary_10_1155_2017_3050917 crossref_primary_10_1016_j_jbiomech_2022_111384 crossref_primary_10_1155_2018_5852307 crossref_primary_10_3389_fncom_2014_00046 crossref_primary_10_3389_fneur_2017_00337 crossref_primary_10_1371_journal_pone_0120193 crossref_primary_10_1111_sms_12992 crossref_primary_10_1016_j_jelekin_2015_12_001 crossref_primary_10_1002_jor_23391 crossref_primary_10_1007_s00221_019_05679_9 crossref_primary_10_1007_s00132_013_2145_6 crossref_primary_10_1186_s12984_017_0343_x crossref_primary_10_1038_srep27759 crossref_primary_10_1152_jn_00557_2014 crossref_primary_10_52082_jssm_2024_571 crossref_primary_10_1016_j_jelekin_2016_06_004 crossref_primary_10_1038_s41598_018_26780_z crossref_primary_10_1109_JSYST_2021_3079168 crossref_primary_10_1109_TNSRE_2019_2891004 crossref_primary_10_3389_fncom_2016_00007 crossref_primary_10_3389_fncom_2017_00078 crossref_primary_10_1038_srep36275 crossref_primary_10_7736_JKSPE_022_074 crossref_primary_10_1111_desc_13491 crossref_primary_10_1016_j_gaitpost_2022_07_050 crossref_primary_10_31857_S0869813924060066 crossref_primary_10_3389_fncom_2018_00020 crossref_primary_10_1016_j_gaitpost_2022_07_051 crossref_primary_10_1152_jn_00776_2013 crossref_primary_10_1111_sms_12942 crossref_primary_10_1134_S0362119722040089 crossref_primary_10_1080_02640414_2016_1143109 crossref_primary_10_1080_00222895_2021_1916424 crossref_primary_10_1038_s41598_024_68515_3 crossref_primary_10_1123_mc_2016_0026 crossref_primary_10_3389_fphys_2021_771368 crossref_primary_10_1038_s41598_023_43728_0 crossref_primary_10_1016_j_knee_2017_11_011 crossref_primary_10_1016_j_bspc_2024_106393 crossref_primary_10_3951_sobim_47_1_45 crossref_primary_10_1519_JSC_0000000000001282 crossref_primary_10_1016_j_neuroscience_2017_04_039 crossref_primary_10_1016_j_bspc_2024_107323 crossref_primary_10_1016_j_jbiomech_2015_06_032 crossref_primary_10_1038_s43856_022_00162_z crossref_primary_10_1155_2018_3934698 crossref_primary_10_1371_journal_pone_0237727 crossref_primary_10_3389_fneur_2017_00277 crossref_primary_10_1519_JSC_0000000000004543 crossref_primary_10_14814_phy2_13504 crossref_primary_10_1080_02640414_2023_2259268 crossref_primary_10_1016_j_humov_2018_10_010 crossref_primary_10_1155_2020_2041549 crossref_primary_10_3389_fncom_2014_00100 crossref_primary_10_1016_j_jbiomech_2022_110997 crossref_primary_10_1016_j_ergon_2023_103499 crossref_primary_10_1126_scirobotics_adf5758 crossref_primary_10_1109_TAES_2023_3329797 crossref_primary_10_31083_j_jin2301022 crossref_primary_10_1038_s41598_023_28229_4 crossref_primary_10_1152_jn_00356_2021 crossref_primary_10_1049_ccs_2019_0021 crossref_primary_10_1109_LRA_2018_2811506 crossref_primary_10_1134_S0362119720060079 crossref_primary_10_1155_2018_3615368 crossref_primary_10_1016_j_orthtr_2015_12_008 crossref_primary_10_1134_S0022093024030165 crossref_primary_10_1080_09593985_2018_1434579 crossref_primary_10_52082_jssm_2025_195 crossref_primary_10_3389_fnins_2024_1485066 crossref_primary_10_1109_ACCESS_2019_2950709 crossref_primary_10_3389_fncom_2015_00126 crossref_primary_10_2174_1875036201811010052 crossref_primary_10_1111_sms_12167 crossref_primary_10_3389_fnhum_2024_1399179 crossref_primary_10_1371_journal_pone_0319048 crossref_primary_10_1038_s41598_023_28467_6 |
ContentType | Journal Article |
Copyright | 2012. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2012 Frère and Hug. 2012 |
Copyright_xml | – notice: 2012. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2012 Frère and Hug. 2012 |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
DOI | 10.3389/fncom.2012.00099 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Database ProQuest Central Database Suite (ProQuest) Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central (New) (NC LIVE) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5188 |
ExternalDocumentID | oai_doaj_org_article_b96c3fbe28ac471eb8d31203cc1b7d7f PMC3531715 oai_HAL_hal_03228034v1 23293599 10_3389_fncom_2012_00099 |
Genre | Journal Article |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADMLS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ C1A CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE IPNFZ KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RIG RNS RPM TR2 IAO IEA IHR ISR NPM 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c590t-9019e7ee70e0c4a610ca963c6a55e6829a5e5449453be5b75ec7da3f73ae25dc3 |
IEDL.DBID | M48 |
ISSN | 1662-5188 |
IngestDate | Wed Aug 27 01:23:23 EDT 2025 Thu Aug 21 18:09:13 EDT 2025 Fri May 09 12:28:39 EDT 2025 Thu Sep 04 23:24:13 EDT 2025 Fri Jul 25 11:48:49 EDT 2025 Wed Feb 19 01:50:57 EST 2025 Tue Jul 01 00:59:26 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | nonegative matrix factorization electromyography backward giant circle gymnastics motor primitives motor modules muscle coordination |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c590t-9019e7ee70e0c4a610ca963c6a55e6829a5e5449453be5b75ec7da3f73ae25dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC3531715 Edited by: Andrea D'Avella, IRCCS Fondazione Santa Lucia, Italy Reviewed by: Vincent C. K. Cheung, Massachusetts Institute of Technology, USA; Gelsy Torres-Oviedo, University of Pittsburgh, USA |
ORCID | 0000-0002-4778-4514 0000-0002-6432-558X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fncom.2012.00099 |
PMID | 23293599 |
PQID | 2297155522 |
PQPubID | 4424409 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b96c3fbe28ac471eb8d31203cc1b7d7f pubmedcentral_primary_oai_pubmedcentral_nih_gov_3531715 hal_primary_oai_HAL_hal_03228034v1 proquest_miscellaneous_1273253106 proquest_journals_2297155522 pubmed_primary_23293599 crossref_citationtrail_10_3389_fncom_2012_00099 crossref_primary_10_3389_fncom_2012_00099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-00-00 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – year: 2012 text: 2012-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in computational neuroscience |
PublicationTitleAlternate | Front Comput Neurosci |
PublicationYear | 2012 |
Publisher | Frontiers Research Foundation Frontiers Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers – name: Frontiers Media S.A |
References | 15175397 - J Neurosci. 2004 Jun 2;24(22):5269-82 16079406 - J Neurosci. 2005 Aug 3;25(31):7238-53 19657082 - J Neurophysiol. 2010 Jan;103(1):573-90 15708969 - Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3076-81 20393070 - J Neurophysiol. 2010 Jun;103(6):3084-98 20007501 - J Neurophysiol. 2010 Feb;103(2):844-57 14657185 - J Neurosci. 2003 Dec 3;23(35):11255-69 17652413 - J Neurophysiol. 2007 Oct;98(4):2144-56 15098128 - Eur J Appl Physiol. 2004 Jul;92(3):334-42 23027631 - Int J Numer Method Biomed Eng. 2012 Oct;28(10):1003-14 12120783 - Psychon Bull Rev. 2002 Jun;9(2):185-211 21975422 - J Appl Biomech. 2012 Feb;28(1):57-62 19906379 - J Biomech. 2010 Mar 3;43(4):767-70 19436081 - J Neural Eng. 2009 Jun;6(3):036004 18418807 - Int J Sports Med. 2008 Oct;29(10):817-22 1895355 - J Sports Sci. 1991 Summer;9(2):191-203 16000633 - J Neurosci. 2005 Jul 6;25(27):6419-34 19369362 - J Neurophysiol. 2009 Jul;102(1):59-68 19880747 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8 22342685 - Clin Neurophysiol. 2012 Sep;123(9):1895-6 20299611 - J Appl Physiol (1985). 2010 Jun;108(6):1727-36 16775203 - J Neurophysiol. 2006 Sep;96(3):1530-46 22096202 - Science. 2011 Nov 18;334(6058):997-9 21653725 - J Neurophysiol. 2011 Aug;106(2):999-1015 11266674 - J Biomech. 2001 Apr;34(4):505-12 18183349 - Surg Radiol Anat. 2008 Mar;30(2):137-43 16394079 - J Neurophysiol. 2006 Apr;95(4):2199-212 21796239 - Top Spinal Cord Inj Rehabil. 2011 Summer;17(1):16-24 20719600 - J Electromyogr Kinesiol. 1992;2(2):69-80 18093842 - J Electromyogr Kinesiol. 2009 Apr;19(2):182-98 18521583 - Exp Brain Res. 2008 Aug;189(2):171-87 15342720 - J Neurophysiol. 2005 Jan;93(1):609-13 12853436 - J Neurophysiol. 2003 Nov;90(5):3555-65 18304801 - Curr Opin Neurobiol. 2007 Dec;17(6):622-8 17724582 - Exp Brain Res. 2008 Jan;184(3):323-38 20869882 - J Electromyogr Kinesiol. 2011 Feb;21(1):1-12 22933805 - J Neurosci. 2012 Aug 29;32(35):12237-50 11445766 - Med Sci Sports Exerc. 2001 Jul;33(7):1182-8 21490282 - J Neurophysiol. 2011 Jul;106(1):91-103 11160497 - J Neurophysiol. 2001 Feb;85(2):605-19 22534213 - Hum Mov Sci. 2012 Apr;31(2):472-85 21900479 - J Exp Biol. 2011 Oct 1;214(Pt 19):3305-14 14724214 - J Physiol. 2004 Apr 1;556(Pt 1):267-82 8872282 - J Biomech. 1996 Sep;29(9):1223-30 18799603 - J Neurophysiol. 2008 Nov;100(5):2455-71 21856171 - J Electromyogr Kinesiol. 2011 Dec;21(6):1030-40 11018445 - J Electromyogr Kinesiol. 2000 Oct;10(5):361-74 20702112 - J Electromyogr Kinesiol. 2010 Dec;20(6):1023-35 19193466 - Hum Mov Sci. 2009 Apr;28(2):250-62 21957219 - J Neurophysiol. 2012 Jan;107(1):159-77 16554517 - J Neurophysiol. 2006 Jun;95(6):3426-37 17980370 - J Biomech. 2008;41(2):299-306 20719661 - J Electromyogr Kinesiol. 1996 Mar;6(1):37-48 |
References_xml | – reference: 20869882 - J Electromyogr Kinesiol. 2011 Feb;21(1):1-12 – reference: 16775203 - J Neurophysiol. 2006 Sep;96(3):1530-46 – reference: 19436081 - J Neural Eng. 2009 Jun;6(3):036004 – reference: 14724214 - J Physiol. 2004 Apr 1;556(Pt 1):267-82 – reference: 16079406 - J Neurosci. 2005 Aug 3;25(31):7238-53 – reference: 19906379 - J Biomech. 2010 Mar 3;43(4):767-70 – reference: 21900479 - J Exp Biol. 2011 Oct 1;214(Pt 19):3305-14 – reference: 20719661 - J Electromyogr Kinesiol. 1996 Mar;6(1):37-48 – reference: 20702112 - J Electromyogr Kinesiol. 2010 Dec;20(6):1023-35 – reference: 11018445 - J Electromyogr Kinesiol. 2000 Oct;10(5):361-74 – reference: 17724582 - Exp Brain Res. 2008 Jan;184(3):323-38 – reference: 19657082 - J Neurophysiol. 2010 Jan;103(1):573-90 – reference: 19880747 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8 – reference: 21653725 - J Neurophysiol. 2011 Aug;106(2):999-1015 – reference: 21490282 - J Neurophysiol. 2011 Jul;106(1):91-103 – reference: 19369362 - J Neurophysiol. 2009 Jul;102(1):59-68 – reference: 15098128 - Eur J Appl Physiol. 2004 Jul;92(3):334-42 – reference: 18304801 - Curr Opin Neurobiol. 2007 Dec;17(6):622-8 – reference: 12853436 - J Neurophysiol. 2003 Nov;90(5):3555-65 – reference: 18418807 - Int J Sports Med. 2008 Oct;29(10):817-22 – reference: 19193466 - Hum Mov Sci. 2009 Apr;28(2):250-62 – reference: 20299611 - J Appl Physiol (1985). 2010 Jun;108(6):1727-36 – reference: 18799603 - J Neurophysiol. 2008 Nov;100(5):2455-71 – reference: 15342720 - J Neurophysiol. 2005 Jan;93(1):609-13 – reference: 11160497 - J Neurophysiol. 2001 Feb;85(2):605-19 – reference: 14657185 - J Neurosci. 2003 Dec 3;23(35):11255-69 – reference: 1895355 - J Sports Sci. 1991 Summer;9(2):191-203 – reference: 21957219 - J Neurophysiol. 2012 Jan;107(1):159-77 – reference: 20007501 - J Neurophysiol. 2010 Feb;103(2):844-57 – reference: 21975422 - J Appl Biomech. 2012 Feb;28(1):57-62 – reference: 22534213 - Hum Mov Sci. 2012 Apr;31(2):472-85 – reference: 11445766 - Med Sci Sports Exerc. 2001 Jul;33(7):1182-8 – reference: 18093842 - J Electromyogr Kinesiol. 2009 Apr;19(2):182-98 – reference: 18521583 - Exp Brain Res. 2008 Aug;189(2):171-87 – reference: 17652413 - J Neurophysiol. 2007 Oct;98(4):2144-56 – reference: 18183349 - Surg Radiol Anat. 2008 Mar;30(2):137-43 – reference: 15175397 - J Neurosci. 2004 Jun 2;24(22):5269-82 – reference: 22342685 - Clin Neurophysiol. 2012 Sep;123(9):1895-6 – reference: 20719600 - J Electromyogr Kinesiol. 1992;2(2):69-80 – reference: 22933805 - J Neurosci. 2012 Aug 29;32(35):12237-50 – reference: 16000633 - J Neurosci. 2005 Jul 6;25(27):6419-34 – reference: 8872282 - J Biomech. 1996 Sep;29(9):1223-30 – reference: 16554517 - J Neurophysiol. 2006 Jun;95(6):3426-37 – reference: 23027631 - Int J Numer Method Biomed Eng. 2012 Oct;28(10):1003-14 – reference: 16394079 - J Neurophysiol. 2006 Apr;95(4):2199-212 – reference: 15708969 - Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3076-81 – reference: 22096202 - Science. 2011 Nov 18;334(6058):997-9 – reference: 11266674 - J Biomech. 2001 Apr;34(4):505-12 – reference: 21796239 - Top Spinal Cord Inj Rehabil. 2011 Summer;17(1):16-24 – reference: 21856171 - J Electromyogr Kinesiol. 2011 Dec;21(6):1030-40 – reference: 12120783 - Psychon Bull Rev. 2002 Jun;9(2):185-211 – reference: 17980370 - J Biomech. 2008;41(2):299-306 – reference: 20393070 - J Neurophysiol. 2010 Jun;103(6):3084-98 |
SSID | ssj0062650 |
Score | 2.2732904 |
Snippet | The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 99 |
SubjectTerms | Bicycling Biomechanics Electromyography Gymnastics Kinematics Life Sciences Motor ability motor modules Motor Primitives Motor skill Motor skill learning muscle coordination Muscles Neuromuscular system Neuroscience nonegative matrix factorization Population studies Posture Skills Spinal cord |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BbxQhFCamJy9GbdXRaqgxJh4my8AwDMetsdk01ZNNeiMM8yZt3M42nd3G_fe-B7NrVxN78QoMMI_H43vw-GDsQ9AikONDO_c6L2Wjch_A5DoUoa5tW7fxFYWv36rZeXl6oS_uPfVFMWGJHjgJbtLYKqiuAVn7gIYUmrpVhRQqhKIxrenI-gorNs5UssGI0rVIh5LogtlJ11NoCK51kZ0z8rz-XoQiVz8uLZcUCfk3zPwzWvLe8nPylD0ZcSOfpv4-Y4-gf872pz36zNdr_pHHSM64Rb7Pzo5T8FU-rBraZuF36BAnPu41X3T8ejVgHXxY070_9JR5uqvIPY8B5vCT4_gtbvnw42o-P2DnJ1--f57l46sJedBWLCnewoIBMAJEKD3Co-BxloXKaw1VLa3XoMvSllo1oBujIZjWq84oD1K3Qb1ge_2ih1eMQ6uCsnUbCoBSdrVFbwqtZ1fK0BL0ythkI0YXRkpxetli7tC1IMG7KHhHgndR8Bn7tP3iJtFp_KPsMY3MthwRYccEVA83qod7SD0y9h7HdaeO2fTMUZpQRAWkyrsiY4ebYXfjFB6clNYg2EJ8mrGjbTZOPjpR8T0sVoMrEPxJtGKiytjLpCXbphCq0q1n_A2zoz87fdnN6a8uI8G3wiqx7df_QwBv2GMSado1OmR7y9sVvEUctWzexSnzC9ztHUg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI9ge-EFAeOjbKCAEBIP1bVJ07RP6A5tOqExIcSkvUVp4rJpt3a73k3cf4-d9m4cSHtt2rS1Y_tnx7EZ--BU4sjxoci9ijNRydg60LFyqSuK0hc-dFH4dpJPT7OvZ-psCLh1Q1rlWicGRe1bRzHykRClRtuHcOHz9U1MXaNod3VoofGQ7aIKLnCd704OT77_WOtiROsq6Tcn0RUrR3VDKSJo80KVzlDv9c4YhZr9aGLOKSPyf7j5b9bkX2bo6Al7POBHPu4Z_pQ9gOYZ2xs36DtfrfhHHjI6Q6h8jx1P-iSsuFtWFG7ht-gY93W5V7yt-dWywzl4t6Lzf-gx8_7MIrc8JJrDb458bOe8u7yYzZ6z06PDn1-m8dA9IXaqTBaUd1GCBtAJJC6zCJOcRWlzuVUK8kKUVoHKsjJTsgJVaQVOeytrLS0I5Z18wXaatoFXjIOXTpaFdylAJuqiRK8KtWidCecJgkVstCajcUNpcepwMTPoYhDhTSC8IcKbQPiIfdo8cd2X1bjn3glxZnMfFcQOF9r5LzPIl6nK3Mm6AlFYh_YWqsLLVCTSubTSXtcRe4983ZpjOj42dC2RVBJIZrdpxA7WbDeDKHfmbuFF7N1mGIWQdlZsA-2yMymCQIHaLMkj9rJfJZtXIWSl08_4G3pr_Wx9y_ZIc3EeCn1LnBLf_fr-z9pnj4hYfVzogO0s5kt4g0hpUb0dxOEPSqYU_A priority: 102 providerName: ProQuest |
Title | Between-subject variability of muscle synergies during a complex motor skill |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23293599 https://www.proquest.com/docview/2297155522 https://www.proquest.com/docview/1273253106 https://hal.science/hal-03228034 https://pubmed.ncbi.nlm.nih.gov/PMC3531715 https://doaj.org/article/b96c3fbe28ac471eb8d31203cc1b7d7f |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagvXBBQHkEysoghMQhNPEjjg8I7aKWFWorhFhpb1biOG3FNoHNbtX998w42UCgQuISKS8nGXsy3zcezxDyysrIIvFBz70MBct5mFmnQmljm6a6SAtfReHkNJnOxKe5nP9aHt0JsLmR2mE9qdly8fb6x-Y9KPw7ZJxgbw_KCgM_wJL53Jta3ya7YJcSpGInop9TAOTu67XGSQL0K07TdtLyxhYGRsrn8gfTc46Rkn_D0D-jKX8zT0f3yN0OV9JxOxDuk1uuekD2xhVw6ssNfU19pKd3oe-R40kbnBU26xzdMPQKCHObr3tD65JerhtogzYbXBcITJq2axlpRn0Aurum0L_1kjbfLhaLh2R2dPj1wzTsqiqEVupohfEY2innVOQiKzKATzYDLbRJJqVLUqYz6aQQWkieO5kr6awqMl4qnjkmC8sfkZ2qrtwTQl3BLddpYWPnBCtTDWwL_q6lYLZAaBaQg60Yje1SjmPli4UB6oGCN17wBgVvvOAD8qa_43ubbuMf106wZ_rrMFG2P1Avz0yndybXieVl7liaWbDDLk8LHrOIWxvnqlBlQF5Cvw7amI6PDR6LOKYK4uIqDsj-ttvNdoQaxrQCMAb4NSAv-tOgnDjjklWuXjcmBnDI4C8XJQF53I6S_lEAZXFVNHyGGoyfwbsMz1QX5z4BOIcm4dlP_0NYz8gd3GmdR_tkZ7Vcu-cAp1b5iOxODk8_fxl5dwRsP87jkdecnyxdIK4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXBJSHocCCAImDFXvX68cBoQRapTSNEGql3hZ7vaYVqV3ipJA_xW9kZm2nBKTeevXaa3t2dma-2XkAvNLS0wR8yHMv3YBnwk21iVypfR3HSR7ntovCwSQcHQWfjuXxBvzucmEorLKTiVZQ55UmH3mf8yRC3YfmwvvzHy51jaLT1a6FRsMW-2b5EyFb_W7vI67va853dw4_jNy2q4CrZeLNKR4hMZExkWc8HaRoPugUuVCHqZQmjHmSSiODIAmkyIzMIml0lKeiiERquMy1wHlvwGZAGa092BzuTD5_6WQ_ogPpNYehCP2SflFSSArqWFsV1NaXvVR-tkcAqrQTisD837z9N0rzL7W3ewdut_YqGzQMdhc2THkPtgYlYvWzJXvDbASpdc1vwXjYBH259SIj9w67QCDe1AFfsqpgZ4sa52D1kvINEaGzJkeSpcwGtptfDPmmmrH6--l0eh-OroWuD6BXVqV5BMzkQoskzrVvTMCLOEEUh1K7CLjOyeRzoN-RUem2lDl11JgqhDREeGUJr4jwyhLegberJ86bMh5X3DuklVndRwW47YVq9k21-1llSahFkRkepxr1u8niXPjcE1r7WZRHhQMvcV3X5hgNxoqueYJKEIngwndgu1t21YqOWl0yugMvVsO46ekkJy1NtaiVj0YnR-nphQ48bLhk9So0kSnbGn8jWuOftW9ZHylPT2xhcYFT4rsfX_1Zz-Hm6PBgrMZ7k_0ncIsI1_iktqE3ny3MU7TS5tmzdmsw-Hrdu_EPxN5SJQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkK8IGD8yBhgECDxEDWx4yZ5QKhlqzpWqgkxaW8mcRw2rUtG0w76r_HXceckHQVpb3tNUic9n-_uO3--A3itpacJ-FDmXroBT4WbaBO6Uvs6iuIsymwXhc-T3ugo-HQsjzfgd3sWhmiVrU20hjorNeXIu5zHIfo-DBe6eUOLONwdfrj44VIHKdppbdtp1CpyYJY_Eb5V7_d3ca7fcD7c-_px5DYdBlwtY29O3ITYhMaEnvF0kGAooRPUSN1LpDS9iMeJNDII4kCK1Mg0lEaHWSLyUCSGy0wLHPcWbIboFYMObA72JodfWj-ASEF69cYowsC4mxdET0F_ayuE2lqzV47Q9gtA93ZCbMz_Q91_GZt_ucDhPbjbxK6sXyvbfdgwxQPY6heI28-X7C2zbFKbpt-C8aAmgLnVIqVUD7tEUF7XBF-yMmfniwrHYNWSzh4iWmf1eUmWMEtyN78Y6lA5Y9XZ6XT6EI5uRK6PoFOUhXkCzGRCizjKtG9MwPMoRkSHFjwPuM4o_HOg24pR6aasOXXXmCqENyR4ZQWvSPDKCt6Bd6tfXNQlPa55dkAzs3qOinHbC-Xsu2rWtkrjnhZ5aniUaPT1Jo0y4XNPaO2nYRbmDrzCeV0bY9QfK7rmCSpHJIJL34GddtpVY0YqdaX0Drxc3UYDQLs6SWHKRaV8DEA5WlKv58DjWktWr8JwmU5e498I1_Rn7VvW7xSnJ7bIuMAh8d3b13_WC7iNq1CN9ycHT-EOya1OT-1AZz5bmGcYsM3T583KYPDtphfjHzl8VlE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Between-subject+variability+of+muscle+synergies+during+a+complex+motor+skill&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Fr%C3%A8re%2C+Julien&rft.au=Hug%2C+Fran%C3%A7ois&rft.date=2012&rft.issn=1662-5188&rft.eissn=1662-5188&rft.volume=6&rft_id=info:doi/10.3389%2Ffncom.2012.00099&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fncom_2012_00099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon |