Between-subject variability of muscle synergies during a complex motor skill

The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it req...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in computational neuroscience Vol. 6; p. 99
Main Authors Frère, Julien, Hug, François
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 2012
Frontiers
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5188
1662-5188
DOI10.3389/fncom.2012.00099

Cover

Abstract The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it requires learning, as untrained subjects are unable to perform this task. Nine gymnasts were tested. Both kinematics and electromyographic (EMG) patterns of 12 upper-limb and trunk muscles were recorded. Muscle synergies were extracted by non-negative matrix factorization (NMF), providing two components: muscle synergy vectors and synergy activation coefficients. First, the coefficient of correlation (r) and circular cross-correlation (r(max)) were calculated to assess similarities in the mechanical patterns, EMG patterns, and muscle synergies between gymnasts. We performed a further analysis to verify that the muscle synergies (in terms of muscle synergy vectors or synergy activation coefficients) extracted for one gymnast accounted for the EMG patterns of the other gymnasts. Three muscle synergies explained 89.9 ± 2.0% of the variance accounted for (VAF). The coefficients of correlation of the muscle synergy vectors among the participants were 0.83 ± 0.08, 0.86 ± 0.09, and 0.66 ± 0.28 for synergy #1, #2, and #3, respectively. By keeping the muscle synergy vectors constant, we obtained an averaged VAF across all pairwise comparisons of 79 ± 4%. For the synergy activation coefficients, r(max)-values were 0.96 ± 0.03, 0.92 ± 0.03, and 0.95 ± 0.03, for synergy #1, #2, and #3, respectively. By keeping the synergy activation coefficients constant, we obtained an averaged VAF across all pairwise comparisons of 72 ± 5%. Although variability was found (especially for synergy #3), the gymnasts exhibited gross similar neuromuscular strategies when performing backward giant swings. This confirms that the muscle synergies are consistent across participants, even during a skilled motor task that requires learning.
AbstractList The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it requires learning, as untrained subjects are unable to perform this task. Nine gymnasts were tested. Both kinematics and electromyographic (EMG) patterns of 12 upper-limb and trunk muscles were recorded. Muscle synergies were extracted by non-negative matrix factorization (NMF), providing two components: muscle synergy vectors and synergy activation coefficients. First, the coefficient of correlation (r) and circular cross-correlation (r(max)) were calculated to assess similarities in the mechanical patterns, EMG patterns, and muscle synergies between gymnasts. We performed a further analysis to verify that the muscle synergies (in terms of muscle synergy vectors or synergy activation coefficients) extracted for one gymnast accounted for the EMG patterns of the other gymnasts. Three muscle synergies explained 89.9 ± 2.0% of the variance accounted for (VAF). The coefficients of correlation of the muscle synergy vectors among the participants were 0.83 ± 0.08, 0.86 ± 0.09, and 0.66 ± 0.28 for synergy #1, #2, and #3, respectively. By keeping the muscle synergy vectors constant, we obtained an averaged VAF across all pairwise comparisons of 79 ± 4%. For the synergy activation coefficients, r(max)-values were 0.96 ± 0.03, 0.92 ± 0.03, and 0.95 ± 0.03, for synergy #1, #2, and #3, respectively. By keeping the synergy activation coefficients constant, we obtained an averaged VAF across all pairwise comparisons of 72 ± 5%. Although variability was found (especially for synergy #3), the gymnasts exhibited gross similar neuromuscular strategies when performing backward giant swings. This confirms that the muscle synergies are consistent across participants, even during a skilled motor task that requires learning.The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it requires learning, as untrained subjects are unable to perform this task. Nine gymnasts were tested. Both kinematics and electromyographic (EMG) patterns of 12 upper-limb and trunk muscles were recorded. Muscle synergies were extracted by non-negative matrix factorization (NMF), providing two components: muscle synergy vectors and synergy activation coefficients. First, the coefficient of correlation (r) and circular cross-correlation (r(max)) were calculated to assess similarities in the mechanical patterns, EMG patterns, and muscle synergies between gymnasts. We performed a further analysis to verify that the muscle synergies (in terms of muscle synergy vectors or synergy activation coefficients) extracted for one gymnast accounted for the EMG patterns of the other gymnasts. Three muscle synergies explained 89.9 ± 2.0% of the variance accounted for (VAF). The coefficients of correlation of the muscle synergy vectors among the participants were 0.83 ± 0.08, 0.86 ± 0.09, and 0.66 ± 0.28 for synergy #1, #2, and #3, respectively. By keeping the muscle synergy vectors constant, we obtained an averaged VAF across all pairwise comparisons of 79 ± 4%. For the synergy activation coefficients, r(max)-values were 0.96 ± 0.03, 0.92 ± 0.03, and 0.95 ± 0.03, for synergy #1, #2, and #3, respectively. By keeping the synergy activation coefficients constant, we obtained an averaged VAF across all pairwise comparisons of 72 ± 5%. Although variability was found (especially for synergy #3), the gymnasts exhibited gross similar neuromuscular strategies when performing backward giant swings. This confirms that the muscle synergies are consistent across participants, even during a skilled motor task that requires learning.
The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it requires learning, as untrained subjects are unable to perform this task. Nine gymnasts were tested. Both kinematics and electromyographic (EMG) patterns of 12 upper-limb and trunk muscles were recorded. Muscle synergies were extracted by non-negative matrix factorization (NMF), providing two components: muscle synergy vectors and synergy activation coefficients. First, the coefficient of correlation (r) and circular cross-correlation (r(max)) were calculated to assess similarities in the mechanical patterns, EMG patterns, and muscle synergies between gymnasts. We performed a further analysis to verify that the muscle synergies (in terms of muscle synergy vectors or synergy activation coefficients) extracted for one gymnast accounted for the EMG patterns of the other gymnasts. Three muscle synergies explained 89.9 ± 2.0% of the variance accounted for (VAF). The coefficients of correlation of the muscle synergy vectors among the participants were 0.83 ± 0.08, 0.86 ± 0.09, and 0.66 ± 0.28 for synergy #1, #2, and #3, respectively. By keeping the muscle synergy vectors constant, we obtained an averaged VAF across all pairwise comparisons of 79 ± 4%. For the synergy activation coefficients, r(max)-values were 0.96 ± 0.03, 0.92 ± 0.03, and 0.95 ± 0.03, for synergy #1, #2, and #3, respectively. By keeping the synergy activation coefficients constant, we obtained an averaged VAF across all pairwise comparisons of 72 ± 5%. Although variability was found (especially for synergy #3), the gymnasts exhibited gross similar neuromuscular strategies when performing backward giant swings. This confirms that the muscle synergies are consistent across participants, even during a skilled motor task that requires learning.
The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it requires learning, as untrained subjects are unable to perform this task. 9 gymnasts were tested. Both kinematics and electromyographic (EMG) patterns of 12 upper-limb and trunk muscles were recorded. Muscle synergies were extracted by non-negative matrix factorization, providing two components: muscle synergy vectors and synergy activation coefficients. First, the coefficient of correlation (r) and circular cross-correlation (rmax) were calculated to assess similarities in the mechanical patterns, EMG patterns and muscle synergies between gymnasts. We performed a further analysis to verify that the muscle synergies (in terms of muscle synergy vectors or synergy activation coefficients) extracted for one gymnast accounted for the EMG patterns of the other gymnasts. 3 muscle synergies explained 89.9±2.0% of the variance accounted for (VAF). The coefficients of correlation of the muscle synergy vectors among the participants were 0.83±0.08, 0.86±0.09, and 0.66±0.28 for synergy #1, #2, and #3, respectively. By keeping the muscle synergy vectors constant, we obtained an averaged VAF across all pairwise comparisons of 79±4%. For the synergy activation coefficients, rmax-values were 0.96±0.03, 0.92±0.03, and 0.95±0.03, for synergy #1, #2, and #3, respectively. By keeping the synergy activation coefficients constant, we obtained an averaged VAF across all pairwise comparisons of 72±5%. Although variability was found (especially for synergy #3), the gymnasts exhibited gross similar neuromuscular strategies when performing backward giant swings. This confirms that the muscle synergies are consistent across participants, even during a skilled motor task that requires learning.
The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We studied a population of experienced gymnasts during backward giant swings on the high bar. This cyclic movement is interesting because it requires learning, as untrained subjects are unable to perform this task. Nine gymnasts were tested. Both kinematics and electromyographic (EMG) patterns of 12 upper-limb and trunk muscles were recorded. Muscle synergies were extracted by non-negative matrix factorization (NMF), providing two components: muscle synergy vectors and synergy activation coefficients. First, the coefficient of correlation ( r ) and circular cross-correlation ( r max ) were calculated to assess similarities in the mechanical patterns, EMG patterns, and muscle synergies between gymnasts. We performed a further analysis to verify that the muscle synergies (in terms of muscle synergy vectors or synergy activation coefficients) extracted for one gymnast accounted for the EMG patterns of the other gymnasts. Three muscle synergies explained 89.9 ± 2.0% of the variance accounted for (VAF). The coefficients of correlation of the muscle synergy vectors among the participants were 0.83 ± 0.08, 0.86 ± 0.09, and 0.66 ± 0.28 for synergy #1, #2, and #3, respectively. By keeping the muscle synergy vectors constant, we obtained an averaged VAF across all pairwise comparisons of 79 ± 4%. For the synergy activation coefficients, r max -values were 0.96 ± 0.03, 0.92 ± 0.03, and 0.95 ± 0.03, for synergy #1, #2, and #3, respectively. By keeping the synergy activation coefficients constant, we obtained an averaged VAF across all pairwise comparisons of 72 ± 5%. Although variability was found (especially for synergy #3), the gymnasts exhibited gross similar neuromuscular strategies when performing backward giant swings. This confirms that the muscle synergies are consistent across participants, even during a skilled motor task that requires learning.
Author Hug, François
Frère, Julien
AuthorAffiliation 2 Laboratory « Motricité, Interactions, Performance », University of Nantes Nantes, France
1 Laboratory « Motricité, Interactions, Performance », University of Maine Le Mans, France
AuthorAffiliation_xml – name: 1 Laboratory « Motricité, Interactions, Performance », University of Maine Le Mans, France
– name: 2 Laboratory « Motricité, Interactions, Performance », University of Nantes Nantes, France
Author_xml – sequence: 1
  givenname: Julien
  surname: Frère
  fullname: Frère, Julien
– sequence: 2
  givenname: François
  surname: Hug
  fullname: Hug, François
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23293599$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03228034$$DView record in HAL
BookMark eNp1kktvEzEUhUeoiD5gzwqNxAYWCX6M7fEGqVSFVorEBtaWx3MndfDYwfYE8u_rJC1qI7GydX3Od67te16d-OChqt5iNKe0lZ8Gb8I4JwiTOUJIyhfVGeaczBhu25Mn-9PqPKUVQpxwhl5Vp4QSSZmUZ9XiC-Q_AH6Wpm4FJtcbHa3urLN5W4ehHqdkHNRp6yEuLaS6n6L1y1rXJXnt4G89hhxinX5Z515XLwftErx5WC-qn1-vf1zdzBbfv91eXS5mhkmUZxJhCQJAIECm0RwjoyWnhmvGgLdEagasaWTDaAesEwyM6DUdBNVAWG_oRXV74PZBr9Q62lHHrQraqn0hxKXSMdvSuOokN3TogLTaNAJD1_YUE0SNwZ3oxVBYnw-s9dSN0BvwOWr3DPr8xNs7tQwbRRnFArMC-HgA3B3Zbi4XaldDlJAW0WaDi_bDQ1gMvydIWY02GXBOewhTUpgISgoX8SJ9fyRdhSn68qyKEFmCGSOkqN497f5f_uMHFwE_CEwMKUUYlLFZZxt2l7FOYaR2k6T2k6R2k6T2k1SM6Mj4yP6v5R5nVcx8
CitedBy_id crossref_primary_10_1016_j_gaitpost_2016_01_011
crossref_primary_10_1038_s41598_024_52332_9
crossref_primary_10_2478_hukin_2021_0002
crossref_primary_10_1152_japplphysiol_01101_2018
crossref_primary_10_1038_s41598_021_98022_8
crossref_primary_10_1080_02640414_2017_1306090
crossref_primary_10_1038_s41598_025_87802_1
crossref_primary_10_1038_s41598_024_63640_5
crossref_primary_10_1016_j_neuroscience_2019_04_016
crossref_primary_10_1038_s41598_019_47091_x
crossref_primary_10_1371_journal_pone_0153307
crossref_primary_10_1155_2017_3050917
crossref_primary_10_1016_j_jbiomech_2022_111384
crossref_primary_10_1155_2018_5852307
crossref_primary_10_3389_fncom_2014_00046
crossref_primary_10_3389_fneur_2017_00337
crossref_primary_10_1371_journal_pone_0120193
crossref_primary_10_1111_sms_12992
crossref_primary_10_1016_j_jelekin_2015_12_001
crossref_primary_10_1002_jor_23391
crossref_primary_10_1007_s00221_019_05679_9
crossref_primary_10_1007_s00132_013_2145_6
crossref_primary_10_1186_s12984_017_0343_x
crossref_primary_10_1038_srep27759
crossref_primary_10_1152_jn_00557_2014
crossref_primary_10_52082_jssm_2024_571
crossref_primary_10_1016_j_jelekin_2016_06_004
crossref_primary_10_1038_s41598_018_26780_z
crossref_primary_10_1109_JSYST_2021_3079168
crossref_primary_10_1109_TNSRE_2019_2891004
crossref_primary_10_3389_fncom_2016_00007
crossref_primary_10_3389_fncom_2017_00078
crossref_primary_10_1038_srep36275
crossref_primary_10_7736_JKSPE_022_074
crossref_primary_10_1111_desc_13491
crossref_primary_10_1016_j_gaitpost_2022_07_050
crossref_primary_10_31857_S0869813924060066
crossref_primary_10_3389_fncom_2018_00020
crossref_primary_10_1016_j_gaitpost_2022_07_051
crossref_primary_10_1152_jn_00776_2013
crossref_primary_10_1111_sms_12942
crossref_primary_10_1134_S0362119722040089
crossref_primary_10_1080_02640414_2016_1143109
crossref_primary_10_1080_00222895_2021_1916424
crossref_primary_10_1038_s41598_024_68515_3
crossref_primary_10_1123_mc_2016_0026
crossref_primary_10_3389_fphys_2021_771368
crossref_primary_10_1038_s41598_023_43728_0
crossref_primary_10_1016_j_knee_2017_11_011
crossref_primary_10_1016_j_bspc_2024_106393
crossref_primary_10_3951_sobim_47_1_45
crossref_primary_10_1519_JSC_0000000000001282
crossref_primary_10_1016_j_neuroscience_2017_04_039
crossref_primary_10_1016_j_bspc_2024_107323
crossref_primary_10_1016_j_jbiomech_2015_06_032
crossref_primary_10_1038_s43856_022_00162_z
crossref_primary_10_1155_2018_3934698
crossref_primary_10_1371_journal_pone_0237727
crossref_primary_10_3389_fneur_2017_00277
crossref_primary_10_1519_JSC_0000000000004543
crossref_primary_10_14814_phy2_13504
crossref_primary_10_1080_02640414_2023_2259268
crossref_primary_10_1016_j_humov_2018_10_010
crossref_primary_10_1155_2020_2041549
crossref_primary_10_3389_fncom_2014_00100
crossref_primary_10_1016_j_jbiomech_2022_110997
crossref_primary_10_1016_j_ergon_2023_103499
crossref_primary_10_1126_scirobotics_adf5758
crossref_primary_10_1109_TAES_2023_3329797
crossref_primary_10_31083_j_jin2301022
crossref_primary_10_1038_s41598_023_28229_4
crossref_primary_10_1152_jn_00356_2021
crossref_primary_10_1049_ccs_2019_0021
crossref_primary_10_1109_LRA_2018_2811506
crossref_primary_10_1134_S0362119720060079
crossref_primary_10_1155_2018_3615368
crossref_primary_10_1016_j_orthtr_2015_12_008
crossref_primary_10_1134_S0022093024030165
crossref_primary_10_1080_09593985_2018_1434579
crossref_primary_10_52082_jssm_2025_195
crossref_primary_10_3389_fnins_2024_1485066
crossref_primary_10_1109_ACCESS_2019_2950709
crossref_primary_10_3389_fncom_2015_00126
crossref_primary_10_2174_1875036201811010052
crossref_primary_10_1111_sms_12167
crossref_primary_10_3389_fnhum_2024_1399179
crossref_primary_10_1371_journal_pone_0319048
crossref_primary_10_1038_s41598_023_28467_6
ContentType Journal Article
Copyright 2012. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2012 Frère and Hug. 2012
Copyright_xml – notice: 2012. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2012 Frère and Hug. 2012
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.3389/fncom.2012.00099
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Database
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central (New) (NC LIVE)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5188
ExternalDocumentID oai_doaj_org_article_b96c3fbe28ac471eb8d31203cc1b7d7f
PMC3531715
oai_HAL_hal_03228034v1
23293599
10_3389_fncom_2012_00099
Genre Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADMLS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
C1A
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
IPNFZ
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RIG
RNS
RPM
TR2
IAO
IEA
IHR
ISR
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
1XC
VOOES
5PM
ID FETCH-LOGICAL-c590t-9019e7ee70e0c4a610ca963c6a55e6829a5e5449453be5b75ec7da3f73ae25dc3
IEDL.DBID M48
ISSN 1662-5188
IngestDate Wed Aug 27 01:23:23 EDT 2025
Thu Aug 21 18:09:13 EDT 2025
Fri May 09 12:28:39 EDT 2025
Thu Sep 04 23:24:13 EDT 2025
Fri Jul 25 11:48:49 EDT 2025
Wed Feb 19 01:50:57 EST 2025
Tue Jul 01 00:59:26 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords nonegative matrix factorization
electromyography
backward giant circle
gymnastics
motor primitives
motor modules
muscle coordination
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-9019e7ee70e0c4a610ca963c6a55e6829a5e5449453be5b75ec7da3f73ae25dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC3531715
Edited by: Andrea D'Avella, IRCCS Fondazione Santa Lucia, Italy
Reviewed by: Vincent C. K. Cheung, Massachusetts Institute of Technology, USA; Gelsy Torres-Oviedo, University of Pittsburgh, USA
ORCID 0000-0002-4778-4514
0000-0002-6432-558X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fncom.2012.00099
PMID 23293599
PQID 2297155522
PQPubID 4424409
ParticipantIDs doaj_primary_oai_doaj_org_article_b96c3fbe28ac471eb8d31203cc1b7d7f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3531715
hal_primary_oai_HAL_hal_03228034v1
proquest_miscellaneous_1273253106
proquest_journals_2297155522
pubmed_primary_23293599
crossref_citationtrail_10_3389_fncom_2012_00099
crossref_primary_10_3389_fncom_2012_00099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-00-00
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012-00-00
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in computational neuroscience
PublicationTitleAlternate Front Comput Neurosci
PublicationYear 2012
Publisher Frontiers Research Foundation
Frontiers
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers
– name: Frontiers Media S.A
References 15175397 - J Neurosci. 2004 Jun 2;24(22):5269-82
16079406 - J Neurosci. 2005 Aug 3;25(31):7238-53
19657082 - J Neurophysiol. 2010 Jan;103(1):573-90
15708969 - Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3076-81
20393070 - J Neurophysiol. 2010 Jun;103(6):3084-98
20007501 - J Neurophysiol. 2010 Feb;103(2):844-57
14657185 - J Neurosci. 2003 Dec 3;23(35):11255-69
17652413 - J Neurophysiol. 2007 Oct;98(4):2144-56
15098128 - Eur J Appl Physiol. 2004 Jul;92(3):334-42
23027631 - Int J Numer Method Biomed Eng. 2012 Oct;28(10):1003-14
12120783 - Psychon Bull Rev. 2002 Jun;9(2):185-211
21975422 - J Appl Biomech. 2012 Feb;28(1):57-62
19906379 - J Biomech. 2010 Mar 3;43(4):767-70
19436081 - J Neural Eng. 2009 Jun;6(3):036004
18418807 - Int J Sports Med. 2008 Oct;29(10):817-22
1895355 - J Sports Sci. 1991 Summer;9(2):191-203
16000633 - J Neurosci. 2005 Jul 6;25(27):6419-34
19369362 - J Neurophysiol. 2009 Jul;102(1):59-68
19880747 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8
22342685 - Clin Neurophysiol. 2012 Sep;123(9):1895-6
20299611 - J Appl Physiol (1985). 2010 Jun;108(6):1727-36
16775203 - J Neurophysiol. 2006 Sep;96(3):1530-46
22096202 - Science. 2011 Nov 18;334(6058):997-9
21653725 - J Neurophysiol. 2011 Aug;106(2):999-1015
11266674 - J Biomech. 2001 Apr;34(4):505-12
18183349 - Surg Radiol Anat. 2008 Mar;30(2):137-43
16394079 - J Neurophysiol. 2006 Apr;95(4):2199-212
21796239 - Top Spinal Cord Inj Rehabil. 2011 Summer;17(1):16-24
20719600 - J Electromyogr Kinesiol. 1992;2(2):69-80
18093842 - J Electromyogr Kinesiol. 2009 Apr;19(2):182-98
18521583 - Exp Brain Res. 2008 Aug;189(2):171-87
15342720 - J Neurophysiol. 2005 Jan;93(1):609-13
12853436 - J Neurophysiol. 2003 Nov;90(5):3555-65
18304801 - Curr Opin Neurobiol. 2007 Dec;17(6):622-8
17724582 - Exp Brain Res. 2008 Jan;184(3):323-38
20869882 - J Electromyogr Kinesiol. 2011 Feb;21(1):1-12
22933805 - J Neurosci. 2012 Aug 29;32(35):12237-50
11445766 - Med Sci Sports Exerc. 2001 Jul;33(7):1182-8
21490282 - J Neurophysiol. 2011 Jul;106(1):91-103
11160497 - J Neurophysiol. 2001 Feb;85(2):605-19
22534213 - Hum Mov Sci. 2012 Apr;31(2):472-85
21900479 - J Exp Biol. 2011 Oct 1;214(Pt 19):3305-14
14724214 - J Physiol. 2004 Apr 1;556(Pt 1):267-82
8872282 - J Biomech. 1996 Sep;29(9):1223-30
18799603 - J Neurophysiol. 2008 Nov;100(5):2455-71
21856171 - J Electromyogr Kinesiol. 2011 Dec;21(6):1030-40
11018445 - J Electromyogr Kinesiol. 2000 Oct;10(5):361-74
20702112 - J Electromyogr Kinesiol. 2010 Dec;20(6):1023-35
19193466 - Hum Mov Sci. 2009 Apr;28(2):250-62
21957219 - J Neurophysiol. 2012 Jan;107(1):159-77
16554517 - J Neurophysiol. 2006 Jun;95(6):3426-37
17980370 - J Biomech. 2008;41(2):299-306
20719661 - J Electromyogr Kinesiol. 1996 Mar;6(1):37-48
References_xml – reference: 20869882 - J Electromyogr Kinesiol. 2011 Feb;21(1):1-12
– reference: 16775203 - J Neurophysiol. 2006 Sep;96(3):1530-46
– reference: 19436081 - J Neural Eng. 2009 Jun;6(3):036004
– reference: 14724214 - J Physiol. 2004 Apr 1;556(Pt 1):267-82
– reference: 16079406 - J Neurosci. 2005 Aug 3;25(31):7238-53
– reference: 19906379 - J Biomech. 2010 Mar 3;43(4):767-70
– reference: 21900479 - J Exp Biol. 2011 Oct 1;214(Pt 19):3305-14
– reference: 20719661 - J Electromyogr Kinesiol. 1996 Mar;6(1):37-48
– reference: 20702112 - J Electromyogr Kinesiol. 2010 Dec;20(6):1023-35
– reference: 11018445 - J Electromyogr Kinesiol. 2000 Oct;10(5):361-74
– reference: 17724582 - Exp Brain Res. 2008 Jan;184(3):323-38
– reference: 19657082 - J Neurophysiol. 2010 Jan;103(1):573-90
– reference: 19880747 - Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8
– reference: 21653725 - J Neurophysiol. 2011 Aug;106(2):999-1015
– reference: 21490282 - J Neurophysiol. 2011 Jul;106(1):91-103
– reference: 19369362 - J Neurophysiol. 2009 Jul;102(1):59-68
– reference: 15098128 - Eur J Appl Physiol. 2004 Jul;92(3):334-42
– reference: 18304801 - Curr Opin Neurobiol. 2007 Dec;17(6):622-8
– reference: 12853436 - J Neurophysiol. 2003 Nov;90(5):3555-65
– reference: 18418807 - Int J Sports Med. 2008 Oct;29(10):817-22
– reference: 19193466 - Hum Mov Sci. 2009 Apr;28(2):250-62
– reference: 20299611 - J Appl Physiol (1985). 2010 Jun;108(6):1727-36
– reference: 18799603 - J Neurophysiol. 2008 Nov;100(5):2455-71
– reference: 15342720 - J Neurophysiol. 2005 Jan;93(1):609-13
– reference: 11160497 - J Neurophysiol. 2001 Feb;85(2):605-19
– reference: 14657185 - J Neurosci. 2003 Dec 3;23(35):11255-69
– reference: 1895355 - J Sports Sci. 1991 Summer;9(2):191-203
– reference: 21957219 - J Neurophysiol. 2012 Jan;107(1):159-77
– reference: 20007501 - J Neurophysiol. 2010 Feb;103(2):844-57
– reference: 21975422 - J Appl Biomech. 2012 Feb;28(1):57-62
– reference: 22534213 - Hum Mov Sci. 2012 Apr;31(2):472-85
– reference: 11445766 - Med Sci Sports Exerc. 2001 Jul;33(7):1182-8
– reference: 18093842 - J Electromyogr Kinesiol. 2009 Apr;19(2):182-98
– reference: 18521583 - Exp Brain Res. 2008 Aug;189(2):171-87
– reference: 17652413 - J Neurophysiol. 2007 Oct;98(4):2144-56
– reference: 18183349 - Surg Radiol Anat. 2008 Mar;30(2):137-43
– reference: 15175397 - J Neurosci. 2004 Jun 2;24(22):5269-82
– reference: 22342685 - Clin Neurophysiol. 2012 Sep;123(9):1895-6
– reference: 20719600 - J Electromyogr Kinesiol. 1992;2(2):69-80
– reference: 22933805 - J Neurosci. 2012 Aug 29;32(35):12237-50
– reference: 16000633 - J Neurosci. 2005 Jul 6;25(27):6419-34
– reference: 8872282 - J Biomech. 1996 Sep;29(9):1223-30
– reference: 16554517 - J Neurophysiol. 2006 Jun;95(6):3426-37
– reference: 23027631 - Int J Numer Method Biomed Eng. 2012 Oct;28(10):1003-14
– reference: 16394079 - J Neurophysiol. 2006 Apr;95(4):2199-212
– reference: 15708969 - Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3076-81
– reference: 22096202 - Science. 2011 Nov 18;334(6058):997-9
– reference: 11266674 - J Biomech. 2001 Apr;34(4):505-12
– reference: 21796239 - Top Spinal Cord Inj Rehabil. 2011 Summer;17(1):16-24
– reference: 21856171 - J Electromyogr Kinesiol. 2011 Dec;21(6):1030-40
– reference: 12120783 - Psychon Bull Rev. 2002 Jun;9(2):185-211
– reference: 17980370 - J Biomech. 2008;41(2):299-306
– reference: 20393070 - J Neurophysiol. 2010 Jun;103(6):3084-98
SSID ssj0062650
Score 2.2732904
Snippet The purpose of the present study was to determine whether subjects who have learned a complex motor skill exhibit similar neuromuscular control strategies. We...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 99
SubjectTerms Bicycling
Biomechanics
Electromyography
Gymnastics
Kinematics
Life Sciences
Motor ability
motor modules
Motor Primitives
Motor skill
Motor skill learning
muscle coordination
Muscles
Neuromuscular system
Neuroscience
nonegative matrix factorization
Population studies
Posture
Skills
Spinal cord
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BbxQhFCamJy9GbdXRaqgxJh4my8AwDMetsdk01ZNNeiMM8yZt3M42nd3G_fe-B7NrVxN78QoMMI_H43vw-GDsQ9AikONDO_c6L2Wjch_A5DoUoa5tW7fxFYWv36rZeXl6oS_uPfVFMWGJHjgJbtLYKqiuAVn7gIYUmrpVhRQqhKIxrenI-gorNs5UssGI0rVIh5LogtlJ11NoCK51kZ0z8rz-XoQiVz8uLZcUCfk3zPwzWvLe8nPylD0ZcSOfpv4-Y4-gf872pz36zNdr_pHHSM64Rb7Pzo5T8FU-rBraZuF36BAnPu41X3T8ejVgHXxY070_9JR5uqvIPY8B5vCT4_gtbvnw42o-P2DnJ1--f57l46sJedBWLCnewoIBMAJEKD3Co-BxloXKaw1VLa3XoMvSllo1oBujIZjWq84oD1K3Qb1ge_2ih1eMQ6uCsnUbCoBSdrVFbwqtZ1fK0BL0ythkI0YXRkpxetli7tC1IMG7KHhHgndR8Bn7tP3iJtFp_KPsMY3MthwRYccEVA83qod7SD0y9h7HdaeO2fTMUZpQRAWkyrsiY4ebYXfjFB6clNYg2EJ8mrGjbTZOPjpR8T0sVoMrEPxJtGKiytjLpCXbphCq0q1n_A2zoz87fdnN6a8uI8G3wiqx7df_QwBv2GMSado1OmR7y9sVvEUctWzexSnzC9ztHUg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI9ge-EFAeOjbKCAEBIP1bVJ07RP6A5tOqExIcSkvUVp4rJpt3a73k3cf4-d9m4cSHtt2rS1Y_tnx7EZ--BU4sjxoci9ijNRydg60LFyqSuK0hc-dFH4dpJPT7OvZ-psCLh1Q1rlWicGRe1bRzHykRClRtuHcOHz9U1MXaNod3VoofGQ7aIKLnCd704OT77_WOtiROsq6Tcn0RUrR3VDKSJo80KVzlDv9c4YhZr9aGLOKSPyf7j5b9bkX2bo6Al7POBHPu4Z_pQ9gOYZ2xs36DtfrfhHHjI6Q6h8jx1P-iSsuFtWFG7ht-gY93W5V7yt-dWywzl4t6Lzf-gx8_7MIrc8JJrDb458bOe8u7yYzZ6z06PDn1-m8dA9IXaqTBaUd1GCBtAJJC6zCJOcRWlzuVUK8kKUVoHKsjJTsgJVaQVOeytrLS0I5Z18wXaatoFXjIOXTpaFdylAJuqiRK8KtWidCecJgkVstCajcUNpcepwMTPoYhDhTSC8IcKbQPiIfdo8cd2X1bjn3glxZnMfFcQOF9r5LzPIl6nK3Mm6AlFYh_YWqsLLVCTSubTSXtcRe4983ZpjOj42dC2RVBJIZrdpxA7WbDeDKHfmbuFF7N1mGIWQdlZsA-2yMymCQIHaLMkj9rJfJZtXIWSl08_4G3pr_Wx9y_ZIc3EeCn1LnBLf_fr-z9pnj4hYfVzogO0s5kt4g0hpUb0dxOEPSqYU_A
  priority: 102
  providerName: ProQuest
Title Between-subject variability of muscle synergies during a complex motor skill
URI https://www.ncbi.nlm.nih.gov/pubmed/23293599
https://www.proquest.com/docview/2297155522
https://www.proquest.com/docview/1273253106
https://hal.science/hal-03228034
https://pubmed.ncbi.nlm.nih.gov/PMC3531715
https://doaj.org/article/b96c3fbe28ac471eb8d31203cc1b7d7f
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagvXBBQHkEysoghMQhNPEjjg8I7aKWFWorhFhpb1biOG3FNoHNbtX998w42UCgQuISKS8nGXsy3zcezxDyysrIIvFBz70MBct5mFmnQmljm6a6SAtfReHkNJnOxKe5nP9aHt0JsLmR2mE9qdly8fb6x-Y9KPw7ZJxgbw_KCgM_wJL53Jta3ya7YJcSpGInop9TAOTu67XGSQL0K07TdtLyxhYGRsrn8gfTc46Rkn_D0D-jKX8zT0f3yN0OV9JxOxDuk1uuekD2xhVw6ssNfU19pKd3oe-R40kbnBU26xzdMPQKCHObr3tD65JerhtogzYbXBcITJq2axlpRn0Aurum0L_1kjbfLhaLh2R2dPj1wzTsqiqEVupohfEY2innVOQiKzKATzYDLbRJJqVLUqYz6aQQWkieO5kr6awqMl4qnjkmC8sfkZ2qrtwTQl3BLddpYWPnBCtTDWwL_q6lYLZAaBaQg60Yje1SjmPli4UB6oGCN17wBgVvvOAD8qa_43ubbuMf106wZ_rrMFG2P1Avz0yndybXieVl7liaWbDDLk8LHrOIWxvnqlBlQF5Cvw7amI6PDR6LOKYK4uIqDsj-ttvNdoQaxrQCMAb4NSAv-tOgnDjjklWuXjcmBnDI4C8XJQF53I6S_lEAZXFVNHyGGoyfwbsMz1QX5z4BOIcm4dlP_0NYz8gd3GmdR_tkZ7Vcu-cAp1b5iOxODk8_fxl5dwRsP87jkdecnyxdIK4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXBJSHocCCAImDFXvX68cBoQRapTSNEGql3hZ7vaYVqV3ipJA_xW9kZm2nBKTeevXaa3t2dma-2XkAvNLS0wR8yHMv3YBnwk21iVypfR3HSR7ntovCwSQcHQWfjuXxBvzucmEorLKTiVZQ55UmH3mf8yRC3YfmwvvzHy51jaLT1a6FRsMW-2b5EyFb_W7vI67va853dw4_jNy2q4CrZeLNKR4hMZExkWc8HaRoPugUuVCHqZQmjHmSSiODIAmkyIzMIml0lKeiiERquMy1wHlvwGZAGa092BzuTD5_6WQ_ogPpNYehCP2SflFSSArqWFsV1NaXvVR-tkcAqrQTisD837z9N0rzL7W3ewdut_YqGzQMdhc2THkPtgYlYvWzJXvDbASpdc1vwXjYBH259SIj9w67QCDe1AFfsqpgZ4sa52D1kvINEaGzJkeSpcwGtptfDPmmmrH6--l0eh-OroWuD6BXVqV5BMzkQoskzrVvTMCLOEEUh1K7CLjOyeRzoN-RUem2lDl11JgqhDREeGUJr4jwyhLegberJ86bMh5X3DuklVndRwW47YVq9k21-1llSahFkRkepxr1u8niXPjcE1r7WZRHhQMvcV3X5hgNxoqueYJKEIngwndgu1t21YqOWl0yugMvVsO46ekkJy1NtaiVj0YnR-nphQ48bLhk9So0kSnbGn8jWuOftW9ZHylPT2xhcYFT4rsfX_1Zz-Hm6PBgrMZ7k_0ncIsI1_iktqE3ny3MU7TS5tmzdmsw-Hrdu_EPxN5SJQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkK8IGD8yBhgECDxEDWx4yZ5QKhlqzpWqgkxaW8mcRw2rUtG0w76r_HXceckHQVpb3tNUic9n-_uO3--A3itpacJ-FDmXroBT4WbaBO6Uvs6iuIsymwXhc-T3ugo-HQsjzfgd3sWhmiVrU20hjorNeXIu5zHIfo-DBe6eUOLONwdfrj44VIHKdppbdtp1CpyYJY_Eb5V7_d3ca7fcD7c-_px5DYdBlwtY29O3ITYhMaEnvF0kGAooRPUSN1LpDS9iMeJNDII4kCK1Mg0lEaHWSLyUCSGy0wLHPcWbIboFYMObA72JodfWj-ASEF69cYowsC4mxdET0F_ayuE2lqzV47Q9gtA93ZCbMz_Q91_GZt_ucDhPbjbxK6sXyvbfdgwxQPY6heI28-X7C2zbFKbpt-C8aAmgLnVIqVUD7tEUF7XBF-yMmfniwrHYNWSzh4iWmf1eUmWMEtyN78Y6lA5Y9XZ6XT6EI5uRK6PoFOUhXkCzGRCizjKtG9MwPMoRkSHFjwPuM4o_HOg24pR6aasOXXXmCqENyR4ZQWvSPDKCt6Bd6tfXNQlPa55dkAzs3qOinHbC-Xsu2rWtkrjnhZ5aniUaPT1Jo0y4XNPaO2nYRbmDrzCeV0bY9QfK7rmCSpHJIJL34GddtpVY0YqdaX0Drxc3UYDQLs6SWHKRaV8DEA5WlKv58DjWktWr8JwmU5e498I1_Rn7VvW7xSnJ7bIuMAh8d3b13_WC7iNq1CN9ycHT-EOya1OT-1AZz5bmGcYsM3T583KYPDtphfjHzl8VlE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Between-subject+variability+of+muscle+synergies+during+a+complex+motor+skill&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Fr%C3%A8re%2C+Julien&rft.au=Hug%2C+Fran%C3%A7ois&rft.date=2012&rft.issn=1662-5188&rft.eissn=1662-5188&rft.volume=6&rft_id=info:doi/10.3389%2Ffncom.2012.00099&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fncom_2012_00099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon