Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes

Roy Kishony and colleagues sequenced the genomes of 112 Burkholderia dolosa isolates recovered from 14 individuals with cystic fibrosis as part of a retrospective study from a hospital epidemic monitored over the course of 16 years. They tracked recurrent mutations occurring in the bacterial isolate...

Full description

Saved in:
Bibliographic Details
Published inNature genetics Vol. 43; no. 12; pp. 1275 - 1280
Main Authors Lieberman, Tami D, Michel, Jean-Baptiste, Aingaran, Mythili, Potter-Bynoe, Gail, Roux, Damien, Davis, Michael R, Skurnik, David, Leiby, Nicholas, LiPuma, John J, Goldberg, Joanna B, McAdam, Alexander J, Priebe, Gregory P, Kishony, Roy
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.12.2011
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1061-4036
1546-1718
1546-1718
DOI10.1038/ng.997

Cover

Loading…
Abstract Roy Kishony and colleagues sequenced the genomes of 112 Burkholderia dolosa isolates recovered from 14 individuals with cystic fibrosis as part of a retrospective study from a hospital epidemic monitored over the course of 16 years. They tracked recurrent mutations occurring in the bacterial isolates and found that 17 genes showed evidence of parallel adaptive evolution. Bacterial pathogens evolve during the infection of their human host 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , but separating adaptive and neutral mutations remains challenging 9 , 10 , 11 . Here we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple individuals. We conducted a retrospective study of a Burkholderia dolosa outbreak among subjects with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired nonsynonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes affect important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition and implicate oxygen-dependent regulation as paramount in lung infections. Several genes have not previously been implicated in pathogenesis and may represent new therapeutic targets. The identification of parallel molecular evolution as a pathogen spreads among multiple individuals points to the key selection forces it experiences within human hosts.
AbstractList Bacterial pathogens evolve during the infection of their human hosts 1 - 8 , but separating adaptive and neutral mutations remains challenging 9 - 11 . Here, we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple patients. We conducted a retrospective study of a Burkholderia dolosa outbreak among people with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired non-synonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes illuminate the genetic basis of important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition, and implicate oxygen-dependent gene regulation as paramount in lung infections. Several genes have not been previously implicated in pathogenesis, suggesting new therapeutic targets. The identification of parallel molecular evolution suggests key selection forces acting on pathogens within humans and can help predict and prepare for their future evolutionary course.
Bacterial pathogens evolve during the infection of their human host, but separating adaptive and neutral mutations remains challenging. Here we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple individuals. We conducted a retrospective study of a Burkholderia dolosa outbreak among subjects with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired nonsynonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes affect important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition and implicate oxygen-dependent regulation as paramount in lung infections. Several genes have not previously been implicated in pathogenesis and may represent new therapeutic targets. The identification of parallel molecular evolution as a pathogen spreads among multiple individuals points to the key selection forces it experiences within human hosts. [PUBLICATION ABSTRACT]
Bacterial pathogens evolve during the infection of their human host(1-8), but separating adaptive and neutral mutations remains challenging(9-11). Here we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple individuals. We conducted a retrospective study of a Burkholderia dolosa outbreak among subjects with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired nonsynonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes affect important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition and implicate oxygen-dependent regulation as paramount in lung infections. Several genes have not previously been implicated in pathogenesis and may represent new therapeutic targets. The identification of parallel molecular evolution as a pathogen spreads among multiple individuals points to the key selection forces it experiences within human hosts.Bacterial pathogens evolve during the infection of their human host(1-8), but separating adaptive and neutral mutations remains challenging(9-11). Here we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple individuals. We conducted a retrospective study of a Burkholderia dolosa outbreak among subjects with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired nonsynonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes affect important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition and implicate oxygen-dependent regulation as paramount in lung infections. Several genes have not previously been implicated in pathogenesis and may represent new therapeutic targets. The identification of parallel molecular evolution as a pathogen spreads among multiple individuals points to the key selection forces it experiences within human hosts.
Roy Kishony and colleagues sequenced the genomes of 112 Burkholderia dolosa isolates recovered from 14 individuals with cystic fibrosis as part of a retrospective study from a hospital epidemic monitored over the course of 16 years. They tracked recurrent mutations occurring in the bacterial isolates and found that 17 genes showed evidence of parallel adaptive evolution. Bacterial pathogens evolve during the infection of their human host 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , but separating adaptive and neutral mutations remains challenging 9 , 10 , 11 . Here we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple individuals. We conducted a retrospective study of a Burkholderia dolosa outbreak among subjects with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired nonsynonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes affect important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition and implicate oxygen-dependent regulation as paramount in lung infections. Several genes have not previously been implicated in pathogenesis and may represent new therapeutic targets. The identification of parallel molecular evolution as a pathogen spreads among multiple individuals points to the key selection forces it experiences within human hosts.
Bacterial pathogens evolve during the infection of their human host, but separating adaptive and neutral mutations remains challenging. Here we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple individuals. We conducted a retrospective study of a Burkholderia dolosa outbreak among subjects with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired nonsynonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes affect important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition and implicate oxygen-dependent regulation as paramount in lung infections. Several genes have not previously been implicated in pathogenesis and may represent new therapeutic targets. The identification of parallel molecular evolution as a pathogen spreads among multiple individuals points to the key selection forces it experiences within human hosts.
Bacterial pathogens evolve during the infection of their human host(1-8), but separating adaptive and neutral mutations remains challenging(9-11). Here we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple individuals. We conducted a retrospective study of a Burkholderia dolosa outbreak among subjects with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired nonsynonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes affect important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition and implicate oxygen-dependent regulation as paramount in lung infections. Several genes have not previously been implicated in pathogenesis and may represent new therapeutic targets. The identification of parallel molecular evolution as a pathogen spreads among multiple individuals points to the key selection forces it experiences within human hosts.
Audience Academic
Author Goldberg, Joanna B
Potter-Bynoe, Gail
Kishony, Roy
Lieberman, Tami D
Skurnik, David
Aingaran, Mythili
Priebe, Gregory P
Roux, Damien
McAdam, Alexander J
Leiby, Nicholas
Michel, Jean-Baptiste
Davis, Michael R
LiPuma, John J
AuthorAffiliation 8 Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
4 Infection Prevention & Control, Children's Hospital Boston, Boston, MA, USA
3 Department of Medicine, Division of Infectious Diseases, Children's Hospital Boston, Boston, MA, USA
9 Department of Laboratory Medicine, Children's Hospital Boston, Boston, MA, USA
5 Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
2 Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, USA
7 Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
11 School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
10 Department of Anesthesia, Division of Critical Care Medicine, Children's Hospital Boston, Boston MA, USA
1 Department of Systems Biology, Harvard Medical School, Boston, MA, USA
6 Department of Microbiology, University of Virginia Health System, Charlottesville, VA, USA
AuthorAffiliation_xml – name: 5 Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
– name: 7 Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
– name: 8 Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
– name: 11 School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
– name: 10 Department of Anesthesia, Division of Critical Care Medicine, Children's Hospital Boston, Boston MA, USA
– name: 6 Department of Microbiology, University of Virginia Health System, Charlottesville, VA, USA
– name: 4 Infection Prevention & Control, Children's Hospital Boston, Boston, MA, USA
– name: 9 Department of Laboratory Medicine, Children's Hospital Boston, Boston, MA, USA
– name: 1 Department of Systems Biology, Harvard Medical School, Boston, MA, USA
– name: 2 Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, USA
– name: 3 Department of Medicine, Division of Infectious Diseases, Children's Hospital Boston, Boston, MA, USA
Author_xml – sequence: 1
  givenname: Tami D
  surname: Lieberman
  fullname: Lieberman, Tami D
  organization: Department of Systems Biology, Harvard Medical School
– sequence: 2
  givenname: Jean-Baptiste
  surname: Michel
  fullname: Michel, Jean-Baptiste
  organization: Department of Systems Biology, Harvard Medical School, Program for Evolutionary Dynamics, Harvard University
– sequence: 3
  givenname: Mythili
  surname: Aingaran
  fullname: Aingaran, Mythili
  organization: Department of Medicine, Division of Infectious Diseases, Children's Hospital Boston
– sequence: 4
  givenname: Gail
  surname: Potter-Bynoe
  fullname: Potter-Bynoe, Gail
  organization: Infection Prevention & Control, Children's Hospital Boston
– sequence: 5
  givenname: Damien
  surname: Roux
  fullname: Roux, Damien
  organization: Department of Medicine, Channing Laboratory, Brigham and Women's Hospital
– sequence: 6
  givenname: Michael R
  surname: Davis
  fullname: Davis, Michael R
  organization: Department of Microbiology, University of Virginia Health System
– sequence: 7
  givenname: David
  surname: Skurnik
  fullname: Skurnik, David
  organization: Department of Medicine, Channing Laboratory, Brigham and Women's Hospital
– sequence: 8
  givenname: Nicholas
  surname: Leiby
  fullname: Leiby, Nicholas
  organization: Department of Systems Biology, Harvard Medical School
– sequence: 9
  givenname: John J
  surname: LiPuma
  fullname: LiPuma, John J
  organization: Department of Pediatrics, University of Michigan Medical School, Department of Epidemiology, University of Michigan School of Public Health
– sequence: 10
  givenname: Joanna B
  surname: Goldberg
  fullname: Goldberg, Joanna B
  organization: Department of Microbiology, University of Virginia Health System
– sequence: 11
  givenname: Alexander J
  surname: McAdam
  fullname: McAdam, Alexander J
  email: alexander.mcadam@childrens.harvard.edu
  organization: Department of Laboratory Medicine, Children's Hospital Boston
– sequence: 12
  givenname: Gregory P
  surname: Priebe
  fullname: Priebe, Gregory P
  email: gregory_priebe@childrens.harvard.edu
  organization: Department of Medicine, Division of Infectious Diseases, Children's Hospital Boston, Department of Medicine, Channing Laboratory, Brigham and Women's Hospital, Department of Anesthesia, Division of Critical Care Medicine, Children's Hospital Boston
– sequence: 13
  givenname: Roy
  surname: Kishony
  fullname: Kishony, Roy
  email: roy_kishony@hms.harvard.edu
  organization: Department of Systems Biology, Harvard Medical School, School of Engineering and Applied Sciences, Harvard University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25285522$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22081229$$D View this record in MEDLINE/PubMed
BookMark eNqNkmtrFDEUhgep2Iv6E2RQrArummSSmcwXoRQvhULF20dDNnNmNiWTrJNMa_-9Z7tr664ikg8nJE9eznnz7mc7PnjIsoeUTCkp5CvfTeu6upPtUcHLCa2o3ME9KemEk6LczfZjPCeEck7kvWyXMSIpY_Ve9u2DHrRz4PKZNgkGq10OF8GNyQafX9o0tz7vR5fswkG-0MmCTzG3DRbbWoi50b6xjU7Xt_PQgbfGpqscNxDvZ3db7SI8WNeD7MvbN5-P309Oz96dHB-dToyoSZrIWppKGF1jV8RU1DSyNGXDDcPZgM4aQuqSS14QBmVrTMsKJqgsKwq0bWhRHGSvV7qLcdZDY7A7HEstBtvr4UoFbdXmjbdz1YULVTAuCsZQ4NlaYAjfR4hJ9TYacE57CGNUNSlFSbABJJ__k8Tv4JIxKimij7fQ8zAOHo1QNcUBiKg4Qk9WUKcdKOvbgA2apaY6YhVnTBaFQGr6FwpXA701mIXW4vnGgxcbD5BJ8CN1eoxRnXz6-P_s2ddN9tHvTt9Y_CtSCDxdAzoa7dpBe2PjLSeYFOLa8cMVZ4YQ4wDtDULJ0kSpfKcw0wi-3AIxX3qZT7TAuj_x9U9G1PMdDLemb5E_AcYUAcY
CODEN NGENEC
CitedBy_id crossref_primary_10_1101_gr_276306_121
crossref_primary_10_1111_1462_2920_13550
crossref_primary_10_1038_s41467_022_28188_w
crossref_primary_10_1099_mgen_0_000694
crossref_primary_10_1099_mgen_0_000572
crossref_primary_10_1186_s13059_014_0504_1
crossref_primary_10_1016_j_mib_2017_09_011
crossref_primary_10_1073_pnas_1520056113
crossref_primary_10_1038_ng_2859
crossref_primary_10_1038_s41576_018_0032_z
crossref_primary_10_1371_journal_pone_0143472
crossref_primary_10_1371_journal_pcbi_1007930
crossref_primary_10_1038_nrmicro_2015_13
crossref_primary_10_1371_journal_pgen_1010324
crossref_primary_10_1371_journal_ppat_1006762
crossref_primary_10_1016_j_chom_2023_03_009
crossref_primary_10_1126_scitranslmed_3004129
crossref_primary_10_1111_1758_5899_12278
crossref_primary_10_1128_mSystems_00171_17
crossref_primary_10_3389_fmicb_2017_01027
crossref_primary_10_1038_s41559_017_0077
crossref_primary_10_1016_j_mib_2018_03_002
crossref_primary_10_1093_jimb_kuab076
crossref_primary_10_1126_science_aad3292
crossref_primary_10_1038_ng_2848
crossref_primary_10_1101_gr_141515_112
crossref_primary_10_5858_arpa_2012_0025_RA
crossref_primary_10_1371_journal_pone_0171363
crossref_primary_10_3389_fmicb_2023_1103297
crossref_primary_10_1146_annurev_micro_041320_032304
crossref_primary_10_1073_pnas_1208003109
crossref_primary_10_2147_IDR_S495676
crossref_primary_10_1038_ismej_2013_36
crossref_primary_10_1038_nbt_2410
crossref_primary_10_1038_s41467_023_39416_2
crossref_primary_10_1038_nature18959
crossref_primary_10_3389_fmicb_2017_01256
crossref_primary_10_1016_j_chom_2013_05_009
crossref_primary_10_1099_mgen_0_000117
crossref_primary_10_1016_j_mib_2022_102197
crossref_primary_10_1038_ng_3172
crossref_primary_10_1136_bmjopen_2012_001124
crossref_primary_10_1128_IAI_00927_19
crossref_primary_10_1371_journal_pone_0083065
crossref_primary_10_1038_nbt_3416
crossref_primary_10_1128_CMR_00001_16
crossref_primary_10_1101_gr_213363_116
crossref_primary_10_1038_ismej_2017_69
crossref_primary_10_1371_journal_pone_0189810
crossref_primary_10_1007_s12026_012_8305_7
crossref_primary_10_1016_j_celrep_2013_07_026
crossref_primary_10_1021_sb400023u
crossref_primary_10_1093_femsre_fuw002
crossref_primary_10_1128_microbiolspec_BAI_0021_2019
crossref_primary_10_1038_s41396_023_01361_9
crossref_primary_10_1038_s42003_023_05365_1
crossref_primary_10_1093_femsre_fuw007
crossref_primary_10_1080_21505594_2016_1237334
crossref_primary_10_1164_rccm_201312_2129PP
crossref_primary_10_1371_journal_pone_0063237
crossref_primary_10_1186_s40425_018_0482_z
crossref_primary_10_1073_pnas_1307862110
crossref_primary_10_1038_s41591_019_0503_6
crossref_primary_10_1371_journal_ppat_1003340
crossref_primary_10_1016_j_chom_2016_04_015
crossref_primary_10_1038_s41467_021_26392_8
crossref_primary_10_1073_pnas_1207025110
crossref_primary_10_3390_microorganisms10050918
crossref_primary_10_1007_s00430_016_0488_4
crossref_primary_10_1038_s41598_021_00421_4
crossref_primary_10_1097_PAT_0000000000000235
crossref_primary_10_1371_journal_pcbi_1004739
crossref_primary_10_1007_s00134_022_06881_0
crossref_primary_10_1038_nrmicro2907
crossref_primary_10_1371_journal_pcbi_1006117
crossref_primary_10_1371_journal_ppat_1005759
crossref_primary_10_1086_709373
crossref_primary_10_1093_molbev_msu191
crossref_primary_10_1016_j_ygeno_2014_12_010
crossref_primary_10_1098_rspb_2019_1964
crossref_primary_10_1038_ng_1048
crossref_primary_10_7554_eLife_70676
crossref_primary_10_1128_mBio_00356_17
crossref_primary_10_1128_jcm_01480_24
crossref_primary_10_1111_eva_12254
crossref_primary_10_1128_AAC_00075_16
crossref_primary_10_1016_j_chom_2021_08_009
crossref_primary_10_2217_fmb_13_28
crossref_primary_10_1093_molbev_msad288
crossref_primary_10_1038_s41467_019_12823_0
crossref_primary_10_1038_s41598_019_52604_9
crossref_primary_10_1098_rspb_2015_2452
crossref_primary_10_1093_gbe_evx064
crossref_primary_10_3390_pathogens3030680
crossref_primary_10_1038_s41564_018_0133_7
crossref_primary_10_1038_nrg3135
crossref_primary_10_1016_j_tig_2019_10_010
crossref_primary_10_1128_AEM_01343_17
crossref_primary_10_1038_s41559_022_01790_3
crossref_primary_10_1016_j_prrv_2023_02_001
crossref_primary_10_1038_s41564_022_01221_w
crossref_primary_10_1038_s41559_022_01909_6
crossref_primary_10_1038_nature24152
crossref_primary_10_1371_journal_pone_0097020
crossref_primary_10_1016_j_mib_2014_11_004
crossref_primary_10_1186_s13073_016_0279_y
crossref_primary_10_1371_journal_ppat_1009418
crossref_primary_10_1080_1040841X_2020_1854172
crossref_primary_10_1371_journal_pcbi_1003549
crossref_primary_10_1016_j_jmb_2014_09_011
crossref_primary_10_1128_IAI_01788_14
crossref_primary_10_1016_j_tim_2022_09_001
crossref_primary_10_1128_msphere_00530_24
crossref_primary_10_1038_s41467_020_17735_y
crossref_primary_10_3390_genes4040556
crossref_primary_10_1038_nature24287
crossref_primary_10_1098_rspb_2017_0324
crossref_primary_10_1038_nrg3351
crossref_primary_10_1038_s41564_021_00938_4
crossref_primary_10_1093_pnasnexus_pgad079
crossref_primary_10_1038_s41540_023_00304_6
crossref_primary_10_1093_gbe_evw072
crossref_primary_10_3389_fmicb_2016_02024
crossref_primary_10_1128_msystems_00178_21
crossref_primary_10_1038_nrg3226
crossref_primary_10_1093_gbe_evad106
crossref_primary_10_1371_journal_pone_0064129
crossref_primary_10_1016_j_jhin_2013_11_007
crossref_primary_10_1038_s41467_022_34101_2
crossref_primary_10_1128_mSystems_00029_16
crossref_primary_10_1534_genetics_114_163147
crossref_primary_10_1093_molbev_msv270
crossref_primary_10_1128_mBio_01823_21
crossref_primary_10_1093_dnares_dsx053
crossref_primary_10_1186_1471_2164_15_1039
crossref_primary_10_1128_IAI_00656_15
crossref_primary_10_1371_journal_ppat_1009872
crossref_primary_10_1371_journal_pbio_2000633
crossref_primary_10_1038_nm_4205
crossref_primary_10_1371_journal_ppat_1007453
crossref_primary_10_1016_j_tig_2012_11_005
crossref_primary_10_1586_14787210_2014_887441
crossref_primary_10_1186_s12915_024_01891_4
crossref_primary_10_1371_journal_pone_0064285
crossref_primary_10_1038_s41579_024_01041_1
crossref_primary_10_1128_JB_00171_17
crossref_primary_10_1371_journal_pgen_1006585
crossref_primary_10_1128_mBio_02193_16
crossref_primary_10_1016_j_tim_2019_01_003
crossref_primary_10_1038_s41392_024_01866_5
crossref_primary_10_1186_s13059_017_1196_0
crossref_primary_10_1172_JCI154944
crossref_primary_10_1073_pnas_1318797111
crossref_primary_10_1080_1040841X_2024_2418130
crossref_primary_10_3389_fevo_2024_1335452
crossref_primary_10_1371_journal_pone_0061319
crossref_primary_10_1073_pnas_1504725112
crossref_primary_10_1128_JB_00784_18
crossref_primary_10_1016_S1473_3099_12_70277_3
crossref_primary_10_1371_journal_pgen_1003741
crossref_primary_10_1016_S1473_3099_19_30045_3
crossref_primary_10_1111_1469_0691_12217
crossref_primary_10_1051_medsci_2012286011
crossref_primary_10_1038_msb_2013_22
crossref_primary_10_1371_journal_ppat_1006116
crossref_primary_10_1371_journal_ppat_1006111
crossref_primary_10_1073_pnas_1915569116
crossref_primary_10_1099_mgen_0_000515
crossref_primary_10_1016_j_tig_2018_06_004
crossref_primary_10_1038_nrmicro2722
crossref_primary_10_1073_pnas_1705887114
crossref_primary_10_1038_nrg3564
crossref_primary_10_1099_mgen_0_000510
crossref_primary_10_3389_fgene_2019_00546
crossref_primary_10_1371_journal_pone_0161837
crossref_primary_10_1128_IAI_02659_14
crossref_primary_10_1371_journal_pcbi_1005130
crossref_primary_10_1179_204777312X13305103762547
crossref_primary_10_1371_journal_ppat_1005257
crossref_primary_10_1128_JCM_01447_21
crossref_primary_10_1128_mSphere_01176_20
crossref_primary_10_1038_nrmicro2970
crossref_primary_10_1073_pnas_1219574110
crossref_primary_10_1128_mbio_03158_22
crossref_primary_10_1016_j_ram_2018_01_002
crossref_primary_10_1099_mgen_0_000405
crossref_primary_10_1371_journal_pone_0179592
crossref_primary_10_1371_journal_pone_0160975
crossref_primary_10_1093_molbev_msaa278
crossref_primary_10_1128_JB_00216_18
crossref_primary_10_2217_fmb_12_108
crossref_primary_10_1126_science_1221822
crossref_primary_10_1038_s41559_017_0435_9
crossref_primary_10_1093_molbev_msab248
crossref_primary_10_1128_mBio_03328_20
crossref_primary_10_1093_molbev_msu262
crossref_primary_10_1128_mBio_01176_18
crossref_primary_10_1099_jmm_0_069849_0
crossref_primary_10_1128_mSphere_00519_18
crossref_primary_10_1016_j_xgen_2024_100725
crossref_primary_10_3389_fmicb_2016_00712
crossref_primary_10_1126_sciadv_abh1489
crossref_primary_10_1038_ng_1011
crossref_primary_10_1128_JB_00428_18
crossref_primary_10_1016_j_mib_2014_06_002
crossref_primary_10_1073_pnas_1921881117
crossref_primary_10_1128_mSystems_00523_21
crossref_primary_10_1111_jcpe_12559
crossref_primary_10_1099_mgen_0_000139
crossref_primary_10_1128_mSphere_01216_20
crossref_primary_10_3389_fmicb_2023_1205389
crossref_primary_10_1128_mBio_00981_15
crossref_primary_10_3389_fmicb_2017_01592
crossref_primary_10_1128_msystems_00881_21
crossref_primary_10_1093_bioinformatics_btz332
crossref_primary_10_1371_journal_pone_0069533
crossref_primary_10_1111_jeb_12774
crossref_primary_10_1128_mBio_00966_14
crossref_primary_10_1111_mmi_13136
crossref_primary_10_1128_IAI_06388_11
crossref_primary_10_1371_journal_pone_0072939
crossref_primary_10_1016_j_chom_2022_04_008
crossref_primary_10_1128_IAI_00405_13
crossref_primary_10_1128_genomeA_00043_14
crossref_primary_10_1128_mBio_02359_20
crossref_primary_10_1098_rstb_2012_0314
crossref_primary_10_3389_fmicb_2017_00816
crossref_primary_10_1016_j_ygeno_2014_09_005
crossref_primary_10_1038_s41559_024_02523_4
crossref_primary_10_1038_nrmicro2750
crossref_primary_10_1016_j_chom_2021_12_007
crossref_primary_10_1371_journal_pone_0056466
crossref_primary_10_1159_000121607
crossref_primary_10_1371_journal_ppat_1008298
crossref_primary_10_3389_fmicb_2020_00475
crossref_primary_10_1073_pnas_1702314114
crossref_primary_10_1128_mBio_00388_13
crossref_primary_10_1038_s41564_022_01126_8
crossref_primary_10_1007_s00239_017_9802_z
crossref_primary_10_7554_eLife_81979
crossref_primary_10_1093_infdis_jis254
crossref_primary_10_1186_s12866_016_0916_z
crossref_primary_10_7554_eLife_93146
crossref_primary_10_1159_000342709
crossref_primary_10_3389_fmicb_2020_574626
crossref_primary_10_1038_s41586_019_1749_3
crossref_primary_10_1093_emph_eou032
crossref_primary_10_1038_ismej_2015_15
crossref_primary_10_1093_molbev_msu121
crossref_primary_10_1098_rspb_2016_0749
crossref_primary_10_1038_s41591_019_0626_9
crossref_primary_10_3390_genes8010043
crossref_primary_10_3390_ijms23094560
crossref_primary_10_1038_ismej_2015_220
crossref_primary_10_1128_jb_00541_21
crossref_primary_10_1371_journal_pone_0106428
crossref_primary_10_3389_fcimb_2019_00273
crossref_primary_10_1111_jeb_13964
crossref_primary_10_7554_eLife_38594
crossref_primary_10_1016_j_chom_2019_03_007
crossref_primary_10_1016_j_eng_2021_11_018
crossref_primary_10_1101_gr_180190_114
crossref_primary_10_5808_GI_2012_10_1_1
crossref_primary_10_1146_annurev_ecolsys_112414_054458
crossref_primary_10_1371_journal_pone_0037723
crossref_primary_10_1111_mmi_12704
crossref_primary_10_7554_eLife_30637
crossref_primary_10_1111_1462_2920_15238
crossref_primary_10_1038_s42003_023_04601_y
crossref_primary_10_7554_eLife_61805
crossref_primary_10_1038_nmicrobiol_2016_263
crossref_primary_10_1093_molbev_msac257
crossref_primary_10_22207_JPAM_16_2_45
crossref_primary_10_1038_s41467_024_49621_2
crossref_primary_10_1128_JCM_01019_13
crossref_primary_10_1128_CMR_00019_18
crossref_primary_10_1093_jpids_piac073
crossref_primary_10_1098_rstb_2018_0237
crossref_primary_10_1371_journal_ppat_1002731
crossref_primary_10_1016_j_mib_2018_11_005
crossref_primary_10_1098_rstb_2021_0243
crossref_primary_10_1111_mmi_13584
crossref_primary_10_1038_ncomms14078
crossref_primary_10_3389_fvets_2023_1217135
crossref_primary_10_1073_pnas_1409800111
Cites_doi 10.1038/ismej.2010.88
10.1073/pnas.0503022102
10.1073/pnas.1018249108
10.1073/pnas.0602917103
10.1126/science.1198545
10.1038/ng.195
10.1164/rccm.201009-1430OC
10.1128/JB.187.4.1324-1333.2005
10.1128/IAI.00755-09
10.1128/AAC.39.7.1621
10.1038/nature08970
10.1038/nature06248
10.1016/0140-6736(90)92571-X
10.1126/science.1182395
10.1073/pnas.0602138103
10.1038/nature08480
10.1164/rccm.200503-344OC
10.1056/NEJM200202213460820
10.1128/CMR.00068-09
10.1016/S0378-1097(03)00724-9
10.1016/S0960-9822(00)00005-1
10.1073/pnas.0609839104
10.1097/01.mcp.0000181475.85187.ed
10.1073/pnas.1018444108
10.1128/AAC.42.10.2661
10.1038/nmeth.1352
10.1371/journal.pgen.1001036
10.1101/cshperspect.a000414
10.1128/CMR.17.3.581-611.2004
10.1038/nature08658
10.1038/nrmicro1658
10.1099/ijs.0.02888-0
10.1371/journal.ppat.1001078
10.1038/nrg1088
10.1073/pnas.0804326105
10.1099/mic.0.046870-0
10.1172/JCI0213870
ContentType Journal Article
Copyright Springer Nature America, Inc. 2011
2015 INIST-CNRS
COPYRIGHT 2011 Nature Publishing Group
Copyright Nature Publishing Group Dec 2011
Copyright_xml – notice: Springer Nature America, Inc. 2011
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2011 Nature Publishing Group
– notice: Copyright Nature Publishing Group Dec 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1038/ng.997
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library (ProQuest)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Research Library Prep
MEDLINE - Academic

Genetics Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1546-1718
EndPage 1280
ExternalDocumentID PMC3245322
2546687581
A274228335
22081229
25285522
10_1038_ng_997
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM081617
– fundername: NIAID NIH HHS
  grantid: AI057159
– fundername: NIGMS NIH HHS
  grantid: GM080177
– fundername: NIGMS NIH HHS
  grantid: T32 GM080177
– fundername: NIAID NIH HHS
  grantid: U54 AI057159
– fundername: NICHD NIH HHS
  grantid: T32 HD055148
– fundername: NCATS NIH HHS
  grantid: UL1 TR000170
– fundername: NIAID NIH HHS
  grantid: T32 AI007046
– fundername: NIGMS NIH HHS
  grantid: GM081617
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AAHBH
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABTAH
ABUWG
ACBWK
ACGFO
ACGFS
ACIWK
ACMJI
ACNCT
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
INH
INR
IOV
ISR
ITC
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M7P
MVM
N9A
NADUK
NNMJJ
NXXTH
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
UKHRP
VQA
X7M
XJT
XOL
Y6R
YHZ
ZGI
ZXP
ZY4
~8M
~KM
AAYXX
ABFSG
ACMFV
ACSTC
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
AEZWR
AFHIU
AHWEU
AIXLP
IQODW
NFIDA
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c590t-898c75ca98120c71cd86c6d4c2038e1bd0096484302e6fccf232518671e1fd133
IEDL.DBID 7X7
ISSN 1061-4036
1546-1718
IngestDate Thu Aug 21 14:33:57 EDT 2025
Fri Jul 11 07:08:20 EDT 2025
Fri Jul 11 16:31:50 EDT 2025
Fri Jul 25 09:15:39 EDT 2025
Tue Jun 17 21:07:56 EDT 2025
Tue Jun 10 20:18:23 EDT 2025
Fri Jun 27 03:46:52 EDT 2025
Fri Jun 27 04:58:29 EDT 2025
Mon Jul 21 06:07:25 EDT 2025
Mon Jul 21 09:15:45 EDT 2025
Tue Jul 01 01:50:10 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
Fri Feb 21 02:37:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Infection
Human
Pathogenicity
Molecular evolution
Bacteriosis
Bacteria
Candidate gene
Identification
Language English
License http://www.springer.com/tdm
CC BY 4.0
Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c590t-898c75ca98120c71cd86c6d4c2038e1bd0096484302e6fccf232518671e1fd133
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3245322
PMID 22081229
PQID 912510574
PQPubID 33429
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3245322
proquest_miscellaneous_906560430
proquest_miscellaneous_1034822181
proquest_journals_912510574
gale_infotracmisc_A274228335
gale_infotracacademiconefile_A274228335
gale_incontextgauss_ISR_A274228335
gale_incontextgauss_IOV_A274228335
pubmed_primary_22081229
pascalfrancis_primary_25285522
crossref_primary_10_1038_ng_997
crossref_citationtrail_10_1038_ng_997
springer_journals_10_1038_ng_997
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: New York, NY
– name: United States
PublicationTitle Nature genetics
PublicationTitleAbbrev Nat Genet
PublicationTitleAlternate Nat Genet
PublicationYear 2011
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Smith (CR2) 2006; 103
Croucher (CR14) 2011; 331
Kennemann (CR7) 2011; 108
Barrick (CR19) 2009; 461
Elena, Lenski (CR17) 2003; 4
Woods (CR18) 2006; 103
Zdziarski (CR5) 2010; 6
Lipuma (CR22) 2005; 11
Reyna, Huesca, Gonzalez, Fuchs (CR32) 1995; 39
van der Woude, Bäumler (CR13) 2004; 17
Biddick, Spilker, Martin, LiPuma (CR24) 2003; 228
Crosson, McGrath, Stephens, McAdams, Shapiro (CR36) 2005; 102
Goodarzi, Hottes, Tavazoie (CR10) 2009; 6
Musher (CR3) 2002; 346
Mwangi (CR8) 2007; 104
Yang (CR6) 2011; 108
Worlitzsch (CR37) 2002; 109
Pleasance (CR11) 2010; 463
Silhavy, Kahne, Walker (CR33) 2010; 2
Kalish (CR25) 2006; 173
Lipuma (CR20) 2010; 23
Weigel, Steward, Tenover (CR31) 1998; 42
Wong, Kassen (CR4) 2011; 157
Marteyn (CR38) 2010; 465
Harris (CR9) 2010; 327
Ortega (CR35) 2005; 187
Vinion-Dubiel, Goldberg (CR34) 2003; 9
Moxon, Rainey, Nowak, Lenski (CR12) 1994; 4
Holt (CR15) 2008; 40
Pallen, Wren (CR16) 2007; 449
Vermis (CR21) 2004; 54
Sibley (CR27) 2008; 105
Mowat (CR29) 2011; 183
LiPuma, Dasen, Nielson, Stern, Stull (CR23) 1990; 336
Guss (CR28) 2011; 5
Wilder, Allada, Schuster (CR30) 2009; 77
Suerbaum, Josenhans (CR1) 2007; 5
Morelli (CR26) 2010; 6
ER Moxon (BFng997_CR12) 1994; 4
J Zdziarski (BFng997_CR5) 2010; 6
MW van der Woude (BFng997_CR13) 2004; 17
JJ Lipuma (BFng997_CR22) 2005; 11
G Morelli (BFng997_CR26) 2010; 6
KE Holt (BFng997_CR15) 2008; 40
R Woods (BFng997_CR18) 2006; 103
A Wong (BFng997_CR4) 2011; 157
SR Harris (BFng997_CR9) 2010; 327
LM Weigel (BFng997_CR31) 1998; 42
S Suerbaum (BFng997_CR1) 2007; 5
E Mowat (BFng997_CR29) 2011; 183
DM Musher (BFng997_CR3) 2002; 346
R Biddick (BFng997_CR24) 2003; 228
B Marteyn (BFng997_CR38) 2010; 465
EE Smith (BFng997_CR2) 2006; 103
H Goodarzi (BFng997_CR10) 2009; 6
LA Kalish (BFng997_CR25) 2006; 173
F Reyna (BFng997_CR32) 1995; 39
AM Guss (BFng997_CR28) 2011; 5
L Yang (BFng997_CR6) 2011; 108
SF Elena (BFng997_CR17) 2003; 4
X Ortega (BFng997_CR35) 2005; 187
NJ Croucher (BFng997_CR14) 2011; 331
JE Barrick (BFng997_CR19) 2009; 461
MM Mwangi (BFng997_CR8) 2007; 104
K Vermis (BFng997_CR21) 2004; 54
AD Vinion-Dubiel (BFng997_CR34) 2003; 9
L Kennemann (BFng997_CR7) 2011; 108
JJ LiPuma (BFng997_CR23) 1990; 336
JJ Lipuma (BFng997_CR20) 2010; 23
CD Sibley (BFng997_CR27) 2008; 105
CN Wilder (BFng997_CR30) 2009; 77
TJ Silhavy (BFng997_CR33) 2010; 2
ED Pleasance (BFng997_CR11) 2010; 463
MJ Pallen (BFng997_CR16) 2007; 449
D Worlitzsch (BFng997_CR37) 2002; 109
S Crosson (BFng997_CR36) 2005; 102
22179715 - Nat Rev Genet. 2011 Dec 16;13(1):4. doi: 10.1038/nrg3135.
22173557 - Nat Rev Microbiol. 2011 Dec 16;10(1):5. doi: 10.1038/nrmicro2722.
22120052 - Nat Genet. 2011 Nov 28;43(12):1174-6. doi: 10.1038/ng.1011.
References_xml – volume: 5
  start-page: 20
  year: 2011
  end-page: 29
  ident: CR28
  article-title: Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis
  publication-title: ISME J.
  doi: 10.1038/ismej.2010.88
– volume: 9
  start-page: 201
  year: 2003
  end-page: 213
  ident: CR34
  article-title: Lipopolysaccharide of complex
  publication-title: J. Endotoxin Res.
– volume: 102
  start-page: 8018
  year: 2005
  end-page: 8023
  ident: CR36
  article-title: Conserved modular design of an oxygen sensory/signaling network with species-specific output
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0503022102
– volume: 108
  start-page: 7481
  year: 2011
  end-page: 7486
  ident: CR6
  article-title: Evolutionary dynamics of a bacteria in a human host environment
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1018249108
– volume: 103
  start-page: 9107
  year: 2006
  end-page: 9112
  ident: CR18
  article-title: Tests of parallel molecular evolution in long-term experiment with
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0602917103
– volume: 331
  start-page: 430
  year: 2011
  end-page: 434
  ident: CR14
  article-title: Rapid pneumococcal evolution in response to clinical interventions
  publication-title: Science
  doi: 10.1126/science.1198545
– volume: 40
  start-page: 987
  year: 2008
  end-page: 993
  ident: CR15
  article-title: High-throughput sequencing provides insights into genome variation and evolution in Typhi
  publication-title: Nat. Genet.
  doi: 10.1038/ng.195
– volume: 183
  start-page: 1674
  year: 2011
  end-page: 1679
  ident: CR29
  article-title: population diversity and turnover in cystic fibrosis infections
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201009-1430OC
– volume: 187
  start-page: 1324
  year: 2005
  end-page: 1333
  ident: CR35
  article-title: Reconstitution of O-specific lipopolysaccharide expression in strain J2315, which is associated with transmissible infections in patients with cystic fibrosis
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.4.1324-1333.2005
– volume: 77
  start-page: 5631
  year: 2009
  end-page: 5639
  ident: CR30
  article-title: Instantaneous within-patient diversity of quorum-sensing populations from cystic fibrosis lung infections
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00755-09
– volume: 39
  start-page: 1621
  year: 1995
  end-page: 1623
  ident: CR32
  article-title: mutations associated with fluoroquinolone resistance
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.39.7.1621
– volume: 465
  start-page: 355
  year: 2010
  end-page: 358
  ident: CR38
  article-title: Modulation of virulence in response to available oxygen
  publication-title: Nature
  doi: 10.1038/nature08970
– volume: 449
  start-page: 835
  year: 2007
  end-page: 842
  ident: CR16
  article-title: Bacterial pathogenomics
  publication-title: Nature
  doi: 10.1038/nature06248
– volume: 336
  start-page: 1094
  year: 1990
  end-page: 1096
  ident: CR23
  article-title: Person-to-person transmission of between patients with cystic fibrosis
  publication-title: Lancet
  doi: 10.1016/0140-6736(90)92571-X
– volume: 327
  start-page: 469
  year: 2010
  end-page: 474
  ident: CR9
  article-title: Evolution of MRSA during hospital transmission and intercontinental spread
  publication-title: Science
  doi: 10.1126/science.1182395
– volume: 103
  start-page: 8487
  year: 2006
  end-page: 8492
  ident: CR2
  article-title: Genetic adaptation by to the airways of cystic fibrosis patients
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0602138103
– volume: 461
  start-page: 1243
  year: 2009
  end-page: 1247
  ident: CR19
  article-title: Genome evolution and adaptation in a long-term experiment with
  publication-title: Nature
  doi: 10.1038/nature08480
– volume: 173
  start-page: 421
  year: 2006
  end-page: 425
  ident: CR25
  article-title: Impact of on lung function and survival in cystic fibrosis
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200503-344OC
– volume: 346
  start-page: 630
  year: 2002
  end-page: 631
  ident: CR3
  article-title: Emergence of macrolide resistance during treatment of pneumococcal pneumonia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM200202213460820
– volume: 23
  start-page: 299
  year: 2010
  end-page: 323
  ident: CR20
  article-title: The changing microbial epidemiology in cystic fibrosis
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00068-09
– volume: 228
  start-page: 57
  year: 2003
  end-page: 62
  ident: CR24
  article-title: Evidence of transmission of and among persons with cystic fibrosis
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1016/S0378-1097(03)00724-9
– volume: 4
  start-page: 24
  year: 1994
  end-page: 33
  ident: CR12
  article-title: Adaptive evolution of highly mutable loci in pathogenic bacteria
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00005-1
– volume: 104
  start-page: 9451
  year: 2007
  end-page: 9456
  ident: CR8
  article-title: Tracking the evolution of multidrug resistance in by whole-genome sequencing
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0609839104
– volume: 11
  start-page: 528
  year: 2005
  end-page: 533
  ident: CR22
  article-title: Update on the complex
  publication-title: Curr. Opin. Pulm. Med.
  doi: 10.1097/01.mcp.0000181475.85187.ed
– volume: 108
  start-page: 5033
  year: 2011
  end-page: 5038
  ident: CR7
  article-title: genome evolution during human infection
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1018444108
– volume: 42
  start-page: 2661
  year: 1998
  end-page: 2667
  ident: CR31
  article-title: mutations associated with fluoroquinolone resistance in eight species of
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.42.10.2661
– volume: 6
  start-page: 581
  year: 2009
  end-page: 583
  ident: CR10
  article-title: Global discovery of adaptive mutations
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1352
– volume: 6
  start-page: e1001036
  year: 2010
  ident: CR26
  article-title: Microevolution of during prolonged infection of single hosts and within families
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001036
– volume: 2
  start-page: a000414
  year: 2010
  ident: CR33
  article-title: The bacterial cell envelope
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a000414
– volume: 17
  start-page: 581
  year: 2004
  end-page: 611
  ident: CR13
  article-title: Phase and antigenic variation in bacteria
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.17.3.581-611.2004
– volume: 463
  start-page: 191
  year: 2010
  end-page: 196
  ident: CR11
  article-title: A comprehensive catalogue of somatic mutations from a human cancer genome
  publication-title: Nature
  doi: 10.1038/nature08658
– volume: 5
  start-page: 441
  year: 2007
  end-page: 452
  ident: CR1
  article-title: evolution and phenotypic diversification in a changing host
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1658
– volume: 54
  start-page: 689
  year: 2004
  end-page: 691
  ident: CR21
  article-title: Proposal to accommodate genomovar VI as sp. nov
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.02888-0
– volume: 6
  start-page: e1001078
  year: 2010
  ident: CR5
  article-title: Host imprints on bacterial genomes—rapid divergent evolution in individual patients
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1001078
– volume: 4
  start-page: 457
  year: 2003
  end-page: 469
  ident: CR17
  article-title: Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1088
– volume: 105
  start-page: 15070
  year: 2008
  end-page: 15075
  ident: CR27
  article-title: A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0804326105
– volume: 157
  start-page: 937
  year: 2011
  end-page: 944
  ident: CR4
  article-title: Parallel evolution and local differentiation in quinolone resistance in
  publication-title: Microbiology
  doi: 10.1099/mic.0.046870-0
– volume: 109
  start-page: 317
  year: 2002
  end-page: 325
  ident: CR37
  article-title: Effects of reduced mucus oxygen concentration in airway infections of cystic fibrosis patients
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0213870
– volume: 23
  start-page: 299
  year: 2010
  ident: BFng997_CR20
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00068-09
– volume: 108
  start-page: 5033
  year: 2011
  ident: BFng997_CR7
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1018444108
– volume: 6
  start-page: 581
  year: 2009
  ident: BFng997_CR10
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1352
– volume: 5
  start-page: 20
  year: 2011
  ident: BFng997_CR28
  publication-title: ISME J.
  doi: 10.1038/ismej.2010.88
– volume: 109
  start-page: 317
  year: 2002
  ident: BFng997_CR37
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0213870
– volume: 228
  start-page: 57
  year: 2003
  ident: BFng997_CR24
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1016/S0378-1097(03)00724-9
– volume: 105
  start-page: 15070
  year: 2008
  ident: BFng997_CR27
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0804326105
– volume: 173
  start-page: 421
  year: 2006
  ident: BFng997_CR25
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200503-344OC
– volume: 9
  start-page: 201
  year: 2003
  ident: BFng997_CR34
  publication-title: J. Endotoxin Res.
– volume: 11
  start-page: 528
  year: 2005
  ident: BFng997_CR22
  publication-title: Curr. Opin. Pulm. Med.
  doi: 10.1097/01.mcp.0000181475.85187.ed
– volume: 331
  start-page: 430
  year: 2011
  ident: BFng997_CR14
  publication-title: Science
  doi: 10.1126/science.1198545
– volume: 104
  start-page: 9451
  year: 2007
  ident: BFng997_CR8
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0609839104
– volume: 17
  start-page: 581
  year: 2004
  ident: BFng997_CR13
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.17.3.581-611.2004
– volume: 463
  start-page: 191
  year: 2010
  ident: BFng997_CR11
  publication-title: Nature
  doi: 10.1038/nature08658
– volume: 4
  start-page: 457
  year: 2003
  ident: BFng997_CR17
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1088
– volume: 5
  start-page: 441
  year: 2007
  ident: BFng997_CR1
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1658
– volume: 157
  start-page: 937
  year: 2011
  ident: BFng997_CR4
  publication-title: Microbiology
  doi: 10.1099/mic.0.046870-0
– volume: 77
  start-page: 5631
  year: 2009
  ident: BFng997_CR30
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00755-09
– volume: 2
  start-page: a000414
  year: 2010
  ident: BFng997_CR33
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a000414
– volume: 336
  start-page: 1094
  year: 1990
  ident: BFng997_CR23
  publication-title: Lancet
  doi: 10.1016/0140-6736(90)92571-X
– volume: 108
  start-page: 7481
  year: 2011
  ident: BFng997_CR6
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1018249108
– volume: 54
  start-page: 689
  year: 2004
  ident: BFng997_CR21
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.02888-0
– volume: 6
  start-page: e1001078
  year: 2010
  ident: BFng997_CR5
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1001078
– volume: 103
  start-page: 9107
  year: 2006
  ident: BFng997_CR18
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0602917103
– volume: 40
  start-page: 987
  year: 2008
  ident: BFng997_CR15
  publication-title: Nat. Genet.
  doi: 10.1038/ng.195
– volume: 327
  start-page: 469
  year: 2010
  ident: BFng997_CR9
  publication-title: Science
  doi: 10.1126/science.1182395
– volume: 102
  start-page: 8018
  year: 2005
  ident: BFng997_CR36
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0503022102
– volume: 6
  start-page: e1001036
  year: 2010
  ident: BFng997_CR26
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001036
– volume: 187
  start-page: 1324
  year: 2005
  ident: BFng997_CR35
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.4.1324-1333.2005
– volume: 346
  start-page: 630
  year: 2002
  ident: BFng997_CR3
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM200202213460820
– volume: 183
  start-page: 1674
  year: 2011
  ident: BFng997_CR29
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201009-1430OC
– volume: 465
  start-page: 355
  year: 2010
  ident: BFng997_CR38
  publication-title: Nature
  doi: 10.1038/nature08970
– volume: 39
  start-page: 1621
  year: 1995
  ident: BFng997_CR32
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.39.7.1621
– volume: 4
  start-page: 24
  year: 1994
  ident: BFng997_CR12
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00005-1
– volume: 103
  start-page: 8487
  year: 2006
  ident: BFng997_CR2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0602138103
– volume: 449
  start-page: 835
  year: 2007
  ident: BFng997_CR16
  publication-title: Nature
  doi: 10.1038/nature06248
– volume: 461
  start-page: 1243
  year: 2009
  ident: BFng997_CR19
  publication-title: Nature
  doi: 10.1038/nature08480
– volume: 42
  start-page: 2661
  year: 1998
  ident: BFng997_CR31
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.42.10.2661
– reference: 22173557 - Nat Rev Microbiol. 2011 Dec 16;10(1):5. doi: 10.1038/nrmicro2722.
– reference: 22120052 - Nat Genet. 2011 Nov 28;43(12):1174-6. doi: 10.1038/ng.1011.
– reference: 22179715 - Nat Rev Genet. 2011 Dec 16;13(1):4. doi: 10.1038/nrg3135.
SSID ssj0014408
Score 2.5195384
Snippet Roy Kishony and colleagues sequenced the genomes of 112 Burkholderia dolosa isolates recovered from 14 individuals with cystic fibrosis as part of a...
Bacterial pathogens evolve during the infection of their human host(1-8), but separating adaptive and neutral mutations remains challenging(9-11). Here we...
Bacterial pathogens evolve during the infection of their human host (1-8), but separating adaptive and neutral mutations remains challenging (9-11). Here we...
Bacterial pathogens evolve during the infection of their human host, but separating adaptive and neutral mutations remains challenging. Here we identify...
Bacterial pathogens evolve during the infection of their human hosts 1 - 8 , but separating adaptive and neutral mutations remains challenging 9 - 11 . Here,...
SourceID pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1275
SubjectTerms 631/208/2489/144
631/208/514/1948
631/326/41/2531
Adaptation, Biological
Agriculture
Animal Genetics and Genomics
Anti-Bacterial Agents - pharmacology
Antibiotic resistance
Antibiotics
Bacteremia - microbiology
Bacteria
Bacterial genetics
Bacterial infections
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Burkholderia
Burkholderia - drug effects
Burkholderia - genetics
Burkholderia - pathogenicity
Burkholderia Infections - epidemiology
Burkholderia Infections - microbiology
Cancer Research
Ciprofloxacin - pharmacology
Cloning
Cystic fibrosis
Drug Resistance, Bacterial
Epidemics
Evolution
Evolution & development
Evolution, Molecular
Evolutionary biology
Fundamental and applied biological sciences. Psychology
Gene Function
Genes, Bacterial
Genetic aspects
Genetic diversity
Genetics of eukaryotes. Biological and molecular evolution
Genome, Bacterial
Genomes
Hospitals
Host-Pathogen Interactions
Human Genetics
Human subjects
Humans
letter
Likelihood Functions
Lipopolysaccharides - genetics
Lung Diseases - microbiology
Microbial mutation
Mutation
Pathogenesis
Pathogens
Phylogeny
Polymorphism, Single Nucleotide
Retrospective Studies
Selection, Genetic
Virulence Factors - genetics
Title Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes
URI https://link.springer.com/article/10.1038/ng.997
https://www.ncbi.nlm.nih.gov/pubmed/22081229
https://www.proquest.com/docview/912510574
https://www.proquest.com/docview/1034822181
https://www.proquest.com/docview/906560430
https://pubmed.ncbi.nlm.nih.gov/PMC3245322
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKyQkVPEmbVkMAnFKm5cT-4RK1aogUapC0Z6IEsferlQlS7OLxL9nJnZSQimXXDxK_JiMv_GMvwF4LdDwZiYNfY27hZ-kXPtFVoa-TGXCuahUEdB950_H6dFZ8nHKpy43p3Vplb1N7Ax11Sg6I9-VtBMjuEjeLX74VDSKgquugsZtWCfmMvK9sungb1HY0t6ES8lNoiilLS0Ui916tiOJ5-mPvchZ5HuLosXZMbasxb9w5_X0yb9iqN3WdHgfNhymZHtWCR7ALV0_hDu2yuSvR_D9pLikiikXrLTUzCirfzqVY3QQO69Zn1jIHNFqy-aVTSTSLVN094WOBqj1vEGdmytE72xGhvIxnB0efN0_8l1ZBV9xGSx9IYXKuCok7u2BykJViVSlVaIinBkdlhW5NYlI4iDSqVHKIOjiHQ-eDk2FPu0TWKubWj8DliG4DEuODTFagpKLghsTh1FojERPrPLgTT_BuXKc41T64iLvYt-xyOtZjgvhwYtBbmFZNq5JvKL1yYmyoqacmFmxatv8w-dv-R5FmyO6PHaT0JfTkdBbJ2Qa7Isq3D0EHBFRYY0kt0eS-OOpUfNkpCtDzyMeCY641oOtXnlyZxnafNBjD14OrfRmSnardbNqadgJ4jbEXh6wG2RkQKxJuEYePLXaePX5CGFeFEkPspGeDgLEKD5uqefnHbM4omseU8dZr9FXHR-vx-Z_x7YFd7uz9y7tZxvWlpcr_RzB27KcdL8oPsV-OIH19wfHJ6e_AeOnRuk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQikCvEmbWkNouIUmjhxYh8QqgrVLn2AoEU9YRLH2a5UZZdmF9QfxX9kJq8SSrn17NGunRmPP3tmvgF4IdHxxnnkuxZPCzeMhHWTOPVdFalQCJmZxKN65_2DaHAUvj8Wxwvwq62FobTK1idWjjqbGHoj31R0EiO4CN9Mv7vUNIqCq20Hjdoqdu35T7yxla-Hb1G9G5zvvDvcHrhNUwHXCOXNXKmkiYVJFJ5snol9k8nIRFlouBdI66cZgfpQhoHHbZQbkyPkEBULnPXzzKf3T_T4N8IgiImqX253GSUUJq0r7yK6llFUtG5lFMjNYvRKEa_UH2dfcwIsTZMStZHXbTT-hXMvp2v-FbOtjsKdu3CnwbBsqza6e7Bgi_tws-5qef4Avn5MzqhDyylLaypolLU_GhNn9PA7LlibyMgaYteSjbM6ccmWzFCtDT1F0OjJBG18bPC2wEbkmB_C0bV88UewWEwK-wRYjGDWTwUOBOh5UiETkeeBz_08V3jzyxzYaD-wNg3HObXaONVVrD2QuhhpVIQD653ctGb1uCTxnPSjiSKjoBycUTIvSz388EVvUXSbU7HaVUKfP_WEXjZC-QTnYpKm7gFXRNRbPcnVniRudNMbXuvZSjdzLrgUiKMdWGmNRzeeqNTdvnHgWTdKv0zJdYWdzEtadog4EbGeA-wKGeURSxPqyIHHtTVe_D1HWMm5ciDu2WknQAzm_ZFifFIxmSOaFwFNnLUWfTHxvj6W_7u2dbg1ONzf03vDg90VuF29-1cpR6uwODub26cIHGfpWrVdGXy7bv_wG9kKf3k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQyAkhPgmbGwGMfEUmjhx4jwgNDGqlcGYgKE-YRLH7ipNaVla0P40_jvu8jXCGG979qm1c-e73_m-AJ5JVLyxjXzXoLVww0gYN40z302iJBRC5jr1qN75_X60exi-HYvxCvxqa2EorbLViZWizmea3sgHCVliBBfhwDZZEQc7w1fz7y4NkKJAaztNo5aQPXP6E7238uVoB1m9xfnwzefXu24zYMDVIvEWrkykjoVOE7Ryno59nctIR3mouRdI42c5AfxQhoHHTWS1tgg_RNURzvg29-ktFLX_lThAq4lXKR53vh6FTOsqvIhcNIqQ1mONAjkoJi8S6jH1hx1srMGNeVoiZ2w9UuNfmPd86uZf8dvKLA5vwc0Gz7LtWgBvw4op7sDVesLl6V34epCe0LSWY5bVbaGR1vxoxJ3RI_C0YG1SI2uavJZsmtdJTKZkmupu6FmCVo9mKO9TjZ4Dm5CSvgeHl_LF78NqMSvMQ2AxAls_E7gQoBbKhEyFtYHPfWsT9AJzB7baD6x00--cxm4cqyruHkhVTBQywoHNjm5ed_g4R_GU-KOoXUZBkjdJl2WpRh--qG2KdHMqXLuI6NPHHtHzhsjOcC86bWog8ETUhqtHud6jxEuve8sbPVnpds4FlwIxtQNrrfCoRiuVqrtDDjzpVumXKdGuMLNlSccOETMi7nOAXUCTeNSxCXnkwINaGs_-niPE5DxxIO7JaUdA3cz7K8X0qOpqjsheBLRx1kr02cb7_Hj037NtwjXUDOrdaH9vDa5XIYAq-2gdVhcnS_MYMeQi26huK4Nvl60efgMz2oPb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+bacterial+evolution+within+multiple+patients+identifies+candidate+pathogenicity+genes&rft.jtitle=Nature+genetics&rft.au=Lieberman%2C+Tami+D&rft.au=Michel%2C+Jean-Baptiste&rft.au=Aingaran%2C+Mythili&rft.au=Potter-Bynoe%2C+Gail&rft.date=2011-12-01&rft.eissn=1546-1718&rft.volume=43&rft.issue=12&rft.spage=1275&rft_id=info:doi/10.1038%2Fng.997&rft_id=info%3Apmid%2F22081229&rft.externalDocID=22081229
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon